Program: SE Electronics and Telecommunication
Engineering Curriculum Scheme: Revised 2016
(Choice Based) Examination: Second Year Semester

IV
 Course Code: ECC403 and Course Name: Linear integrated circuits (LIC)

Time: 1 hour
Max.
Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	In a monostable multivibrator using 555 timer if $\mathrm{R}=100 \mathrm{~K}$ OHMS and $\mathrm{T}_{\mathrm{on}}=100 \mathrm{~ms}$ the value of capacitor C is
Option A:	$\mathrm{C}=0.9$ microfarads
Option B:	$\mathrm{C}=1.1$ microfarads
Option C:	$\mathrm{C}=1.9$ microfarads
Option D:	$\mathrm{C}=2.9$ microfarads
Q2.	In Astable multivibrator duty cycle is given by
Option A:	$R_{A}+R_{B} / R_{A}+2 R_{B}$
Option B:	$R_{A} / R_{A}+2 R_{B}$
Option C:	$R_{A}+R_{B} / 2 R_{A}+R_{B}$
Option D:	$R_{A}+2 R_{B} / R_{A}+R_{B}$
Q3.	In 555 timer external AC voltage is applied to which pin to obtain pulse width modulation
Option A:	Discharge pin
Option B:	Reset pin
Option C:	Control Pin
Option D:	Threshold Pin
Q4.	In phased locked loop, PLL
Option A:	Lock in range $\mathrm{F}_{L}>$ capture range F_{C}
Option B:	Lock in range F_{L} < capture range F_{C}
Option C:	Lock in range $F_{L}=$ capture range F_{C}
Option D:	Lock in range $\mathrm{F}_{\mathrm{L}}>2$ * capture range F_{C}
Q5.	In wide band pass filter quality factor Q is
Option A:	$\mathrm{Q}<10$

Optio n B:	$Q>10$
Optio n C:	$\mathrm{Q}=10$
Optio $\mathrm{n} \text { D: }$	$\begin{aligned} & \mathrm{Q}< \\ & 1 \\ & \hline \end{aligned}$
Q6.	In voltage controlled oscillator VCO , find free running frequency F_{o}. Given $\mathrm{R}=10 \mathrm{~K}$ OHMS and C=0.001 microfarads
$\begin{aligned} & \text { Optio } \\ & \text { n A: } \end{aligned}$	$\mathrm{F}_{0}=25 \mathrm{KHZ}$
$\begin{aligned} & \text { Optio } \\ & \text { n B: } \end{aligned}$	$\mathrm{F}_{0}=35 \mathrm{KHZ}$
$\begin{aligned} & \text { Optio } \\ & \text { n C: } \end{aligned}$	$\mathrm{F}_{0}=37 \mathrm{KHZ}$
$\begin{aligned} & \text { Optio } \\ & \text { n D: } \end{aligned}$	$\mathrm{F}_{0}=37.5 \mathrm{KHZ}$
Q7.	A filter used for rejecton of single frequency HUM of frequency 50 HZ is
$\begin{aligned} & \text { Optio } \\ & \text { n A: } \end{aligned}$	All pass filter
$\begin{aligned} & \text { Optio } \\ & \text { n B: } \end{aligned}$	Notch filter
$\begin{aligned} & \text { Optio } \\ & \text { n C: } \end{aligned}$	Low pass filter
Optio n D:	High pass filter
Q8.	In band pass filter $\mathrm{F}_{\mathrm{H}}=100 \mathrm{KHZ}$ and $\mathrm{F}_{\mathrm{L}}=1 \mathrm{KHZ}$ then the center frequency F_{C} is
$\begin{aligned} & \text { Optio } \\ & \text { n A: } \\ & \hline \end{aligned}$	$\mathrm{F}_{\mathrm{c}}=10 \mathrm{KHZ}$
Optio n B:	$\mathrm{F}_{\mathrm{C}}=99 \mathrm{KHZ}$
$\begin{aligned} & \text { Optio } \\ & \text { n C: } \end{aligned}$	$\mathrm{F}_{\mathrm{C}}=101 \mathrm{KHZ}$
$\begin{aligned} & \text { Optio } \\ & \text { n D: } \end{aligned}$	$\mathrm{F}_{\mathrm{C}}=150 \mathrm{KHZ}$
Q9.	In OPamp maximum rate of change of output voltage per unit time is known as
Optio n A:	Slew rate

Optio n B:	Input bias voltage
$\begin{aligned} & \text { Optio } \\ & \text { n C: } \end{aligned}$	CMRR
$\begin{aligned} & \text { Optio } \\ & \text { n D: } \end{aligned}$	offset voltage
Q10.	Which of the following is the important characteristics of an ideal OPamp
Option	A: $A_{V}=\infty, R_{L}=\infty, R_{0}=0$
Option	B: $A_{V}=\infty, R_{L}=0, R_{0}=\infty$
Option	$\mathrm{C}: \mathrm{A}_{\mathrm{V}}=1, \quad \mathrm{R}_{L}=\infty, \mathrm{R}_{0}=0$
Option	$D: A_{V}=\infty, \quad R_{L}=\infty \quad, \quad R_{0}=1$
Q11.	The ratio of open loop gain Av_{v} to common mode gain $\mathrm{Acm}^{\text {cm }}$ is called
Option	A: Slew Rate
Option	B: Inut Biased voltage
Option C	C: Differential voltage gain
Option	D: CMRR
Q12.	In an inverting summing amplifier with 2 inputs find the output if $\mathrm{V}_{1}=1.5 \mathrm{~V}$, $\mathrm{V}_{2}=3.5 \mathrm{~V}$ and resistors $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{\mathrm{f}}=5.2 \mathrm{Kohms}$
Option	A: $V_{0}=-5 \mathrm{~V}$
Option	B: $V_{0}=5 \mathrm{~V}$
Option C	C: $\mathrm{V}_{0}=-3 \mathrm{~V}$
Option	$\mathrm{D}: \mathrm{V}_{0}=-5.2 \mathrm{~V}$
Q13.	If we apply square wave at thr input of an integrator its output is
Option	A: Cosine wave
Option B	B: Triangular wave
Option C	C: Spikes at the edges of the square wave
Option D:	D: Positive going ramp
Q14.	Which element is used in the feedback path of an ideal differentiator circuit
Option A:	Capacitor
Option B:	Resistor
Option C:	Inductor

