Program: BE EXTC Curriculum Scheme: Revised 2016 Examination: Final Year Semester VIII

Course Code: ECC801 and Course Name: RF Design

Time: 1 hour Max Marks:50

	In composite filter which value of 'm' is selected while connecting the terminating sections
1	in order to acquire proper impedance matching and constant characteristic impedance throughout the passband?
(a)	0.9
(b)	0.3
(c)	0.6
(d)	0.12
2	In 'm' derived T section low pass filter the value of series inductor can be calculated by using the expression
(a)	mL/2
(b)	mL .
(c)	L/2
(d)	2mL
3	In 'm' derived $\boldsymbol{\pi}$ section low pass filter the value of shunt capacitor can be calculated by using the expression
(a)	C/2
(b)	2C
(c)	2mC
(d)	mC/2
4	In 'm' derived T section high pass filter the value of series capacitors can be calculated by using the expression
(a)	2C/m
(b)	2C
(c)	mC/2
(d)	C/m
5	In 'm' derived π section high pass filter the value of shunt inductors can be calculated by using the expression
(a)	L/2
(b)	m/2L
(c)	2L/m
(d)	mL/2
6	In a Low pass composite T section filter the bisected terminating sections have the series inductances equal to $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-$
(a)	mL/2
(b)	mL
(c)	L/2
(d)	L/m
7	The insertion loss for the Chebyshev case is greater than the binomial response
/	at any given frequency where $\omega \gg \omega_c$
(a)	(2^N)/4
(b)	(2^2N)/4
(c)	(2N)/4
(d)	(N^2)/4
8	For the insertion loss method the low-pass to high-pass transformation, after impedance scaling L'_k =
(a)	$\frac{1}{(R_0*\omega_c*C_k)}$
(b)	$1/(R_0*\omega_c*L_k)$
(c)	R_0/(ω_c*C_k)

```
(d) R O/(\omega c*L k)
     For a maximally flat low-pass filter prototype with cutoff frequency of 2 GHz, impedance of
     50 ohms, and at least 15 dB insertion loss at 3 GHz (N=5), beginning with a shunt element,
     with g_1, g_2, g_3, g_4, g_5 being 0.6180, 1.6180, 2.0000, 1.6180, 0.6180, 1.0000
     respectively then C'_1 = _____
     0.984 pF
(a)
(b)
    3.183 pF
(c)
    6.438 pF
(d)
     6.18 pF
     For a maximally flat low-pass filter prototype with cutoff frequency of 2 GHz, impedance of
     50 ohms, and at least 15 dB insertion loss at 3 GHz (N=5), beginning with a shunt element,
10
     with g_1, g_2, g_3, g_4, g_5 being 0.6180, 1.6180, 2.0000, 1.6180, 0.6180, 1.0000
     respectively then L'_2 = 
     0.984 nH
(a)
(b)
     3.183 nH
(c)
    40.45 nH
(d)
     6.438 nH
     The shunt capacitor of the low-pass prototype is converted to series LC circuits for a
11
     bandstop filter (without impedance scaling) then L'_k and C'_k are given by ______,
                respectively.
(a)
     1/(\omega_c^*\Delta L_k), \Delta C_k/(\omega_c)
     1/(\omega_c^*\Delta C_k), \Delta L_k/(\omega_c)
(b)
(c)
     1/(\omega_0^*\Delta C_k), \Delta C_k/(\omega_0)
(d)
     1/(\omega_0^*\Delta L_k), \Delta L_k/(\omega_0)
     Using Kuroda's identity, an equivalent circuit of an open circuited shunt stub (Z_2) followed
12
     by an unit element (Z_1) is transformed into _____ respectively.
     (Z_1)/n^2, (Z_2)/n^2 [where n^2=1+(Z_2/Z_1)]
(a)
(b)
     (Z_2)/n^2, (Z_1)/n^2 [where n^2=1+(Z_2/Z_1)]
     (Z_1)*n^2, (Z_2)*n^2 [where n^2=1+(Z_2/Z_1)]
(c)
(d)
     (Z_2)*n^2, (Z_1)*n^2 [where n^2=1+(Z_2/Z_1)]
     Using Kuroda's identity, an equivalent circuit of a short circuited shunt stub (Z_1) followed
13
     by a unit element (Z_2) is transformed into _____ respectively.
(a)
     (Z 1)/n^2, (Z 2)/n^2 [where n^2=1+(Z 2/Z 1)]
     (Z 2)/n^2, (Z 1)/n^2 [where n^2=1+(Z 2/Z 1)]
(b)
(c)
     (Z_1)*n^2, 1/((Z_2)*n^2) [where n^2=1+(Z_2/Z_1)]
(d)
     (Z_2)*n^2, (Z_1)*n^2 [where n^2=1+(Z_2/Z_1)]
     For a design of a low-pass filter for fabrication using microstrip lines the cutoff frequency is
     4 GHz, impedance is 50 \Omega, and a third-order 3 dB equal-ripple passband response. The
     normalized low-pass prototype element values are g_1 = 3.3487 = L_1, g_2 = 0.7117 = C_2,
14
     g_3 = 3.3487 = L_3, g_4 = 1.0000 = R_L, Applying Kuroda's identity to the series stubs and
     converting them to shunt stubs at the both ends of the filter we get the value of Z_0 without
     scaling as
(a)
     4.35
    1.405
(b)
(c) 1.35
(d)
    1.299
     For a design of a low-pass filter for fabrication using microstrip lines the cutoff frequency is
     4 GHz, impedance is 50 \Omega, and a third-order 3 dB equal-ripple passband response. The
     normalized low-pass prototype element values are g_1 = 3.3487 = L_1, g_2 = 0.7117 = C_2,
     g_3 = 3.3487 = L_3, g_4 = 1.0000 = R_L, Applying Kuroda's identity to the series stubs and
     converting them to shunt stubs at the both ends of the filter we get the value of Z_0 after
     scaling as
```

