Program: BE Chemical Engineering Curriculum Scheme: Revised 2016 Examination: Final Year Semester VIII

Course Code and Course Name: CHC803 and Energy System Design

Time: 1 hour Max. Marks: 50

1		An existing 400 W electric bulb working at 10 hrs/day on burning
		is to be replaced with 325 W energy efficient bulb which cost Rs.
		300 more than the existing bulb. What will be the approximate
		simple payback period if electricity costs at Rs. 7 per unit?
	a	2.5 months
	b	0.7 months
	С	1.8 months
	d	1.2 months
2		The use of blower door attachment in energy auditors tool box
	а	To measure building and structure tightness
	b	Combustion efficiency of furnaces
	С	To identify problem with air flows
	d	Measuring performance of electrical systems
3		Functional energy audit does not include which of the following?
	а	Analyzing energy gain and losses due to specific structure of
		building
	b	Analyzing energy requirement and ECOs for domestic hot water
		supply system
	С	Analyzing energy requirement and ECOs for HVAC processes
	d	Analyzing energy requirement and ECOs for Air distribution system
		for building
4		The last step of the energy audit process is
	a	Collection of facility data
	b	Formation of audit team
	С	Energy Bill analysis
	d	Recommendation of ECOs
5		"The judicious and effective use of energy to maximize profits and
		enhance competitive positions". This can be the most accurate
	1	definition of:
	а	Energy conservation
	b	Energy management
	С	Energy policy
	d	Energy Audit

6		Energy cost control programs will result in both reduced and reduced emissions of environmental
		pollutants
	а	Energy consumption
	b	Material consumption
	С	Time consumption
	d	Human Work
7		Pie chart representation of energy consumption is nothing but
	а	Energy audit report
	b	Energy profile
	С	Energy map
	d	Energy integration
8		Replacement of DC generator by solid state variable speed drivers
		(VSD) overall efficiency.
	а	Doesn't affect
	b	Increases
	С	Decreases
	d	Stabilizes
9		Application of occupancy sensors is well suited for .
	а	Day light based controllers
	b	Night based controllers
	С	Motor controllers
	d	Movement or noise detector in room space
10		Usually a butterfly valve is used in
	a	On off control
	b	Load unload control
	С	Throttle control
	d	Turn valve control
11		Which of the following is NOT a type of lighting control?
	а	Dimmers
	b	Timers
	С	VSD
	d	Photosensors
12	u u	Filotosensors
		How do LEDs generate light?
	a	By moving electrons in compound semiconductors
	b	By heating up filament
	С	By ionizing mercury vapor in a glass tube
	d	By moving electric current through a tube containing gas
13		How much power is consumed by throttle controlled compressor when delivering no air?

	а	50% of its full load power
	b	70% of its full load power
	С	30% of its full load power
	d	40% of its full load power
14		Which of the following statement is wrong about mercury vapor
		lamps?
	а	They have short life
	b	They have long life
	С	Their output decreases as they age
	d	They consume same amount of energy even though output
		decreases with age
15		is the key parameter used in pinch technology.
	а	Capacity
	b	Heat duty
	С	$\Delta T_{ m min}$
	d	Flow rate
16		Provided, if C _C and CH are heat capacity flow rates of cold and hot
		process streams respectively, then in pinch decomposition diagram,
		for a match of hot and cold process streams to be feasible at the
		pinch, which is the necessary and sufficient condition for stream
		matching below the pinch?
	a	Cc ≥C _H
	b	Cc £C _H
	С	$Cc = C_H$
	d	It do not depend upon heat capacities
17		The temperature up to which the process stream is to be heated or
		cooled is
	а	Source temperature
	b	Target temperature
	С	Approach temperature
	d	Threshold temperature
18		Source temperature of a process stream is 60 K and target
		temperature is 160 K. If heat capacity rate of a stream is 2.5 KW/K
		how much heat should be removed from or added to this stream?
	a	250 KW should be removed
	b	50 KW should be added
	С	250 KW should be added
10	d	100 KW should be removed
19		Source temperature of stream 1 is 673 K and target temperature is
		373 K and heat capacity rate of a stream is 1.5 KW/K. Source
		temperature of stream 2 is 293 K and target temperature 553 K with
		heat capacity rate 2.5 KW/K. Heat can be exchanged from hot to
		cold stream, then how much external hot or cold utility is required

