Program: BE -Electronics and Tele communication Engineering

Curriculum Scheme: Revised 2016
Examination: Second Year Semester IV
Course Code: ECC404 and Course Name: Signals and Systems
Time: 1 hour

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The signal $\cos \left(\frac{\pi}{8} n^{2}\right)$ is
Option A:	Periodic with fundamental period of $\mathrm{N}=8$
Option B:	Periodic with fundamental period of $\mathrm{N}=4$
Option C:	Periodic with fundamental period of $\mathrm{N}=16$
Option D:	Aperiodic
Q2.	An LTI system has to satisfy
Option A:	Only additivity and homogeneity properties.
Option B:	Only additivity and time invariance properties.
Option C:	Only time invariance and homogeneity properties.
Option D:	Time invariance, additivity and homogeneity properties.
Q3.	The odd component of the complex exponential signal $e^{j \omega 0 t}$ is
Option A:	$\operatorname{Sin}\left(\omega_{0} \mathrm{t}\right)$
Option B:	$\cos \left(\omega_{0} \mathrm{t}\right)$
Option C:	$j \operatorname{Sin}\left(\omega_{0} \mathrm{t}\right)$
Option D:	-jcos ($\omega_{0} \mathrm{t}$)
Q4.	Consider the system with output $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \sin (\omega \mathrm{ct})$ where $\mathrm{x}(\mathrm{t})$ is the input signal . Which of the following properties are satisfied by the system. 1)Linear2) Memoryless 3)Time invariant4)BIBO stable
Option A:	Only 1,2,4
Option B:	Only 1,2,3
Option C:	Only 1,3,4
Option D:	Only 2,3,4
Q5.	LTI system with impulse response $\mathrm{h}(\mathrm{t})$ is BIBO stable if
Option A:	$\|h(t)\| \leq 1$
Option B:	$\int_{-\infty}^{\infty}\|h(t)\|^{2}<\infty$

Option C:	$\int_{-\infty}^{\infty}\|h(t)\|<\infty$
Option D:	$\|h(t)\|=0$ for $\mathrm{t}<0$
Q6.	LTI system with impulse response $\mathrm{h}(\mathrm{t})$ is causal if
Option A:	$\|h(t)\| \leq 1$
Option B:	$\int_{-\infty}^{\infty}\|h(t)\|^{2}<\infty$
Option C:	$\int_{-\infty}^{\infty}\|h(t)\|<\infty$
Option D:	$\|h(t)\|=0$ for $\mathrm{t}<0$
Q7.	The Laplace transform of $\mathrm{x}(\mathrm{t})=e^{-4\|t\|}$ is
Option A:	$-\frac{8}{s^{2}-16}$
Option B:	$-\frac{8}{s^{2}+16}$
Option C:	$\frac{8}{S^{2}-16}$
Option D:	$\frac{8}{S^{2}+16}$
Q8.	The inverse Laplace Transform of $X(S)=\frac{4}{(S+2)(S+4)}$ if the ROC is $\operatorname{Re}\{S\}>-2$ is
Option A:	$\mathrm{x}(\mathrm{t})=2\left\{e^{-t}-e^{-4 t}\right\} \mathrm{u}(\mathrm{t})$
Option B:	$\mathrm{x}(\mathrm{t})=2\left\{e^{-t}-e^{-4 t}\right\} \mathrm{u}(-\mathrm{t})$
Option C:	$\mathrm{x}(\mathrm{t})=2\left\{e^{-t} u(-t)+e^{-4 t} \mathrm{u}(\mathrm{t})\right\}$
Option D:	$\mathrm{x}(\mathrm{t})=2\left\{e^{-t} u(t)+e^{-4 t} \mathrm{u}(-\mathrm{t})\right\}$
Q9.	The Fourier transform of Signum function is
Option A:	
Option B:	$\frac{1}{\mathrm{j} \Omega}$
Option C:	$-\frac{2}{j \Omega}$
Option D:	$\frac{2}{j \Omega}$
Q10.	Even part of the signal $x(n)=\{4,-4,2,-2)$ is
Option A:	$\{-1,1,-2,4,-2,1,-1\}$
Option B:	$\{-1,1,-2,4,-2,1,-1\}$
Option C:	$\{1,-1,-2,0,-2,1,-1\}$
Option D:	$\{-1,1,-2,4,-2,1,-1\}$

