University of Mumbai
 Examination 2020

Program: SE Comps/IT/Extc/Biomedical/Chemical/Biotech
Curriculum Scheme: Rev2012/R2016
Examination: Second Year SemesterIV
Course Name: Applied Mathematics-IV
DISCLAIMER
Below is sample paper only. Any resemblance to any question in final paper is purely coincidental.
NOTE: Q. No.1-3, 10-12 is strictly for Biotech Engg. only.
Q. No. 4 to 9 strictly for Biotech \& Chemical Engg. only
Q.No. 13, 14 strictly for Chemical,Computer, EXTC \&Biomedical Engg. Only.
Q. No. 15,16 strictly for Computer \&Extc only.
Q. No.17,18 strictly for Computer Engg. Only.
Q. No. 19,20 strictly for Extc\& Information Technology Engg. only.
Q.No.21-23 strictly for, Information Technology, Computer, EXTC \&Biomedical Engg.
Q. No. 24 and 25 are strictly for Information Technology Engg. only.

Time: 1-hourMax. Marks: 50
For the students: - All the Questions are compulsory and carry equal marks.

Q1.	The one dimensional heat equation is
Option A:	$\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
Option B:	$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
Option C:	$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial u}{\partial t}$
Option D:	$\frac{\partial u}{\partial t}=-c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
Q2	The partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-5 \frac{\partial^{2} z}{\partial y^{2}}=0$ is classified as
Option A:	Elliptic
Option B:	Parabolic
Option C:	Hyperbolic
Option D:	None of the above
Q3	A partial differential equation $A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=0$ is Parabolic if
Option A:	$B^{2}-4 A C<0$
Option B:	$B^{2}-4 A C=0$

University of Mumbai

Examination 2020

Option C:	$B^{2}-4 A C>0$
Option D:	None of the above
Q4	The half range sine series for $\mathrm{f}(\mathrm{x})=\frac{\pi}{4}$ in $(0, \pi)$ is
Option A:	$\frac{\pi}{4}=\frac{1}{1} \sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\ldots$
Option B:	$\frac{\pi}{4}=\frac{1}{1} \sin x-\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\ldots .$
Option C:	$\frac{\pi}{4}=\frac{1}{2} \sin 2 x+\frac{1}{4} \sin 4 x+\frac{1}{6} \sin 6 x+\ldots$
Option D:	$\frac{\pi}{4}=\frac{1}{2} \sin 2 x-\frac{1}{4} \sin 4 x+\frac{1}{6} \sin 6 x+\ldots$
Q5	To find the Fourier series of $\mathrm{f}(\mathrm{x})$ in [$\mathrm{c}, \mathrm{c}+2 \mathrm{l}]$, the Fourier coefficient b_{n} is given by
Option A:	$\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x$
Option B:	$\frac{1}{l} \int_{c}^{c+2 l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x$
Option C:	$\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \operatorname{sinn} x d x$
Option D:	$\frac{1}{l} \int_{c}^{c+2 l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x$
Q6	If $\mathrm{f}(\mathrm{x})$ is defined in (c, $\mathrm{c}+2 \mathrm{l})$ then the complex form of Fourier series is
Option A:	$\mathrm{f}(\mathrm{x})=\sum_{-\infty}^{\infty} c_{n} e^{i n \pi x / l}$, where $c_{n}=\frac{1}{2 l} \int_{c}^{c+2 l} f(x) e^{-i n \pi x / l} d x$
Option B:	$\mathrm{f}(\mathrm{x})=\sum_{0}^{\infty} c_{n} e^{i n \pi x / l}, \text { where } c_{n}=\frac{1}{l} \int_{0}^{c+2 l} f(x) e^{i n \pi x / l} d x$
Option C:	$\mathrm{f}(\mathrm{x})=\sum_{0}^{\infty} c_{n} e^{-i n \pi x / l}$, where $c_{n}=\frac{1}{l} \int_{0}^{2 \pi} f(x) e^{-i n \pi x} / l d x$
Option D:	$\mathrm{f}(\mathrm{x})=\sum_{-\infty}^{\infty} c_{n} e^{-i n \pi x / l}, \text { where } c_{n}=\frac{1}{2 l} \int_{0}^{2 \pi} f(x) e^{i n \pi x / l} d x$
Q7	A set of functions $f_{1}(x), f_{2}(x), f_{3}(x), \ldots f_{n}(x) \ldots$ is said to be orthonormal on (a, b) if
Option A:	$\int_{a}^{b} f_{m}(x) f_{n}(x) d x=\left\{\begin{array}{l} 0 \text { for } m \neq n \\ \neq 0 \\ \text { for } m=n \end{array}\right.$
Option B:	$\int_{a}^{b} f_{m}(x) f_{n}(x) d x=\left\{\begin{array}{l} \neq 0 \text { for } m \neq n \\ 0 \text { for } m=n \end{array}\right.$
Option C:	$\int_{a}^{b} f_{m}(x) f_{n}(x) d x=\left\{\begin{array}{l} 1 \text { for } m \neq n \\ 0 \text { for } m=n \end{array}\right.$
Option D:	$\int_{a}^{b} f_{m}(x) f_{n}(x) d x=\left\{\begin{array}{l} 0 \text { for } m \neq n \\ 1 \text { for } m=n \end{array}\right.$
Q8	If Fourier transform of $f(x)=F(s)$ then the Fourier transform of $f(x-a)$ is
Option A:	$e^{i s a} F(s)$
Option B:	$e^{-s a} F(s)$
Option C:	$e^{-i s a} F(s)$
Option D:	$\mathrm{F}(\mathrm{s}-\mathrm{a})$
Q9	If $\mathrm{f}(\mathrm{x})$ satisfies Dirichlet's conditions in each finite interval $-l \leq x \leq l$ and $\mathrm{f}(\mathrm{x})$ is integrable in $-\infty$ to ∞ then Fourier Integral Theorem states that
Option A:	$f(s)=\frac{1}{\pi} \int_{\omega=0}^{\infty} \int_{s=-\infty}^{\infty} f(s) \operatorname{Cos} \omega(s-x) d \omega d s$
Option B:	$f(s)=\frac{1}{\pi} \int_{s=0}^{\infty} \int_{\omega=-\infty}^{\infty} f(s) \operatorname{Cos} \omega(s-x) d \omega d s$
Option C:	$f(x)=\frac{1}{\pi} \int_{s=0}^{\infty} \int_{\omega=-\infty}^{\infty} f(s) \operatorname{Cos} \omega(s-x) d \omega d s$