(a) 64.9Ω

217.5 Ω

70.3 Ω

50 Ω

(b)

(c)

(d)

```
16
     In 2 port amplifier design which gain will remain constant?
(a)
    GL
     Gs
(b)
     Go
(c)
(d)
     GΤ
17
     For class A amplifier under large signals which small signal S parameter changes?
    S11
(a)
(b) S12
    S21
(c)
    S22
(d)
18 What does the larger value of \mu in stability test signify?
(a)
    Larger Stability
(b) Lesser Stability
(c) Larger Instability
(d) Smaller Gain
     If a transistor has the following S parameter
     S11 = 0.61 < -170
     S12 = 0
19
     S21 = 2.24 < 32
     S22 = 0.72 < -83
     What is the maximum unilateral gain (GTU max)?
(a) 12.2 dB
(b) 10.2 dB
(c) 14.2 dB
(d) 15 dB
     If the MESFET has the following S parameters
     S11 = 0.75 < -120
     S12 = 0
20 S21 = 2.5 < 80
     S22 = 0.6 < -70
     Specified Source gain is 2 dB (1.58) and maximum source gain is 3.6 dB (2.285) find the
     radius of constant gain circle for source section.
(a) 0.594
(b) 0.494
(c) 0.394
(d) 0.294
     If the MESFET has the following S parameters
     S11 = 0.75 < -120
     S12 = 0
21 S21 = 2.5 < 80
     S22 = 0.6 < -70
     Specified Source gain is 2 dB (1.58) and maximum source gain is 3.6 dB (2.285) find the
     centre of constant gain circle for source section.
(a) 0.627 < -120
(b) 0.627 < 120
(c) 0.627 < -100
(d) 0.627 < -100
     If the MESFET has \Gamma S = 0.5 < 120, \Gamma L = 0.4 < 90 and the S parameter are given as
     S11 = 0.6 < -160
22 S12 = 0.045 < 16
     S21 = 2.5 < 30
     S22 = 0.5 < -90 what is the value of \Gammain?
(a) 0.627 < 164.6
(b) 0.627 < -164.6
(c) 0.471< -97.63
(d) 0.471< 97.63
```

```
If the MESFET has \Gamma S = 0.5 < 120, \Gamma L = 0.4 < 90 and the S parameter are given as
     S11 = 0.6 < -160
23 S12 = 0.045 < 16
     S21 = 2.5 < 30
     S22 = 0.5 < -90 what is the value of \Gamma OUT?
(a) 0.627 < 164.6
(b) 0.627 < -164.6
(c) 0.471< -97.63
(d) 0.471< 97.63
     If the S parameter of a GaAs FET is given as
     S11 = 0.894 < -60.6
     S12 = 0.02 < 62.4
24
     S21 = 3.122 <123
     S22 = 0.78 < -27.6
     \Delta= 0.696< -83 find the radius of output stability circle
(a) 0.6
(b) 0.5
(c) 0.4
(d) 0.3
     If the S parameter of a GaAs FET is given as
     S11 = 0.894 < -60.6
