Institute	THADOMAL SHAHANI ENGINEERING COLLEGE
Branch	COMPUTER ENGINEERING
Sem	IV
Subject Name (with Subject Code)	COMPUTER GRAPHICS (CSC404)
Number of Questions	10

Q No.	Question
1	The full form of DDA method is a. Direct difference analyzer b. Data differential analyzer c. Digital differential analyzer d. Digital data analyzer
2	The equation of slope intercept form of line is a. $Y=m \cdot X+b$ b. $Y=b+m . m$ c. $Y=b . X+m$ d. $Y=x . X+b$
3	What is the $1^{\text {st }}$ point on the circumference of the circle centered at $(10,10)$ with radius $=10$, using midpoint circle method a. $(0,10)$ b. $(1,10)$ c. $(1,9)$ d. $(10,20)$
4	Coordinates of window are known as a. Screen coordinate b. World coordinate c. Device coordinate d. Cartesian coordinate
5	The 4-bit code of bottom-right region of the window is \qquad a. 1001 b. 0101 c. 1010 d. 0110
6	When X directional scaling is applied on a circle then output object is a. Parabola b. Hyperbola

	c. Ellipse d. Circle
7	How many matrices are required to reflect an object about an arbitrary line not passing through origin? a. 2 b. 3 c. 4 d. 5
8	Let N be the normal vector of the plane surface with $\mathrm{N}=(\mathrm{A}, \mathrm{B}, \mathrm{C})$. For a plane to be a back face, a. $\mathrm{C}<0$ b. $\mathrm{C}>0$ c. $\mathrm{C}<=0$ d. $C>=0$
9	Which of the following input is accepted only by Flood Fill method and not by boundary fill method a. Fill color b. Boundary color c. Background color d. Seed pixel
10	Fractal dimension is given by the formula a. \log (magnification factor)/Log(number of self similar pieces) b. \log (number of self similar pieces)* \log (magnification factor) c. \log (number of self similar pieces)/Log(magnification factor) d. $\log ($ magnification factor) $* \log$ (number of self similar pieces)

