University of Mumbai Examination 2020 under cluster 2 (FRCE)

Program: SE Electronics and Telecommunication Engineering Curriculum Scheme: Revised 2016 (Choice Based)

Examination: Second Year Semester III

Course Code: ECC304 and Course Name: Circuit Theory and Networks
Time: 1 hour
Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	When two coils having self-inductance of L1 and L2 are coupled through a mutual inductance M, the coefficient of coupling k is given by
Option A:	$k=\frac{M}{\sqrt{2 L_{1} L_{2}}}$
Option B:	$k=\frac{M}{\sqrt{L_{1} L_{2}}}$
Option C:	$k=\frac{2 M}{\sqrt{L_{1} L_{2}}}$
Option D:	$k=\frac{\sqrt{L_{1} L_{2}}}{M}$
Q2.	Superposition theorem is not applicable to networks containing
Option A:	Non-linear element
Option B:	Dependent voltage Source
Option C:	Dependent current source
Option D:	Transformers.
Q3.	Find the state of capacitor when there is no voltage across the capacitor at $\mathrm{t}=0^{-}$
Option A:	Capacitor will act as an open circuit at $\mathrm{t}=0^{+}$
Option B:	Capacitor will act as a short circuit at $\mathrm{t}=0^{+}$
Option C:	Capacitor will act as a voltage source of V_{0} volt at $\mathrm{t}=0^{+}$
Option D:	Capacitor will act as a current source of I_{0} ampere at $\mathrm{t}=0^{+}$
Q4.	Find the statement which is not true for a tree of a graph
Option A:	A tree contain all nodes of the graph
Option B:	If n is the number of nodes of the graph, then n branches should be there in the tree
Option C:	Tree do not contain any loop
Option D:	There exists only one path between any pair of nodes in a tree.
Q5.	The damping ratio of a series RLC circuit can be expressed as
Option A:	$\frac{R^{2} C}{2 L}$

University of Mumbai
Examination 2020 under cluster 2 (FRCE)

Option B:	$\frac{2 L}{R^{2} C}$
Option C:	$\frac{R}{2} \sqrt{\frac{C}{L}}$
Option D:	$\frac{R}{2} \sqrt{\frac{L}{C}}$
Q6.	The mutual inductance between two coupled coils is 20 mH . If the turns in one coil are doubled and that in the other are halved then the mutual inductance will be
Option A:	5 mH
Option B:	10 mH
Option C:	40 mH
Option D:	20 mH
Q7.	In the given network a steady state is reached with the switch open. At $t=0$, the switch is closed .For the element values given determine value of $\mathrm{V}_{\mathrm{a}}\left(0^{-}\right)$.
Option A:	3.33 V
Option B:	OV
Option C:	1.9 V
Option D:	-0.477V
Q8.	Find the statement which is not true
Option A:	When all the poles lie in the left half of the splane ,the network is said to be stable
Option B:	When there are multiple poles on the jw axis, the network is said to be stable
Option C:	When the poles lie on the jw axis the network is said to be marginally stable
Option D:	When poles lie in the right half of the s plane, the network is said to be unstable
Q9.	The graph of an electrical network has n nodes and b branches. The number of links with respect to the choice of a tree is given by
Option A:	$b-n+1$
Option B:	$\mathrm{b}+\mathrm{n}$
Option C:	$n-b+1$
Option D:	$n-2 b-1$

University of Mumbai

Examination 2020 under cluster 2 (FRCE)

Q10.	If a unit step voltage is applied at $\mathrm{t}=0$ to a series RL circuit with zero initial conditions
Option A:	It is possible for the current to be oscillatory
Option B:	The voltage across the resistor at $\mathrm{t}=0^{+}$is zero
Option C:	The energy stored in the inductor in the steady state is zero
Option D:	The resistor current eventually falls to zero
Q11.	Identify which of the following is not a tree of the graph shown in figure
Option A:	begh
Option B:	defg
Option C:	abfg
Option D:	Aegh
Q12.	The denominator polynomial in a transfer function may not have any missing terms between the highest and the lowest degree, unless?
Option A:	all odd terms are missing
Option B:	all even terms are missing
Option C:	all even or odd terms are missing
Option D:	all even and odd terms are missing
Q13.	The function $S+2+\frac{3}{S}$ can be realized as
Option A:	Both driving point impedance and driving point admittance
Option B:	An impedance but not as admittance
Option C:	An admittance but not as an impedance
Option D:	Neither as an impedance nor as an admittance
Q14.	Find the equivalent impedance for the circuit given

Option A:	$\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2}+2 M}$
Option B:	$\frac{L_{1} L_{2}+M^{2}}{L_{1}+L_{2}+2 M}$
Option C:	$\frac{L_{1} L_{2}-M^{2}}{L_{1}+L_{2}-2 M}$
Option D:	$\frac{L_{1} L_{2}+M^{2}}{L_{1}+L_{2}-2 M}$
Q15.	Two identical sections of the network are connected in series. Obtain Z parameters of the overall connection
Option A:	$\begin{array}{ll} \hline 3 & 1 \\ 1 & 3 \\ \hline \end{array}$
Option B:	$\begin{array}{ll} 1 & 3 \\ 3 & 1 \end{array}$
Option C:	$\begin{array}{ll} 5 & 1 \\ 6 & 2 \\ 2 & 6 \\ \hline \end{array}$
Option D:	$\begin{array}{ll} 9 & 1 \\ 1 & 9 \end{array}$
Q16.	Consider the impedance functionz $(s)=\frac{2 s^{2}+8 s+6}{s^{2}+8 s+12}$. Find the value of R_{1} after converting into second Cauer form.
Option A:	1
Option B:	3/4
Option C:	1/2
Option D:	1/4
Q17.	For an RC driving point impedance function, the poles and Zeros
Option A:	Should alternate on the real axis
Option B:	Should alternate only on the negative real axis
Option C:	Should alternate on the imaginary axis
Option D:	Can lie anywhere on the left half plane
Q18.	Which of the following ABCD parameters is unit less?
Option A:	A and B
Option B:	A and D
Option C:	B and C
Option D:	A and C

University of Mumbai

Examination 2020 under cluster 2 (FRCE)

Q19.	Find the value of Y_{12} for a given impedance matrix$4 / 5$ $2 / 5$$\quad-4 / 5$

University of Mumbai

Examination 2020 under cluster 2 (FRCE)

	current through it being 0. The current through the inductor for t greater than 0 is
Option A:	12 t
Option B:	24 t
Option C:	$12 \mathrm{t}^{3}$
Option D:	$4 \mathrm{t}^{3}$
Q25.	$\mathrm{A} 1 \mu \mathrm{~F}$ capacitor is connected across a 50 V battery. The battery is kept closed for a long time. The circuit current and voltage across capacitor is
Option A:	0.5 A and 0 V
Option B:	20 A and 5 V
Option C:	0 A and 50 V
Option D:	0.05 A and 5 V

