University of Mumbai Online Examination 2020

Program: BE Chemical Engineering

Curriculum Scheme: Revised 2016

Examination: Fourth Year Semester VII

Course Code: CHC703

Course Name: Process Dynamics and Control

Time: 1 hour Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	The process variables that can be adjusted in order to keep the controlled variables at or near their set points
Option A:	Manipulated variable
Option B:	Controlled variable
Option C:	Disturbance variable
Option D:	Load variable
Q2.	For a proportional controller the controller output will be proportional to
Option A:	Load variable
Option B:	Measured variable value
Option C:	Disturbance value
Option D:	Deviation from the set point
Q3.	If the disturbance variable is measured, the control strategy is called as
Option A:	Feedback control
Option B:	Feed forward control
Option C:	Inferential control

 Q4. A stirred-tank blending process with a constant liquid holdup of 2 m3 to blend two streams whose densities are both approximately 900 kg/m. The density does not change during mixing. Assume that the process here operating for a long period of time with flow rates of w1 = 500 kg and w2 = 200 kg/min, and feed compositions (mass fractions) of x1 = 600 kg/min and x2 = 0.75. What is the steady-state value of x? Option A: 0.5 Option B: 1 Option C: 0.8 Option D: 0.3 Q5. Time constant of Transportation lag is Option B: e^{-ts} Option C: 1+ e^{-ts} Option C: 1-e^{-ts} Q6. Transfer function of two tank interacting system relating height of lies second tank to inlet flow to first tank, where τ₁ and τ₂ are time constant first and second tanks respectively and R₁ and R₂ are resistances of valve of first and second tanks respectively. 	
to blend two streams whose densities are both approximately 900 kg/m The density does not change during mixing. Assume that the process heen operating for a long period of time with flow rates of w1 = 500 kg and w2 = 200 kg/min, and feed compositions (mass fractions) of x1 = 4 and x2 = 0.75. What is the steady-state value of x? Option A: Option B: Option C: 0.8 Option D: 0.3 Option A: e-ts Option A: e-ts Option C: 1+e-ts Option C: 1-e-ts Option D: Transfer function of two tank interacting system relating height of lies second tank to inlet flow to first tank, where t ₁ and t ₂ are time const first and second tanks respectively and R ₁ and R ₂ are resistances of	
Option B: 1 Option C: 0.8 Option D: 0.3 Q5. Time constant of Transportation lag is Option A: e ^{-τs} Option B: e ^{τs} Option C: 1+ e ^{-τs} Option D: 1-e ^{-τs} Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ ₁ and τ ₂ are time constant first and second tanks respectively and R ₁ and R ₂ are resistances of	n3. as g/min
Option C: 0.8 Option D: 0.3 Q5. Time constant of Transportation lag is Option A: e ^{-τs} Option B: e ^{τs} Option C: 1+ e ^{-τs} Option D: 1-e ^{-τs} Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ ₁ and τ ₂ are time constant first and second tanks respectively and R ₁ and R ₂ are resistances of	
Option D: 0.3 Q5. Time constant of Transportation lag is Option A: e ^{-τs} Option B: e ^{τs} Option C: 1+ e ^{-τs} Option D: 1-e ^{-τs} Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ ₁ and τ ₂ are time constant first and second tanks respectively and R ₁ and R ₂ are resistances of	
Q5. Time constant of Transportation lag is Option A: e ^{-τs} Option B: e ^{τs} Option C: 1+ e ^{-τs} Option D: 1-e ^{-τs} Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ ₁ and τ ₂ are time constants and second tanks respectively and R ₁ and R ₂ are resistances of	
 Option A: e^{-τs} Option B: e^{τs} Option C: 1+ e^{-τs} Option D: 1-e^{-τs} Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ₁ and τ₂ are time constants first and second tanks respectively and R₁ and R₂ are resistances of 	
Option B: $e^{\tau s}$ Option C: $1 + e^{-\tau s}$ Option D: $1 - e^{-\tau s}$ Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ ₁ and τ ₂ are time constants first and second tanks respectively and R ₁ and R ₂ are resistances of	
Option C: 1+ e ^{-τs} Option D: 1-e ^{-τs} Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ ₁ and τ ₂ are time constants and second tanks respectively and R ₁ and R ₂ are resistances of	
Option D: 1-e ^{-τs} Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ ₁ and τ ₂ are time constants first and second tanks respectively and R ₁ and R ₂ are resistances of	
Q6. Transfer function of two tank interacting system relating height of lie second tank to inlet flow to first tank, where τ_1 and τ_2 are time constants and second tanks respectively and R_1 and R_2 are resistances of	
second tank to inlet flow to first tank, where τ_1 and τ_2 are time constants and second tanks respectively and R_1 and R_2 are resistances of	
second tank to inlet flow to first tank, where τ_1 and τ_2 are time constants and second tanks respectively and R_1 and R_2 are resistances of	
	ants of
Option A: $H_2(s)/Q(s) = R_2/[\tau_1 \ \tau_2 \ s^2 + (\tau_{1+} \ \tau_2) s + 1]$	
Option B: $H_2(s)/Q(s) = R_2/[\tau_1 \ \tau_2 \ s^2 + (\tau_{1+} \ \tau_2 + A_1 R_2) s + 1]$	
Option C: $H_2(s)/Q(s) = R_1/[\tau_1 \ \tau_2 \ s^2 + (\tau_{1+} \ \tau_2 + A_1 R_2) s + 1]$	
Option D: $H_2(s)/Q(s) = R_1/[\tau_1 \ \tau_2 \ s^2 + (\tau_{1+} \ \tau_2) s + 1]$	