Q11.	$\mathrm{x}(\mathrm{n})=\mathrm{u}(\mathrm{n})$
Option A:	Is a power signal with $\mathrm{P}=0.5 \mathrm{~W}$ and $\mathrm{E}=\infty$
Option B:	Is an Energy signal with $\mathrm{E}=0.5 \mathrm{~J}$ and $\mathrm{P}=0$
Option C:	Is neither an Energy nor a power signal
Option D:	Is Power signal with $\mathrm{P}=0.5 \mathrm{~W}$ and $\mathrm{E}=0$
Q12.	For a finite duration non causal discrete time signal
Option A:	ROC is entire Z plane except $\mathrm{z}=0$
Option B:	ROC is entire Z plane except $\mathrm{z}=\infty$
Option C:	ROC is entire Z plane except $\mathrm{z}=0$ and $\mathrm{z}=\infty$
Option D:	ROC is exterior of unit circle in Z plane.
Q13.	Fourier coefficients of exponential form of Fourier series is represented as
Option A:	$C_{K}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j K \Omega_{0} t} d t$
Option B:	$C_{K}=\int_{0}^{T_{0}} x(t) e^{-j K \Omega_{0} t} d t$
Option C:	$C_{K}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{j K \Omega_{0} t} d t$
Option D:	$C_{K}=\int_{0}^{T_{0}} x(t) e^{j K \Omega_{0} t} d t$
Q14.	Fourier series representation of the signal $\mathrm{x}(\mathrm{t})=\sin ^{2} t$ is
Option A:	$x(t)=-\frac{1}{4} e^{-j 2 t}+\frac{1}{2}+\frac{1}{4} e^{j 2 t}$
Option B:	$x(\mathrm{t})=-\frac{1}{4} e^{-j 2 t}-\frac{1}{2}-\frac{1}{4} e^{j 2 t}$
Option C:	$\mathrm{x}(\mathrm{t})=-\frac{1}{4} e^{-j 2 t}+\frac{1}{2}-\frac{1}{4} e^{j 2 t}$
Option D:	$x(t)=\frac{1^{4}}{4} e^{-j 2 t}+\frac{1}{2}-\frac{4}{4} e^{j 2 t}$
Q15.	IF $X(\Omega)=\delta(\Omega)$ then $x(t)=$
Option A:	$x(t)=1$
Option B:	$x(t)=\frac{1}{2 \pi}$
Option C:	$\mathrm{x}(\mathrm{t})=\frac{\pi}{2}$
Option D:	$\mathrm{x}(\mathrm{t})=0.5$
Q16.	Which of the transform below is best suited to represent discrete time aperiodic signal $x(n)$ of infinite duration.
Option A:	Fourier Transform.
Option B:	Discrete time Fourier Transform.
Option C:	Complex exponential Fourier series.
Option D:	Discrete Fourier Transform.
Q17.	The convolution of the two sequence $x(n)=\{1,2,-1,0,3\}$ and $h(n)=\{1,2,-1\}$ is

Option A:	$\mathrm{y}(\mathrm{n})=\{1,4,2,-4,4,6,-3\}$
Option B:	$y(n)=\{1,4,2,-4,4,6,-3\}$
Option C:	$y(n)=\{1,4,2,-4,0,6,-3\}$
Option D:	$y(n)=\{0,1,4,2,-4,4,6,-3\}$
Q18.	Z transform of $x(n)=0.5^{n} u(n)$ is
Option A:	z/(z+0.5)
Option B:	z/(z-0.5)
Option C:	1/(z+0.5)
Option D:	1/(z-0.5)
Q19.	$\mathrm{Z}\left\{\mathrm{a}_{1} \mathrm{X}_{1}(\mathrm{n})+\mathrm{a}_{2} \mathrm{X}_{2}(\mathrm{n})\right\}=\mathrm{a}_{1} \mathrm{X}_{1}(\mathrm{z})+\mathrm{a}_{2} \mathrm{X}_{2}(\mathrm{z})$ is
Option A:	Correlation property of Z-Transform.
Option B:	Convolution property of Z-Transform.
Option C:	Linearity property of Z-Transform.
Option D:	Shifting property of Z-Transform.
Q20.	If $X(Z)=z^{2} /\left(z^{2}-1\right)$ Then initial value $x(0)$ of the given z-domain signal is
Option A:	1
Option B:	0.5
Option C:	0
Option D:	0.25
Q21.	In direct form- II structure ,the number of delays depends on
Option A:	ROC of the system.
Option B:	Stability of the system.
Option C:	Linearity property of the system
Option D:	Order of the system.
Q22.	Direct form-I structure(with M zeros) realization of an $\mathrm{N}^{\text {th }}$ order IIR discrete time systems involves number of delays equal to
Option A:	M-N
Option B:	$\mathrm{M}+\mathrm{N}$
Option C:	M
Option D:	N
Q23.	$\mathrm{x}(\mathrm{t})=\mathrm{A} \times \mathrm{U}(\mathrm{t})$ The Laplace Transform and ROC is
Option A:	$X(s)=A / s$; ROC is right half of s-plane
Option B:	$X(\mathrm{~s})=\mathrm{A} / \mathrm{s}$; ROC is Left half of s -plane
Option C:	$X(s)=A / s$; ROC is entire s-plane
Option D:	$X(s)=A / s^{2}$; ROC is right half of s-plane
Q24.	If Laplace transform of $x(t)$ is $X(s)$ then Laplace transform of $x(t+a)$
Option A:	$\mathrm{e}^{\mathrm{as}} \mathrm{X}(\mathrm{s})$

Option B:	$\mathrm{e}^{-\mathrm{as} X(s)}$
Option C:	$\mathrm{X}(\mathrm{s}-\mathrm{a})$
Option D:	$\mathrm{X}(\mathrm{s}+\mathrm{a})$
Q25.	Fourier series is useful for frequency domain analysis of
Option A:	Aperiodic signals.
Option B:	Periodic signals.
Option C:	FIR systems.
Option D:	IIR systems.

