University of Mumbai Examination 2020

Program: SE Comps/IT/Extc/Biomedical/Chemical/Biotech

Curriculum Scheme: Rev2012/R2016 Examination: Second Year Semester III Course Name: Applied Mathematics-III

DISCLAIMER

Below is sample paper only. Any resemblance to any question in University paper is purely coincidental.

NOTE: Q. No. 5, 6, 8, 9 strictly for Biotech & Chemical Engg. only

Q. No.12,13,19,20 strictly for Biotech Engg. only.

Q.No.14,15 strictly for Computer, EXTC & Biomedical Engg. Only.

Q. No. 16 strictly for Biomedical & Extc only.

Q. No.21 strictly for Computer Engg. Only.

Q. No. 17,18 strictly for Extc & Biomedical Engg. & Computer(R2012) only.

Q. No. 22 to 25 strictly for Information Technology Engg. (R-2016) only.

Time: 1-hour Max. Marks: 50

For the students: - All the Questions are compulsory and carry equal marks.

Q1.	$L^{-1}\left\{\frac{10-4S}{(s-2)^2}\right\}$ is equal to
Option A:	$2(t-2)e^{2t}$
Option B:	$2(t+2)e^{2t}$
Option C:	$2(t-2)e^{-2t}$
Option D:	$ 2(t-2)e^{2t} 2(t+2)e^{2t} 2(t-2)e^{-2t} 2(t+2)e^{-2t} $
Q2.	The value of $\int_0^\infty e^{-3t}t \ sint \ dt$ is equal to
Option A:	6/5
Option B:	3/50
Option C:	0
Option D:	2/25
Q3.	$L\{t H(t-4)\}$ is equal to
Option A:	$e^{-4s}\left(\frac{1}{s^2}-\frac{4}{s}\right)$
Option B:	$e^{-4s} \left(\frac{1}{s^2} - \frac{4}{s}\right)$ $e^{-4s} \left(\frac{1}{s^2} + \frac{4}{s}\right)$
Option C:	$e^{4S}\left(\frac{1}{S^2} - \frac{4}{S}\right)$
Option D:	$e^{4s}\left(\frac{1}{s^2}-\frac{4}{3s}\right)$
	(
Q4.	Inverse Laplace Transform of $log(\frac{s+1}{s-1})$
Option A:	2sinht t
Option B:	$\frac{t}{\frac{2cosht}{t}}$
Option C:	2tsinht
Option D:	2tcosht

University of Mumbai Examination 2020

0.5	
Q5.	The Coefficient of correlation between X and Y IS 0.6. and covariance is 4.8. The
	variance of X is 9. Then the Standard deviation of Y is
Option A:	$\frac{4.8}{3 \times 0.6}$
Option B:	4.8
	9 X 0.6
Option C:	$\frac{0.6}{3 \times 4.8}$
Option D:	0.6
opuon 2 :	9 X 4.8
Q6.	If a random variable X follows Poisson distribution such that $P(X=1)=2P(X=2)$,
	then mean of the distribution is
Option A:	4
Option B:	2
Option C:	3
Option D:	1
Q7.	Which of the following is true about regression coefficient
Option A:	If one of the coefficients of regression is greater than 1 the other must be less than
	1.
Option B:	If one of the coefficients of regression is less than 1 the other must be equal to 1.
Option C:	If one of the coefficients of regression is greater than 1 the other must be equal to
	1.
Option D:	Both the coefficient must be greater than 1.
Q8.	If $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$ then the Eigen value of $A^2 - 2A + 3I$ are
	20 12
Option A:	7 and 13
Option B:	2 and 3
Option C:	1 and 4
Option D:	3 and 12
Q9.	
	Minimal polynomial of matrix $A = \begin{bmatrix} 0 & 3 & -1 \\ 0 & 3 & -1 \end{bmatrix}$ is
Ontion A.	$\begin{bmatrix} 0 & -1 & 3 \end{bmatrix}$
Option A:	$f(x) = x^3 - 4x^2 + 3x - 4$ $f(x) = x^3 - 6x^2 + 5x - 1$
Option B:	$\int (x) = x^2 - 6x^2 + 5x - 1$
Option C:	$f(x) = x^2 - 6x + 8$
Option D:	$f(x) = x^2 - 5x + 6$
Q10.	Which of the following is not true for an analytic function $f(z) = u + iv$
Option A:	u= constant and v = constant are orthogonal trajectories
Option B:	u and v are harmonic functions
Option C:	$f'(z) = u_x + iv_x$
Option D:	$u_x = v_y; \ u_y = v_x$
Q11.	The fixed points of the bilinear transformation $f(z) = w = \frac{z-1}{z+1}$, are
Option A:	z = i, -i
Option B:	z = 1, -1