Option D:	series combination of capacitor and inductor
Q15.	For inverting schmitt Trigger if $\mathrm{R}_{1}=47$ Kohms, $\mathrm{R}_{2}=150$ ohms and $\mathrm{V}_{\text {sat }}= \pm 12 \mathrm{~V}$.Find threshold voltages and hystersis voltage V_{H}.
Option A:	$\mathrm{V}_{\text {UT }}=38.17 \mathrm{mV} \quad \mathrm{V}_{\text {LT }}=-38.17 \mathrm{mV} \quad \mathrm{V}_{\text {H }}=76.34 \mathrm{mV}$
Option B:	$\mathrm{V}_{\text {UT }}=30.17 \mathrm{mV} \quad \mathrm{V}_{\text {LT }}=-30.17 \mathrm{mV} \quad \mathrm{V}_{\text {H }}=60.34 \mathrm{mV}$
Option C:	$\mathrm{V}_{\text {UT }}=28.17 \mathrm{mV} \quad \mathrm{V}_{\text {LT }}=-28.17 \mathrm{mV} \quad \mathrm{V}_{\mathrm{H}}=56.34 \mathrm{mV}$
Option D:	$\mathrm{V}_{\text {UT }}=48.17 \mathrm{mV} \quad \mathrm{V}_{\text {LT }}=-48.17 \mathrm{mV} \quad \mathrm{V}_{\text {H }}=96.34 \mathrm{mV}$
Q16.	An amplifier circuit using diode in the feedback path of an operational amplifier is called
Option A:	Antilog amplifier
Option B:	Log amplifier
Option C:	Instrumentaion amplifier
Option D:	Differential amplifier
Q17.	The time period of output waveform of a square wave generator is given by
Option A:	$T=2 R C \log \left(2 R_{1}+R_{2} / R_{2}\right)$
Option B:	$T=R C \log _{e}\left(2 R_{1}+R_{2} / R_{2}\right)$
Option C:	$T=2 R C \log _{e}\left(R_{1}+R_{2} / R_{2}\right)$
Option D:	$\mathrm{T}=2 \mathrm{RC} \log \left(\mathrm{R}_{1}+\mathrm{R}_{2} / 2 \mathrm{R}_{2}\right)$
Q18.	For 5 bit R-2R ladder Digital to Analog converter, find full scale output voltage , if Vref $=10$ volts.
Option A:	$\mathrm{V}_{0}=1.28 \mathrm{~V}$
Option B:	$\mathrm{V}_{0}=0.3125 \mathrm{~V}$

Option C:	$\mathrm{V}_{0}=0.2225 \mathrm{~V}$
Option D:	$\mathrm{V}_{0}=1.68 \mathrm{~V}$
Q19.	Output voltage of Three terminal IC regulator 7806 is
Option A:	7 V
Option B:	8 V
Option C:	6 V
Option D:	: -6 V
Q20.	In IC 723 used as high voltage reguator, the output voltage is
Option A:	$\mathrm{V}_{0}>5 \mathrm{~V}$
Option B:	$\mathrm{V}_{0}>7 \mathrm{~V}$
Option C:	$\mathrm{V}_{0}>8 \mathrm{~V}$
Option D:	: $\mathrm{V}_{0}>25 \mathrm{~V}$
Q21.	An IC 723 has $\mathrm{V}_{0}=5 \mathrm{~V}, \mathrm{I}_{0}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{sc}}=-75 \mathrm{~mA}, ~ \mathrm{~V}_{\text {sense }}=0.6 \mathrm{~V}$ at temperature of 26 degree celsius. Then value of resistor $\mathrm{Rsc}_{\mathrm{sc}}$ is
Option A:	: $\quad \mathrm{R}_{\mathrm{sc}}=8$ ohms
Option B:	$\mathrm{Rsc}=7.8 \mathrm{ohms}$
Option C:	Rsc $=60 \mathrm{hms}$
Option D:	: $\quad \mathrm{Rsc}=6.8$ ohms
Q22.	A popular Three terminal voltage regulator IC which provides adjustable positive volatage is
Option A:	: 79 XX
Option B:	78 XX
Option C:	LM317
Option D:	: LM399
Q23.	In 3 terminal fixed voltage regulator difference between the unregulated input volatage $\mathrm{V}_{\text {in }}$ and output voltage V_{0} is called
Option A:	: Input bias voltage
Option B:	Differential voltage
Option C:	Drop out voltage
Option D:	: Drop in voltage
Q24.	In Active RC phase shift oscillator,frequency of oscillation is 5 KHZ .IF capacitor value is 0.01 microfarads, then value of resistor R is
Option A:	, $\mathrm{R}=2.33 \mathrm{kohms}$
Option B:	: R=1.29kohms

Option C:	$\mathrm{R}=2.83$ kohms
Option D:	$\mathrm{R}=4.33$ kohms
Q25.	The difference between the currents flowing into the inverting and noninverting terminals of Opamp is called
Option A:	Bias current
Option B:	input offset Current
Option C:	drift current
option D:	thermal drift

