Program: BE Biomedical Engineering Curriculum Scheme: Revised 2016
 Examination: Final Year Semester VIII Course Code and Course Name: BMDLO8042 and Robotics in Medicine

Time: 1 hour
Max. Marks: 50

1		Which of the below is a set of Minor axes of robot
	a	Base,Elbow
	b	Shoulder,Elbow
	c	Base,Shoulder
	d	Yaw,Pitch
2		Stroke of a robot is
	a	Distance between min and max reach
	b	reach
	c	Min reach
	d	orientation
3		Which is not a classification of robot based on drive technology
	a	Electric Drive Robot
	b	Hydraulic Robot
	c	PUMA Robot
	d	Pneumatic Robot
4		Axes of robot beyond 6 are considered for
	a	Major axes
	b	Minor axis
	c	Obstacle avoidance
	d	Coordinate transformation
5		Yaw,Pitch and Roll are
	a	Major axis
	b	Minor axis
	c	Shoulder
	d	Elbow
6		Soft drink bottling plant is example of
	a	Hard automation
	b	Soft automation
	c	Programmable Automation
	d	Flexible automation
7		Pneumatic drives use---power for driving robot
	a	Air activated tools
	b	Water activated tools
	c	Electric Motors
	d	DC Motors
8		Robot gripper used for handling delicate objects uses
	a	Pneumatic gripper

	b	Water activated gripper
	c	Electric Motors
	d	DC Motors
9		No of axis in SCARA is
	a	1
	b	2
	c	3
	d	4
10		Which robot is not considered in classification of robots based on physical configuration?
	a	Cylindrical robot
	b	Polar robot
	c	PTP robot
	d	Cartesian robot
11		The following figure represents a type of
	a	Cartesian robot
	b	Cylindrical robot
	c	S C A R A robot
	d	Spherical robot
12		What is the name for information sent from robot sensors to robot controllers?
	a	temperature
	b	pressure
	c	feedback
	d	signal
13		Which robot has work space envelop a rectangular box
	a	Cylindrical robot
	b	Spherical robot
	c	Cartesian Robot
	d	SCARA
14		The Kinematic part of the robot which can be varied for manipulation is called
	a	Manipulator
	b	Joint parameter
	c	Link parameter
	d	End effector
15		Pneumatic drives use---power for driving robot

	a	Air activated tools
	b	Water activated tools
	c	Electric Motors
	d	DC Motors
16		Shape of workspace of spherical robot is
	a	Rectangular box
	b	Hemisphere
	c	Cylinder
	d	Circle
17		Joint variable in rotary joint is
	a	Link length
	b	Link twist angle
	c	Joint distance
	d	Joint angle
18		Screw matrix due to link parameters are about
	a	Xaxis
	b	Y axis
	c	Z axis
	d	Link axis
19		To find link length we
	a	Translate along X direction
	b	Translate along Z direction
	c	Rotate about X direction
	d	Rotate about Z direction
20		Which axis is fixed to complete RHOCF while assigning coordinate frames using DH algorithm
	a	x
	b	y
	c	z
	d	X and y
21		Pass 2of DH algorithm gives
	a	KP Table
	b	LCD
	c	Arm Matrix
	d	Kinematic Parameters
22		Joint distances for two axis planar robot is
	a	5
	b	6
	c	0
	d	3
23		Z axis at tool tip is along
	a	Normal Vector
	b	Sliding Vector

