Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code: ECC504 and Course Name: Discrete Time Signal Processing

Time: 1hour Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	How many complex multiplications are need to be performed for each FFT
	algorithm?
Option A:	(N/2)logN
Option B:	Nlog2N
Option C:	(N/2)log2N
Option D:	(2N)log2N
Q2.	Overlap save method is used to find
Option A:	Circular convolution
Option B:	Linear convolution
Option C:	DFT
Option D:	Z-transform
Q3.	The 4-point DFT of {1,1,0,0}
Option A:	{2,0,2,0}
Option B:	{1, 2-j1, 1, 2+j1}
Option C:	{2, 1-j, 0, 1+j}
Option D:	{1, 2+j1, 1, 2-j1}
Q4.	The twiddle factor satisfies
Option A:	wk N= wk N/2
Option B:	wk+N/2 N= wk N
Option C:	wk+N N= -wk N
Option D:	wk+N/2 N= -wk N
Q5.	Which of the following is true in case of Overlap add method?
Option A:	M zeros are appended at last of each data block
Option B:	M zeros are appended at first of each data block
Option C:	M-1 zeros are appended at last of each data block
Option D:	M-1 zeros are appended at first of each data block

Q6.	If we split the N point data sequence into two N/2 point data sequences f1(n)
	and f2(n) corresponding to the even numbered and odd numbered samples of
	x(n), then such an FFT algorithm is known as
Option A:	decimation-in-frequency algorithm
Option B:	decimation-in-time algorithm
Option C:	decimation-in-samples algorithm
Option D:	Discrete time fourier transform
07	Which of the UD Filters design greath ad is contiblicating greath ad 2
Q7.	Which of the IIR Filter design method is antialiasing method?
Option A:	The method of mapping of differentials
Option B:	Impulse invariant method
Option C:	Bilinear transformation
Option D:	Matched Z - transformation technique
Q8.	For a system function H(s) to be stable
Option A:	The zeros lie in left half of the s plane
Option B:	The zeros lie in right half of the s plane
Option C:	The poles lie in left half of the s plane
Option D:	The poles lie in right half of the s plane
•	
Q9.	The s plane and z plane are related as
Option A:	z = esT
Option B:	z = e2sT
Option C:	z = 2esT
Option D:	z = esT/2
Q10.	If $s=\sigma+j\Omega$ and $z=rej\omega$, then what is the condition on σ if $r>1$?
	$\sigma > 0$
Option A: Option B:	σ<0
•	
Option C:	$\sigma > 1$
Option D:	σ<1
Q11.	The IIR filter designing involves
Option A:	Designing of digital filter in analog domain and transforming into digital domain
Option B:	Designing of digital filter in digital domain and transforming into analog domain
Option C:	Designing of analog filter in analog domain and transforming into digital domain
Option D:	Designing of analog filter in digital domain and transforming into analog domain
Q12.	For Blackman window, with a length M, the main lobe width is
Option A:	12Π/M
Option B:	8П/M
Option C:	4Π/M
Option D:	Variable
-	
Q13.	Linear phase FIR filters have a constant
Option A:	Phase

