Program: BE Biomedical Engineering Curriculum Scheme: Revised 2016 Examination: Final Year Semester VIII

Time: 1 hour

Course Code and Course Name: BMDLO8043 and Nuclear Medicine

Max. Marks: 50

1		What are isomers?
	а	Excited state of a nuclide
	b	Nuclides having the same number of protons
	С	Nuclides having the same atomic mass
	d	Nuclides having the same number of neutron
2		When two light nuclei combine to form a heavier nucleus, the process is called as
	а	nuclear fusion
	b	nuclear fission
	С	nuclear power
	d	nuclear transmutation
3		In SI base units, 1 Bq is equal to
	а	0.5 disintegration per second
	b	1 disintegration per second
	С	10 disintegration per second
	d	1.5 disintegration per second
4		In air, alpha particles have range of
	а	several thousand meters
	b	several hundred meters
	С	few centimeters
	d	several meters
5		The fast-moving photons are
	а	alpha radiation
	b	beta radiations
	С	gamma radiation
	d	no radiation
6		What are radionuclides?
	а	unstable nuclides
	b	seminuclides
	С	neutral nuclides
	d	stable nuclide
7		A process in which heavy nucleus splits into two by bombarding a slow-moving neutron is called
	а	radioactivity
	b	nuclear fusion
	С	nuclear fission
	d	nuclear splitting
8		Nuclei bombarded with protons, neutron or alpha particles are changed to

	а	stable nuclide
	b	radioisotopes
	C	element having atomic number less than 82
	d	seminuclides
9		Which is a cyclotron produced radionuclide
	а	Fluorine-18
	b	Chromium-51
	С	Molybdenum-99
	d	Xenon-133
10		Excited state of a nuclide is
	а	isotones
	b	isobars
	С	isotopes
	d	isomers
11		The minimum amount of energy necessary to free an electron from an atom is energy of the electron in that atom
	а	potential
	b	kinetic
	С	binding
	d	passive
12		During alpha decay the atomic number of the resulting nuclide (daughter nuclide) will be
	а	reduced by 4
	b	reduced by 2
	С	increased by 1
	d	reduced by 1
13		When the electron absorbs an amount of energy that is just sufficient to move it into a higher unoccupied shell, the process is known as
	а	excitation
	b	calibration
	С	radiation
	d	ionization
14		1 Becquerel (Bq) corresponds to
	а	37 kCi
	b	27.03 pCi
	С	2.7 kCi
	d	37 Ci
15		Energy emitted from the nucleus as a high-energy photon is known as
	а	X- ray
	b	Beta emission
	С	Gamma ray

	d	Alpha emission
16		is the reactor produced radionuclide
	а	Fluorine-18
	b	Molybdenum-99
	с	Oxygen-15
	d	Nitrogen-13
17		dominates in low atomic number materials such as soft tissue and bone above
	а	100 kev Compton interaction
	b	Photoelectric interaction
	C C	Pair production
	d	
10	u	Electron capture
18	-	The transient equilibrium occurs if
	a	parent and daughter radionuclide half life differs by a factor of about 10–50
	b	parent and daughter radionuclide half life differs by a factor of 100
	С	parent and daughter radionuclide half life is equal
	d	parent radionuclide half life is less than daughter radionuclide half life
19		During beta minus (β -) decay the atomic mass number (A)
	а	increased by one
	b	decreased by one
	С	remains unchanged
	d	decreased by two
20		The probability of photoelectric interaction is
	а	inversely proportional to the cube of γ-ray energy
	b	directly proportional to the cube of γ-ray energy
	С	inversely proportional to the square of γ-ray energy
	d	directly proportional to the square of γ-ray energy
21		A moderator is used in nuclear reactor to slow
	а	protons
	b	alpha particles
	с	neutrons
	d	beta particles
22		the kinetic energy of the alpha particle emitted during Rn-222 alpha decay is
	а	4.78 MeV
	b	4.78 kev
	с	2keV
	d	15 MeV
23		An alpha particle is also known as
	а	a photon
	b	a positron
	c	an electron
	d	a helium nucleus
24	-	Gamma-ray have
<u>د</u> ۲	1	

