THADOMAL SHAHANI ENGINEERING COLLEGE

1.3.2 Average percentage of courses that include experiential learning through project work/field work/internship as prescribed by the affiliating university / affiliating university curriculum For Year 2020-21

INDEX

Sr. No.	Contents	Pg. No.
1	Syllabus Scheme of First Year Engineering	1
2	Syllabus Scheme of Information Technology	35
	Engineering	
3	Syllabus Scheme of Computer Engineering	409
4	Syllabus Scheme of Electronics & Telecommunication	606
	Engineering	
5	Syllabus Scheme of Chemical Engineering	896
6	Syllabus Scheme of Biomedical Engineering	1100
7	Syllabus Scheme of Biotechnology Engineering	1353

TSEC THADOMAL SHAHANI ENGINEERING COLLEGE

First Year Engineering:

Sr. No.	Subject Code	Subject Name	Count
1	FEL101	Engineering Physics-I	1
2	FEL102	Engineering Chemistry-I	1
3	FEL104	Basic Electrical Engineering	1
4	FEL105	Basic Workshop practice-I	1
5	FEL201	Engineering Physics-I	1
6	FEL202	Engineering Chemistry-II	1
7	FEL203	Engineering Graphics	1
8	FEL204	C programming	1
9	FEL205	Professional Communication and Ethics- I	1
10	FEL206	Basic Workshop practice-II	1
		Total	10

UNIVERSITY OF MUMBAI

Bachelor of Engineering

First Year Engineering (Semester I & II), Revised course

(REV- 2019'C' Scheme) from Academic Year 2019 - 20

(Common for All Branches of Engineering)

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering)of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that in the present system, the first year syllabus is heavily loaded and it is of utmost importance that the students entering into the first year of an engineering course should feel at ease by lowering the burden of syllabus and credits. This is necessary for a student to get accustomed to the new environment of a college and to create a bonding between the teacher and a student. In this regard, AICTE has provided a model of Induction Program, which has been accommodated with certain modification and also overall credits proposed by AICTE in their model curriculum.

The present curriculum will be implemented for First Year of Engineering from the academic year 2019-20. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2020-21, for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. Suresh K. Ukarande Dean (I/C) Faculty of Science and Technology Member, Senate Academic Council Board of Dean's, BOEE, RRC University of Mumbai, Mumbai

Structure for

Student Induction Program

New students enter an institution with diverse thoughts, backgrounds and preparations. It is important to help them adjust to the new environment and inculcate in them the ethos of the institution with a sense of larger purpose.

The Induction Program is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and building of character.

Its purpose is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

Transition from school to university/college life is one of the most challenging events in student's life. Therefore, it should be taken seriously, and as something more than the mere orientation program.

The time during the Induction Program is also used to rectify some critical lacunas, for example, English background, for those students who have deficiency in it.

New students be informed that the Induction is mandatory non-credit course for which a certificate will be issued by the institution.

At the start of the induction, the incumbents learn about the institutional policies, processes, practices, culture and values, and their mentor groups are formed. The different activities are:

- 1. **Orientation**: In the first session of Induction program learners and parents to be oriented about institute policies, processes, practices, culture and values. In addition to this, learners will be educated for 1st year academic program information in terms of academic calendar, Assessment plan, grading information, university ordinances, rules and regulations related to academics.
- 2. Mentoring: Mentoring and connecting the students with faculty members is the most important part of student induction. Mentoring process shall be carried out in small groups, group of 10 students to be formed and allocate one senior student from 3rd year of same program in which new students have taken admission, students mentor will continue for two years, till student mentors graduate from the institute. For two (2) such groups one faculty mentor to be allocated from the same department/program, who will remain the mentor till those students graduates from the institute. In the second session of Induction program, groups for mentoring to be formed and student mentors and faculty mentors to be introduced to newly inducted students. Introduction of mentoring system to be given to new students. Minimum one meeting to be conducted every month during semesters with students group by faculty mentors. For record keeping appropriate formats to be developed and information to be updated regularly by faculty mentors.

- 3. Universal Human Values: Universal Human Values gets the student to explore oneself and experience the joy of learning, prepares one to stand up to peer pressure and take decisions with courage, be aware of relationships and be sensitive to others, understand the role of money in life and experience the feeling of prosperity. Need for character building has been underlined by many thinkers, universal human values provide the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but by getting the students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. The role of group discussions, however, with clarity of thought of the teachers cannot be over emphasized. It is essential for giving exposure, guiding thoughts, and realizing values.
- 4. **Proficiency Modules**: The induction program period can be used to overcome some critical lacunas that students might have, for example, English, Mathematics, computer familiarity etc. These should run like crash courses, so that when normal courses start after the induction program, the student has overcome the lacunas substantially.

A diagnostic test should be conducted on Day 2 itself. Before the test, the students should be informed that the test would not affect their grades, branch change, or any aspect of their admission, placement, study, etc. Purpose of the test is to provide help to those students who need help in English, Mathematics, Computer proficiency etc. Students having more than 80% marks in their qualifying examination in respective subjects need not take the diagnostic test. For those below this cut-off, writing the test is mandatory. Students with weak performance in the test, must attend a non-credit course in Basic English, Basic Mathematics, and Basic Computer Operation etc. Their attending the course is mandatory. There would be no separate fee payable for the course. The classes of Basic courses must start from Day 4 at the latest. Students those who are excluded from basic courses, for them some activity in the domain of creative arts, cultural and literature to be organised.

5. **Physical Activity**: Fitness session, yoga classes, lecture(s) on facing world with sportsman spirit, making young students aware that there is nothing like being failure in the world. The world gives opportunities to all.

The incoming students must be divided into batches of 50 students maximum, and a qualified coach in physical education/ faculty member should be attached to each batch. The list of available games, sport, or physical activities should be announced in orientation program on Day 1. They should be asked to fill their choice with three preferences, and the game or sport be allotted to them as per their preference. The physical activity should start from Day 3 onwards, wherein the student learns and plays his assigned game during the induction program. It is also important that along with his assigned game the student also practises yoga.

6. **Creative Arts, Cultural and Literary Activity**: Qualified instructors for arts may be hired on contract basis and be paid honorarium as per norms of the institute. Daily 90 to 120 minute sessions may be arranged. The list of available art forms, such as vocal music, instrumental music, folk music, painting,

sketching, dance, group dance, clay modelling, pottery, dramatics, etc. should be announced. They should be asked to fill their choice with three preferences, and the art form be allotted to them as per their preference. There should be sufficient number of teachers for each art form. The ratio may be kept as 1 teacher for every 25 students.

A faculty member interested in literary activity should be assigned for organizing the activity. A list of books which are interesting and educational should be prepared beforehand. Books in Indian languages must be included and even given priority. Students are losing connection with languages in general and their own language, in particular. Students should be assigned a book or other smaller reading material. They should be asked to read and write a critical summary. They should present their summary in front of their group. A literary group may consist of around 30-40 students. Similarly, debating and public speaking activity could also be undertaken. If the college can arrange for a drama workshop where a group of students learn and enact a play it would be very good. Not all the incoming students would do this, but those who wish may be provided the opportunity. Help may be taken from senior students engaged in such extra-curricular activities in the college.

- 7. Familiarisation with Institute and Department: The students admitted in a branch would visit their allotted department or branch. The Head of the department and other associated faculty should address the new student's right on Day 2 or so. Arrangements should be made about the meeting/gathering. The parents of the students should also be welcomed if they accompany their ward. It would be helpful if an alumnus of the Dept. relates his professional experience related to the field of the study to the incoming students.
- 8. Lectures /Workshops by Eminent People: Eminent people from all walks of life may be invited to deliver lectures, namely, from industry, academia, social science (authors, historians), social work, civil society, alumni etc. be identified and invited to come and address the new students. Motivational lectures about life, meditation, etc. by Ramakrishna Mission, Art of Living, S-VYASA university, VivekanandKendras, etc. may be organized. Workshops which rejuvenate or bring relief to students would also be welcome, such as, Art of Living workshops.
- 9. Extra-Curricular Activity: Every college has extra-curricular activities. Most of them are student driven. They are organized by student councils and clubs. The extra-curricular activities going on in the college should be presented to the new students under the guidance of faculty advisors for such activity. The new students should be informed about how they can join the activities. Related facilities should be described to them. Presentation on the activities by the student council should be made.
- 10. Feedback and Report on the Program: A formal feedback at the end of the program should be collected from students by their filling a form in writing or online. Besides the above, each group (of 20 students) should write a report on the Induction Program towards the end of the semester. They would also have to make a presentation of their report. They should be encouraged to use slides while making a

presentation. Presentation of the report should be made in the language they are comfortable with, without any insistence that it should be in English. It is more important that they feel comfortable and confident. Each group may make the presentation through 4-5 of its group members or more. In case, the number of new students in a college is large, the presentation should be made by each group in front of 4 other groups besides their own, thus there would be about 100 students (in 5 groups) in the audience in a session. Several such sessions could run in parallel or serially. In each session, their faculty mentors and student guides, if any, should also be in the audience. These sessions would tell you how well the program ran, and what the students are feeling at the end of the program. This would also serve as a grand closure to the program.