		to be supllied and to which stream in order to achieve its target
		temperature?
	а	200 KW of hot utility is to be supplied to stream 1
	b	200 KW of cold utility is to be supplied to stream 2
	С	200 KW of hot utility is to be supplied to stream 2
	d	200 KW of cold utility is to be supplied to stream 2
20		According to rules for heat exchanger network design to satisfy
		minimum utility target, developed by scientist, Linnhoff, in pinch
		composition diagram, the hot utility can be used
	а	Only below the pinch (i.e. cold side of pinch)
	b	Only above the pinch (i.e. hot side of pinch)
	С	Either below or above the pinch (i.e. either cold or hot side of pinch)
	d	Exactly at the pinch
21	<u> </u>	The difference between cumulative enthalpy values
		corresponding to the upper ends of hot and cold temperature-
	а	enthalpy curves represents Minimum cold utility required at specific ΔT_{min} value for the
	"	specific system of hot and cold process streams where exchange of
		heat among the streams is allowed
	b	
		Total cold utility required the specific system of hot and cold process streams where exchange of heat among the streams is not
		allowed
	С	Total hot utility required the specific system of hot and cold process
		streams where exchange of heat among the streams is not allowed
	d	Minimum hot utility required at specific ΔT_{min} value for the specific
		system of hot and cold process streams where exchange of heat
		among the streams is allowed
22		According to Linnhoff's rules of heat exchanger networking, which
		of the following should not be placed, in above pinch region?
	а	Steam heaters
	b	Furnaces
	С	Coolers
	d	Reboiler
23	"	In a given heat exchanger network, the minimum number of heat
23		exchangers required are 8 and the number of process stream are 5,
		then, according to Hohmann's rule, what is the number of distinct
		utilities required in this heat exchanger network?
	а	4
	b	2
	С	3
	d	1
24	u	The hot stream available at 250 °C is to be cooled down to 40 °C
		using the available cold utility of 31.5 MW. Calculate the heat
	1	capacity flow rate (in MW/K) of this hot stream.

	a	0.15
	b	1.5
	С	15
	d	150
25		In composite curves the areas where the hot and cold composite
		curves do not show the minimum utility requirements by reading the
		enthalpy axis, represents
	а	Minimum hot utility
	b	Minimum cold utility
	С	Heat recovery
	d	Pinch temperature
26		
		The section above the pinch in conventional composite curve
	a	Heat sink
	b	Heat source
	С	Qc min
	d	Area where system reject heat
27		
		Stream splitting below the pinch takes place when
	a	N_H < Nc and Ch \leq Cc
	b	$N_H>N_C$ and $Ch\leq C_C$
	С	N_H < Nc and Ch \geq Cc
	d	N _H >Nc and Ch≥ Cc
28		In composite curves diagram, as cold composite curve shifts to right,
	а	ΔT_{min} as well minimum utilities requirement goes on increasing
	b	ΔT_{min} as well minimum utilities requirement goes on decreasing
	С	ΔT_{min} increases but minimum utilities requirement decreases
	d	ΔT_{min} decreases but minimum utilities requirement increases
29		During heat exchanger networking, as ΔT_{min} increases
	a	Capital cost decreases and operating cost increases
	b	Capital cost increases and operating cost decreases
	С	Both the capital cost and operating cost increases
	d	Both the capital cost and operating cost decreases
30		is the temperature at which the ability to
		transfer heat between the process streams is most constrained.
	a	Minimum approach temperature
	b	Threshold approach temperature
	С	Pinch temperature
	d	Target temperature
31		Cold process streams are those which
	a	have low enthalpy
	b	have low temperature

