University of Mumbai Examination 2020 under cluster ____ (Lead College Short name)

Program: Information Technology Curriculum Scheme: Rev2016 Examination: Second Year Semester III wurse Code: ______and Course Name: Data Structure and Au

Course Code: _____ and Course Name: Data Structure and Analysis

Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Merge sort uses which of the following technique to implement sorting?
Option A:	backtracking
Option B:	greedy algorithm
Option C:	divide and conquer
Option D:	dynamic programming
Q2.	What is the worst case time complexity of LSD radix sort?
Option A:	O(nlogn)
Option B:	O(wn)
Option C:	O(n)
Option D:	O(n + w)
Q3.	What is the output of the following code?
	void my_recursive_function(int n)
	{
	if(n == 0)
	return;
	printf("%d ",n);
	my_recursive_function(n-1);
	}
	int main()
	{
	my_recursive_function(10);
	return 0;
	}
Option A:	10
Option B:	1
Option D:	109810
Option D:	10 9 81
option D.	
Q4.	What is compaction?
Option A:	a technique for overcoming internal fragmentation
Option B:	a paging technique
Option C:	a technique for overcoming external fragmentation
Option D:	a technique for overcoming fatal error
-	
Q5.	Which of the following is not a technique to avoid a collision?
·	

University of Mumbai

Examination 2020 under cluster (Lead College Short name)	
Option A:	Make the hash function appear random
Option B:	Use the chaining method
Option C:	Use uniform hashing
Option D:	Increasing hash table size
Q6.	In Huffman coding, data in a tree always occur?
Option A:	roots
Option B:	Leaves
Option C:	Left sub trees
Option D:	Right sub trees
Q7.	What is the worst case time complexity of a quick sort algorithm?
Option A:	O(N)
Option B:	O(N log N)
Option C:	O(N2)
Option D:	O(log N)
Q8.	In the following scenarios, when will you use selection sort?
Option A:	The input is already sorted
Option B:	A large file has to be sorted
Option C:	Large values need to be sorted with small keys
Option D:	Small values need to be sorted with large keys
Q9.	Consider the usual algorithm for determining whether a sequence of
	parentheses is balanced. The maximum number of parentheses that appear on
	the stack AT ANY ONE TIME when the algorithm analyzes: (()(())(())) are:
Option A:	1
Option B:	2
Option C:	3
Option D:	4 or more
Q10.	What is the value of the postfix expression 6 3 2 4 + – *?
Option A:	1
Option B:	40
Option C:	74
Option D:	-18
011	
Q11.	Consider an implementation of unsorted singly linked list. Suppose it has its
	representation with a head pointer only.
	Given the representation, which of the following operation can be implemented in $O(4)$ time?
	in O (1) time?
	i) Insertion at the front of the linked list
	ii) Insertion at the end of the linked list
	iii) Deletion of the front node of the linked list
	iv) Deletion of the last node of the linked list

University of Mumbai

at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option C: DCAB Option D: ABDC	Examination 2020 under cluster (Lead Conege Short name)		
Option C: I, II and III Option D: I, II and IV Q12. The data structure required for Breadth First Traversal on a graph is? Option A: Stack Option B: Array Option D: Queue Option D: Tree Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option D: ABCD Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Pequeue Option D: Pequeue Option D: Pequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. Q15. For the tree below, write the pre-order traversal.	Option A:	I and II	
Option D: I, II and IV Q12. The data structure required for Breadth First Traversal on a graph is? Option A: Stack Option B: Array Option D: Queue Option D: Tree Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option D: DCBA Option D: ABCD Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option D: Adata structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option B: Circular Queue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. Q15. For the tree below, write the pre-order traversal.	Option B:	I and III	
Q12. The data structure required for Breadth First Traversal on a graph is? Option A: Stack Option B: Array Option D: Queue Option D: Tree Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option D: DCBA Option D: Adata structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option A: Queue Option B: Circular Queue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. Q15. For the tree below, write the pre-order traversal.	Option C:	I, II and III	
Option A: Stack Option B: Array Option D: Tree Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option D: DCBA Option D: ABCD Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option B: Circular Queue Option D: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	Option D:	I, II and IV	
Option A: Stack Option B: Array Option D: Tree Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option C: DCAB Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. (2) (1) 9			
Option B: Array Option C: Queue Option D: Tree Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option D: ABCD Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Pequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	Q12.	The data structure required for Breadth First Traversal on a graph is?	
Option C: Queue Option D: Tree Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option B: Circular Queue Option D: Pequeue Option D: Priority Queue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	Option A:	Stack	
Option D: Tree Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	Option B:	Array	
Q13. If the elements "A", "B", "C" and "D" are placed in a queue and are deleted at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	Option C:	Queue	
at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Pequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. Image: Q15. Image: Q15 for the tree below, write the pre-order traversal.	Option D:	Tree	
at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Pequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. Image: Q15. Image: Q15 for the tree below, write the pre-order traversal.			
at a time, in what order will they be removed? Option A: ABCD Option B: DCBA Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option B: Circular Queue Option D: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	Q13.	If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one	
Option B: DCBA Option C: DCAB Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option C: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.			
Option C: DCAB Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	Option A:	ABCD	
Option D: ABDC Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option C: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.		DCBA	
Q14. A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is? Option A: Queue Option B: Circular Queue Option C: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	-	DCAB	
ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. 2 11 9	Option D:	ABDC	
ends but not in the middle is? Option A: Queue Option B: Circular Queue Option D: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. 2 11 9			
Option A: Queue Option B: Circular Queue Option C: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. 2 11 9	Q14.	A data structure in which elements can be inserted or deleted at/from both the	
Option B: Circular Queue Option C: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.		ends but not in the middle is?	
Option C: Dequeue Option D: Priority Queue Q15. For the tree below, write the pre-order traversal.	Option A:	Queue	
Option D: Priority Queue Q15. For the tree below, write the pre-order traversal. 2 1 2 1 9	Option B:	Circular Queue	
Q15. For the tree below, write the pre-order traversal.	Option C:	Dequeue	
	Option D:	Priority Queue	
	Q15.	For the tree below, write the pre-order traversal.	
Option A: 2, 7, 2, 6, 5, 11, 5, 9, 4	Option A:	2, 7, 2, 6, 5, 11, 5, 9, 4	
Option B: 2, 7, 5, 2, 6, 9, 5, 11, 4			
Option C: 2, 5, 11, 6, 7, 4, 9, 5, 2	Option C:		
Option D: 2, 7, 5, 6, 11, 2, 5, 4, 9			