Program: BE Computer Engineering
 Curriculum Scheme: Revised 2016
 Examination: Final Year Semester VIII
 Course Code and Course Name: DLO8012 and Natural Language Processing

Time: 1 hour
Max. Marks: 50

6. Which derivational prefixes does not change the category of word to which they are attached?

(a)	Re- \& -Un
(b)	-er
(c)	-ize
(d)	-ing

7. Which one of the following is morpheme of the word "unbelievable"?

(a)	un
(b)	unbe
(c)	evable
(d)	able

8. Which of the following is correct example of stem "replayed"?

(a)	Replay
(b)	Play
(c)	Played
(d)	Replayed

9. Which python library use to implement natural language processing?
(a) \quad NLTK
(b) Scrapy
(c) Matplotlib
(d) Pydot
10. Following are the basic regular expression patterns, which one is incorrect pattern?

(a)	Disjunction
(b)	Caret
(c)	Ranges
(d)	Conjunction
"I almost bought an Acura Integra today, but a door had a dent and the engine seems noisy." This is an example of which type of referring expression	

(a) Reflexive
(b) Gender Agreement
(c) Inferrable
(d) Selectional Restriction
12. Lappin and Leass Algorithm is used for
(a) Coherence Relation
(b) Pronoun Resolution

(a)	Concatenation
(b)	Closure
(c)	Union
(d)	Projection
Format of words is given in options, select incorrect option.	

20. Format of words is given in options, select incorrect option.

(a)	Books \rightarrow Book + Noun + Plural
(b)	Shopping \rightarrow Shop + Verb + Cont.
(c)	Cats \rightarrow Cat + Verb
(d)	Went \rightarrow go + Verb + Past

21. How conditional probability rewrite in language model?
$\mathbf{P}(\mathbf{B} \mid \mathbf{A})=\mathbf{P}(\mathbf{A}, \mathbf{B}) / \mathbf{P}(\mathbf{A})$
(a) $\quad P(A, B)=P(A) P(B \mid A)$
(b) $\quad P(A, B)=P(A) P(A \mid B)$
(c) $\quad P(A, B)=P(B) P(B \mid A)$
(d) $\quad P(A)=P(A) P(B \mid A)$
22. How given sentence represented using Bigram model?
"I want to eat Indian food"

(a)	$\{(I$, want), (want, to), (to, eat), (eat, Indian),(Indian, food) $\}$
(b)	$\{(I)$, (want, to), (to, eat), (eat, Indian),(Indian, food),(food, I) $\}$
(c)	$\{(I$, want, to), (want, to, eat), (to, eat, Indian), (eat, Indian, food) $\}$
(d)	$\{(I),($ want), (to), (eat), (Indian), (food) $\}$

23. Which of the following are Anchors in regular expression?

(a)	${ }^{*}$ and +
(b)	\wedge and \$
(c)	? and $\}$
(d)	$\backslash d$ and $\backslash w$

24. A DFA is a tuple $\mathrm{A}=\left(\mathrm{Q}, \sum, \delta, \mathrm{qo}, \mathrm{F}\right)$, what does δ indicates?
(a) \quad Finite set of state
(b) A finite set of input symbols
(c) Transition function
(d) A set of final states
25. Which one of the following is type of spelling errors?
(a) Sentence errors
(b) Non-word errors
(c) Non-cognitive errors

	(d)	Syntax errors
26.	Mini-Corpus given, $<$ s $>$ I am Sam $<$ s $>$ $<\mathrm{s}>$ Sam I am<s> $<$ s $>$ I do not like green eggs and ham<s> What will be bigram probability of $\mathrm{P}(\mathrm{am} \mid \mathrm{I})$?	
	(a)	0.67
	(b)	0.33
	(c)	0.5
	(d)	0.25
27.	Which token of the following is lemmatized correctly by the rule given? (X) -sses \rightarrow-ss (X) -ies \rightarrow-i (X) $-\mathrm{ss} \rightarrow$-ss (X) $-\mathrm{s} \rightarrow \epsilon$	
	(a)	Buses
	(b)	Dogs
	(c)	Dog
	(d)	Courses
28.	The word "Putting" is handle and clean up by which stemming rule? "Putting \rightarrow Put"	
	(a)	$\{(\mathrm{X})$-ing $\rightarrow \epsilon$ and $\{-\mathrm{CC} \rightarrow \mathrm{C}\}$
	(b)	$\{(X)$-eed \rightarrow-ee $\}$ and $\quad\{$-at \rightarrow-ate $\}$
	(c)	$\{(\mathrm{X})$-ing \rightarrow-ing $\}$
	(d)	\{(X)-C1VC2 \rightarrow C1VC2e $\}$
29.	Which of the following is the example of overstemming?	
	(a)	Univers
	(b)	Universe
	(c)	Universal
	(d)	University
30.	Which of the following is the example of understemming?	
	(a)	Data
	(b)	Date
	(c)	Datum
	(d)	Dat, Datu
31.	Whi	are the consonants in a given string? YGEO"

