University of Mumbai

Examination 2020

Program: SE Comps/IT/Extc/Biomedical/Chemical/Biotech
Curriculum Scheme: Rev2012/R2016
Examination: Second Year Semester III
Course Name: Applied Mathematics-III

DISCLAIMER

Below is sample paper only. Any resemblance to any question in University paper is purely coincidental.
NOTE: Q. No. 5, 6, 8, 9 strictly for Biotech \& Chemical Engg. only
Q. No. 12, 13, 19,20 strictly for Biotech Engg. only.
Q.No. 14,15 strictly for Computer, EXTC \&Biomedical Engg. Only.
Q. No. 16 strictly for Biomedical \& Extc only.
Q. No. 21 strictly for Computer Engg. Only.
Q. No. 17,18 strictly for Extc \& Biomedical Engg. \& Computer(R2012) only.
Q. No. 22 to 25 strictly for Information Technology Engg. (R-2016) only.

Time: 1-hour

For the students: - All the Questions are compulsory and carry equal marks.

Q1.	$L^{-1}\left\{\frac{10-4 S}{(s-2)^{2}}\right\}$ is equal to
Option A:	$2(t-2) e^{2 t}$
Option B:	$2(t+2) e^{2 t}$
Option C:	$2(t-2) e^{-2 t}$
Option D:	$2(t+2) e^{-2 t}$
Q2.	The value of $\int_{0}^{\infty} e^{-3 t} t$ sint $d t$ is equal to
Option A:	$6 / 5$
Option B:	$3 / 50$
Option C:	0
Option D:	$2 / 25$
Q3.	$L\{t H(t-4)\}$ is equal to
Option A:	$e^{-4 s}\left(\frac{1}{s^{2}}-\frac{4}{s}\right)$
Option B:	$e^{-4 s}\left(\frac{1}{s^{2}}+\frac{4}{s}\right)$
Option C:	$e^{4 s}\left(\frac{1}{s^{2}}-\frac{4}{s}\right)$
Option D:	$e^{4 s}\left(\frac{1}{s^{2}}-\frac{4}{3 s}\right)$
Q4.	Inverse Laplace Transform of $\log \left(\frac{s+1}{s-1}\right)$
Option A:	$\frac{2 \operatorname{sinht}}{t}$
Option B:	$\frac{2 \operatorname{cosht}}{t}$
Option C:	$2 t s i n h t$
Option D:	$2 t \operatorname{cosht}$

Q5.	The Coefficient of correlation between X and Y IS 0.6. and covariance is 4.8. The variance of X is 9 . Then the Standard deviation of Y is
Option A:	4.8
Option B:	$\frac{3 \times 0.6}{4.8}$
	9×0.6
Option C:	0.6
Option D.	3×4.8
	$\frac{0.6}{9 \times 4.8}$
Q6.	If a random variable X follows Poisson distribution such that $P(X=1)=2 P(X=2)$, then mean of the distribution is
Option A:	4
Option B:	2
Option C:	3
Option D:	1
Q7.	Which of the following is true about regression coefficient
Option A:	If one of the coefficients of regression is greater than 1 the other must be less than 1.
Option B:	If one of the coefficients of regression is less than 1 the other must be equal to 1.
Option C:	If one of the coefficients of regression is greater than 1 the other must be equal to 1.
Option D:	Both the coefficient must be greater than 1.
Q8.	If $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right]$ then the Eigen value of $A^{2}-2 A+3 I$ are
Option A:	7 and 13
Option B:	2 and 3
Option C:	1 and 4
Option D:	3 and 12
Q9.	Minimal polynomial of matrix $\mathrm{A}=\left[\begin{array}{ccc}2 & -3 & 3 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right]$ is
Option A:	$f(x)=x^{3}-4 x^{2}+3 x-4$
Option B:	$f(x)=x^{3}-6 x^{2}+5 x-1$
Option C:	$f(x)=x^{2}-6 x+8$
Option D:	$f(x)=x^{2}-5 x+6$
Q10.	Which of the following is not true for an analytic function $f(z)=u+i v$
Option A:	$\mathrm{u}=$ constant and $\mathrm{v}=$ constant are orthogonal trajectories
Option B:	u and v are harmonic functions
Option C:	$f^{\prime}(z)=u_{x}+i v_{x}$
Option D:	$u_{x}=v_{y} ; u_{y}=v_{x}$
Q11.	The fixed points of the bilinear transformation $f(z)=w=\frac{z-1}{z+1}$, are
Option A:	$z=i,-i$
Option B:	$z=1,-1$