A certificate shall be awarded to all the students, upon successful completion of the induction program based on their report and presentation.

Tentative schedule of 1st Week Induction Program:

Day 1	Session 1	Orientation program
Day 1	Session 2	Mentoring (group formation and introduction)
	Session 3	Diagnostic test (basic English, maths and computer operation)
Day 2	Session 4	Familiarisation of Department and Institute (Visits to department, laboratory, Library, Examination cell, office etc)
Day 3	Session 5	Physical Activity (Yoga, sports etc)
Day 3	Session 6	Universal human values session
Day 4	Session 7	Proficiency Modules (Short courses on basic maths, English and computer operation etc. for identified students)
	Session 8	Physical Activity (Yoga, sports etc)
Day 5	Session 9	Proficiency Modules (Short courses on basic maths, English and computer operation etc. for identified students)
-	Session 10	Creative Arts, Cultural and Literary Activity

A session may be conducted for around 2-3 hours each.

Minimum 12 sessions to be conducted from the following 20 sessions, from 2nd week to last week of academics, throughout the semester.

Session 11	Physical Activity (Yoga, sports etc)- 1
Session 12	Extra-Curricular Activity- 1
Session 13	Physical Activity (Yoga, sports etc)-2
Session 14	Extra-Curricular Activity- 2
Session 15	Physical Activity (Yoga, sports etc)- 3
Session 16	Lectures /Workshops by Eminent People- 1
Session 17	Physical Activity (Yoga, sports etc)- 4
Session 18	Lectures /Workshops by Eminent People- 2
Session 19	Creative Arts, Cultural and Literary Activity- 1
Session 20	Lectures /Workshops by Eminent People- 3
Session 21	Creative Arts, Cultural and Literary Activity- 2
Session 22	Universal Human Values- 1(Group Discussion among students as per
Session 22	mentoring group on various aspects of life, values, ethics etc.)
Session 23	Creative Arts, Cultural and Literary Activity- 3
Session 24	Universal Human Values- 2 (Group Discussion among students as per
Session 24	mentoring group on various aspects of life, values, ethics etc.)
Session 25	Creative Arts, Cultural and Literary Activity- 4
Session 26	Universal Human Values- 3 (Group Discussion among students as per
Session 20	mentoring group on various aspects of life, values, ethics etc.)
Session 27	Creative Arts, Cultural and Literary Activity- 5
Session 28	Physical Activity (Yoga, sports etc)- 5
Session 29	Feedback and Report on the Program- 1
Session 30	Feedback and Report on the Program- 2

Program Structure for First Year Engineering Semester I & II **UNIVERSITY OF MUMBAI**

(With Effect from 2019-2020)

Semester I

Course Code	Course Name		aching So				Credits	s Ass	igned		
Code		Theory	Pract	. Tu	ıt. Ti	neory	Pract.		Tut.	Total	
FEC101	Engineering Mathematics-I	3		1	*	3			1	4	
FEC102	Engineering Physics-I	2		-	-	2				2	
FEC103	Engineering Chemistry-I	2		-	-	2				2	
FEC104	Engineering Mechanics	3		-	-	3				3	
FEC105	Basic Electrical Engineering	3		-	-	3				3	
FEL101	Engineering Physics-I		1	-	-		0.5			0.5	
FEL102	Engineering Chemistry-I		1	-	-		0.5			0.5	
FEL103	Engineering Mechanics		2	-	-		1			1	
FEL104	Basic Electrical Engineering		2	-	-		1			1	
FEL105	Basic Workshop practice-I		2	-	-		1			1	
	Total	13	08	0	1	13 04			01	18	
		Examination Scheme									
				Theor							
Course Code	Course Name	Internal Assessment L			End	End Exam.			Pract.	Total	
3000		Test1	Test 2	Avg.	Sem. Exam.	Durati (in H	ion W	ork	/oral	Total	
FEC101	Engineering Mathematics-I	20	20	20	80	3	2	.5		125	
FEC102	Engineering Physics-I	15	15	15	60	2	-	-		75	
FEC103	Engineering Chemistry-I	15	15	15	60	2	-	-		75	
FEC104	Engineering Mechanics	20	20	20	80	3	-			100	
FEC105	Basic Electrical Engineering	20	20	20	80	3	_	-		100	
FEL101	Engineering Physics-I						2	5		25	
FEL102	Engineering Chemistry-I						2	5		25	
FEL103	Engineering Mechanics						2	5	25	50	
FEL104	Basic Electrical Engineering						2	.5	25	50	
FEL105	Basic Workshop practice-I						5	0		50	
	Total			90	360		1'	75	50	675	

^{*} May be conducted batch-wise

Semester II

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned					
Code		Theory	Pract	. Tu	ut. T	heory	Pract.	Tut.	Total		
FEC201	Engineering Mathematics-II	3		1	*	3		1	4		
FEC202	Engineering Physics-II	2		-	-	2			2		
FEC203	Engineering Chemistry-II	2		-	-	2			2		
FEC204	Engineering Graphics	2		-		2			2		
FEC205	C programming	2		-	-	2			2		
FEC206	Professional Communication and Ethics- I	2		-	-	2			2		
FEL201	Engineering Physics-II		1	-	-		0.5		0.5		
FEL202	Engineering Chemistry-II		1	-	-		0.5		0.5		
FEL203	Engineering Graphics		4	-	-		2		2		
FEL204	C programming		2	-	-		1		1		
FEL205	Professional Communication and Ethics- I		2	-	-		1		1		
FEL206	Basic Workshop practice-II		2	-	-		1		1		
	Total	13	12	0	1	13	06	01	20		
		Examination Scheme									
				Theor	y						
Course Code	Course Name	Internal Ass		Assessment		Exan	Teri	m Pract.	Total		
2040		Test1	Test 2	Avg.	Sem. Exam	n. Durat	tion Work	rk /oral	Total		
FEC201	Engineering Mathematics-II	20	20	20	80	3	25		125		
FEC202	Engineering Physics-II	15	15	15	60	2			75		
FEC203	Engineering Chemistry-II	15	15	15	60	2			75		
FEC204	Engineering Graphics	15	15	15	60	3			75		
FEC205	C programming	15	15	15	60	2			75		
FEC206	Professional Communication and Ethics- I	10	10	10	40	2			50		
FEL201	Engineering Physics-II						25		25		
FEL202	Engineering Chemistry-II						25		25		
FEL203	Engineering Graphics						25	50	75		
FEL204	C programming						25	25	50		
FEL205	Professional Communication and Ethics- I						25		25		
FEL206	Basic Workshop practice-II						50		50		
	Total			90	360		200	75	725		

^{*} May be conducted batch-wise

Course Code FEC201	Course Name		Ceaching Contact			Credits Assigned				
		Theor	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total	
FEC201	Engineering Mathematics-II	3 1*		1*	3	1		4		
	Course Name	Examination Scheme								
				Theory						
Course Code		Intern	al Assess	ment	End	Exam.	Term Work	Pract.	Total	
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)		/oral		
FEC201	Engineering Mathematics-II	20	20	20	80	3	25		125	

- 1. The course is aimed to develop the basic Mathematical skills of engineering students that are imperative for effective understanding of engineering subjects. The topics introduced will serve as basic tools for specialized studies in many fields of engineering and technology.
- 2. To provide hands on experience in using SCILAB software to handle real life problems

Outcomes: Learners will be able to...

- 1. Solve various types of First Order differential equation.
- 2. Solve various types of Higher Order Differential equation.
- 3. Illustrate the concepts of Beta and Gamma function, DUIS and rectification.
- 4. Apply the concepts of Double integral
- 5. Apply the concept of Triple integral.
- 6. Apply the principles of Numerical Method for solving differential equation and numerical integration analytically and using Scilab also.

Module	Detailed Contents	Hrs.
	Differential Equations of First Order and First Degree	
	1.1 Exact differential Equations, Equations reducible to exact form by using	4
	integrating factors.	2
01	1.2 Linear differential equations (Review), equation reducible to linear form,	2
	Bernoulli's equation.	
	# Self learning topics: Simple application of differential equation of first order	
	and first degree to electrical and Mechanical Engineering problem	
	Linear Differential Equations With Constant Coefficients and Variable	
	CoefficientsOf Higher Order	
	2.1. Linear Differential Equation with constant coefficient- complementary	4
	function, particular integrals of differential equation of the type $f(D)y = X$	
02	where X is e^{ax} , $\sin \sin (ax + b)$, $(ax + b)$, $e^{ax}V$, x V .	2
	2.2. Method of variation of parameters.	_
	# Self learning topics: Cauchy's homogeneous linear differential equation and	
	Legendre's differential equation, Applications of Higher order differential	
	equation.	
	Beta and Gamma Function, Differentiation under Integral sign and	
0.2	Rectification	
03	Pre-requisite: Tracing of curves	_
	1.1 Beta and Gamma functions and its properties.	2
	1.2 Differentiation under integral sign with constant limits of integration.	

