Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code and Course Name: ECC502, Digital Communication
Time: 1hour
Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks.

Q1.	A variable that can assume any possible value between two points is called
Option A:	Discrete random variable
Option B:	Continuous random variable
Option C:	Discrete sample space
Option D:	Random process
Q2.	In 8 QAM, each symbol consists of
Option A:	2 bits
Option B:	4 bits
Option C:	3 bits
Option D:	M bits
Q3.	For the (n, k) systematic cyclic code, how many bits are present in the syndrome at the receiver?
Option A:	k
Option B:	n
Option C:	$n-k$
Option D:	$n-k+1$
Q4.	For a noise to be White Gaussian noise, the optimum filter is known as
Option A:	Low pass filter
Option B:	Base band filter
Option C:	Matched filter
Option D:	Bessel filter
Q5.	Determine the transfer function of a rate $1 / 2$ convolution encoder defined by v1 $=(1,0)$, v2 $=(1,1)$.
Option A:	$D^{3}+D^{4}+D^{5}+\ldots$
Option B:	$D+D^{2}+D^{3}+\ldots$
Option C:	$D^{2}+D^{3}+D^{4}+\ldots$

Option D:	$D^{3}+2 D^{4}+3 D^{5}+\ldots$
Q6.	The Central Limit Theorem says that the sampling distribution of the sample mean is approximately normal if
Option A:	all possible samples are selected
Option B:	the sample size is large
Option C:	the standard error of the sampling distribution is small
Option D:	the standard error of the sampling distribution is large
Q7.	The SNR of the matched filter does not depend on the
Option A:	bandwidth
Option B:	quality of the signal
Option C:	gain
Option D:	signal waveform shape
Q8.	Orthonormal vectors are
Option A:	orthogonal and normal
Option B:	orthogonal but not normal
Option C:	normal but not orthogonal
Option D:	neither orthogonal nor normal
Q9.	In the Viterbi algorithm for decoding of convolution codes, which metric is used for decision making of optimum message?
Option A:	Galois field
Option B:	Hamming distance
Option C:	Hamming bound
Option D:	Parity check
Q10.	What is the theoretical minimum system bandwidth needed for a 10 Mbps signal using 16-level PAM without ISI?
Option A:	1.1 MHz ,
Option B:	1.25 MHz ,
Option C:	1.35 MHz ,
Option D:	1.5 MHz
Q11.	In Channel coding theorem, channel capacity decides the \qquad permissible rate at which error free transmission is possible.
Option A:	Maximum
Option B:	Minimum
Option C:	Constant
Option D:	Infinity

Q12.	Determine the parity check polynomial for a $(7,4)$ cyclic code having the generator polynomial $\mathrm{G}(\mathrm{x})=x^{3}+x+1$.
Option A:	$x^{4}+x+1$
Option B:	$x^{4}+x^{3}+x+1$
Option C:	$x^{4}+x^{3}+1$
Option D:	$x^{4}+x^{2}+x+1$
Q13.	A and B are two events such that $\mathrm{P}(\mathrm{A})=0.2, \mathrm{P}(\mathrm{B})=0.4$, and $\mathrm{P}(\mathrm{A}$ union $B)=0.5$. What is the value of $P(A \mid B)$?
Option A:	0.10
Option B:	0.25
Option C:	0.50
Option D:	0.08
Q14.	Spectrum of BFSK may be viewed as the sum of
Option A:	Two ASK spectra
Option B:	Two PSK spectra
Option C:	Two FSK spectra
Option D:	One ASK and one FSK spectra
Q15.	Consider a $(7,4)$ cyclic code with the generator polynomial $\mathrm{G}(x)=x^{3}$ $+x+1$. Determine the syndrome polynomial for the received codeword $\mathrm{R}=1111100$.
Option A:	1
Option B:	$x+1$
Option C:	$x^{2}+x+1$
Option D:	$x^{2}+1$
Q16.	A Gaussian channel has 1 MHz bandwidth. Calculate the maximum channel capacity if the signal power to noise spectral density ratio S / N_{0} is 10^{5}.
Option A:	100 kbps ,
Option B:	200 kbps ,
Option C:	188 kbps ,
Option D:	144 kbps
Q17.	Consider a 10 Mbps signal using 16-level PAM system. How large can the roll-off factor be if the allowable system bandwidth is 1.375 MHz without ISI?
Option A:	0.05
Option B:	0.1

Option C:	0.15
Option D:	0.2
Q18.	Consider a $(7,4)$ linear block code with the parity check matrix given by $\mathrm{H}=[1110100 ; 1101010 ; 1011001]$. Determine the corresponding parity matrix.
Option A:	$\mathrm{P}=\left[\begin{array}{lllllllllllll} \\ 1 & 1 & 1 & 0 ; & 0 & 1 ; & 1 & 1]\end{array}\right.$
Option B:	
Option C:	$\mathrm{P}=[1110 ; 101 ; 011 ; 111]$
Option D:	$P=[100 ; 010 ; 001 ; 011]$
Q19.	A problem in mathematics is given to three students A, B and C. If the probability of A solving the problem is $1 / 2$ and B not solving it is $1 / 4$. The whole probability of the problem being solved, i.e. $\mathrm{P}(\mathrm{A}$ or B or C) is $63 / 64$, then what is the probability of C solving it?
Option A:	1/8
Option B:	1/64
Option C:	$7 / 8$
Option D:	1/2
Q20.	Which of the following inequalities is used to determine the maximum SNR for the matched filter?
Option A:	Cauchy
Option B:	Cauchy-Schwarz
Option C:	Schwarz
Option D:	Euclidean
Q21.	Which of the following modulation schemes cannot be used over a non-linear channel?
Option A:	BPSK
Option B:	BFSK
Option C:	QPSK
Option D:	QAM
Q22.	In QPSK, each symbol consists of
Option A:	1 bit
Option B:	2 bits
Option C:	4 bits
Option D:	M bits
Q23.	Huffman coding technique is adopted for constructing the source code with \qquad redundancy.

Option A:	Maximum
Option B:	Constant
Option C:	Minimum
Option D:	Unpredictable
Q24.	Determine the output of the duobinary encoder with precoder if the input message is 0010110.
Option A:	$-2,2,0,-2,0,2$
Option B:	$0,-2,2,-2,0,2$
Option C:	$-2,0,2,2,-2,2$
Option D:	$-2,0,2,0,0,2$
Q25.	When the output of the matched filter is sampled at proportional voltage to the received signal energy is produced for detection and post-detection.
Option A:	$\mathrm{t}=\mathrm{nT}$
Option B:	$\mathrm{t}=\mathrm{T}$
Option C:	$\mathrm{t}=\mathrm{n} / \mathrm{T}$
Option D:	$\mathrm{T}=\mathrm{n} / \mathrm{t}$