	С	are need to be heated
	d	are need to be cooled
32		
		In conventional problem except threshold, increasing ΔTmin will
	а	Increase the requirement of cold utilities
	b	Decrease the requirement of cold utilities
	С	Increase the heat recovery
	d	Decrease the requirement of hot utilities
33		In Heat exchanger network, on the cold side of pinch, which of the
		following utility can be provided?
	а	Flue gas
	b	Hot Air
	С	Dry Steam
	d	Cooling water
34		
		Area targeting can be carried out through
	а	Composite curve
	b	Balanced composite curves
	С	Balanced hot composite curve
	d	Grand composite curve
35		According to scientist Hohmann, if N_S = number of process streams
		and N_U = number of distinct hot and cold utility sources, then,
		minimum number of heat exchangers (N _{HX,min}) requireed in heat
		exchanger network to be designed to exchange heat between all
		these process and utility streams, is given by
		equation
	a	$N_{\rm HX,min} = N_{\rm S} + N_{\rm U} + 1$
	b	$N_{\rm HX,min} = N_{\rm S} + N_{\rm U} - 1$
	C .	$N_{HX,min} = N_S + N_U$
	d	$N_{HX,min} = N_S - N_U$
36		During heat exchanger network design to satisfy minimum utility
		requirement, in pinch decomposition diagram, heat from hot to cold
		streams can not be tramsferred
	a	Above the pinch
	b	Below the pinch
	C	Across the pinch
	d	Near the pinch
37		A cold composite curve can be shiftedto change
		minimum approach temperature difference as well minimum utility
		requirements.
	a	Vertically
	b	Horizontally
	С	Diagonally
	d	Not possible to shift in any direction

38		Calculate the annualized cost of Heat exchanger Network, if return
		on investment is 0.6, total purchase cost of heat exchangers is Rs.
		36 lakhs and utility cost is Rs. 4 lakhs/yr
	a	Rs. 24 lakhs
	b	Rs. 25.6 lakhs
	С	Rs. 38.4 lakhs
	d	Rs. 20 lakhs
39		During pinch analysis, when temperature interval (TI) method is used to find pinch temperature and minimum utility requirement, if $(mC_p)_{hot}$ & $(mC_p)_{cold}$ indicates heat capacity flow rates of hot and cold process streams respectively, ΔT_i gives temperature difference corresponding to specific temperature interval and ΔT_{min} gives minimum approach temperature difference, then, the heat content, Q_i in each temperature interval of TI diagram is calculated by equation
	a	$Q_i = [\sum (mC_p)_{hot} - \sum (mC_p)_{cold}] \times \Delta T_{min}$
	b	$Q_{i} = \left[\sum (mC_{p})_{hot} + \sum (mC_{p})_{cold}\right] \times \Delta T_{min}$
	С	$Q_{i} = \left[\sum (mC_{p})_{hot} + \sum (mC_{p})_{cold}\right] \times \Delta T_{i}$
	d	$Q_i = [\sum (mC_p)_{hot} - \sum (mC_p)_{cold}] \times \Delta T_i$
		The temperature of water vapour released from the solution after fac
	а	Equal to 100°C
	b	Below 100°C
	С	Above 100 °C
	d	0 °C
41		What do we mean by the term Evaporator Consumption?
	а	Steam consumed in 1hr
	b	Steam produced in 1hr
	С	Feed supplied in 1hr
	d	Feed supplied in 1day
42		An evaporator is operating at an atmospheric pressure is fed at the rate of 10000Kg/hr of weak liquor containing 4% caustic soda .Thick liquor leaving the evaporator contains 25% caustic soda then capacity of the evaporator is
	a	8400Kg/hr
	b	10000 Kg/hr
	С	1600 Kg/hr
	d	9000 Kg/hr
43		Which type of feeding arrangement is supposed to give maximum
		steam economy to a particular consumption?
	a	Forward feed
	b	Backward feed