	· · •
1.3 Rectification of plane curves.(Cartesian and polar)	2
# Self learning topics: Rectification of curve in parametric co-ordinates.	2
Multiple Integration-1 4.1. Double integration-definition, Evaluation of Double Integrals.(Cartesian & Polar)	2
4.2. Evaluation of double integrals by changing the order of integration.4.3. Evaluation of integrals over the given region. (Cartesian & Polar)# Self learning topics: Application of double integrals to compute Area, Mass.	2 2
 Multiple Integration-2 5.1. Evaluation of double integrals by changing to polar coordinates. 5.2. Application of double integrals to compute Area 5.3. Triple integration definition and evaluation (Cartesian, cylindrical and spherical polarcoordinates). # Self learning topics: Application of triple integral to compute volume. 	2 2 2 2
Numerical solution of ordinary differential equations of first order and first degree, and, Numerical Integration 6.1. Numerical solution of ordinary differential equation using (a) Euler's method (b) Modified Euler method, (c) Runge-Kutta fourth order method 6.2. Numerical integration- by (a) Trapezoidal (b) Simpson's 1/3rd (c) Simpson's 3/8th rule(all with proof). # Self learning topics: Numerical solution of ordinary differential equation using Taylorseries method.	3
using rayioisenes memod.	
	 # Self learning topics: Rectification of curve in parametric co-ordinates. Multiple Integration-1 4.1. Double integration-definition, Evaluation of Double Integrals.(Cartesian & Polar) 4.2. Evaluation of double integrals by changing the order of integration. 4.3. Evaluation of integrals over the given region. (Cartesian & Polar) # Self learning topics: Application of double integrals to compute Area, Mass. Multiple Integration-2 5.1. Evaluation of double integrals by changing to polar coordinates. 5.2. Application of double integrals to compute Area 5.3.Triple integration definition and evaluation (Cartesian, cylindrical and spherical polarcoordinates). # Self learning topics: Application of triple integral to compute volume. Numerical solution of ordinary differential equations of first order and first degree, and, Numerical Integration 6.1. Numerical solution of ordinary differential equation using (a) Euler's method (b) Modified Euler method, (c) Runge-Kutta fourth order method 6.2. Numerical integration- by (a) Trapezoidal (b) Simpson's 1/3rd (c) Simpson's 3/8th rule(all with proof).

Term Work

General Instructions:

- 1. Batch wise tutorials are to be conducted. The number of students per batch should be as per University pattern for practicals.
- 2. Students must be encouraged to write SCILAB Programs in tutorial class only. Each Student has to write at least 4 SCILAB tutorials (including print out) and at least 6 class tutorials on entire syllabus.
- 3. SCILAB Tutorials will be based on (i) Euler Method, (ii) Modified Euler Method, (iii) Runge-Kutta Method of fourth order, (iv) Trapezoidal Rule, (v) Simpson's 1/3rd Rule (vi) Simpson's 3/8th rule

The distribution of marks for term work shall be as follows:

• Class Tutorials on entire syllabus : 10 marks

• SCILAB Tutorials : 10 marks

• Attendance (Theory and Tutorial): 05 marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory work and minimum passing in the TW.

Assessment

Internal Assessment Test

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Question number 1 will be compulsory and based on maximum contents of the syllabus
- 3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
- 4. Total four questions need to be solved.

References

- 1. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Limited, 9th Ed.
- 3. Engineering Mathematics by Srimanta Pal and Subodh, C. Bhunia, Oxford University Press
- 4. Applied Numerical Methods with MATLAB for Engineers and Scientists by Steven Chapra, McGraw Hill
- 5. Elementary Linear Algebra with Application by Howard Anton and Christ Rorres. 6th edition. John Wiley & Sons, INC.

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned					
		Theory	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total		
FEC202	Engineering Physics-II	2	_	-		2			2		
	Course Name	Examination Scheme									
				Theory	y						
Course Code		Intern	al Assess	ment	End	Exam.	Term	Pract.	Total		
Couc		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs) Work	/oral	Total			
FEC202	Engineering Physics-II	15	15	15	60	2			75		

Rationale:

Most of the engineering branches are being off-spring of basic sciences where physics is playing a pivotal role in concept and understanding of foundation of core engineering branches. This syllabus is developed by keeping in mind, needs of all branches that we offer in University of Mumbai.

The topic distribution is being done in systematic manner and whenever required, prerequisite to the topic are mentioned for frictionless teaching—learning process. In the distribution of topics, core physics and its applied form are given priority. At the same time few modules are introduced over emerging trends in the field of technology.

For the purpose of emphasis on applied part, list of suggestive experiments is added. As per new guidelines of AICTE, a scope is kept in the syllabus for simulation technique and use of information technology to supplement laboratory practices. Further, it is ensured that these modules will cover prerequisites needed for engineering courses to be introduced in higher semesters as core subjects or as interdisciplinary subjects in respective branches.

Objectives

- 1. To give exposure to the topics of fundamental physics in the area of electrodynamics and relativity.
- 2. To give exposure to fundamentals of physics related with current technology in the field of Nanotechnology and Physics of Sensor Technology.

Outcomes: Learners will be able to...

- 1. Describe the diffraction through slits and its applications.
- 2. Apply the foundation of laser and fiber optics in development of modern communication technology.
- 3. Relate the basics of electrodynamics which is prerequisite for satellite communications, antenna theory etc.
- 4. Explain the fundamentals of relativity.
- 5. Assimilate the wide scope of nanotechnology in modern developments and its role in emerging innovating applications.
- 6. Interpret and explore basic sensing techniques for physical measurements in modern instrumentations.

Module	Detailed Contents	Hrs.
01	DIFFRACTION (Prerequisites: Wave front and Huygen's principle, reflection and refraction, diffraction, Fresnel diffraction and Fraunhoffer diffraction)	04

	AC - 26/07/2	019
	Diffraction: Fraunhoffer diffraction at single slit, Diffraction Grating, Resolving	
	power of a grating; Applications of diffraction grating; Determination of	
	wavelength of light using plane transmission grating	
	LASER AND FIBRE OPTICS	
02	 (Prerequisites: Absorption, recombination, energy bands of p-n junction, refractive index of a material, Snell's law) Laser: spontaneous emission and stimulated emission; metastable state, population inversion, types of pumping, resonant cavity, Einsteins's equations; Helium Neon laser; Nd:YAG laser; Semiconductor laser, Applications of laser- Holography Fibre optics: Numerical Aperture for step index fibre; critical angle; angle of acceptance; V number; number of modes of propagation; types of optical 	06
	fibres; Fibre optic communication system;	
03	ELECTRODYNAMICS (Prerequisites: Electric Charges, Coulomb's law-force between two point charges, Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field due to a dipole, Gauss's law, Faraday's law) Scalar and Vector field, Physical significance of gradient, curl and divergence in Cartesian co-ordinate system, Gauss's law for electrostatics, Gauss's law for magnetostatics, Faraday's Law and Ampere's circuital law; Maxwell's equations (Free space and time varying fields).	05
	RELATIVITY	
04	(Prerequisites : Cartesian co-ordinate system) Special theory of Relativity: Inertial and Non-inertial Frames of reference, Galilean transformations, Lorentz transformations (space – time coordinates), Time Dilation, Length Contraction and Mass-Energy relation.	02
05	NANOTECHNOLOGY (Prerequisites: Scattering of electrons, Tunneling effect, Electrostatic focusing, magneto static focusing) Nanomaterials: Properties (Optical, electrical, magnetic, structural, mechanical) and applications, Surface to volume ratio; Two main approaches in nanotechnology-Bottom up technique and Top down technique; Tools for characterization of Nanoparticles: Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM). Methods to synthesize Nanomaterials: Ball milling, Sputtering, Vapour deposition, Solgel	04
06	PHYSICS OF SENSORS (Prerequisites: Transducer concept, meaning of calibration, piezoelectric effect) Resistive sensors: a) Temperature measurement: PT100 construction, calibration, b) Humidity measurement using resistive sensors, Pressure sensor: Concept of pressure sensing by capacitive, flex and inductive method, Analog pressure sensor: construction working and calibration and applications. Piezoelectric transducers: Concept of piezoelectricity, use of piezoelectric transducer as ultrasonic generator and application of ultrasonic transducer for distance measurement, liquid and air velocity measurement. Optical sensor: Photodiode, construction and use of photodiode as ambient light measurement and flux measurement. Pyroelectric sensors: Construction and working principle, application of pyroelectric sensor as bolometer.	05

Assessment

Internal Assessment Test

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of 6 questions, each carrying 15 marks.
- 2. Question number 1 will be compulsory and based on maximum contents of the syllabus
- 3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
- 4. Total four questions need to be solved.