25 S12 = 0.02 < 62.4
     S21 = 3.122 <123
     S22 = 0.78 < -27.6
     \Delta= 0.696< -83 find the center of source stability circle
(a) 0.13 < 68.5
(b) 1.13 < -68.5
(c) 1.13 < 68.5
(d) 0.13 < - 68.5
     If the S parameter of a GaAs FET is given as
     S11 = 0.894 < -60.6
    S12 = 0.02 < 62.4
26
     S21 = 3.122 < 123
     S22 = 0.78 < -27.6
     \Delta= 0.696< -83 find the value of \mu
(a) 0.66
(b) 1.56
(c) 1
(d) 0.86
     If the S parameter of a GaAs FET is given as
     S11 = 0.62 < 140
     S12 = 0.06 < -10
27 S21 = 2.58 < 20
     S22 = 0.53 < - 120
     K = 1.18
     Find Maximum Transducer Gain (GT max)
(a) 10.76 dB
(b) 15.76 dB
(c) 13.76 dB
(d) 18.76 dB
     If the S parameter of a BJT is given as
     S11 = 0.73 < 175
    S12 = 0
28
     S21 = 4.45 < 65
     S22 = 0.22 < -80
     Find Maximum Unilateral Transducer Gain (G_(TU max))
```

```
16.4 dB
(a)
(b)
     15.4 dB
(c)
     12.5 dB
(d)
    20 dB
     If the S parameter of a transistor is given as
     S11 = 0.45 < -65
     S12 = 0.01 < 5
29
     S21 = 2.2 < 86
     S22 = 0.48 < -65
     Find Unilateral Figure of Merit (U)
(a)
    7.742 x 10<sup>(-3)</sup>
    7.742 x 10^3
(b)
(c) 0.5
(d)
     -0.5
     If the S parameter of a transistor is given as
     S11 = 0.45 < -65
     S12 = 0.01 < 5
30
      S21 = 2.2 < 86
     S22 = 0.48 < -65
     Comment on stability
(a) Unconditionally Stable
(b)
     Potentially unstable
(c)
     Conditionally stable
(d)
     Unstable
     Practical mixers in range of 1-10 GHz usually have a conversion loss between
31
     0dB and 2dB
(a)
     3dB and 5dB
(b)
     1dB and 3dB
(c)
     4dB and 7dB
(d)
     Poor RF SWR is obtained in
32
     image rejection mixer
(a)
     balanced (180 degree) mixer
(b)
     double balanced mixer
(c)
(d)
     balanced (90 degree) mixer
      In a transistor amplifier, if the input impedance is given as (-57-j1.4) ohms, then the terminating
33
      impedance(in ohms) required to create enough instability is:
     (-57-j1.4)
(a)
(b)
     19+j1.4
     (-2.5-j1.4)
(c)
(d)
     57+j1.4
     If the input impedance of a diode used in the microwave oscillator is (65-j28) ohms, then the
      load impedance (in ohms) to achieve stable oscillation is:
     65 - j28
(a)
     (-65-j28)
(b)
```