	С	Parallel feed
	d	Mixed feed
44		The boiling point of the solution from 1 st to last effect in
		a backward feed evaporator.
	а	Increases
	b	Remains same
	С	Decreases
	d	Oscillates
45		Steam economy of single effect evaporator is always
	а	1
	b	<1
	С	>1
	d	0
46		Infeed multiple effect evaporator system, the vapor flows from first to last effect and liquid flow from last to first effect.
	a	Forward
	b	Backward
	С	Mixed
	d	Parallel
47		What is the steam economy of an evaporator if the evaporator capacity is 40kg/hr and the steam consumption is 65kg/hr?
	а	0.7
	b	0.61
	С	0.8
	d	0.5
48		In a triple effect evaporator the lowest pressure will be for
	а	1 st Effect
	b	2 nd Effect
	С	3 rd Effect
	d	2 nd and 3 rd Effect with same pressure
49		What is the driving force for evaporation if a solution boils at a
		temperature of 396 K and boiling point of water at a pressure in the
		vapor space is 373K, temperature of the condensing steam is 410 K
	а	23 K
	b	14 K
	С	37 K
	d	396 K
50		operates like a refrigeration cycle and requires an
		external fluid as the working medium.
	а	Multiple effect distillation
	b	Vapor recompression

	С	Reboiler flashing
	d	Heat pumping
51		Select the correct statement from options given below.
	а	Pumps are required in case of backward feed multiple effect
		evaporator
	b	Pumps are required in case of forward feed multiple effect
		evaporator
	С	Pumps are required in case of both the forward as well backward
		feed multiple effect evaporator
	d	Pumps are not at all required in either of the forward or backward
		feed multiple effect evaporator
52		In backward feed triple effect evaporator (TEE), the temperature of
		steam and boiling point temperatures in 1 st , 2 nd and 3 rd effect are 130
		°C, 115 °C, 95 °C and 72 °C respectively. The flow rates of steam
		supplied to the 1 st effect and vapor leaving the 1 st , 2 nd and 3 rd effect
		are 3480, 3160, 2720 and 2110 kg/hr respectively. The latent heats
		of vaporization of steam and vapors leaving 1st, 2nd and 3rd effect are
		2200, 2250, 2310 and 2380 kJ/kg respectively. The overall heat
		transfer coefficients for 1st, 2nd and 3rd effect are 2500, 2000 and
		1600 W/m ² K respectively. Then calculate the heat transfer area
		available in the 1 st effect of this TEE. Assume that there is no any
		boiling point rise in any of the effects.
	а	56.71 m ²
	b	49.38 m ²
	С	41.89 m^2
	d	47.43 m ²
53		Forward feed triple effect evaporator is used to concentrate 20000
		kg/hr of feed solution containing 10 wt% of solute to 25wt% solute
		concentration. Assuming equal vapor generated in each effect, what
		will be concentration of solution leaving the second effect?
	a	18.50%
	b	17.50%
	С	15%
	d	16.70%
54		In which effect, the product concentration will lowest for a
		backward feed triple effect evaporator?
	a	1st Effect
	b	2 nd Effect
	С	3 rd Effect
	d	1 st and 2 nd Effect with same concentration
55		The slope of the Duhring's Plot is always
	а	Greater than one
	b	Equal to one