	(b)	Defining \& Groups
	(c)	Reducing \& Arrays
	(d)	Reviewing \& Letters
37.	Following property is of - .These taggers are knowledge-driven	
	(a)	Rule based Tagging
	(b)	Stochastic Tagging
	(c)	Rule based Tagging and Stochastic Tagging
	(d)	Neither Rule based Tagging nor Stochastic Tagging
38.	Following property is of - .This POS tagging is based on the probability of tag occurring	
	(a)	Rule based Tagging
	(b)	Stochastic Tagging
	(c)	Rule based Tagging and Stochastic Tagging
	(d)	Neither Rule based Tagging nor Stochastic Tagging
39.	Where the additional variables does are added in HMM?	
	a)Temporal model	
	b)Reality model	
	c)Probability model	
	d)In all three models, temporal, reality and probability model	
40..	How does the state of the process is described in HMM?	
	a)Literal	
	b)Single random variable	
	c)Single discrete random variable	
	d)Literal and Single random variable	
41.	HMMs are "a statistical Markov model in which the system being modeled is assumed to be a process with \qquad states".	
	a)Convolution, completed	
	b)Markov, Unobservable	
	c)Analyzing, Categorized	
	d)Complete, Observed	
42.	What is the major difference between CRF (Conditional Random Field) and HMM (Hidden Markov Model)?	
	(a)	CRF is Generative whereas HMM is Discriminative model
	(b)	CRF is Discriminative whereas HMM is Generative model
	(c)	Both CRF and HMM are Generative model
	(d)	Both CRF and HMM are Discriminative model

43.	HMM are designed to model the joint distribution $\mathrm{P}(\mathrm{H}, \mathrm{O})$, where H is the \qquad state and O is the\qquad state	
	(a)	Hidden, Observed
	(b)	Unobservable, Hidden
	(c)	Classified, Completed
	(d)	Open, Completed
44.	HMM graphs consist of a Hidden Space and Observed Space, where the hidden space consists of the \qquad and the observed space is the \qquad	
	(a)	Input, Categories
	(b)	Values, Variables
	(c)	Labels, Input
	(d)	Variables, Values
45.	HMMs are limited to only ___ states and only take into account the last known ___.	
	(a)	Complete, Value
	(b)	Unobserved, Variable
	(c)	Hidden, Attribute
	(d)	Discrete, State
46.	Maximum Entropy Markov Models use a maximum entropy \qquad for \qquad and local	
	(a)	Framework, Features, Normalization
	(b)	Rules, Variables, Classification
	(c)	Sets, Values, Distribution
	(d)	Rules, features, classification
47.	In the context of POS tagging, the objective would be to build an HMM to model P(\|$\qquad$$\square$) and Compute the label probabilities given observations using \qquad Rule.	
	(a)	Value, Label, Markov
	(b)	Word, Tag, Bayes
	(c)	Attribute, Variable, Bayes
	(d)	Input, Label, Markov
48.	In HMMs, spaces are connected via \qquad matrices $\{\mathrm{T}, \mathrm{A}\}$ to represent the probability of\qquad from one state to another following their \qquad	
	(a)	Transitions, Transitioning, Connections
	(b)	Attribute, Changing, groups
	(c)	Label, moving, sets