University of Mumbai Examination 2020

Option C:	z=1,-i
Option D:	z = i, -1
Option D.	Z - t, -1
Q12.	The value of $\oint \frac{z+6}{z-2} dz$ over the circle $C: z = 1$
Option A:	$4\pi i$
Option B:	$-4\pi i$
Option C:	0
Option D:	$2\pi i$
•	
Q13.	Which of the following is not true
Option A:	Taylor's series consists of positive integral powers of $(z - z_0)$
Option B:	Laurent's series consists of positive as well as negative powers of $(z - z_0)$
Option C:	Taylor's series consists of positive as well as negative integral powers of $(z - z_0)$
Option D:	The radius of convergence is the distance between the centre of Taylor's series
1	and the nearest singularity of the function.
	, ,
Q14.	Find the Fourier constant b_n for $f(x) = x^2$, where $0 < x < 2$
Option A:	0
Option B:	$ -\frac{4}{n\pi} $ $ -\frac{4}{n\pi^2} $ $ -\frac{4}{n\pi^2} $
-	$n\pi$ 4
Option C:	$-\frac{\cdot}{n\pi^2}$
Option D:	4
	$n\pi$
Q15.	The value of Fourier constant b_n in Half -range cosine series of $f(x)=x$, $0 < x < 2$ is
Option A:	4[$(-1)^n-1$]
Option 74.	$\frac{1}{n^2\pi^2}$ $4[(-1)^n+1]$
Option B:	$\frac{4[(-1)^n + 1]}{n^2 \pi^2}$
Option C:	$4[(-1)^n+1]$
	$ \begin{array}{c c} & n^2\pi^2 \\ & 4[(-1)^n - 1] \end{array} $
Option D:	$-\frac{4[(-1)^{n}-1]}{n^2\pi^2}$
	11-11-
Q16.	Which of the following is the correct for the Bessel's function $J_n(x)$
Option A:	$xJ'_{n}(x) = nJ_{n}(x) - xJ_{n+1}(x)$
Option B:	$xJ'_{n}(x) = nJ_{n+1}(x) - xJ_{n}(x)$
Option C:	$xJ'_{n}(x) = xJ_{n}(x) - nJ_{n+1}(x)$
Option D:	$nxJ'_{n}(x) = nJ_{n}(x) - xJ_{n+1}(x)$
-	711. / 711. / 711. I
Q17.	The divergence and curl of any vector point function are
Option A:	Both vector point function
Option B:	Both scalar point function
Option C:	Scalar and vector point function respectively
Option D:	Vector and Scalar point function respectively
Q18.	Which of the following is not true for Scalar Triple Product of three vectors \overline{a} , \overline{b} , \overline{c}
Option A:	$\left[\overline{a}, \overline{b}, \overline{c} \right] = \left[\overline{b}, \overline{c}, \overline{a} \right]$
Option B:	$[\overline{a}, \overline{b}, \overline{c}] = -[\overline{b}, \overline{a}, \overline{c}]$
Option C:	$[\overline{a}, \overline{a}, \overline{c}] = 0$
opnon C.	[w, w, v] = v

University of Mumbai Examination 2020

	Examination 2020
Option D:	$\left[\bar{a}, \bar{b}, \bar{c}\right] = -\left[\bar{b}, \bar{c}, \bar{a}\right]$
010	
Q19.	The Lagrange's method of undetermined multipliers is used to solve
Option A:	NLPP with n variables and m(m <n) constraints<="" equality="" td=""></n)>
Option B:	NLPP with n variables and m(n <m) constraints<="" equality="" td=""></m)>
Option C:	NLPP with n variables and m(m <n) constraints<="" inequality="" td=""></n)>
Option D:	NLPP with n variables and m(n <m) constraints<="" inequality="" td=""></m)>
020	Es a su NI DD seith see in see literate attaint seine Wales Teachers and it is a select
Q20.	For an NLPP with one inequality constraint, using Kuhn-Tucker conditions, what
Option A:	are the possible cases for the multiplier λ
	$\lambda = 0, \lambda \neq 0$
Option B:	$\lambda = 0$
Option C:	$\lambda \neq 0$
Option D:	$\lambda = 1, \lambda = -1$
021	The 7 transforms of v(n) is given by
Q21.	The Z-transform of x(n) is given by $\sum_{n=0}^{\infty} x_n(n) = n$
Option A:	$\sum_{n=-\infty}^{\infty} x(n) z^{-n}$
Option B:	$\sum_{n=-\infty}^{\infty} x(n)z^n$
Option C:	$\sum_{n=0}^{\infty} x(n) z^n$
Option D:	None of the above
022	
Q22.	If $f: R \to R$, $g: R \to R$ are defined by $f(x) = x + 2$ and $g(x) = x + 2$
	x^2 then $fogof =$
Option A:	$x^2 - 6x + 8$
Option B:	$x^2 + 6x + 8$
Option C:	x^2-4x+6
Option D:	$x^2 + 4x + 6$
Q23.	Given $A\{1,2,3,4\}$ $B=\{x,y,z\}$, and let R be the relation,
223.	$R = \{(1,y),(1,z),(3,y),(4,x),(4,z)\}$ then Domain and Range of R is
Option A:	Domain of $R=\{1,3,4\}$; Range of $R=\{x,y,z\}$
Option B:	Domain of $R=\{1,4\}$; Range of $R=\{x,y,z\}$
Option C:	Domain of $R=\{1,2,3,4\}$; Range of $R=\{x,y,z\}$
Option D:	Domain of $R=\{1,3,4\}$; Range of $R=\{x,z\}$
	(727)7 2 6 7
Q24.	If 8 persons are chosen from any group, then how many of them will have the
	same birthday?
Option A:	At most 2
Option B:	Atleast 1
Option C:	Atleast 2
Option D:	none
Q25.	For any two sets which of the following is true?
Option A:	$\overline{A \cap B} = \overline{A} \cap \overline{B}$
Option B:	$\overline{A \cup B} = \overline{A} \cup \overline{B}$
Option C:	$A - B = \bar{A} \cup \bar{B}$
Option D:	$\overline{A \cap B} = \overline{A} \cup \overline{B}$