Program: BE Electronics and Telecommunication Engineering
Curriculum Scheme: Revised 2016
Examination: Final Year Semester VII
Course Code: ECCDLO7031 and Course Name: Neural Networks and Fuzzy Logic
Time: 1hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks.

Q1.	The cell body of neuron can be analogous to what mathematical operation?
Option A:	Summer
Option B:	Differentiator
Option C:	Integrator
Option D:	Subtractor
Q2.	The process of adjusting the weight is known as?
Option A:	Activation
Option B:	Synchronization
Option C:	Learning
Option D:	Thresholding
Q3.	In supervised learning
Option A:	Target vectors are known
Option B:	Target vectors can be partially known
Option C:	Target vectors are not known
Option D:	Sometimes known and sometimes not known
Q4.	A positive weight corresponds to
Option A:	Additive
Option B:	Integral
Option C:	Excitatory
Option D:	Inhibitory
Q5.	What kind of learning is involved in pattern clustering task?
Option A:	Supervised
Option B:	Unsupervised
Option C:	Learning with critic
Option D:	Hebb Learning
Q6.	How are input layer units connected to second layer in competitive learning networks?
Option A:	Feed forward manner

Option B:	Feedback manner
Option C:	Feed forward and feedback
Option D:	Recurrent manner
Q7.	What is classification?
Option A:	Deciding what features to use in a pattern recognition problem
Option B:	Deciding what class an input pattern belongs to
Option C:	Deciding what type of neural network to use
Option D:	Deciding the type of learning network
Q8.	In a two input and single output MP neuron with binary activation function, if weight $\mathrm{w} 1=1$, $\mathrm{w} 2=1$ and Threshold is 2 , this network will act as
Option A:	AND gate
Option B:	OR Gate
Option C:	NOT gate
Option D:	EX OR Gate
Q9.	Which of the following neural networks would you use for time series prediction, e.g., weather forecasting?
Option A:	Simple recurrent network
Option B:	Self-organizing feature map
Option C:	The Hopfield network.
Option D:	A multi-layer feed forward network
Q10.	A perceptron with bipolar activation has input weights $\mathrm{w}_{1}=-3.9, \mathrm{w} 2=1.1$, and $\mathrm{b}=0$ with threshold value $\mathrm{T}=0.3$. What output does it give for the inputs $\mathrm{x}_{1}=$ 1.3 and $\mathrm{x}_{2}=2.2$?
Option A:	-2.65
Option B:	-2.3
Option C:	-1
Option D:	1
Q11.	What is Adeline in neural networks?
Option A:	Adaptive linear neuron
Option B:	Automatic linear neuron
Option C:	Adaptive line element
Option D:	Automatic line element
Q12.	Widrow \& hoff learning law is special case of
Option A:	Hebb learning law
Option B:	Perceptron learning law
Option C:	Delta learning law
Option D:	Instar Law
Q13.	On what factor the number of output neurons depends?
Option A:	Distinct inputs
Option B:	Distinct classes
Option C:	Weights

Option D:	Threshold
Q14.	Signal transmission at synapse is a
Option A:	Physical process
Option B:	Chemical process
Option C:	Physical \& chemical both
Option D:	Electrical process
Q15.	For a 3 input neuron and one output neuron architecture, the weights are given by $(0.1,0.3,-0.2)$, Inputs are given by $(0.8,0.6,0.4)$ and the bias is 0.35 . Calculate the output using binary sigmoidal function
Option A:	0.0625
Option B:	0.625
Option C:	0.259
Option D:	0.0259
Q16.	The Cardinality of fuzzy relation is
Option A:	0
Option B:	1
Option C:	-1
Option D:	Infinity
Q17.	Fuzzy lambda cut is based on
Option A:	Zadeh Notation
Option B:	Tsukomoto Principle
Option C:	Mamdani Principle
Option D:	Sugeno Principle
Q18.	The boundary element of a fuzzy membership function has
Option A:	Complete membership
Option B:	Partial Membership
Option C:	Non Zero Membership
Option D:	Abnormal membership
Q19.	Two dimensions of fuzzy relations are given by 3×4 and 3×4. The dimension of max min composition of R and S is given by
Option A:	2×2
Option B:	2×3
Option C:	3×3
Option D:	Composition not possible
Q20.	If A and B are two fuzzy sets with membership functions: $\mu_{\mathrm{a}}(\chi)=\{0.1,0.2 ., 0.2,1$ $\} \mu \mathrm{b}(\chi)=\{0.2,0.3,0.4,0.5\}$ the algebraic sum between two fuzzy sets is given by
Option A:	\{0.2,0.3, $0.4,1\}$
Option B:	\{0.3,0.5,0.6,1\}
Option C:	\{0.28,0.44, $0.52,1\}$
Option D:	$\{0.02,0.06,0.08,0.5\}$

Q21.	The fuzzy membership functions cannot be represented with
Option A:	Triangular membership
Option B:	Trapezoidal membership
Option C:	Gaussian membership
Option D:	Circular membership
Q22.	A fuzzy tolerance relation can be converted into fuzzy equivalence relation using
Option A:	AND
Option B:	OR
Option C:	Composition
Option D:	Cartesian product
Q23.	The bounded sum operation on fuzzy sets A and B is represented as
Option A:	$\min [1, \mu \mathrm{~A}(\mathrm{x})+\mu \mathrm{B}(\mathrm{x})]$
Option B:	$\min [1, \mu \mathrm{~A}(\mathrm{x})-\mu \mathrm{B}(\mathrm{x})]$
Option C:	$\max [1, \mu \mathrm{~A}(\mathrm{x})+\mu \mathrm{B}(\mathrm{x})]$
Option D:	$\max [1, \mu \mathrm{~A}(\mathrm{x})-\mu \mathrm{B}(\mathrm{x})]$
Q24.	For standard fuzzy intersection, which of the following hold?
Option A:	$\mu(\mathrm{a}, \mathrm{b})=\min \left(\mu_{\mathrm{a}}, \mu_{\mathrm{b}}\right)$
Option B:	$\mu(\mathrm{a}, \mathrm{b})=\max \left(\mu_{\mathrm{a}}, \mu_{\mathrm{b}}\right)$
Option C:	$\mu(\mathrm{a}, \mathrm{b})=\mu_{\mathrm{a}}-\mu_{\mathrm{b}}$
Option D:	$\mu(\mathrm{a}, \mathrm{b})=\mu_{\mathrm{a}}+\mu_{\mathrm{b}}$
Q25.	In this method of defuzzification the intersecting areas are added twice
Option A:	Weighted average
Option B:	Center of Sums
Option C:	Centroid
Option D:	Center of largest area