References

- 1. A text book of Engineering Physics-Avadhanulu&Kshirsagar, S.Chand
- 2. Optics Ajay Ghatak, Tata McGraw Hill
- 3. A textbook of Optics N. Subramanyam and Brijlal, S.Chand
- 4. Concepts of Modern Physics- ArtherBeiser, Tata Mcgraw Hill
- 5. Introduction to Electrodynamics- D. J. Griffiths, Pearson publication
- 6. Introduction to Special Relativity- Robert Resnick, John Wiley and sons
- 7. Advances In Nano Materials And Applications: History of Nanotechnology From Pre-Historic to Modern Times, Madhuri Sharon, Wiley, USA
- 8. Nano: The essentials, understanding Nanoscience and Nanotechnology, T. Pradeep, Tata McGraw Hill, 2007.
- 9. Electronic Instrumentation –H.S. Kalsi, Tata McGraw-Hill Education
- 10. Handbook of Modern Sensors Physics design and application- Jacob Fraden, Springer, AIP press.
- 11. Instrumentation & Measurement Techniques by Albert D. Helfrick& William D. Cooper (PHI) Edition

Course	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned				
Code		Theory	y Pra	act.	Tut.	Theory	Tut.	Pract. Pract. /oral	Total	
FEC203	Engineering Chemistry-II	2		-	-	2	-	-	2	
		Examination Scheme								
				Theory	y					
Course Code	Course Name	Intern	al Assess	ment	End	Exam.	Term	Pract.	Total	
		Test1	Test 2	Avg.	Sem. Exam.	em. Duration	Work	/oral	Total	
FEC203	Engineering Chemistry-II	15	15	15	60	2			75	

The concepts developed in this course will aid in quantification as well as understand the applications of several concepts in Chemistry that have been introduced at the 10 + 2 levels in schools.

Outcomes: Learners will be able to...

- 1. Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.
- 2. Illustrate the concept of emission spectroscopy and describe the phenomena of fluorescence and phosphorescence in relation to it.
- 3. Explain the concept of electrode potential and nernst theory and relate it to electrochemical cells.
- 4. Identify different types of corrosion and suggest control measures in industries.
- 5. Illustrate the principles of green chemistry and study environmental impact.
- 6. Explain the knowledge of determining the quality of fuel and quantify the oxygen required for combustion of fuel.

Module	Detailed Contents	Hrs.
01	Principles of Spectroscopy: Introduction: Principle of spectroscopy, Definition, Origin of spectrum, Classification of spectroscopy – atomic and molecular, selection rules. Table of relation between electromagnetic spectrum, types of spectroscopy and energy changes.	02
02	Applications of Spectroscopy Emission spectroscopy- Principle, Instrumentation and applications (Flame Photometry) Introduction to florescence and phosphorescence, Jablonski diagram, application of fluorescence in medicine only.	04
03	Concept of Electrochemistry Introduction, concept of electrode potential, Nernst equation, types of electrochemical cells, concept of standard electrode with examples, electrochemical series, simplenumericals.	02

04	Corrosion: Definition, Mechanism of Corrosion- (I) Dry or Chemical Corrosion-i) Due to oxygen ii)Due to other gases. (II)Wet or Electrochemical corrosion- Mechanism i) Evolution of hydrogen type ii) Absorption of oxygen. Types of Corrosion- Galvanic cell corrosion, Concentration cell corrosion (differential aeration principle), Pitting corrosion, Intergranular corrosion, Stress corrosion. Factors affecting the rate of corrosion- (i)Nature of metal, (ii)Nature of corroding environment. Methods of corrosion control- (I)Material selection and proper designing,(II) Cathodic protection- i) Sacrificial anodic protection ii) Impressed current method,(III) Metallic coatings- only Cathodic coating (tinning) and anodic coatings (Galvanising)	06
05	Green Chemistry and Synthesis of drugs Introduction – Definition, significance Twelve Principles of Green chemistry, numerical on atom economy, Conventional and green synthesis of Adipic acid, Indigo, Carbaryl, Ibuprofen, Benzimidazole, Benzyl alcohol, % atom economy and their numericals. Green fuel- Biodiesel.	04
06	Fuels and Combustion Definition, classification, characteristics of a good fuel, units of heat (no conversions). Calorific value- Definition, Gross or Higher calorific value & Net or lower calorific value, Dulong's formula & numerical for calculations of Gross and Net calorific values. Solid fuels- Analysis of coal- Proximate and Ultimate Analysis- numerical problems and significance. Liquid fuels- Petrol- Knocking, Octane number, Cetane number, Antiknocking agents, unleaded petrol, oxygenates (MTBE), catalytic converter. Combustion- Calculations for requirement of only oxygen and air (by weight and by volume only) for given solid & gaseous fuels.	06

Assessment

Internal Assessment Test

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of 6 questions, each carrying 15 marks.
- 2. Question number 1 will be compulsory and based on maximum contents of the syllabus
- 3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
- 4. Total four questions need to be solved.

Recommended Books:

- 1. Engineering Chemistry Jain & Jain, DhanpatRai
- 2. Engineering Chemistry Dara & Dara, S Chand
- 3. Green Chemistry: A textbook V.K.Ahluwalia, Alpha Science International
- 4. Fundamentals of Molecular Spectroscopy (4th Edition) C.N.Banwell, Elaine M. McCash,
 - Tata McGraw Hill.
- 5. Elementary Organic Spectroscopy- Y.R.Sharma, S.Chand and Co.
- 6. A Text Book of Engineering Chemistry ShashiChawla, DhanpatRai
- 7. Engineering Chemistry Payal Joshi & Shashank Deep (Oxford University Press)

Course	Course Name		Ceaching Contact			Credits Assigned				
Code		Theor	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total	
FEC204	Engineering Graphics	2	_			2			2	
		Examination Scheme								
				Theory	y					
Course Code	Course Name	Intern	Internal Assessment End Exam			Exam.	Term Pract.	Pract.	Total	
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	Total	
FEC204	Engineering Graphics	15	15	15	60	3			75	

- 1. To impart and inculcate proper understanding of the theory of projection.
- 2. To impart the knowledge of reading a drawing
- 3. To improve the visualization skill.

Outcomes: Learners will be able to...

- 1. Apply the basic principles of projections in Projection of Lines and Planes
- 2. Apply the basic principles of projections in Projection of Solids.
- 3. Apply the basic principles of sectional views in Section of solids.
- 4. Apply the basic principles of projections in converting 3D view to 2D drawing.
- 5. Read a given drawing.
- 6. Visualize an object from the given two views.

Module	Detailed Contents	Hrs.
01	Introduction to Engineering Graphics Principles of Engineering Graphics and their significance, usage of Drawing instruments, Types of Lines, Dimensioning Systems as per IS conventions. Introduction to plain and diagonal scales. Engineering Curves Basic construction of Cycloid, Involutes and Helix (of cylinder) only.	2
02	Projection of Points and Lines Lines inclined to both the Reference Planes (Excluding Traces of lines) and simple application based problems on Projection of lines. @ Projection of Planes Triangular, Square, Rectangular, Pentagonal, Hexagonal and Circular planes inclined to either HP or VP only. (Exclude composite planes).	5
03	Projection of Solids (Prism, Pyramid, Cylinder, Cone only) Solid projection with the axis inclined to HP and VP. (Exclude Spheres, Composite, Hollow solids and frustum of solids). Use change of position or Auxiliary plane method	_
04	Section of Solids Section of Prism, Pyramid, Cylinder, & Cone cut by plane perpendicular to at least one reference plane (Exclude Curved Section Plane). Use change of position or Auxiliary plane method.	5

05	#Orthographic and Sectional Orthographic Projections: - Fundamentals of orthographic projections. Different views of a simple machine part as per the first angle projection methodrecommended by I.S. Full or Half Sectional views of the Simple Machine parts.	3				
06	#@ Missing Views: The identification of missing views from the given views. Create the third view from the two available views so that all the details of the object are obtained.					
07	#Isometric Views:- Principles of Isometric projection — Isometric Scale, Isometric Views, Conversion of Orthographic Views to Isometric Views(Excluding Sphere).					
@ only	@ only in Term Work (i.e; Questions will not be asked for any examination.)					
# more	# more problems should be discussed during practical hours to strengthen the concepts.					

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each.

Among the two tests One is Conventional (manual drawing) and Second using CAD software.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15marks.
- 2. Any 4 questions need to be solved. There won't be any compulsory Question
- 3. Total 04 questions need to be solved.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in thesyllabus.

Text Books.

- 1. N.D. Bhatt, "Engineering Drawing (Plane and solid geometry)", Charotar Publishing House Pvt. Ltd.
- 2. N.D. Bhatt & V.M. Panchal, "Machine Drawing", Charotar Publishing House Pvt. Ltd.

Reference Books

- 3. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publisher.
- 4. Prof. Sham Tickoo (Purdue University) & Gaurav Verma, "(CAD Soft Technologies): Auto CAD 2012 (For engineers and Designers)", Dreamtech Press New Delhi.
- 5. Dhananjay A Jolhe, "Engineering Drawing" Tata McGraw Hill.