Q7.	A linear system at rest is subject to an input signal $R(t)=1-e^{-2t}$. The response of the system for $t > 0$ is given by $C(t)=1-e^{-3t}$. The transfer function of the system is:
Option A:	3(s+2)/2(s+3)
Option B:	(s+2)/(s+3)
Option C:	2(s+3)/(s+2)
Option D:	(s+3)/2(s+2)
Q8.	For a second order under damped step response, Decay ratio is
Option A:	1/ Over shoot
Option B:	(Overshoot) ^{1/2}
Option C:	(Over shoot) ²
Option D:	1/(Overshoot) ²
Q9.	If two tanks are connected in series in interacting manner, the transfer function relating the output of second tank to the input to first tank is of order.
Option A:	zero order
Option B:	first order
Option C:	second order
Option D:	third order
Q10.	For undamped second order response, damping coefficient (ξ) is
Option A:	equal to1
Option B:	greater than 1
Option C:	less than 1
Option D:	Equal to 0

Q11.	In Regulator problem,
Option A:	Load is variable but set point is constant
Option B:	Load is constant but set point is variable
Option C:	Load and set point, both are constants
Option D:	Load and set point, both are variables
Q12.	In proportional control, offset is defined as
Option A:	Steady state error in manipulated variable
Option B:	unsteady state error in controlled variable
Option C:	unsteady state error in manipulated variable
Option D:	Steady state error in controlled variable
Q13.	Control which is suitable economically if no offset and no oscillations is tolerable
Option A:	Proportional integral control
Option B:	Proportional control
Option C:	Proportional derivative control
Option D:	Proportional integral derivative control
Q14.	Transfer function for a Proportional Derivative controller is
Option A:	$P(s)/\epsilon(s) = Kc[1+1/(\tau_D s)]$
Option B:	$P(s)/\epsilon(s) = Kc[1+\tau_D s]$
Option C:	$P(s)/\epsilon(s) = Kc[1-1/(\tau_D s)]$
Option D:	$P(s)/\epsilon(s) = Kc[1-\tau_D s]$
Q15.	Amplitude Ratio of time lag is

Option A:	0
Option B:	1
Option C:	ω
Option D:	-1
Q16.	Bode diagram are generated from output response of system subjected to which of the following input?
Option A:	Impulse
Option B:	Step
Option C:	Sinusoidal
Option D:	Ramp
Q17.	The bode plot of the system gives values of Gain Margin (GM) is 20 decibel and Phase margin (PM) is 39°, then the respective system is
Option A:	stable
Option B:	unstable
Option C:	oscillatory
Option D:	oscillatory with high amplitude
Q18.	For Complex model which modelling technique is mostly preferred?
Option A:	Theoretical Modelling
Option B:	Empirical Modelling
Option C:	Stochastic Modelling
Option D:	Rigorous Modelling
Q19.	Regression provides unique solution for the model parameters if?
Option A:	Number of data points is equal to number of model parameters
Option B:	Number of data points is more the number of model parameters

Option C:	Number of data points is less than the number of model parameters
Option D:	Number of data points is square the number of model parameters
Q20.	Bode diagram is plot of
Option A:	$\log{(AR)}$ vs. $\log(\omega)$ and $\log{(\phi)}$ vs. $\log{(\omega)}$
Option B:	$\log (AR) \text{ vs. } (\omega) \text{ and } \log (\phi) \text{ vs. } (\omega)$
Option C:	(AR) vs. $\log (\omega)$ and (ϕ) vs. (ω)
Option D:	$\log{(AR)}$ vs. $\log{(\omega)}$ and (ϕ) vs. $\log{(\omega)}$
Q21.	The ISE criterion is used when?
Option A:	large errors are present
Option B:	small errors are present
Option C:	long persiting error
Option D:	weighted error are present
Q22.	If the process of interest can be approximated by a first-order or second-order linear model, the model parameters can be obtained by inspection of
Option A:	Process Reaction Curve
Option B:	Process Intensification
Option C:	Process Linearization
Option D:	Process Curve
Q23.	Amplitude Ratio for 1st and 2nd order system is
Option A:	>1
Option B:	< 1
Option C:	= 1

=0
Disadvantage of proportional control action is
A more oscillatory behavior
Greater value of offset
More time to control output
Unstable response
The major disadvantage of the time-delay estimation method is?
Locating Point of inflection
Slope of noise
Time constant
Small gain