	С	Less than 1
	d	Less than zero
56		Which one of the following evaporator uses maximum mechanical
		energy to operate?
	a	Parallel feed multiple effect evaporator
	b	Mixed feed multiple effect evaporator
	С	Forward feed multiple effect evaporator
	d	Backward feed multiple effect evaporator
57		In forward feed tripple effect evaporator operation, the
		concentration of liquid product leaving the 2 nd effect is
		that of leaving from the 3 rd effect.
	a	less than
	b	more than
	С	more or less than
	d	equal to
58		In forward feed triple effect evaporator (TEE) design, the
		temperature of steam used is 120 °C and boiling point temperature
		of solution in 3 rd effect is 50 °C. There is no any boiling point rise
		in any effect. The overall gheat transfer coefficients for 1 st , 2 nd and
		3 rd effect are 3100, 2000 and 1100 W/m ² K respectively. Then
		calculate temperature driving force for the 2^{nd} effect i.e. ΔT_2
	a	15.92 °C
	b	13.39 °C
	С	23.03 °C
	d	20.21 °C
59		About evaporator operation, select the wrong statement from
		options below:
	а	If feed to evaporator enters at temperature much below the boiling
		point of feed solution, about 1/4 th of steam entering in evaporator is
		used just to heat the cold feed to its boiling point
	b	If feed to evaporator enters at temperature above the boiling point
		in evaporator, results in additional vaporization by flashing off the
		part of entering hot feed
	С	Preheating the feed increases the heat transfer area required in
		evaporator
	d	
		Preheating the feed reduces the heat transfer area required in evapor
60		Which of the following is not a benefit of cogeneration?
	a	Increased efficiency of energy conversion and use
	b	Reduced power factor
	С	Reduced greenhouse gas emissions
	d	Reduced transmission losses

61		The Ranking Cycle is related to
	а	Boiler
	b	Condenser
	С	Steam turbine
	d	Pump
62		The cogeneration is not applicable to which type of industry?
	a	Sugar
	b	Refinery
	С	Paper and pulp
	d	Refractory / brick-making
63		A plant producing both, electrical power & process heat simultaneously is?
	а	Cogenital plant
	b	Cogenerial plant
	С	Cogeneration plant
	d	Conglomerate plant
64		Thermal efficiency of cogeneration plant is calculated as:
	а	Efficiency = (Heat output + Electrical power output) / (Electrical
		power input)
	b	Efficiency = (Heat output + Electrical power output) / (Heat input)
	С	Efficiency = (Heat output) / (Electrical power input)
	d	Efficiency = (Electrical power output) / (Heat input)
65		Which one of the following cannot be used as fuel for the gas turbine?
	а	Naphtha
	b	LPG
	С	Natural gas
	d	Low sulphur heavy stock
66		Steam turbines are used as prime mover in
	a	Topping cycle cogeneration system only
	b	Bottoming cycle cogeneration system only
	С	Combined cycle cogeneration system only
	d	Topping cycle, bottoming cycle as well combined cycle cogeneration system
67		What is the actual steam rate (ASR) required for a steam turbine power plant for which theoretical steam rate (TSR) is 40 kg/kWh and overall efficiency of turbine generator set is 80%?

	а	10 kg/kWh
	b	50 kg/kWh
	С	30 kg/kWh
	d	60 kg/kwh
69		Back pressure turbine, extraction condensing turbine, these are the
		types of
	а	Gas turbine
	b	Steam turbine
	С	Diesel engine cogeneration system
	d	Reciprocating engine system
70	_ u	Otto cycle is
70		Otto cycle is
	а	Tyvo studro ancino
	b	Two stroke engine
		Single stroke engine
	c d	Multi stroke engine
71	u	Four stroke engine
/1		Which of the following is not the example of Distributed generation
		cogeneration system?
	a	Gas turbine
	b	Reciprocating engine system
	C	Micro turbines
72	d	Fuel Cells
72		In which of the following power generation technology, power is
		generated through an electrochemical process?
	a	Reciprocating engine
	b	Micro turbine
	c d	Gas turbine
73	u	Fuel cell
/3		In a glass industry, exhaust gas from the glass melting furnace is
		used for power generation by installing steam boiler and turbine.
	2	Then the type of co-generation is called as:
	a b	Gas turbine Pottom avala
	С	Bottom cycle Diocal generator
	d	Diesel generator
74	u	Topping cycle Which of these is not an application of healt processor turbing?
74	а	Which of these is not an application of back pressure turbine?
		Desalination of sea water
	b	Filtration of water
	c d	Process industries Patrophomical installations
75	u	Petrochemical installations What is an important advantage of algorithms are turbing.
/3		What is an important advantage of closed-cycle gas turbine
	а	cogeneration systems?
	a	High pressure of produced steam