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
Code		Theory Pract.		Tut.	Theory	Tut.	Pract.	Total	
FEC205	C Programming	2	_	-		2			2
					Examina	tion Schem	e		
				Theory	y				
Course Code	Course Name	Intern	al Assess	ment	End	Exam.	Term	Pract.	Total
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	
FEC205	C Programming	15	15	15	60	2			75

To provide exposure to problem-solving by developing an algorithm, flowchart and implement the logic using C programming language.

Outcomes: Learner will be able to...

- 1. Formulate simple algorithms for arithmetic, logical problems and translate them to programs in C language
- 2. Implement, test and execute programs comprising of control structures.
- 3. Decompose a problem into functions and synthesize a complete program.
- 4. Demonstrate the use of arrays, strings and structures in C language.
- 5. Understand the concept of pointers

Module	Detailed Contents	Hrs.			
	Introduction				
	 Introduction to components of a Computer System 				
	Introduction to Algorithm and Flowchart				
	Fundamentals of C Programming				
1	Keywords, Identifiers, Constants and Variables	5			
	• Data types in C				
	• Operators in C				
	Basic Input and Output Operations				
	 Expressions and Precedence of Operators 				
	• In-built Functions				
	Control Structures				
	Introduction to Control Structures				
	Branching and looping structures				
2	If statement, If-else statement, Nested if-else, else-if Ladder				
	 Switch statement 				
	 For loop, While loop 				
	break and continue				
	Functions				
	 Introduction to functions 				
3	 Function prototype, Function definition, Accessing a function and 				
	parameter passing.				
	Recursion.				
4	Arrays and Strings	4			

	 Introduction to Arrays Declaration and initialization of one dimensional and two-dimensional 				
	arrays.Definition and initialization of StringString functions				
	Structure and Union				
	Concept of Structure and Union				
5	 Declaration and Initialization of structure and union 				
5	Nested structures				
	Array of Structures				
	Passing structure to functions				
	Pointers				
	 Fundamentals of pointers 				
6	 Declaration, initialization and dereferencing of pointers 	4			
	 Operations on Pointers 				
	Concept of dynamic memory allocation				

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein subquestions of 2 to 5 marks will beasked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in thesyllabus.

Text Books:

- 1. E. Balaguruswamy, Programming in ANSI C, McGraw-Hill
- 2. Kernighan, Ritchie, "The C programming Language", Prentice Hall of India
- 3. Sumitabha Das, Computer Fundamentals and C Programming, McGraw-Hill
- 4. Pradeep Day and ManasGosh, "Programming in C", Oxford University Press.

References:

- 1. Byron Gottfried, "Programing with C", McGraw Hill (Schaum"s outline series)
- 2. Venugopal K.R, Prasad Sudeep, "Mastering C", McGraw-Hill
- 3. KanetkarYashwant," "Let Us C", BPB Publication.

Course Code	Course Name	Teaching Scheme (Contact Hours) Credits A					ssigned	ssigned	
Code		Theory	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total
FEC206	Professional Communication and Ethics- I	2	_	-		2			2
		Examination Scheme							T
Course		Theory							
Course Code	Course Name	Intern	Internal Assessment End				Term	Pract.	Total
		Test1	Test 2	Avg.	Sem. Exam.	Exam. Duration (in Hrs)	Work	/oral	Total
FEC206	Professional Communication and Ethics- I	10	10	10	40	2			50

- 1. To demonstrate the fundamental concepts of interpersonal and professional communication.
- 2. To encourage active listening with focus on content, purpose, ideas and tone.
- 3. To facilitate fluent speaking skills in social, academic and professional situations.
- 4. To train in reading strategies for comprehending academic and business correspondence.
- 5. To promote effective writing skills in business, technology and academic arenas.
- 6. To inculcate confident personality traits along with grooming and social etiquettes.

Outcomes: Learners will be able to understand how to...

- 1. Eliminate barriers and use verbal/non-verbal cues at social and workplace situations.
- 2. Employ listening strategies to comprehend wide-ranging vocabulary, grammatical structures, tone and pronunciation.
- 3. Prepare effectively for speaking at social, academic and business situations.
- 4. Use reading strategies for faster comprehension, summarization and evaluation of texts.
- 5. Acquire effective writing skills for drafting academic, business and technical documents.
- 6. Successfully interact in all kinds of settings, displaying refined grooming and social skills.

Module	Detailed Contents	Hrs.		
	FUNDAMENTALS OF COMMUNICATION			
	1.1. Introduction to Theory of Communication			
	Definition			
	• Objectives			
	Postulates/Hallmarks			
	The Process of Communication			
	Organizational Communication			
	 Formal (Upward, Downward and Horizontal) 			
1	o Informal (Grapevine)	12		
	1.2. Methods of Communication			
	• Verbal (Written & Spoken)			
	Non-verbal			
	 Non-verbal cues perceived through the five senses: (Visual, 			
	Auditory, Tactile, Olfactory and Gustatory cues)			
	 Non-verbal cues transmitted through the use of: (The Body, Voice, 			
	Space, Time and Silence)			
	1.3. Barriers to Communication			

	AC – 26/07/20)19
	Mechanical/External	
	Physical/Internal	
	Semantic & Linguistic	
	 Psychological 	
	Socio-Cultural	
	1.4. Communication at the Workplace	
	 Corporate Communication - Case Studies 	
	 Listening Tasks with Recordings and Activity Sheets 	
	 Short Speeches as Monologues 	
	 Informative Speeches that Center on People, Events, Processes, 	
	Places, or Things	
	 Persuasive Speeches to Persuade, Motivate or Take Action 	
	 Special Occasion Speeches for Ceremonial, Commemorative, or 	
	Epideictic purposes	
	 Pair-work Conversational Activities (Dialogues) 	
	 Short Group Presentations on Business Plans 	
	VERBAL APTITUDE FOR EMPLOYMENT	
	2.1. Vocabulary Building	
	• Root words (Etymology)	
	Meaning of Words in Context	
	Synonyms & Antonyms	
	• Collocations	
	Word Form Charts	
	Prefixes & Suffixes	
	Standard Abbreviations	
2	2.2. Grammar	02
_	Identifying Common Errors	02
	Subject - Verb Agreement	
	3.61 1 13.6 11.01	
	o Prepositions	
	• Tautologies • Planages (Padundancias)	
	Pleonasms (Redundancies) Idiama	
	• Idioms	
	Cliches DEVELOPING DEADING AND WINDERING SIZE IS	
	DEVELOPING READING AND WRITING SKILLS	
	3.1. Reading Comprehension	
	• Long Passages	
	Short Passages	
	MCQs on Inferential Questions with 4 Options	
	3.2. Summarization of reading passages, reports, chapters, books	
	Graphic Organizers for Summaries	
	 Radial Diagrams like Mind Maps 	
	o Flow Charts	
3	Tree Diagrams	02
	 Cyclic Diagrams 	
	 Linear Diagrams like Timelines 	
	o Pyramids	
	 Venn Diagrams 	
	Point-form Summaries	
	 One-sentence Summaries of Central Idea 	
	3.3. Paraphrasing	
	Understanding Copyrights	
	Running a Plagiarism Check on Paraphrased Passages	
	Generating Plagiarism Reports	
	<u> </u>	

	AC - 26/07/	2019
	Basic APA and MLA Referencing Style and Format	
	DUCINIECS CODDESDONDENCE	
	BUSINESS CORRESPONDENCE	
	4.1. Seven Cs of Business Correspondence	
	• Completeness	
	• Conciseness	
	• Consideration	
	• Concreteness	
	• Clarity	
	• Courtesy	
	• Correctness	
	4.2. Parts of a Formal Letter and Formats	
	Parts/Elements of a Formal Letter	
	 Letterheads and/or Sender's Address 	
	o Dateline	
	 Inside Address 	
	Reference Line (Optional)	
4	 Attention Line (Optional) 	06
	 Salutation 	
	Subject Line	
	o Body	
	 Complimentary Close 	
	O Signature Block	
	o Enclosures/Attachments	
	Complete/Full Block Format	
	4.3. Emails	
	Format of Emails	
	Features of Effective Emails	
	 Language and style of Emails 	
	4.4. Types of Letters in Both Formal Letter Format and Emails	
	Claim & Adjustment Letters	
	Request/Permission Letters	
	Sales Letters	
	BASIC TECHNICAL WRITING	
	5.1. Introduction	
	What is Technical Writing?	
	 Importance and Principles of Technical Writing 	
	 Difference between Technical Writing & Literary Writing 	
	 Framing Definitions 	
	 Difference between Technical Description & Instructions 	
	5.2. Description of a Technical Object	
	• Definition	
	Diagram	
5	Discussion of Parts/Characteristics	02
	Working	
	5.3. Writing User Instructions	
	User Instructions	
	 Special Notices (Note, Warning, Caution and Danger) 	
	• Styles of Presentation	
	o Impersonal	
	o Indirect	
	o Direct	
	Imperative	
	5.4. Description of a Technical / Scientific Process	
	3.4. Description of a rechnical/ Scientific Process	

	7.0 = 27.0.7=0.	•
	Definition	
	Diagram	
	 Tools/ Apparatus/Software/ Hardware Used 	
	Working	
	• Result	
	PERSONALITY DEVELOPMENT AND SOCIAL ETIQUETTES	
	6.1. Personality Development	
	 Introducing Self and/or a Classmate 	
	 Formal Dress Code 	
	6.2. Social Etiquettes	
	Formal Dining Etiquettes	02
6	Cubicle Etiquettes	02
	 Responsibility in Using Social Media 	
	 Showing Empathy and Respect 	
	 Learning Accountability and Accepting Criticism 	
	 Demonstrating Flexibility and Cooperation 	
	 Selecting Effective Communication Channels 	

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 10 marks each.