32		Rotation matrix $\mathrm{R} 1(\theta)$ for a rotation of $\theta=\pi / 2$ with respect to $f 3$ axis is
		$\left[\begin{array}{lllllllll}0 & 1 & 0 ; 1 & 0 & 0 ; 0 & 0 & 1\end{array}\right]$
		$\left[\begin{array}{lllllllllll}1 & 0 & 1\end{array} 0001 ; 111-1\right]$
		[0 $101 ; 1000 ; 1000]$
33		The most general method for solving Inverse Kinematic Problem is
	a	Numerical Method
	b	Vector method
	c	Graphical Method
	d	Analytical Method
34		Calculation of TCV is used in which method of solving Inverse Kinematic Problem
	a	Numerical Method
	b	Vector method
	c	Graphical Method
	d	Analytical Method
35		Tool configuration vector is
	a	2 element column vector
	b	3 element column vector
	c	4 element column vector
	d	6 element column vector
36		Last three elements of TCV are
	a	Scaled approach vector
	b	Position
	c	Amplitude
	d	Direction
37		$\mathrm{TCV}=\left[\mathrm{w}^{1} \mathrm{w}^{2}\right]$ what is w^{1}
	a	Orientation vector
	b	Position vector
	c	Amplitude
	d	Direction
38		Tools used to hold sub part in proper position are
	a	Conveyor
	b	Carousal
	c	Gravity Part feeder
	d	Fixed Tools
39		Which of the following is a workspace fixture
	a	Fixed Tool
	b	Microboat Alpha
	c	Rhino XR3
	d	SCARA
40		Maximum Horizontal reach of SCARA is

	a	a1+a2
	b	$a 1^{2}+a 2^{2}$
	c	a1
	d	a2
41		What does [qkmin C^{*} qk \leq qkmax] represent
	a	Kinematic equation
	b	Inverse kinematics
	c	JSWE equation
	d	Rotation Matrix
42		Work Envelop traced by Joints of the robot is
	a	Total work Envelop
	b	Joint Space Work Envelop
	c	Dextrous Work Envelop
	d	Trajectory
43		In PNP Trajectory lift off point is
	a	Near to place ponit
	b	Near to pick ponit
	c	Not on PNP Trajectory
	d	Pick point
44		Cartesian space trajectories will trace
	a	End effectors trajectory
	b	Trajectory of joints
	c	Pick and place
	d	Path
45		In which of the following operations Continuous Path System is used
	a	Pick and Place
	b	Loading and Unloading
	c	Continuous welding
	d	Bottling Plant
46		In trajectory planning Bounded deviations method is an effective technique for
	a	Selecting knot points
	b	Selective speed
	c	Selecting path
	d	Selecting polynomial coefficients
47		A general straight line trajectory for the tool in terms of initial point w^{0},final point w^{1} in the tool configuration space and differential speed distribution function $s(t)$ is given by
	a	$\mathrm{w}(\mathrm{t})=[1-\mathrm{s}(\mathrm{t})] \mathrm{w}^{0}+\mathrm{s}(\mathrm{t}) \mathrm{w}^{1}$
	b	$\mathrm{w}(\mathrm{t})=[1+\mathrm{s}(\mathrm{t})] \mathrm{w}^{0}+\mathrm{s}(\mathrm{t}) \mathrm{w}^{1}$
	c	$\mathrm{w}(\mathrm{t})=\left[\mathrm{s}(\mathrm{t}) \mathrm{w}^{0}+\mathrm{s}(\mathrm{t}) \mathrm{w}^{1}\right.$

56		Discretizing an image in special coordinates is known as
	a	histogram
	b	sampling
	c	quantization
	d	coding
57		Edges can be identified by computing the
	a	Gradient
	b	Illumination
	c	Slope
	d	Divergence
58		Robotics Vision is used when the feedback sensor is a
	a	Proximity Sensor
	b	Light Sensor
	c	Camera
	d	Infrared Sensor
59		Template Matching can be done using
	a	Minimum Distance Classifier
	b	Correlation Based Classifier
	c	Neural Networks
	d	Optimum Statistical Classifiers
60		A Problem associated with Template matching is
	a	It works well if the two images are the same
	b	It works well if the two images are of the same size
	c	It works well if the average intensity of the two images is the same
	d	It works well if the mean of the two images is the same
61		The maximum value of normalized cross correlation function $\sigma(x, y)$ is
	a	Infinity
	b	2
	c	0
	d	1
62		What is role of camera in robotic vision?
	a	Charge coupled device for image acquisition
	b	Computer connected device
	c	Calculated correction drive
	d	Image
63		Image processing approaches operating directly on pixels of input image work directly in
	a	Transform domain
	b	Spatial domain
	c	Inverse transformation
	d	Kinematic domain