Examination 2020

Option C:	$z=1,-i$
Option D:	$z=i,-1$
Q12.	The value of $\oint \frac{z+6}{z-2} d z$ over the circle $C:\|z\|=1$
Option A:	$4 \pi i$
Option B:	$-4 \pi i$
Option C:	0
Option D:	$2 \pi i$
Q13.	Which of the following is not true
Option A:	Taylor's series consists of positive integral powers of (z-z ${ }_{0}$)
Option B:	Laurent's series consists of positive as well as negative powers of ($z-z_{0}$)
Option C:	Taylor's series consists of positive as well as negative integral powers of ($z-z_{0}$)
Option D:	The radius of convergence is the distance between the centre of Taylor's series and the nearest singularity of the function.
Q14.	Find the Fourier constant b_{n} for $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$, where $0<x<2$
Option A:	0
Option B:	$-\frac{4}{n \pi}$
Option C:	$-\frac{4}{n \pi^{2}}$
Option D:	
Q15.	The value of Fourier constant b_{n} in Half -range cosine series of $f(x)=x, 0<x<2$ is
Option A:	$\frac{4\left[(-1)^{n}-1\right]}{n^{2} \pi^{2}}$
Option B:	$\frac{4\left[(-1)^{n}+1\right]}{n^{2} \pi^{2}}$
Option C:	$-\frac{4\left[(-1)^{n}+1\right]}{4}$
	$-\frac{n^{2} \pi^{2}}{}$
Option D:	$-\frac{4\left[(-1)^{n}-1\right]}{n^{2} \pi^{2}}$
Q16.	Which of the following is the correct for the Bessel's function $J_{n}(x)$
Option A:	$x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)$
Option B:	$x J_{n}^{\prime}(x)=n J_{n+1}(x)-x J_{n}(x)$
Option C:	$x J_{n}^{\prime}(x)=x J_{n}(x)-n J_{n+1}(x)$
Option D:	$n x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)$
Q17.	The divergence and curl of any vector point function are
Option A:	Both vector point function
Option B:	Both scalar point function
Option C:	Scalar and vector point function respectively
Option D:	Vector and Scalar point function respectively
Q18.	Which of the following is not true for Scalar Triple Product of three vectors $\bar{a}, \bar{b}, \bar{c}$
Option A:	$[\bar{a}, \bar{b}, \bar{c}]=[\bar{b}, \bar{c}, \bar{a}]$
Option B:	$[\bar{a}, \bar{b}, \bar{c}]=-[\bar{b}, \bar{a}, \bar{c}]$
Option C:	$[\bar{a}, \bar{a}, \bar{c}]=0$

University of Mumbai

Examination 2020

Option D:	$[\bar{a}, \bar{b}, \bar{c}]=-[\bar{b}, \bar{c}, \bar{a}]$
Q19.	The Lagrange's method of undetermined multipliers is used to solve
Option A:	NLPP with n variables and $\mathrm{m}(\mathrm{m}<\mathrm{n})$ equality constraints
Option B:	NLPP with n variables and $\mathrm{m}(\mathrm{n}<\mathrm{m})$ equality constraints
Option C:	NLPP with n variables and $\mathrm{m}(\mathrm{m}<\mathrm{n})$ inequality constraints
Option D:	NLPP with n variables and $\mathrm{m}(\mathrm{n}<\mathrm{m})$ inequality constraints
Q20.	For an NLPP with one inequality constraint, using Kuhn-Tucker conditions, what are the possible cases for the multiplier λ
Option A:	$\lambda=0, \lambda \neq 0$
Option B:	$\lambda=0$
Option C:	$\lambda \neq 0$
Option D:	$\lambda=1, \lambda=-1$
Q21.	The Z-transform of $\mathrm{x}(\mathrm{n})$ is given by
Option A:	$\sum_{n=-\infty}^{\infty} x(n) z^{-n}$
Option B:	$\sum_{n=-\infty}^{\infty} x(n) z^{n}$
Option C:	$\sum_{n=0}^{\infty} x(n) z^{n}$
Option D:	None of the above
Q22.	If $f: R \rightarrow R, g: R \rightarrow R \quad$ are \quad defined by $f(x)=x+2$ and $g(x)=$ x^{2} then fogof $=$
Option A:	$x^{2}-6 x+8$
Option B:	$x^{2}+6 x+8$
Option C:	$x^{2}-4 x+6$
Option D:	$x^{2}+4 x+6$
Q23.	Given $\mathrm{A}\{1,2,3,4\} \quad \mathrm{B}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$, and let R be the relation, $\mathrm{R}=\{(1, \mathrm{y}),(1, \mathrm{z}),(3, \mathrm{y}),(4, \mathrm{x}),(4, \mathrm{z})\}$ then Domain and Range of R is
Option A:	Domain of $\mathrm{R}=\{1,3,4\}$; Range of $\mathrm{R}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
Option B:	Domain of $\mathrm{R}=\{1,4\}$; Range of $\mathrm{R}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
Option C:	Domain of $\mathrm{R}=\{1,2,3,4\}$; Range of $\mathrm{R}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$
Option D:	Domain of $\mathrm{R}=\{1,3,4\}$; Range of $\mathrm{R}=\{\mathrm{x}, \mathrm{z}\}$
Q24.	If 8 persons are chosen from any group, then how many of them will have the same birthday?
Option A:	At most 2
Option B:	Atleast 1
Option C:	Atleast 2
Option D:	none
Q25.	For any two sets which of the following is true?
Option A:	$\overline{A \cap B}=\bar{A} \cap \bar{B}$
Option B:	$\overline{A \cup B}=\bar{A} \cup \bar{B}$
Option C:	$A-B=\bar{A} \cup \bar{B}$
Option D:	$\overline{A \cap B}=\bar{A} \cup \bar{B}$