TEST I -Public speech on general topics (Maximum 5 mins. per student)

TEST II - Written test covering modules 1 - 6

The second test should be based on theory and application exercises as mentioned in the syllabus. (Note: Summarization should be a compulsory question in Test II and not in the End Semester Theory Examination.)

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein subquestions of 2 to 5 marks will be asked.
- 4.Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module3 then part (b) will be from any module other than module 3)
- 5.In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus
- 6. The first module (Fundamentals of Communication) will carry 40 % weightage.

Text Books.

- 1. Sanjay Kumar & Pushp Lata (2018). Communication Skills with CD. New Delhi: Oxford University Press.
- 2. Hemphill, P.D., McCormick, D. W., & Hemphill, R. D. (2001). Business Communication with writing improvement exercises. Upper Saddle River, NJ: Prentice Hall.
- 3. Locker, Kitty O. Kaczmarek, Stephen Kyo. (2019). Business Communication: Building Critical Skills. Place of publication not identified: Mcgraw-hill.
- 4. Murphy, H. (1999). Effective Business Communication. Place of publication not identified: Mcgraw-Hill.
- 5. Raman, M., & Sharma, S. (2016). Technical Communication: Principles and practice. New Delhi: Oxford University Press.
- 6. Kaul, A. (2015). Effective Business Communication. Place of publication not identified: Prentice-Hall of India.

- 7. Rizvi, A. M. (2010). Effective Technical Communication: A guide for Scientists and Engineers. New Delhi: Tata McGraw Hill.
- 8. Lewis, N. (2014). Word power made easy. Random House USA.

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned				
		Theory	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total	
FEL201	Engineering Physics-II	- C		1			-	0.5	0.5	
					Examina	tion Schem	e			
	Course Name			Theory						
Course Code		Internal Assessment End				Exam.	Term	Pract.	Total	
		Test1	Test 2	Avg.	Sem. Exam.	Duration	Work	/oral	10tai	
FEL201	Engineering Physics-II						25		25	

- 1. To improve the knowledge about the theory learned in the class.
- 2. To improve ability to analyze experimental result and write laboratory report.

Outcomes: Learners will be able to...

- 1. Perform the experiments based on diffraction through slitsusing Laser source and analyze the results.
- 2. Perform the experiments using optical fibre to measure numerical aperture of a given fibre.
- 3. Perform the experiments on various sensors and analyze the result.

Suggested Experiments:(Any five)

- 1. Determination of wavelength using Diffraction grating. (Hg/Na source)
- 2. Determination of number of lines on the grating surface using LASER Source.
- 3. Determination of Numerical Aperture of an optical fibre.
- 4. Determination of wavelength using Diffraction grating.(Laser source)
- 5. Study of divergence of laser beam
- 6. Determination of width of a slit using single slit diffraction experiment(laser source)
- 7. Study of I-V characteristics of Photo diode.
- 8. Study of ultrasonic distance meter/interferometer.
- 9. Study of PT100 calibration and use and thermometer
- 10. Study of J /K type thermocouple, calibration and use and thermometer
- 11. Simulation experiments based on nanotechnology using open source simulation softwares like Avogadro, Chimera, JMOL etc.

Term work:

Term Work shall consist of minimum five experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal)
 Project Groupwise (Execution & Submission)
 Attendance (Theory and Tutorial)
 10 marks
 05 marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory work and minimum passing in the TW.

Course Code	Course Name	Teaching Scheme (Contact Hours)					Credits Assigned				
		Theor	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total		
FEL202	Engineering Chemistry-II	-		1			-	0.5	0.5		
	Course Name			Theory							
Course Code		Internal Assessment End				Exam.	Term	Pract.	Total		
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	1 Star		
FEL202	Engineering Chemistry-II						25		25		

Outcomes: Learner will be able to...

- 1. Determine moisture and ash content of coal
- 2. Analyze flue gas
- 3. Determine saponification and acid value of oil
- 4. Determine flash point of a lubricating oil
- 5. Synthesize a drug and a biofuel.
- 6. Determine na/k and emf of cu-zn system

Suggested Experiments

- 1. Determination of Moisture content of coal.
- 2. Determination of Ash content of coal.
- 3. Flue gas analysis using Orsat's apparatus.
- 4. Saponification value of oil
- 5. Acid value of oil
- 6. Determination of Na/K by Flame photometry.
- 7. Preparation of Biodiesel from edible oil.
- 8. To estimate the emf of Cu-Zn system by Potentiometry.
- 9. Synthesis of Aspirin.
- 10. Determination of Flash point of a lubricant using Abel's apparatus

Term work:

Term Work shall consist of minimum five experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal): 10 marks
 Assignments and Viva on practicals: 10 marks
 Attendance (Theory and Practical): 05 marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory work and minimum passing in the TW.

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned				
		Theory	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total	
FEL203	Engineering Graphics	-	04		-	-	-	2	2	
					Examina	nation Scheme				
	Course Name			Theory	y					
Course Code		Internal Assessment End			Exam.	Term	Pract.	Total		
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)		/oral	1 Stai	
FEL203	Engineering Graphics						25	50	75	

- 1. To inculcate the skill of drawing with the basic concepts.
- 2. To Use AutoCAD for daily working process.
- 3. To teach basic utility of Computer Aided drafting (CAD) tool

Outcomes: Learner will be able to...

- 1. Apply the basic principles of projections in 2D drawings using a CAD software.
- 2. Create, Annotate, Edit and Plot drawings using basic AutoCAD commands and features.
- 3. Apply the concepts of layers to create drawing.
- 4. Apply basic AutoCAD skills to draw different views of a 3D object.
- 5. Apply basic AutoCAD skills to draw the isometric view from the given two views.

Component-1 (Use half Imperial Drawing Sheet)

Activities to be completed in the Drawing Laboratory.	Hrs
One Practice sheet on projection of solids(minimum 2 problems)	4
# Term Sheet 1: Projection of Solids (3 Problems).	4
One Practice sheet on Section of Solids. (minimum 2 problems) # Term Sheet 2: Section of solids. (3 problems).	6
One practice sheet on Orthographic projection. (minimum 1 problem) # Term Sheet 3: Orthographic Projection (With section 1 problem, without section 1 problem).	6
One practice sheet on Isometric drawing. (minimum 2 problems) # Term Sheet 4: Isometric Projection. (3 problems).	4

Term sheets to be done in laboratory only and to be **submitted as part of term work**. *Note: Practice sheets to be done before starting the Term Sheets.*

Component-2

<u>Self-study problems/ Assignment: (In A3 size Sketch book, to be submitted as part of Term Work)</u>

- 1. Engineering Curves. (2 problems)
- 2. Projection of Lines (2 problems)
- 3. Projection of planes (2 problems)
- 4. Projection of solids. (2 problems)
- 5. Section of solids (2 problems)
- 6. Orthographic Projection. (With section 1 problem, without section 1 problem).
- 7. Missing views. (1 problem)
- 8. Isometric Drawing. (2 problems)

Computer Graphics: Engineering Graphics Software - Orthographic Projections, Isometric Projections, Co-ordinate Systems, Multi-view Projection. To be Taught in laboratory. Hrs **Overview of Computer Graphics Covering:** Listing the computer technologies that impact on graphical communication, demonstrating knowledge of the theory of CAD software such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), 3 Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects. Part-A **Customization & CAD Drawing:** Consisting of set up of the drawing page and the printer including scale settings, 3 Setting up of units and drawing limits, ISO and ANSI standards for coordinate dimensioning. **Annotations, layering & other Functions Covering:** Applying dimensions to objects, applying annotations to drawings, Setting up and use of layers, layers to create drawings, Create, edit and use customized layers, 4 Changing line lengths through modifying existing lines (extend/lengthen), Printing documents to paper using the print command, orthographic projection techniques, Drawing sectional views of objects (simple machine parts). * Activities to be completed in the CAD Laboratory. (All printouts to be the part of Term Work. Preferably, Use A3 size sheets for print out.) **Component-3** 1. Orthographic Projections (without section)- 1 problem 4 Part-B 2. Orthographic Projection (with section)- 1 problem 3. Orthographic Reading – 1 problem 2 4. Isometric Drawing − 3 problem. 4

<u>Note:</u> * Give practice sheet problems before going for Term Sheet problems. Students are supposed to bring complete solution of problems before coming to CAD practical.