	d	x-rays
	C	gamma rays
	b	delta rays
<u>.</u>	а	alpha particles
31	u	Cobalt therapy uses from the radioisotope cobalt-60.
	d	infections
	о С	ulcers
	a b	brain tumours
50	2	pneumonia
30	d	Cancers Gamma Knife is used to manage
	C	ulcers Cancers
	b	pneumonia
	a	coronary blockages
29		Cobalt unit is used to treat
20	d	100 keV
	С	50 keV
	b	1.17 or 1.33 MeV
	a	1 keV
		teletherapy unit
28		Photon energy of is release from the radiation source used in Cobalt
	d	Auger electrons
	С	X-rays
	b	energetic α - or β -particles
	а	γ-radiation
27		Radionuclides that emit are preferred for the treatment of bulky tumours
	d	I - 131
	С	Yttrium-90
	b	Tc-99m
	а	strontium-89
26		For Bone pain palliation is used commonly.
	d	the atomic mass number
	С	the atomic number
	b	Avogadro's number
	а	the number of electrons
25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	In the symbol Tc-99, the number 99 represents
	d	no mass and an electric charge of +1
	C D	no mass and an electric charge of -1
	a b	no mass and no electric charge no mass and an electric charge of +2

	а	20*test duration
	b	1.5*test duration
	с	10*test duration
	d	30*test duration
33		Compare to following four , Who is more susceptible to injurious radiation effects?
	а	Children
	b	Adult
	с	Fetus
	d	senior citizen
34		Acute effects generally appears within following days of exposure to radiations
	а	90 days
	b	120 days
	с	150 days
	d	60 days
35		1µCi*hr cumulated activity in MIRD is equivalent to
	а	1.332 × 10^2 MBq *sec
	b	1.332 × 10^3 MBq *sec
	с	1.332 × 10^5 MBq *sec
	d	1.332 × 10^4 MBq *sec
36		Which is more damaging in absorbed dose?
	а	Gamma radiations
	b	Alpha particle
	с	Beta+ particle
	d	Beta - particle
37		External radiations exposure to body is increased by
	а	Increase the distance from the source
	b	Decrease the time of exposure
	с	Use shielding between yourself and the source
	d	Decreasing your distance from the source
38		What is the cumulated activity in the liver for an injection of 100 MBq of a 99mTc- labeled sulfur colloid, assuming that 60% of the injected colloid is trapped by the liver and retained there indefinitely? (Half life of 99mTc= 6 hours)
	а	5.18 MBq*hr
	b	5184 MBq*hr
	С	51.84 MBq*hr
	d	518.4 MBq*hr
39		Material used in TLD chip for detection of radiations
	а	Lithium Fluoride
	b	Sodium chloride
	С	calcium carbonate
	d	cadmium sulphate
40		Calculate the radiation dose to spleen (sp) to an average adult male for an injection of
		100MBq of 99mTc sulfur colloid. Assume that 30% of the activity is trapped by spleen

		(SP) with instantaneous uptake and no biologic excretion. (Half life of
		99mTc= 6 hours)
	a	9.33 *10^5 MBq.Sec
	b	933 *10^5 MBq.Sec
	C	93.3 *10^5 MBq.Sec
	d	0.933 *10^5 MBq.Sec
41		Biological effects such as Chromosomal aberrations and mutations occurs at following level
	а	Cell
	b	Tissue
	C	Organ
	d	Whole body
42		Amount of dose required to reduction in fertility in male is
	а	3-4 Gy
	b	3-4 mGy
	С	0.3 - 0.4 Gy
	d	0.3 - 0.4 mGy
43		Amount of dose required to cause Epilation
	а	0.1-0.2 mGy
	b	0.1-0.2 Gy
	С	2-6 mGy
	d	2-6 Gy
44		The air kerma rate at 10-cm distance from a syringe containing 1GBq of 99mTc. (air kerma rate constant Γ is 0.0141 mGy • m2/GBq • hr)
	а	14.1 mGy/hr
	b	1.41 mGy/hr
	С	141 mGy/hr
	d	1410 mGy/hr
45		99mTc-DTPA is commonly used in
	а	Bone scans
	b	Renal function
	с	Myocardial perfusion
	d	Cerebral perfusion
46	-	Which is mechanism of localization for Bone scanning with 99mTc-labeled phosphate
	а	compound? antibody-antigen
	b	Simple exchange or diffusion
	C	Cell sequestration
47	d	Receptor bindingWhich of the given option is inappropriate Radiation effect on Oral Tissues?
+/		
	a	jaw osteoradionecrosis
	b	Xerostomia

