Program: BE -EXTC

Curriculum Scheme: Choice based R-16
Examination:Second Year Semester III
Course Code: and Course Name: EDC I
SAMPLE QUESTION PAPER
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	If for a transistor $\beta=100, \mathrm{I}_{\text {CBO }}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=50 \mu \mathrm{~A}$ then $\mathrm{I}_{\mathrm{E}}=$
Option A:	10 mA
Option B:	6.06 mA
Option C:	6.06A
Option D:	10A
Q2.	For a transistor $\alpha=0.99, \mathrm{ICBO}=5 \mu \mathrm{~A}$ and $\mathrm{IE}=8.5 \mathrm{~mA}$ then $\mathrm{IB}=$
Option A:	$80 \mu \mathrm{~A}$
Option B:	$75 \mu \mathrm{~A}$
Option C:	$100 \mu \mathrm{~A}$
Option D:	$50 \mu \mathrm{~A}$
Q3.	
Option A:	100.813
Option B:	80.813
Option C:	52.813
Option D:	50.813

Q4.	
Option A:	$2 \mathrm{~K} \Omega$
Option B:	$5 \mathrm{~K} \Omega$
Option C:	2.2K Ω
Option D:	$3 \mathrm{~K} \Omega$
Q5.	
Option A:	1.61 mA
Option B:	2 mA
Option C:	3.13 mA
Option D:	2.61 mA
Q6.	For a p-channel FET $\mathrm{V}_{\mathrm{p}}=5 \mathrm{~V}$ IDSS $=10 \mathrm{~mA}$ and VGS=1V
Option A:	1 mA
Option B:	6.4 mA
Option C:	5 mA
Option D:	1.5 mA

Q7.	
Option A:	8 V
Option B:	4.75 V
Option C:	5 V
Option D:	6 V
Q8.	
Option A:	$1 \mathrm{~K} \Omega$
Option B:	2Ω
Option C:	$5 K \Omega$
Option D:	$3 \mathrm{~K} \Omega$
Q9.	
Option A:	10 mA
Option B:	12.67 mA
Option C:	10.57 mA
Option D:	4 mA

Q10.	During fabrication process of passive elements to permit selective etching ,the SiO 2 layer must be subjected to a
Option A:	Oxidation process
Option B:	Epitaxial Growth process
Option C:	Metalization Process
Option D:	Photolithographic Process
Q11.	Average DC voltage of a full wave rectifier circuit is given as
Option A:	$2 \mathrm{~V}_{\mathrm{M}} / \pi$
Option B:	$\mathrm{V}_{\mathrm{M}} / \pi$
Option C:	$\mathrm{V}_{\mathrm{M}} / 2 \pi$
Option D:	$\mathrm{V}_{\mathrm{M}} / 2$
Q12.	Consider the simplified diagram of a Zener shunt regulator .The dynamic impedance of zener is 10Ω. Find the voltage stability factor.
Option A:	0.091
Option B:	10
Option C:	11
Option D:	1
Q13.	For an n -channel JFET Vp $=-2 \mathrm{~V}$ the value of VGS for zero current drift will be
Option A:	-2.63V
Option B:	-1.37V
Option C:	+1.37V
Option D:	+2.63V
Q14.	In hybrid pi model of transistor, value of gm and $\mathrm{r} \pi$ is given by
Option A:	ICQ/VT and $\beta \mathrm{VT} / \mathrm{ICQ}$ respectively
Option B:	$\beta \mathrm{VT} / \mathrm{ICQ}$ and ICQ/VT
Option C:	ICQ, and $\beta \mathrm{VT}$
Option D:	None of above
Q15.	While drawing AC equivalent circuit of any amplifier
Option A:	VCC retained and capacitors replaced by short circuit
Option B:	VCC connected to gnd, capacitors replaced by short circuit
Option C:	Capacitors are retained and Vcc connected to gnd
Option D:	None of the above

Q16.	In any two port network if feedback impedance is Z After using Millers theorem Z1 and Z2 are as follows
Option A:	Z1=Z/1-k, and Z2=Zk/K-1
Option B:	Z1=Z/K-1, and Z2=Z/K-1
Option C:	Z1=ZK/K-1 and Z2=Z/k-1
Option D:	None of the above
Q17.	Bipolar junction transistor operates in
Option A:	Can not work as an amplifier and as a switch
Option B:	Saturation as amplifier and active region and cutoff region as a switch
Option C:	Active region as amplifier and canot be used as a switch
Option D:	Active region for amplifier and in cut off and saturation as a switch
Q18.	h parameters of bjt can be found from input, output characteristics
Option A:	hie and hre from input characteristics and hfe and hoe from output characteristics
Option B:	hfe ,hoe from input characteristics and hie and hre from input characteristics
Option C:	hfe ,hre from input characteristics and hie and hoe from input characteristics
Option D:	hre ,hoe from input characteristics and hie and hfe from input characteristics
Q19.	Current flowing into the gate terminal when it is biased in saturation region is
Option A:	Highest
Option B:	Zero
Option C:	lowest
Option D:	None of the above
Q20.	Voltage gain formula for common drain amplifier or souse follower is
Option A:	gmRs/1+gmRs
Option B:	gmRs
Option C:	1
Option D:	None of the above
Q21.	Factors affecting the bandwidth of RC coupled amplifier
Option $:$	To provide high reactance path for amplified signal appearing at emitter.
Option B:	Coupling and bypass capacitors and interelectrode capacitors
Option C:	Low frequency nat and high frequency cut off depends on resistor values
	None of the above

Option C:	Output obtained at collector does not change with or without CE
Option D:	CE does not play any vital role in CE amplifier
Q23.	Shockley Equation for JFET is
Option A:	ID $=$ IDSS[1-VGS/VP] ${ }^{2}$
Option B:	ID $=$ Vp $[1-\mathrm{VGS} / \mathrm{Vp}]$
Option C:	Vp=ID[1-VGS/VP]
Option D:	None of the above
Q24.	Equation for Zero temperature drift for JFET is
Option A:	\|VP-VGS $=0.63$
Option B:	\mid \|VGS-VP $\mid=0.64$
Option C:	\mid \|VP-VGS $=1$
Option D:	None of the above
Q25.	Calculation of value of resistance RD if volage gain of common source amplifier Is given as \mid Av $\mid=10, g m=1.26 m S, r d=50 k$
Option A:	6 k
Option B:	5 k
Option C:	9.424 k
Option D:	3 k