Option B: Group Delay Option D: Angle Q14. For FIR filters, if the filter coefficients are symmetric in nature , it signifies Option A: A smaller transition bandwidth Option B: Less pass band ripple Option C: Less stop band ripple Option D: A linear phase response Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option D: Truncation, Roundoff Option D: Truncation, Truncation Option B: Quantization error will be more in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option B: Non-Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option B: 1/4,-1/4	0 0	
Option D: Angle Q14. For FIR filters, if the filter coefficients are symmetric in nature , it signifies Option A: A smaller transition bandwidth Option B: Less pass band ripple Option C: Less stop band ripple Option D: A linear phase response Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option B: Quantization error will be less in rounding than in truncation Option C: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option C: Periodic oscillations in the input Option C: NonPeriodic oscillations in the output What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option B:	Group Delay
Q14. For FIR filters, if the filter coefficients are symmetric in nature , it signifies Option A: A smaller transition bandwidth Option B: Less pass band ripple Option C: Less stop band ripple Option D: A linear phase response Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option B: 5 Option C: 9 Option C: 9 Option C: 9 Option C: If R filter Option B: IIR filter Option B: IIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option D: Non-Periodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	-	
Option A: A smaller transition bandwidth Option B: Less pass band ripple Option C: Less stop band ripple Option D: A linear phase response Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option B: IIR filter Option A: FIR filter Option B: IIR filter Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option B: Truncation, Roundoff, Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option D: Periodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option D:	Angle
Option A: A smaller transition bandwidth Option B: Less pass band ripple Option C: Less stop band ripple Option D: A linear phase response Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option B: IIR filter Option A: FIR filter Option B: IIR filter Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option B: Truncation, Roundoff, Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option D: Periodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2		
Option B: Less pass band ripple Option C: Less stop band ripple Option D: A linear phase response Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option B: IIR filter Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option B: Truncation, Roundoff Option B: Truncation, Roundoff Option D: Truncation, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	-	
Option C: Less stop band ripple Option D: A linear phase response Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option A: IIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option B: Truncation, Roundoff Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, runcation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be less in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: Non-Periodic oscillations in the output Option C: Periodic oscillations in the output Option D: Non-Periodic oscillations in the output Option A: -1/2,1/2	-	
Option D: A linear phase response Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option B: IIR filter Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option B: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option C: Periodic oscillations in the input Option D: Non-Periodic oscillations in the output Option D: Non-Periodic oscillations in the output Option D: Non-Periodic oscillations in the output Option A: -1/2,1/2	•	
Q15. If the phase delay of a FIR filter is 3 then the ,length of the filter is Option A: 3 Option B: 5 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option A: IIR filter Option B: IIR filter Option C: Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option D: Non-Periodic oscillations in the output Option D: Non-Periodic oscillations in the output Option D: What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A:		
Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Q19. Periodic oscillations in the input Option A: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: Non-Periodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option D:	A linear phase response
Option A: 3 Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Q19. Periodic oscillations in the input Option A: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: Non-Periodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	015	If the phase delay of a EIP filter is 2 then the length of the filter is
Option B: 5 Option C: 9 Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option A: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½.		
Option C: 9 Option D: 7 Q16. For a filter, there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2		
Option D: 7 Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be less in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	-	
Q16. For a filter , there is one pole at origin and a zero at 0.5, the type of the filter is, Option A: FIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	-	
Option A: FIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option D:	<i>/</i>
Option A: FIR filter Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Q16.	For a filter, there is one pole at origin and a zero at 0.5, the type of the filter is.
Option B: IIR filter Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of		
Option C: Unrealisable System Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	-	
Option D: Can be IIR and FIR both Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	•	
Q17. (25.678)=25.67 is an example of and (25.678)=25.68 is an example of Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	-	
Option A: Roundoff, Truncation Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Орион В.	Can be invalid inv both
Option B: Truncation, Roundoff Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Q17.	(25.678)=25.67 is an example of and (25.678)=25.68 is an example of
Option C: Roundoff, Roundoff Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option A:	Roundoff, Truncation
Option D: Truncation, truncation Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option B:	Truncation, Roundoff
Q18. Why rounding is preferred than truncation for quantization. Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option C:	Roundoff, Roundoff
Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option D:	Truncation, truncation
Option A: Quantization error will be more in rounding than in truncation Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2		
Option B: Quantization error will be less in rounding than in truncation Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Q18.	Why rounding is preferred than truncation for quantization.
Option C: Rounding is easy Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option A:	
Option D: Rounding required less time. Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option B:	Quantization error will be less in rounding than in truncation
Q19. In recursive system, which of the oscillation is caused because of the nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option C:	Rounding is easy
nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Option D:	Rounding required less time.
nonlinearities due to finite precision arithmetic operations? Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2		
Option A: Periodic oscillations in the input Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	Q19.	•
Option B: Non-Periodic oscillations in the input Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2		·
Option C: Periodic oscillations in the output Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	-	·
Option D: NonPeriodic oscillations in the output Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	•	·
Q20. What is the dead band of a single pole filter which is represented by 4 bits and having a pole at ½. Option A: -1/2,1/2	•	·
having a pole at ½. Option A: -1/2,1/2	Option D:	NonPeriodic oscillations in the output
having a pole at ½. Option A: -1/2,1/2	020	Miles Carlles dead have defended at 1 1 1 CB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Option A: -1/2,1/2	Q20.	· · · · · · · · · · · · · · · · · · ·
	•	
Option B: 1/4,-1/4	-	
	Option B:	1/4,-1/4

Option C:	-1/8,1/8
Option D:	-1/16,1/16
Q21.	The number of Address buses in TMS320C54X processors are,
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q22.	Which of the following is not a part of TMS320C54X
Option A:	40 bit arithmetic logic unit
Option B:	40 bit control regulator
Option C:	40 bit accumulators
Option D:	40 bit barrel shifter
Q23.	In DSP processor DAG stands for
Option A:	Data Address Generator
Option B:	Digital Address Group
Option C:	Data Addition Group
Option D:	Digital Addition Generator
Q24.	Electrocardiography is the process of recording the electrical activity of
Option A:	heart
Option B:	lungs
Option C:	brain
Option D:	lever
Q25.	The basis of DTMF detector is
Option A:	Goertzel algorithm
Option B:	Logic circuit
Option C:	Randomized algorithm
Option D:	Divide and conquer algorithm