	С	Sterility
	d	Mucositis
48		Time involved in radiation damage of alterations of biologically important molecules
	а	micro second
	b	upto millisecond
	с	seconds to hours
	d	hours to years
49		For a dual head gamma camera two simultaneous image can be acquired at
		an angle of
	а	90°
	b	120°
	С	180°
	d	270°
50		What does the 'P' in PET stand for?
	а	Positron
	b	Photon
	С	Proton
	d	P-orbital
51		What makes PET and SPECT so unique when it comes to nuclear imaging?
	а	Do not require dyes
	b	Do not require X – Rays
	с	They show the metabolic functions
	d	They give more details about the imaged organ/tissue
52		The most preferred radioisotope element for SPECT is
	а	Mo
	b	W
	с	Тс
	d	Ва
53		As compared to PET, SPECT isotopes have half life.
	а	Longer
	b	Shorter
	С	Equivalent
	d	Unstable
54		The detector of PET is made of
	а	Silver
	b	Bismuth Germinate
	с	Tungsten
	d	Lead
55		Which of the following radiations are used for imaging purposes?
	а	Alpha
	b	Beta
	с	Gamma
	d	Delta

56		If a PET scan is being used to detect tumors, an important constituent of the injected radioligand will be
	а	glucose
	b	lipids
	С	keratin
	d	riboflavin
57		PET-CT hybrid imaging provides
	а	Only Anatomical information of tissues
	b	Only Physiological information of tissues
	С	Both Anatomical and Physiological information of tissues
	d	None of Anatomical and Physiological information of tissues
58		PET-CT hybrid imaging is most commonly used for detection of
	а	Cancer
	b	Bone fracture
	С	Blockages in Blood vessels
	d	Kidney stone
59		In SPECT, Projections are acquired at defined points during the rotation, typically
		every
	а	3–6 degrees
	b	10–12 degrees
	С	16–18 degrees
	d	20–22degrees
60		Which type of collimator used in SPECT?
	а	Focusing
	b	Diverging
	С	Inverging
	d	Parallel hole
61		In SPECT following isotope used for Thyroid examination
	а	iodine-131
	b	indium-111
	С	thallium-201
	d	technetium-99m
62		When both photons from an annihilation event are detected by detectors in coincidence is called as
	а	Random coincidence
	b	Scatter coincidence
	С	True coincidence
	d	False coincidence
63		Half life of O-15 isotope use in PET is
	а	51 sec
	b	122 sec
	с	244 sec
	d	488 sec
	~~~~	

	а	5 mins
	b	10 mins
	C	15 mins
	d	20 mins
65	ŭ	Which scanner has detectors in the form ring around the patient?
00		
	а	PET
	ŭ	
	b	SPECT
	, D	
	с	Gamma Camera
	Ľ	Gainina Camera
		Rectilinear Scanner
	d	Rectilinear Scanner
66		Which of these materials have got lowest density
		Air
	a b	Si(Li)
		Ge(Li)
	c d	CdTe
67	u	Identify the detector which has got poor energy resolution
07	а	Ionization Chamber
	b	Si detector
	c	Ge detector
	d	Nal(TI) Counter
69	, united and a second s	For any detector the size of electrical signal is proportional to
	а	amount of radiation deposited
	b	detector construction
		detector size
	C	
70	d	detector cost
70		How electron traps can be avoided in semiconductor detectors
	a	Addition of impurity atoms(ex. Li)
	b	Operating detector at low temperatures
	С	Reducing the size of the detector
71	d	Increasing the size of the detector
71		In RIA a known quantity of antigen is made radioactive by
	a	Labelling with Radioactive isotopes
	b	Fusion process in cyclotron
	c	Mixing with neutron rich element
	d	Nuclear Fission
	ŭ	

72		IN RIA To separate Free Antigens from Antigen-Antibody complex, which of this techniques is irrelevant
	а	Electroporation
	b	Electrophoresis
	с	Chromatography
	d	Ultracentrifugation
73		RIA technqiue is used for
	а	measuring concentration of antibodies
	b	measuring concentration of antigens
	С	finding spectrum of radioactive material
	d	detection in gamma ray
74		What is the major problem in working with RIA Technique
	а	Process is complicated
	b	Skilled manpower is required
	С	Risk of handling radioactive antigens
	d	RIA Technique is inefficient for detecting radioactivity
75		What is Freunds Adjuvant used in RIA
	а	Radioactive antigen
	b	Radioactive antibody
	С	Mixture of mineral oil, waxes, and killed bacilli
	d	Liquid scintillator
76		What is the effect of Ionization reaction in atoms
	а	Results in formation of ion pairs
	b	Makes atoms radioactive
	С	Atoms become stable in nature
	d	No change is seens in the atomic structure
77		Which of the given operating mode is irrelevant for gas filled detectors