	(d)	Attribute, moving, sets
49.	Each connection in HMM represents a \qquad over possible options; given our \qquad , this results in a large search space of the \qquad of all words given the tag.	
	(a)	Value, variables, associativity
	(b)	Distribution, tags, probability
	(c)	Variable, Labels, Transitivity
	(d)	Object, groups, associativity
50.	Consider the statement: "Ban on dancing on Governor's desk. " would be interpreted as:	
	(a)	(Ban (on dancing)) (on Governor's desk)
	(b)	(Ban on ((dancing) on Governor's desk)
	(c)	(Ban (on dancing on Governor's desk))
	(d)	(Ban on (dancing) on ((governor's)) desk)
51.	Parts-of-Speech tagging determines \qquad . 1) part-of-speech for each word dynamically as per meaning of the sentence 2) part-of-speech for each word dynamically as per sentence structure 3) all part-of-speech for a specific word given as input	
	(a)	Only 1 is correct
	(b)	1 and 2 are correct
	(c)	1 and 3 are correct
	(d)	All (1,2 and 3) are correct.
52.	In an HMM, observation likelihoods measure	
	(a)	The likelihood of a POS tag given a word
	(b)	The likelihood of a POS tag given the preceding tag
	(c)	The likelihood of a word given a POS tag
	(d)	The likelihood of a POS tag given two preceding tags
53.	Solve the equation according to the sentence "I am planning to visit New Delhi to attend Analytics Vidhya Delhi Hackathon". A = (\# of words with Noun as the part of speech tag) $B=(\#$ of words with Verb as the part of speech tag) C = (\# of words with frequency count greater than one) What are the correct values of A, B, and C ?	
	(a)	5,5,2
	(b)	5,5,0
	(c)	7,5,1
	(d)	7,4,2
54.	Two words with very closely related meanings	

	(a)	Antonyms
	(b)	Homonyms
	(c)	Synonyms
	(d)	Hyponymy
55.	Focus on what the words conventionally mean, rather than on what an individual speaker might think they mean, or want them to mean, on a particular occasion; concerned with objective or general meaning and avoids trying to account for subjective or local meaning	
	(a)	semantic features
	(b)	semantic analysis
	(c)	Semantic roles
	(d)	semantics
56.	Polysemy is a Greek word, which means	
	(a)	Many names
	(b)	Many signs
	(c)	Many meanings
	(d)	Many verbs
57.	Which of the following is not correct with respect to levels of semantic analysis?	
	(a)	Word level
	(b)	Character level
	(c)	Sentence level
	(d)	Utterance level
58.	Which of the following is not correct with respect to Word Sense Disambiguation (WSD)	
	(a)	It offers sense definitions of words
	(b)	Identifies synsets of synonyms
	(c)	Defines a number of semantic relations
	(d)	It's not free
59.	Phrase structure riles are of the form $\mathrm{A}->\mathrm{BC}$ which states that	
	(a)	A is directed towards BC
	(b)	A implies B and C
	(c)	Constituents A can be written as two constitutes B and C
	(d)	BC holds value of A
60.	A prepositional phrase consists of a preposition and its	
	(a)	Object
	(b)	Subject

67.	Mango is hyponym of	
	(a)	Forest
	(b)	Human
	(c)	Fruits
	(d)	Sweet
68.	The words Blood bank, Sperm bank and Egg bank are the example of,	
	(a)	Polysemy
	(b)	Hypernym
	(c)	Antonym
	(d)	Metonymy
69.	Software designed for taking i / p data(text) and give structural representation of the input after checking the correct syntax or grammar is	
	(a)	Compiler
	(b)	Parser
	(c)	Painter
	(d)	Easydraw
70.	Two words are there with same spelling as "magazine". One has meaning as something you read and another is cartridge to store bullets for a gun. However both words senses are related as to store or save somewhere. This is an example of	
	(a)	Metonymy
	(b)	Hyponymy
	(c)	Polysemy
	(d)	Hyponym
71.	Two words are there with different spelling but sound is same wring(1) and wring(2). First one means to twist something and second one means you wear in your finger. This is an example of	
	(a)	Homonymy
	(b)	Hyponymy
	(c)	Polysemy
	(d)	Homophony
72.	The statement "Time passes very quickly" can be represented as	
	(a)	AdvP->(Intens) NP
	(b)	AdvP->(Intens) Adv
	(c)	N->Wh-NP VP
	(d)	S->Wh-NP VP
73.	The statement "Which team won the match?" can be represented as	