64		A method which separates background and foreground of image is
	a	Edge detection
	b	Template matching
	c	Chain Code
	d	Histogram
65		What is the set of pixels of 8-neighbors of pixel p at coordinates (x, y) ?
	a	$(x+1, y),(x-1, y),(x, y+1),(x, y-1),(x+2, y),(x-2, y),(x, y+2),(x, y-2)$
	b	$(x+1, y),(x-1, y),(x, y+1),(x, y-1),(x+1, y+1),(x+1, y-1),(x-1, y+1),(x-1, y-1)$
	c	$(x+1, y+1),(x+1, y-1),(x-1, y+1),(x-1, y-1),(x+2, y+2),(x+2, y-2),(x-2, y+2),(x-2, y-2)$
	d	$(x+2, y),(x-2, y),(x, y+2),(x, y-2),(x+2, y+2),(x+2, y-2),(x-2, y+2),(x-2, y-2)$
66		Euler number of swollen image is always --------Euler number of original image
	a	Less than or equal to
	b	Greater than or equal to
	c	Always Equal to
	d	Not affected
67		Centroid (xc,yc)of a region is given by
	a	(m00/m01;m00/m10)
	b	(m10/m00;m01/m00)
	c	(m10/m01;m01/m10)
	d	(m01/m00;m10/m00)
69		Area of the foreground region is given by
	a	$0^{\text {th }}$ order moment
	b	$1^{\text {st }}$ order moment
	c	$2{ }^{\text {nd }}$ order moment
	d	Central moment
70		A sequence of numbers $m_{k j}$ which are used to characterize the shape of foreground in an image is
	a	Moment
	b	Run length encoding
	c	Template matching
	d	Euler number
71		Run Length encoding for the given binary image $\mathrm{I}=[0111 ; 1111 ; 1000 ; 00000$ is
	a	1,0,7,8
	b	0,0,1,7,0,0
	c	0,1,8,7
	d	0,0,1,5,0,6

72		Chain code for the given object in image I=[0110;010 1;0110;00000]
	a	3,4,6,6,0,1
	b	4,6,3,0,1
	c	6,6,0,1,3,4
	d	1,0,3,4,6,6
73		Find the zeroth order moment of the given image $\mathrm{I}=[1011 ; 01111 ; 1100 ; 10000]$
	a	9
	b	7
	c	6
	d	5
74		Configuration Space method is for --------motion planning
	a	Fine
	b	Gross
	c	Grasp
	d	Work envelop
75		Guarded motion is associated with---------motion planning
	a	Fine
	b	Gross
	c	Grasp
	d	Work envelop
76		Safe grasp planning is a part of
	a	Motion planning
	b	Inverse kinematics
	c	Compliance
	d	Kinematics
77		Finding collision free way of motion planning is in
	a	Configuration space
	b	GVD
	c	Grasping
	d	Reachable grasping
78		Leading the robot to the final desired position is done by
	a	Lead through programming
	b	Text programming
	c	High level programming
	d	C++
79		Programming the robot when it is disconnected from working system then it is
	a	Off line Programming
	b	Online Programming
	c	Trajectory Programming
	d	Java Programming

80			Which of the following is not a part of path planning				
	a	Gross motion planning					
	b	Fine Motion Planning					
	c	Grasp Planning					
	d	Perspective					
						Surgical cuts in microsurgery are smaller than with traditional open surgery. Benefits include:	
81		a	Faster recovery; Less pain and bleeding				
	b	Cheap					
	d	Complicated	More hospital stay				
82		Da Vinci Robot is					
	a	Pick and Place Robot					
	b	Point to Point Robot					
	c	SCARA					
	d	Surgical Robot					