	а	Ionization chamber
	b	Proportional counter
	с	GM counter
	d	Quantum counter
78		To use gas filled detector as Ionization chamber what should be typical voltage around the anode and cathode plates
	а	voltage should be equal to saturation voltage (Vs)
	b	voltage should be less than saturation voltage (Vs)
	с	voltage should be greater than saturation voltage (Vs)
	d	No voltage source is required
79		In ionization chamber how much energy is expelled to produce one ion pair
	а	1 eV
	b	34 eV
	С	100 eV
	d	3400 eV

80		What is special feature of a scintillator crystals
	а	Generates equivalent voltage when stuck by light photons
	b	Generates equivalent light photons when stuck by radiation
	с	Can be used for detecting IR and UV Rays too
	d	Work as an efficient temperature sensor
81	-	Dynodes used in PMT are held at
		,
	а	Negative potential
	b	Positive potential
	с	Zero potential
	d	Varying negative potential
82		In scintillation detector instead of PMT which of this component can also be used to
		detect light photons
	а	Si detector
	b	GM Counter
	С	Proportional counter
	d	Si Photodiode
83		What is density of Nal(TI) crystals
	а	1.03 g/cm3
	b	3.67 g/cm3
	С	4.51 g/cm3
	d	7.13 g/cm3
84		Density of which of these detector is much higher
	а	Gas filled detector
	b	Semiconductor detector
	С	Scintillation detector
	d	Quantum detectors
85		Which is this is a semiconductor detector
	а	Nal(TI) Detector
	b	BGO Detector
	С	CsI(TI) Detector
	d	Si Detector
86		For a semiconductor detector, to produce 1 ion pair how much energy is expelled
	а	1 eV
	b	3-5 eV
	С	30-50 eV
	d	300-500 eV
87		Which of this is a function of organic solvent in Liquid Scintillation Detector
	а	Dissolves Scintillator material
	b	Doesnot Dissolves Radioactive sample in it
	с	Emits Radiation
	d	Emits secondary ionization
88		The fraction of the chemical present in the organ at any time is called as
	а	Uptake of the organ

	b	Intake of the organ
	С	Chemical distribution
	d	Effective concentration
89		Which component is responsible for selecting a radioactive event based on its energy
	а	Nal (TI) detector
	b	Amplifier
	С	Pulse Height Analyzer
	d	Analog Ratemeter
90		Half life of I-131 is
	а	8.1 days
	b	12 days
	С	6 days
	d	6 hours
91		Who is credited for the invention of Gamma Camera
	а	Benedict Cassen
	b	Marie Currie
	С	James Currie
	d	Hal Anger
92		What is the purpose of collimators in gamma camera
	а	Absorption of scattered and randomly directed gamma photons
	b	Transmission of gamma photons to NaI(TI) detectors
	С	Conversion of gamma photons to electrical signal
	d	Protect the patient from scattered radiations
93		In gamma camera electrical signals from PM Tubes split into
	а	X+, Y+ signal component
	b	X, Y, Z, W signal component
	С	X-, Y- signal component
	d	X,Y, E signal Component
94		What is the typical size of Nal(TI) detector used in gamma camera
	а	60 X 40 mm
	b	60 X 40 cm
	С	6 X 4 mm
	d	600 X 400 cm
95		With increasing detector thickness in gamma camera, intrinsic spatial resolution
	а	Decreases
	b	Increases
	С	Remains same
	d	Becomes Uneven
96		What is the reason for poor quality of Radionuclide Images in gamma camera
	а	Inefficient detectors used in Gamma Camera
	b	Potentially useful radiation travelling towards detector are absorbed by collimator
	С	Low dose of Radionuclide given to patient
	d	Inefficient Image Reconstruction Algorithm

97		In an pinhole collimator, if we decrease the distance between object and the collimator aperture, image size
	а	Decreases
	b	Increases
	С	Remains same
	d	No image is available
98		Diverging collimators gives what kind of image
	а	Minified, Non Inverted
	b	Same size, Non Inverted
	С	Magnified, Inverted
	d	Magnified, Non Inverted
99		Which performance characteristic signifies sharpness and details of gamma camera
		images
	а	Energy Resolution
	b	Detection Efficiency
	С	Intrinsic Spatial Resolution
	d	High Counting Rates
100		Higher detection efficiency will be obtained from which detector thickness
	а	0.64 cm
	b	1.27 cm
	с	2.54 cm
	d	5.08 cm
101		In gamma camera the Z Signal from Amplifier/ADC represents
	а	Horizontal position of radiation event
	b	Vertical position of radiation event
	С	Energy deposited by the gamma ray
	d	Noise