	b	Low capital costs
	С	Working fluid remains clean and it does not cause corrosion or
		erosion
	d	High temperature of produced steam
76		Major advantage of waste heat recovery in industry is:
	а	Reduction in pollution
	b	Decreases in efficiency
	С	Effectiveness is Increased
	d	Save Energy from Process
77		Typical waste gases temperature from glass melting furnace
	а	1000-1550 °C
	b	800-950 °C
	С	650–750 °C
	d	760-815 °C
78		Recovery of heat from dryer exhaust air is a typical application of:
	а	Waste heat recovery boiler
	b	Heat pump
	С	Heat wheels
	d	Economizer
79		A recuperator counter flow type for preheating air receives flue
, ,		gases at 816 °C and exits at 371 °C. The air enters at 37.8 °C and is
		preheated to 260 °C. The LMTD is °C
	а	604
	b	404
	С	435
	d	224
80		Which of the following is very low quality waste heat recovery
		source?
	а	Boiler
	b	Oven
	С	Furnace
	d	Pump
81		1 ump
		In case of Hybrid recuperator, what is the mode of heat transfer?
	а	Conduction & Convection
	b	Radiation & Convection
	С	Conduction & Radiation
	d	Conduction, Convection and Radiation
82		Which waste heat recovery equipment consist of four major parts
		i.e. evaporator, compressor, condenser and throttling valve?
	а	Heat wheel
	b	Heat pipe
	С	Heat pump
	d	Regenerator
		Regeneration

83		For every°C reduction in flue gas temperature by
		passing through an economiser or a pre-heater, there is 1% saving
		of fuel in the boiler.
	а	1
	b	22
	С	5
	d	36
84		Thermo-compressor is commonly used for
	а	compressing hot air
	b	flash steam recovery
	С	distillation
	d	reverse compression of CO2
85		Regenerator is widely used in:
	а	Reheating Furnaces
	b	Heat treatment furnaces
	С	Baking Ovens
	d	Glass melting furnaces
86	-	The energy sources, that are either found or stored in nature
		areknown as:
	а	
	b	Primary energy sources Secondary energy sources
	C	
	d	Tertiary energy sources Commercial energy sources
87	u	
- 07	а	The primary energy consumption of India is
	b	
	С	1/12 of the world
	d	1/7 of the world
88	u	1/3 of the world
00		If the following countries are arranged in order of the highest to
		lowest oil resrves found there, which country will be at fourth
	1	position?
	a b	Canada
		USA
	C	Saudi Arabia
- 00	d	Venezuela
89		To measure building and structure tightness, which of the following
		instrument is available in energy auditor's tool box?
	a	Blower ddor attachment
	b	Combustion analyzer
	С	Foot candle meter
	d	Anemometer
90		What is VSD which is used as energy efficient technique?
	a	Variable solid drive
	b	Volume specific drive

		77 . 11 11.
	С	Variable speed drive
	d	Velocity speed drive
91		During heat exchanger networking, capital cost decreases and
		operating cost increases with
	a	increase in ΔTmin
	b	decrease in ΔTmin
	С	increase in ΔTthresh
	d	decrease in ΔTthresh
92		The multiple effect evaporator (MEE), wherein, the feed is admitted
		individually to every effect and vapor from previous effect is still
		used to heat the next effect, is known as
	а	Forward feed MEE
	b	Backward feed MEE
	С	Paralle feed MEE
	d	One to one MEE
93		Combined cycle cogeneration system is the combination of
	а	Steam turbine and diesel engine system
	b	Gas turbine and diesel engine system
	С	Topping and bottoming cycle cogeneration system
	d	Steam turbine and Gas turbine system
94		Ceramic recuperators can withstand temperatures up to:
	a	600 °C
	b	1300 °C
	С	2500 °C
	d	900 °C
95		Which of the following is not the non-commercial energy source?
	а	Biomass waste
	b	Coal
	С	Firewood
	d	Cowdung