Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code: ECC504 and Course Name: Discrete Time Signal Processing

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	How many complex multiplications are need to be performed for each FFT algorithm?
Option A:	(N/2)logN
Option B:	Nlog2N
Option C:	$(\mathrm{N} / 2) \log 2 \mathrm{~N}$
Option D:	$(2 \mathrm{~N}) \log 2 \mathrm{~N}$
Q2.	Overlap save method is used to find
Option A:	Circular convolution
Option B:	Linear convolution
Option C:	DFT
Option D:	Z-transform
Q3.	The 4-point DFT of $\{1,1,0,0\}$
Option A:	$\{2,0,2,0\}$
Option B:	$\{1,2-\mathrm{j} 1,1,2+\mathrm{j} 1\}$
Option C:	$\{2,1-\mathrm{j}, \mathrm{O}, 1+\mathrm{j}\}$
Option D:	$\{1,2+\mathrm{j} 1, \quad 1, \quad 2-\mathrm{j} 1\}$
Q4.	The twiddle factor satisfies
Option A:	wk $\mathrm{N}=\mathrm{wk} \mathrm{N} / 2$
Option B:	wk+N/2 $\mathrm{N}=$ wk N
Option C:	wk+N N= -wk N
Option D:	wk+N/2 N=-wk N
Q5.	Which of the following is true in case of Overlap add method?
Option A:	M zeros are appended at last of each data block
Option B:	M zeros are appended at first of each data block
Option C:	$\mathrm{M}-1$ zeros are appended at last of each data block
Option D:	$\mathrm{M}-1$ zeros are appended at first of each data block

Q6.	If we split the N point data sequence into two $N / 2$ point data sequences $f 1(n)$ and $\mathrm{f} 2(\mathrm{n})$ corresponding to the even numbered and odd numbered samples of $x(n)$, then such an FFT algorithm is known as
Option A:	decimation-in-frequency algorithm
Option B:	decimation-in-time algorithm
Option C:	decimation-in-samples algorithm
Option D:	Discrete time fourier transform
Q7.	Which of the IIR Filter design method is antialiasing method?
Option A:	The method of mapping of differentials
Option B:	Impulse invariant method
Option C:	Bilinear transformation
Option D:	Matched Z - transformation technique
Q8.	For a system function $\mathrm{H}(\mathrm{s})$ to be stable
Option A:	The zeros lie in left half of the s plane
Option B:	The zeros lie in right half of the s plane
Option C:	The poles lie in left half of the s plane
Option D:	The poles lie in right half of the s plane
Q9.	The s plane and z plane are related as
Option A:	$\mathrm{z}=$ esT
Option B:	$\mathrm{z}=\mathrm{e} 2 \mathrm{sT}$
Option C:	$\mathrm{z}=2 \mathrm{esT}$
Option D:	$\mathrm{z}=\mathrm{esT} / 2$
Q10.	If $s=\sigma+j \Omega$ and $z=r e j \omega$, then what is the condition on σ if $r>1$?
Option A:	$\sigma>0$
Option B:	$\sigma<0$
Option C:	$\sigma>1$
Option D:	$\sigma<1$
Q11.	The IIR filter designing involves
Option A:	Designing of digital filter in analog domain and transforming into digital domain
Option B:	Designing of digital filter in digital domain and transforming into analog domain
Option C:	Designing of analog filter in analog domain and transforming into digital domain
Option D:	Designing of analog filter in digital domain and transforming into analog domain
Q12.	For Blackman window, with a length M, the main lobe width is
Option A:	12п/M
Option B:	8П/M
Option C:	4П/M
Option D:	Variable
Q13.	Linear phase FIR filters have a constant
Option A:	Phase

Option B:	Group Delay
Option C:	Gain
Option D:	Angle
Q14.	For FIR filters, if the filter coefficients are symmetric in nature , it signifies
Option A:	A smaller transition bandwidth
Option B:	Less pass band ripple
Option C:	Less stop band ripple
Option D:	A linear phase response
Q15.	If the phase delay of a FIR filter is 3 then the ,length of the filter is
Option A:	3
Option B:	5
Option C:	9
Option D:	7
Q16.	For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is,
Option A:	FIR filter
Option B:	IIR filter
Option C:	Unrealisable System
Option D:	Can be IIR and FIR both
Q17.	(25.678)=25.67 is an example of Option A: Roundoff, Truncation Option B:
Option C:	Rouncatoff, Roundoff
Option D:	Truncation, truncation
Q18.	Why rounding is preferred than truncation for quantization.
Option A:	Quantization error will be more in rounding than in truncation
Option B:	Quantization error will be less in rounding than in truncation
Option C:	Rounding is easy
Option D:	Rounding required less time.
Q19.	In recursive system, which of the oscillation is caused because of the having a pole at $1 / 2$. nonlinearities due to finite precision arithmetic operations?
Option A:	Periodic oscillations in the input
Option B:	Non-Periodic oscillations in the input
Option C:	Periodic oscillations in the output
Option D:	NonPeriodic oscillations in the output example of

Option C:	$-1 / 8,1 / 8$
Option D:	$-1 / 16,1 / 16$
Q21.	The number of Address buses in TMS320C54X processors are,
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q22.	Which of the following is not a part of TMS320C54X
Option A:	40 bit arithmetic logic unit
Option B:	40 bit control regulator
Option C:	40 bit accumulators
Option D:	40 bit barrel shifter
Q23.	In DSP processor DAG stands for
Option A:	Data Address Generator
Option B:	Digital Address Group
Option C:	Data Addition Group
Option D:	Digital Addition Generator
Q24.	Electrocardiography is the process of recording the electrical activity of
Option A:	heart
Option B:	lungs
Option C:	brain
Option D:	lever
Q25.	The basis of DTMF detector is
Option A:	Goertzel algorithm
Option B:	Logic circuit
Option C:	Randomized algorithm
Option D:	Divide and conquer algorithm