- 65 + j28(c)
- (-65+j28)(d)
- If the equivalent impedance of the resonator at resonance is 14.5 ohms and the characteristic 35 impedance of the feed line is 50 ohms, then the coupling coefficient is:
- (a)
- 0.5 (b)
- 0.75 (c)
- 0.29 (d)
 - If the reflection coefficient between the feed line and the resonator is -0.2, then the equivalent
- impedance of the resonator at resonance given that the characteristic impedance of the microstrip line is 50 ohms is:
- 50 ohms (a)
- 33.33 ohms (b)

(c)	75 ohms
(d)	10 ohms
37	The number of diodes used in a double balanced mixer are
(a)	2
(b)	8
(c)	6
(d)	4
38	The conversion characteristics of which mixer are excellent
(a)	Balanced (180 degree) mixer
(a) (b)	double balanced mixer
(c)	single ended mixer
	image rejection mixer
(d)	
39	A one port oscillator uses a negative resistance diode having input reflection coefficient 1.25 \perp 40° and Zo = 50 ohms, then the input impedance in ohms will be
(a)	40.1+j100
(b)	(-48-j100)
(c)	(-39+j122)
(d)	(-43.4 + j 124.1)
40	A one port oscillator uses a negative resistance diode having input reflection coefficient as 1.25 \perp 40° and Zo = 50 ohms, then the load impedance in ohms will be
(a)	30.1+j100
(b)	(-38-j100)
(c)	(-39+j122)
(d)	43.4 - j 124.1
41	The IS-54 digital cellular telephone system uses a receive frequency band of 869-894 MHz, with a first IF frequency range of 87 MHz, one possible range of local oscillator frequency is:
(a)	750 to 784 MHz
(b)	869 to 894 MHz
(c)	650 to 800MHz
(d)	782 to 807MHz
42	In Indirect Frequency synthesizer the loop bandwidth should be the reference frequency in order to minimize the effect of ϕ_{ND} , which is dominated by spurious frequency components at the reference frequency and its harmonics.(ϕ_{ND} is the noise created in phase detector)
(2)	,
(a) (b)	Equal to Greater than
(c)	Less than
(d)	Almost equal to
43	The diagram indicates
(a)	Harmonic Generator based Direct Frequency Synthesizer
(b)	A Double Mix Divide Module
(c)	Indirect Frequency synthesizer
(d)	Variable modulus dividers
44	In Variable Modulus divider the block '÷P' is
(a)	Programmable Divider
(b)	Prescalar
(c)	Non-programmable Divider
(d)	Postscalar
	θ_r Phase detector θ_o
45	

- (a) Frequency synthesis
- (b) Decreased frequency resolution
- (c) Increased frequency resolution
- (d) No frequency resolution
- 46 In a programmable divider realized with dual modulus prescalar, for the method to work

