University of Mumbai

Examination 2020

Program: BE Information Technology
Curriculum Scheme: Revised 2012
Examination: Second Year Semester IV
Course Name: Automata Theory

Time: 40 minutes
Max. Marks: 30

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	A R.E. for strings of even length over alphabet $\{\mathrm{a}, \mathrm{b}\}$ is:
Option A:	$(\mathrm{a} . \mathrm{b})^{*}$
Option B:	$(\mathrm{a} / \mathrm{b})+$
Option C:	(a/b).(a/b)+
Option D:	(a/b).(a/b)*
Q2.	R.E. for binary numbers divisible by 8 is:
Option A:	$(0 / 1)+$
Option B:	$1 .(1 / 0)^{*} .00$
Option C:	$0+1 .(0 / 1)^{*} 000$
Option D:	$0+1 .(0 / 1)^{*} 0$
Q3.	A Non deterministic finite automata is a
Option A:	2
Option B:	4
Option C:	5
Option D:	6
Q4.	Which of the following is not true
Option A:	Every R.E. has a corresponding F.A.
Option B:	DFA is a subset of NFA
Option C:	NFA is a subset of DFA
Option D:	FAs accept regular languages
Q5.	Kleen's Theorem states that:
Option A:	Any context free language can be accepted by a FA
Option B:	Any regular language can be accepted by a FA
Option C:	Any regular language can be accepted by a PDA
Option D:	Any regular language can be accepted by a TM
Q6.	Reducing a DFA results in:
Option A:	Approximation

University of Mumbai

Examination 2020

Option B:	Optimization
Option C:	Possible incorrect performance
Option D:	Addition of null transitions
Q7.	Concept of stack is used in
Option A:	NFA
Option B:	DFA
Option C:	PDA
Option D:	TM
Q8.	Derivation trees for context free grammars can be:
Option A:	Optimal
Option B:	Approximate
Option C:	Ambiguous
Option D:	Unique to a string
Q9.	Automata theory is useful in
Option A:	Parsing
Option B:	Calculations
Option C:	Display output
Option D:	Read Input
Q10.	Halting problem is
Option A:	Solvable
Option B:	Unsolvable
Option C:	solved by PDA
Option D:	solves by TM
Q11.	With respect to capabilities which of the following is true?
Option A:	A TM can replace a FA and PDA
Option B:	A FA can replace a TM and PDA
Option C:	A PDA can replace a FA and TM
Option D:	A DFA can replace a NFA and PDA
Q12.	Which of the following is the best match
Option A:	Regular language and PDA
Option B:	Context free language and PDA
Option C:	Context free language and TM
Option D:	Regular language and TM
Q13.	A context free grammar corresponding to equal number of a's and b's is
Option A:	S-> aSb / ab
Option B:	S-> aSb / bSa / ab / ba
Option C:	S-> aSb / bSa / abS / baS / Sab / Sba / ^
Option D:	S-> aSb , S-> ab

University of Mumbai

Examination 2020

Q14.	A tape in a TM is concept of:
Option A:	Memory
Option B:	Stack
Option C:	Data bus
Option D:	Address bus
Q15.	Pumping lemma is used to show:
Option A:	A language is context free
Option B:	A language is context sensitive
Option C:	A language is context recursively enumerable
Option D:	A language is not regular