Examination 2020

Option D:	$f(x)=\frac{1}{\pi} \int_{\omega=0}^{\infty} \int_{s=-\infty}^{\infty} f(s) \operatorname{Cos} \omega(s-x) d \omega d s$
Q10	The directional derivative of $\emptyset=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the vector $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ is
Option A:	11
Option B:	-11
Option C:	11/3
Option D:	-11/3
Q11	The Gauss divergence theorem states that
Option A:	$\iint_{S} \bar{N} \cdot \bar{F} d s=\iiint_{v} \nabla \cdot \bar{F} d v$ where \bar{N} is a unit outward normal.
Option B:	$\iint_{S} \nabla \cdot \bar{F} d s=\iiint_{v} \bar{N} \cdot \bar{F} d v$ where \bar{N} is a unit outward normal.
Option C:	$\iint_{S} \overline{\mathrm{~N}} \cdot \nabla \times \bar{F} d s=\iiint_{v} \nabla \cdot \bar{F} d v$ where \bar{N} is a unit outward normal.
Option D:	None of the above
Q12	If $\bar{F}=x^{2} \hat{\imath}+\mathrm{xy} \hat{\jmath}$ and if c is a straight line joining $(0,0)$ and $(1,1)$ then $\int_{C} \bar{F} \cdot \overline{d r}$ is
Option A:	1/3
Option B:	2
Option C:	1
Option D:	2/3
Q13	Residue of $f(z)=\frac{1-e^{2 z}}{z^{4}}$ at its pole is
Option A:	0
Option B:	4/3
Option C:	-4/3
Option D:	1
Q14	If C is the circle $\|\mathrm{z}\|=2$ then $\int_{C} \frac{e^{3 z}}{(z-\pi i)} d z$ is
Option A:	0
Option B:	πi
Option C:	$\frac{\pi i}{2}$
Option D:	$2 \pi i$
Q15	For the matrix $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ the sum and product of its Eigen values is respectively
Option A:	5,-2
Option B:	-2,5
Option C:	-5,2
Option D:	2,-5
Q16	A square matrix is diagonalizable if and only if for every Eigen value of the matrix
Option A:	$\mathrm{AM}=\mathrm{GM}+1$
Option B:	AM=GM-1

Examination 2020

Option C:	AM=GM
Option D:	None of the above
Q17	If there is an optimal solution to LPP then it exists at
Option A:	Extreme points
Option B:	Interior points
Option C:	Boundary points
Option D:	None of the above
Q18	A basic solution of a system is degenerated if
Option A:	Some basic variables are non zero
Option B:	Some basic variables are zero
Option C:	Some basic variables are negative
Option D:	Some basic variables are positive
Q19	The regression lines of sample are $x+6 y=6$ and $3 x+2 y=10$, then mean of x and y is
Option A:	$\bar{x}=1 / 3, \bar{y}=1 / 2$
Option B:	$\bar{x}=3, \bar{y}=1 / 2$
Option C:	$\bar{x}=3, \bar{y}=2$
Option D:	$\bar{x}=3, \bar{y}=4$
Q20	If x and y are independent then the coefficient of correlation is
Option A:	1
Option B:	-1
Option C:	0
Option D:	None of the above
Q21	Let ' X ' be a continues random variable with $\mathrm{pdf} \mathrm{f}(\mathrm{x})=\mathrm{kx}(1-\mathrm{x})$ for $0 \leq x \leq 1$, then ' k ' is
Option A:	1/6
Option B:	6
Option C:	3
Option D:	3/2
Q22	If ' X ' is a random variable with normal distribution and mean=10, standard deviation $=4$ then $\mathrm{P}(\mathrm{X} \leq 12)$ is
Option A:	0.6915
Option B:	0.7186
Option C:	0.5913
Option D:	0.8496
Q23	If $\mathrm{r}=$ number of rows $=4$ and $\mathrm{c}=$ number of columns $=6$ then the degree of freedom of a chi-square distribution is
Option A:	24
Option B:	12
Option C:	15

University of Mumbai

Examination 2020

Option D:	18
Q24	The inverse of 9 modulo 25 is
Option A:	14
Option B:	11
Option C:	18
Option D:	19
Q25	If \varnothing is The Euler's Phi function then $\emptyset(90)=$
Option A:	11
Option B:	19
Option C:	89
Option D:	24