hesizer with a postdivider for

(a)	N>A
(b)	N <a< td=""></a<>
(c) (d)	N=A The velves of N and A are not immertant
(u)	The values of N and A are not important In a PLL frequency synthesizer with down conversion, the Low pass filter following the mixer
47	is used to filter(eliminate)
(a)	${ m f_o}$
(b)	$ ho_L$
(c)	$f_{o+} f_{L}$
(d)	$ m f_o$ - $ m f_L$
48	Determine frequency resolution of DDFS system with 32 bit accumulator and 10 MHz clock.
(a)	2.33 mHz
(b)	2.33 kHz
(c)	2.33 Hz
(d)	2.33 MHz
49	What word length will be required in a DDFS if the output if the output spectral purity is to be at least 80 dB?
(a)	13 bit
(b)	14 bit
(c)	15 bit
(d)	-14bit
	Specified frequency Accumulator Memory Output Low-pass filter
50	Clock
	The diagtam represents
(a)	The diagtam represents Direct Digital Frequency Synthesizer
(a) (b)	- · · · · · · · · · · · · · · · · · · ·
	Direct Digital Frequency Synthesizer
(b)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer
(b) (c) (d) 51	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is
(b) (c) (d) 51 (a)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator
(b) (c) (d) 51 (a) (b)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer
(b) (c) (d) 51 (a) (b) (c)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator
(b) (c) (d) 51 (a) (b)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator
(b) (c) (d) 51 (a) (b) (c)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of
(b) (c) (d) 51 (a) (b) (c) (d)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be
(b) (c) (d) 51 (a) (b) (c) (d) 52	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d) 53	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d) 53 (a)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators Unipolar transistors
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d) 53 (a) (b)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators Unipolar transistors Thyristors
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d) 53 (a) (b) (c)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators Unipolar transistors Thyristors Diodes
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d) 53 (a) (b)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators Unipolar transistors Thyristors
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d) 53 (a) (b) (c) (d)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators Unipolar transistors Thyristors Diodes Bipolar transistors
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d) 53 (a) (b) (c) (d) 54	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators Unipolar transistors Thyristors Diodes Bipolar transistors The filter requirements can be reduced by using
(b) (c) (d) 51 (a) (b) (c) (d) 52 (a) (b) (c) (d) 53 (a) (b) (c) (d) 54 (a)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators Unipolar transistors Thyristors Diodes Bipolar transistors The filter requirements can be reduced by using An Offset frequency Doubled frequency Cut off frequency
(b) (c) (d) 51 (a) (b) (c) (d) 53 (a) (b) (c) (d) 54 (a) (b)	Direct Digital Frequency Synthesizer Indirect frequency synthesizer Harmonic generator based frequency synthesizer PLL based frequency synthesizer The missing block in Direct digital frequency synthesizer is Comparator Mixer Oscillator Accumulator In the following design of DDFS to cover the frequency range 0 to 10 kHz with a frequency resolution of at least 0.001 Hz, the spectral purity is to be at least 40 dB, the size of accumulator should be 26 bit 24 bit 13 bit 12 bit are well suited for use as harmonic generators Unipolar transistors Thyristors Diodes Bipolar transistors The filter requirements can be reduced by using An Offset frequency Doubled frequency

If the two mixer input frequencies are 96MHz and 4MHz, the mixer output frequencies will be

- (a) 104MHz and 88MHz
- (b) 100MHz and 92MHz

(c) 24MHz and 12MHz (d) 12MHz and 8MHz If we design an indirect frequency synthesizer to generate 20 MHz frequency from 2 MHz 56 reference oscillator then (a) N = 10N = 0.1(b) N=1(c) (d) N is not defined In US, EMI guidelines for commercial equipment are handled by 57 Federal Communication Commission (a) (b) National Telecommunications Regulatory Authority (c) Information and Communications Technology Authority **Telecommunications Regulatory Commission** (d) Arcing is Electromagnetic Noise generation in electronic appliances during making and 58 breaking of contact is due to **Drift Current** (a) (b) **Transient Current** (c) **Diffusion Current** (d) **Displacement Current** 59 In Amplifier, Harmonic emission level (a) increases with decrease in Harmonic number. decreases with increase in Harmonic number. increases with increase in Harmonic number. (c) (d) decreases with decrease in Harmonic number. 60 Common mode currents are (a) Equal in magnitude & have same direction Equal in magnitude & have opposite direction (b) (c) Unequal in magnitude & have same direction Unequal in magnitude & have opposite direction (d) Differential mode currents are 61 (a) Equal in magnitude & have same direction Equal in magnitude & have opposite direction (b) (c) Unequal in magnitude & have same direction (d) Unequal in magnitude & have opposite direction 62 The natural source of EMI is (a) Automobile ignition (b) Electrostatic discharge Digital circuits (c) (d) Microwave oven The duration of each transient pulse (time duration for which the instantaneous intensity is at 63 least 50 percent of the peak value) is typically, (a) 5 ns. (b) 500 ns. (c) 50 ns. (d) 100 ns. Grounding is a technique that provides a between electrical or electronic 64 equipment and the earth or common reference low-impedance plane (a) moderate-resistance path (b) high-resistance path (c) low-resistance path (d) long-resistance path 65 Grounding is very much essential in (a) **EMI** (b) **EMC** (c) Shielding (d) Filtering