Term Work:

Component-1 : 7Marks
Component-2 : 6 Marks
Component-3 : 7 Marks
Attendance : 5 Marks

Total Marks : 25 Marks

Note: Satisfactory submission of all 3 components is mandatory to full fill the Term.

Topic for the End Semester Practical Examination (Auto CAD) (2 hours/ 50 Marks.)

- 1. Isometric drawing. (1 problem) (20 Marks)
- 2. Orthographic Projection (With Section) (1 problem). (30 Marks)

Note:

- 1. Printout of the answers have to be taken preferably in A3 size sheets and should be Assessed by External Examiner only.
- 2. Knowledge of Auto CAD software, concepts of Engineering Graphics related to specified problem and accuracy of drawing should be considered during evaluation.

Text Books.

- 1. N.D. Bhatt, "Engineering Drawing (Plane and solid geometry)", Charotar Publishing House Pvt. Ltd.
- 2. N.D. Bhatt & V.M. Panchal, "Machine Drawing", Charotar Publishing House Pvt. Ltd.

Reference Books

- 1. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publisher.
- 2. Prof. Sham Tickoo (Purdue University) & Gaurav Verma, "(CAD Soft Technologies): Auto CAD 2012 (For engineers and Designers)", Dreamtech Press NewDelhi.
- 3. Dhananjay A Jolhe, "Engineering Drawing" Tata McGraw Hill.

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned					
Code		Theory	Prac	et.	Tut.	Theory	Tut.	Pract.	Total		
FEL204	C programming		2					1	1		
					Examina	nation Scheme					
~				Theor	· y						
Course Code	Course Name	Internal Assessment			End	Exam.	Term	Pract.	Total		
		Test1	Test 2	Avg	Sem. Exam.	Duration (in Hrs)	Work	/oral	Istai		
FEL204	C programming						25	25	50		

Outcomes: Learner will be able to...

- 1. Translate given algorithms to a program.
- 2. Correct syntax and logical errors.
- 3. Write iterative as well as recursive programs.
- 4. Represent data in arrays, strings and structures and manipulate them through a program.
- 5. Declare pointers and demonstrate call by reference concept.

Lab Description:

Weekly 2 hours of laboratory Programming Assignments on the following topics:

- 1. Basic data types and I/O operations
- 2. Branching Statements
- 3. Loop Statements
- 4. Arrays
- 5. Strings
- 6. Functions
- 7. Recursion
- 8. Structure and Union
- 9. Pointers

Term Work:

Experiments (20 Programs) and Assignments (2 Assignments) should be completed by students on the given time duration

Experiments: 15 Marks
Assignment: 05 Marks
Attendance: 05 Marks
Total: 25 Marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory work and minimum passing in the TW.

Practical and Oral:

Practical and oral Exam should be conducted for the Lab, on Computer Programming in C subject for given list of experiments.

Implementation: 15 Marks
Oral: 10 Marks

THADOMAL SHAHANI ENGINEERING COLLEGE

Information Technology

Sr. No.	Subject Code	Subject Name	Count
1	ITL301	Data Structure Lab	1
2	ITL302	SQL Lab	1
3	ITL303	Fundamentals, Computer programming Paradigms Lab	1
4	ITL304	Java Lab (SBL)	1
5	ITM301	Mini Project – 1 A Front end /backend Application using	1
		JAVA	
6	ITL401	Network Lab	1
7	ITL402	Unix Lab	1
8	ITL403	Microprocessor Lab	1
9	ITL404	Python Lab (SBL)	1
10	ITM401	Mini Project – 1 B Python based automation projects	1
11	ITC501	Microcontroller and Embedded Programming	1
12	ITL501	Internet Programming Lab	1
13	ITL503	OLAP Lab	1
14	ITL502	Security Lab	1
15	ITL504	IOT (Mini Project) Lab	1
16	ITL601	Software Design Lab	1
17	ITL602	Business Intelligence Lab	1
18	ITL603	Cloud Service Design Lab	1
19	ITL604	Sensor Network Lab	1
20	ITM605	Mini-Project	1
21	ITL701	Network Design Lab	1
22	ITL702	Advanced Security Lab	1
23	ITL703	Intelligence System Lab	1
24	ITL704	Android Apps Development Lab	1
25	ITL801	Big Data Lab	1
26	ITL802	Internet of Everything Lab	1
27	ITL803	DevOps Lab	1
28	ITL804	R Programming Lab	1
29	ITM805	Project-II	1
		Total	29

AC: <u>23/7/2020</u>

Item No.: <u>126</u>

UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Information Technology Engineering

Second Year with Effect from AY 2020-21

Third Year with Effect from AY 2021-22

Final Year with Effect from AY 2022-23

(REV- 2019 'C' Scheme) from Academic Year 2019 – 20

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

AC: <u>23/7/2020</u> Item No. <u>126</u>

UNIVERSITY OF MUMBAI

Syllabus for Approval

Sr. No.	Heading	Particulars
1	Title of the Course	Second Year B.E. Information Technology Engineering
2	Eligibility for Admission	After Passing First Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	Ordinances / Regulations (if any)	Ordinance 0.6242
5	No. of Years / Semesters	8 semesters
6	Level	P.G. / U.G./ Diploma / Certificate (Strike out which is not applicable)
7	Pattern	Yearly / Semester (Strike out which is not applicable)
8	Status	New / Revised (Strike out which is not applicable)
9	To be implemented from Academic Year	With effect from Academic Year: 2020-2021

Date:23/7/2020

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr. Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C 'scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self learning to learner. Learners are now getting sufficient time for self learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preface By BoS

It is our honor and a privilege to present the Rev-2019 'C' scheme syllabus of Bachelor of Engineering in Information Technology (effective from year 2019-20) with inclusion of cutting edge technology. Information Technology is comparatively a young branch among other engineering disciplines in the University of Mumbai. It is evident from the placement statistics of various colleges affiliated to the University of Mumbai that IT branch has taken the lead in the placement.

The branch also provides multi-faceted scope like better placement and promotion of entrepreneurship culture among students, and increased Industry Institute Interactions. Industries views are considered as stakeholders will design of the syllabus of Information Technology. As per Industries views only 16 % graduates are directly employable. One of the reasons is a syllabus which is not in line with the latest technologies. Our team of faculties has tried to include all the latest technologies in the syllabus. Also first time we are giving skill-based labs and Mini-project to students from third semester onwards which will help students to work on latest IT technologies. Also the first time we are giving the choice of elective from fifth semester such that students will be master in one of the IT domain. The syllabus is peer reviewed by experts from reputed industries and as per their suggestions it covers future trends in IT technology and research opportunities available due to these trends.

We would like to thank senior faculties of IT department of all colleges affiliated to University of Mumbai for significant contribution in framing the syllabus. Also on behalf of all faculties we thank all the industry experts for their valuable feedback and suggestions. We sincerely hope that the revised syllabus will help all graduate engineers to face the future challenges in the field of information and technology

Program Specific Outcome for graduate Program in Information Technology

- 1. Apply Core Information Technology knowledge to develop stable and secure IT system.
- 2. Design, IT infrastructures for an enterprise using concepts of best practices in information Technology and security domain.
- 3. Ability to work in multidisciplinary projects and make it IT enabled.
- 4. Ability to adapt latest trends and technologies like Analytics, Blockchain, Cloud, Data science.

Board of Studies in Information Technology Engineering - Team

Dr. Deven Shah (Chairman)

Dr. Lata Ragha (Member)

Dr. Vaishali D. Khairnar (Member)

Dr. Sharvari Govilkar (Member)

Dr. Sunil B. Wankhade (Member)

Dr. Anil Kale (Member)

Dr. Vaibhav Narwade (Member)

Dr. GV Choudhary (Member)

Ad-hoc Board Information Technology

University of Mumbai

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI

(With Effect from 2020-2021)

Semester III

Course Code	Course Name	Т		g Scher et Hour		Credits Assigned				
Coue		Theo	ry Pı	ract.	Tut.	Theory	Pract.	Tut.	Total	
ITC301	Engineering Mathematics-III	3			1	3		1	4	
ITC302	Data Structure and Analysis	3				3			3	
ITC303	Database Management System	3				3			3	
ITC304	Principle of Communication	3				3			3	
ITC305	Paradigms and Computer Programming Fundamentals	3				3			3	
ITL301	Data Structure Lab			2			1		1	
ITL302	SQL Lab			2			1		1	
ITL303	Computer programming Paradigms Lab			2			1		1	
ITL304	Java Lab (SBL)			4			2		2	
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA			4\$			2		2	
	Total	15		14	1	15	07	1	23	
			1		Ex	amination	Scheme			
				The	ory		Term Work	Pract/ oral	Total	
Course Code	Course Name	Intern	nal Asso	essment	End Sem. Exam	Exam. Duration (in Hrs)				
		Test 1	Test2	Avg.						
ITC301	Engineering Mathematics-III	20	20	20	80	3	25		125	
ITC302	Data Structure and Analysis	20	20	20	80	3			100	
ITC303	Database Management System	20	20	20	80	3			100	
ITC304	Principle of Communication	20	20	20	80	3			100	
ITC305	Paradigms and Computer Programming Fundamentals	20	20	20	80	3			100	
ITL301	Data Structure Lab						25	25	50	
ITL302	SQL Lab		-				25	25	50	
ITL303	Computer programming Paradigms Lab						25	25	50	
ITL304	Java Lab (SBL)						25	25	50	
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA						25	25	50	
	Total			100	400		150	125	775	

^{\$} indicates work load of Learner (Not Faculty), for Mini-Project. Students can form groups with minimum

2 (Two) and not more than 4 (Four) Faculty Load: 1 hour per week per four groups.

