University of Mumbai

Examination 2020 under cluster ____ (**Lead College Short name**)

Program: **Biotechnology Engineering**Curriculum Scheme: **Rev2016**

Examination: First/Second/Third/Final Year Semester I/II/III/IV/V/VI/VII/VIII

Course Code: BTC406 and Course Name: Unit Operation II

Time: 1 hour Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks.

Q1	Consider a plane wall of area A, having a layer of insulation on it. What will happen to
	the thermal resistance for convection of wall if the thickness of the insulation is
	increased?
Option A:	The thermal resistance for convection increases with increase in thickness of insulation
Option B:	The thermal resistance for convection decreases with increase in thickness of insulation
Option C:	The thermal resistance for convection remains same with increase in thickness of
	insulation
Option D:	There is no relation between insulation and heat transfer rate
Q2	Two insulating materials of thermal conductivity K and 2K are available for lagging a
	pipe carrying a hot fluid. If the radial thickness of each material is the same.
Option A:	Material with higher thermal conductivity should be used for the inner layer and one
	with lower thermal conductivity for the outer.
Option B:	Material with lower thermal conductivity should be used for the inner layer and one
	with higher thermal conductivity for the outer.
Option C:	It is immaterial in which sequence the insulating materials are used.
Option D:	It is not possible to judge unless numerical values of dimensions are given.
_	
Q3	A wall of thickness 0.6 m has width has a normal area 1.5 m2 and is made up of material of thermal conductivity 0.4 W/mK. The temperatures on the two sides are 800°C. What is the thermal resistance of the wall?
Option A:	1 W/K
Option B:	1.8 W/K
Option C:	1 K/W
Option D:	1.8 K/W
Орион В.	1.0 IV W
Q4	Heat is conducted through a 10 cm thick wall at the rate of 30 W/m2 when the
Q+	temperature difference across the wall is 10oC. What is the thermal conductivity of the wall?
Option A:	0.03 W/mK
Option B:	0.3 W/mK
Option C:	3.0 W/mK
Option D:	30.0 W/mK
Q5	A steam pipe is to be lined with two layers of insulating materials of different thermal
	conductivities. For minimum heat transfer
Option A:	The better insulation must be put inside
Option B:	The better insulation must be put outside
Option C:	One could place either insulation on either side

University of Mumbai

Examination 2020 under cluster ____ (**Lead College Short name**)

Option D:	One should take into account the steam temperature before deciding as to which insulation is put where.
Q6	Reverse of boiling is
Option A:	Condensation
Option B:	Solidification
Option C:	Sublimation
Option D:	Freezing
07	
Q7	During the process of boiling energy conversion takes place is
Option A:	Kinetic energy to thermal energy
Option B:	Potential to kinetic energy
Option C:	Thermal energy to kinetic energy
Option D:	Kinetic energy to potential energy
Q8	In pool boiling, as soon as the temperature of heating surface reaches the boiling point of the liquid, heat transfer takes place
Option A:	By conduction
Option B:	By natural convection
Option C:	By forced convection
Option D:	By radiation
Q9	At 1 atm pressure, the boiling point of water is
	100 °C
Option A:	
Option B:	0 °C
Option C:	-100 °C
Option D:	1 °C
Q10	To calculate the temperature difference in a Shell and tube heat exchanger, we use
Option A:	LMTD
Option B:	Mean temperature difference
Option C:	Median of the temperature difference
Option D:	Square mean of the temperature difference
Q11	Which of the following has the maximum Heat transfer rate for a Double Pipe Heat
	Exchanger?
Option A:	Cross Flow
Option B:	Parallel Flow
Option C:	Counter-flow Counter-flow
Option D:	Split Flow
Q12	The interchange factor is also known as
Option A:	Equivalent emissivity
_	Irradiation
Option B:	
Option C:	Radiosity

University of Mumbai Examination 2020 under cluster ___ (Lead College Short name)

Shape factor
When heat is added to a liquid from a submerged solid surface, its called
Nucleate boiling
Film boiling
Pool boiling
Transition Boiling.
The Stefan-Boltzmann constant has units of
kcal/m ² hr K ⁴
kcal/m hr K ⁴
kcal/hr K ⁴
kcal/m ² K ⁴
The absorptivity of black body equals to
2
3
4
The unit of overall coefficient of heat transfer is
W/m²K
W/III-K W/m ²
W/mK
W/mk
W/III
Which of the following accessories is provided in the vapour line of an evaporator for removing the entrained liquid?
Bleed point
Vent
Catchall
Baffle
Mass transfer co-efficient (K) and diffusivity (D) are related according to film theory
as
K ∝ D
$K \propto 1/D$
$K \propto D^{1.5}$
$K \propto D^2$
What is the unit of mass transfer coefficient?
m^2
m/s
m^2s
m^2/s

University of Mumbai Examination 2020 under cluster ___ (Lead College Short name)

	(Lead conege short name)
Q20	Which of the following is present in turbulent flow mass transfer, because of which mass transfer is fast?
Option A:	Slow mass transfer
Option B:	Less mass transfer
Option C:	Molecular diffusion
Option D:	Eddy diffusion
Q21	The situation of Equimolar counter diffusion satisfy with the condition where, N_A and N_B = molar flux of A and B respectively in binary system.
Option A:	$N_{\rm B} = 0$
Option B:	$N_A = -N_B$
Option C:	$N_A/(N_A + N_B) = 1$
Option D:	$N_A = 0$
Q22	The Concentration of the two phases in a closed system at the interphase is
Option A:	Changes continuously
Option B:	Never changes
Option C:	Becomes zero
Option D:	Increases till the driving force becomes zero
Q23	Equilibrium distribution of one solute between two phases is conveniently described in terms of the
Option A:	Fick's law
Option B:	Danckwerts law
Option C:	Distribution law
Option D:	Newton's law
Q24	What is the correct expression for overall mass transfer coefficient based on mole
~	fraction driving forces?
Option A:	1/Kx = 1/KAky + 1/kx
Option B:	Kx = 1/KAky + 1/kx
Option C:	1/Kx = KA/ky + 1/kx
Option D:	1/Kx = 1/KAkx + 1/ky
Q25	In aerobic fermentation, molecules must overcome a series of transport resistances before being utilized by the cell.
Option A:	nitrogen
Option B:	hydrogen
Option C:	oxygen
Option D:	ozone