66

(a)

In a communication circuit receptor is protected from

- (b) EMI
- (c) Heavy loading
- (d) Impedance matching
- 67 Following is an example of EMC
- (a) Impedance matching
- (b) Circuit breaker
- (c) Phase shifter
- (d) Filter
- If the distance between the septum and the bottom plate of the TEM cell is 10 cm, the measured RF voltage is 50 volts, then the field strengthin v/m is
- (a) 5
- (b) 50
- (c) 500
- (d) 5000
- 69 In EMC, the narrowband tests deal with
- (a) Transients
- (b) continuous wave mode emissions
- (c) electrical surges
- (d) High resistance circuits only
- 70 In EMC, broadband tests involve
- (a) DC signal
- (b) continuous wave mode emissions
- (c) High resistance circuits only
- (d) Transients
- A system is electromagnetically compatible with its environment if it satisfies some specific criteria. Which of the following are NOT the required criteria for the same.
- (a) It does not cause interference with itself.
- (b) It does not cause interference with other systems.
- (c) It is not susceptible to emissions from other systems.
- (d) It should be electromagnetically coupled with other circuit components
- 72 Which of the following is TRUE in order to prevent interference?
- (a) Make the receptor more susceptible to the emission.
- (b) Suppress the emission at its source.
- (c) Make the coupling path as efficient as possible.
- (d) Allow the radiations couple with each other.
- Which of the following is a FALSE statement with respect to electromagnetic coupling (EMC) phenomenon?
- (a) Emissions of and susceptibility to electromagnetic energy occur not only by electromagnetic waves propagating through air but also by direct conduction on metallic conductors.
- (b) Undesired signals may be radiated or picked up by the ac power cord, interconnection cables, metallic cabinets, or internal circuitry of the subsystems.
- (c) Coupling path of direct conduction due to metallic conductors is inherently less efficient than
- (d) External signals induced on circuit components may cause interference in the circuits.
- 74 Electric and magnetic field coupling come under which type of coupling phenomenon?
- (a) Conduction coupling
- (b) Radiation coupling
- (c) Impedance coupling
- (d) Combination of radiation and conduction coupling
- 75 Which statement is TRUE with respect to multi-point grounding system?
- (a) Every equipment is heavily bonded to a solid ground conducting plane.
- (b) System has one ground
- (c) Each equipment has floating ground
- (d) Every equipment has independent ground.
- 76 What is NOT the aim of EMC standards?
- (a) To set reasonable and rational limits for electromagnetic emission levels
- (b) To set limit for immunity levels for equipments.
- (c) To define test procedures for approximate measurements at high power levels.

- (d) To carefully define the test procedures and instrumentation used.
- 77 What does MIL-STD 461 stands for?
- (a) Millimeter standard 461
- (b) Military standard 461
- (c) Milivolt standard 461
- (d) Milimeter strand 461
- 78 Limit of radiated emission under MIL-STD 461D for RE 101 is?
- (a) 30 Hz- 100 kHz
- (b) 3 H-100kHz
- (c) 30 Hz- 10 kHz
- (d) 3 Hz- 10 kHz
- 79 What does the International Telecommunications Union (ITU) define?
- (a) The signal modulation technique required for proper transmission.
- (b) Use of each frequency band for radio receivers.
- (c) Transmitter and receiver design characteristics.
- (d) System's bandwidth requirement.
- To improve measurements in case of electromagnetically susceptible circuit, which of the following can be implemented?
- (a) The cables between the transmit/receive antenna are placed in underground trenches.
- (b) The cables between the transmit/receive antenna are placed in the open environment.
- (c) Transmitter and receiver antennas are placed in the shields.
- (d) The circuit components are allowed to couple electromagnetically.