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI

(With Effect from 2020-2021)

Semester IV

Course Code	Course Name		Feaching (Contact			Credits Assigned			signed	
Code		Theo	ry Prac	et.	Tut.	Th	neory	Pract.	Tut.	Total
ITC401	Engineering Mathematics-IV	3			1		3		1	4
ITC402	Computer Network and Network Design	3					3			3
ITC403	Operating System	3					3			3
ITC404	Automata Theory	3					3			3
ITC405	Computer Organization and Architecture	3					3			3
ITL401	Network Lab		2					1		1
ITL402	Unix Lab		2					1		1
ITL403	Microprocessor Lab		2					1		1
ITL404	Python Lab (SBL)		4					2		2
ITM401	Mini Project – 1 B for Python based automation projects		4\$					2		2
	Total				1		15	7	1	23
					Exan	nination Scheme				
				Theo	ory			Term Work	Pract/ oral	Total
Course	Course Name				Enc		Exam.			
Code	Course runne	Inter	nal Asses	sment	Sen Exai		Duration (in Hrs)	l		
		Test 1	Test 2	Avg.						
ITC401	Engineering Mathematics-IV	20	20	20	80		3	25		125
ITC402	Computer Network and Network Design	20	20	20	80		3			100
ITC403	Operating System	20	20	20	80		3			100
ITC404	Automata Theory	20	20	20	80		3			100
ITC405	Computer Organization and Architecture	20	20	20	80		3			100
ITL401	Network Lab							25	25	50
ITL402	Unix Lab							25	25	50
ITL403	Microprocessor Lab							25	25	50
ITL404	Python Lab (SBL)							25	25	50
ITM401	Mini Project – 1 B for Python based automation projects							25	25	50
	Total			100	400)		150	75	775

^{\$} indicates work load of Learner (Not Faculty), for Mini Project. Students can form groups with minimum

^{2 (}Two) and not more than 4 (Four) Faculty Load: 1 hour per week per four groups

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
ITC301	Engineering Mathematics-III	03	ı	01	03	-	01	04	

		Examination Scheme									
		Inter		heory sessment							
Course Code	Course Name	Test1	Avg of Se		End Sem Exam	Term Work	Pract	Oral	Total		
ITC301	Engineering Mathematics-III	20	20	20	80	25	-	-	125		

Pre-requisite: Engineering Mathematics-I, Engineering Mathematics-II

Course Objectives:

Sr. No.	Course Objectives					
The cours	se aims:					
1	To familiarize with the Laplace Transform, Inverse Laplace Transform of various					
	functions, and its applications.					
2	To acquaint with the concept of Fourier series, its complex form and enhance the					
	problem solving skills.					
3	To familiarize the concept of complex variables, C-R equations with applications.					
4	The fundamental knowledge of Trees, Graphs etc.					
5	To study the basic techniques of statistics like correlation, regression and curve fitting					
	for data analysis, Machine learning and AI.					
6	To understand some advanced topics of probability, random variables with their					
	distributions and expectations.					

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy				
On succ	On successful completion, of course, learner/student will be able to:					
1	Apply the concept of Laplace transform to solve the real integrals in engineering problems.	L1, L2				
2	Apply the concept of inverse Laplace transform of various functions in engineering problems.	L1, L2				

3	Expand the periodic function by using Fourier series for real life problems and complex engineering problems.	L1, L2, L3
4	Find orthogonal trajectories and analytic function by using basic concepts of complex variable theory.	L1, L2, L3
5	Apply the concept of Correlation and Regression to the engineering	L2, L3
S	problems in data science, machine learning and AI.	L2, L3
6	Illustrate understanding of the concepts of probability and expectation for	L1, L2
	getting the spread of the data and distribution of probabilities.	

Module	Detailed Contents	Hours	CO Mapping
	 Module: Laplace Transform 1.1 Definition of Laplace transform, Condition of Existence of Laplace transform, 1.2 Laplace Transform (L) of Standard Functions like e^{at}, sin(at), cos(at), sinh(at), cosh(at) and tⁿ, n ≥ 0. 1.3 Properties of Laplace Transform: Linearity, First Shifting Theorem, Second Shifting Theorem, change of scale Property, multiplication by t, Division by t, Laplace Transform of derivatives and integrals (Properties without proof). 1.4 Evaluation of real integrals by using Laplace Transformation. Self-learning Topics: Heaviside's Unit Step function, Laplace Transform. 	7	CO1
02	of Periodic functions, Dirac Delta Function. Module: Inverse Laplace Transform 2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace transform using derivatives, 2.2 Partial fractions method to find inverse Laplace transform. 2.3 Inverse Laplace transform using Convolution theorem (without proof) Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations	6	CO1, CO2
03	 Module: Fourier Series: 3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity(without proof) 3.2 Fourier series of periodic function with period 2π and 2l, 3.3 Fourier series of even and odd functions 3.4 Half range Sine and Cosine Series. Self-learning Topics: Complex form of Fourier Series, orthogonal and orthonormal set of functions, Fourier Transform.	7	CO3

	Module: Complex Variables:		CO4
	4.1 Function $f(z)$ of complex variable, limit, continuity and differentiability of $f(z)$, Analytic function, necessary and sufficient conditions for $f(z)$ to be analytic (without proof),		
0.4	4.2 Cauchy-Riemann equations in cartesian coordinates (without proof)	7	
04	4.3 Milne-Thomson method to determine analytic function $f(z)$ when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.	7	
	4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories		
	Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations		
	Module: Statistical Techniques		CO5
	5.1 Karl Pearson's Coefficient of correlation (r)		
	5.2 Spearman's Rank correlation coefficient (R) (with repeated and non-repeated ranks)		
05	5.3 Lines of regression	6	
	5.4 Fitting of first and second degree curves.		
	Self-learning Topics: Covariance, fitting of exponential curve.		
	Module: Probability		CO6
	6.1 Definition and basics of probability, conditional probability,		
	6.2 Total Probability Theorem and Baye's theorem		
06	6.3 Discrete and continuous random variable with probability distribution and probability density function.	6	
	6.4 Expectation of random variables with mean, variance and standard deviation, moment generating function up to four moments.		
	Self-learning Topics: Skewness and Kurtosis of distribution (data)		

References:

- 1. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Limited.
- 3. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication,
- 4. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 5. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 6. Theory and Problems of Fourier Analysis with applications to BVP, Murray Spiegel, Schaum's Outline Series.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in

Term Work:

General Instructions:

- 1. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 2. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering Mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows –

1.	Attendance (Theory and Tutorial)	05 marks
2.	Class Tutorials on entire syllabus	10 marks
3.	Mini project	10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein 4 sub-questions of 5 marks each will be asked.
- 4. Remaining questions will be randomly selected from all the modules.
- 5. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

		Teaching Scheme (Contact Hours)			Credits Assigned			
Course Code	Course							
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC302	Data	03			03			03
	Structure							
	and							
	Analysis							

Course	Course				Examina	ation Scheme		
Code	Name	Theory Marks						
		Internal assessment			End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Fract./Oral	Total
ITC302	Data Structure and Analysis	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives					
The cours	The course aims:					
1	The fundamental knowledge of data structures.					
2	The programming knowledge which can be applied to sophisticated data structures.					
3	The fundamental knowledge of stacks queue, linked list etc.					
4	The fundamental knowledge of Trees, Graphs etc.					
5	The fundamental knowledge of different sorting, searching, hashing and recursion					
	techniques					
6	The real time applications for stacks, queue, linked list, trees, graphs etc.					

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's
0	assoful completion of course learner/student will be able to:	Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	_
1	Classify and Apply the concepts of stacks, queues and linked list in real life problem solving.	L1, L2, L3
2	Classify, apply and analyze the concepts trees in real life problem solving.	L2, L3,L4
3	Illustrate and justify the concepts of graphs in real life problem solving.	L3, L5
4	List and examine the concepts of sorting, searching techniques in real life problem solving.	L2, L3, L4
5	Use and identify the concepts of recursion, hashing in real life problem solving.	L3, L4
6	Examine and justify different methods of stacks, queues, linked list, trees and graphs to various applications.	L3, L4, L5

Prerequisite: C Programming

Sr. No.	Module	Detailed Content	Hours	CO Mapping
				Mapping
0	Prerequisite	Defining, Declaring and Initialization of structure variables. Accessing members of a structure, Array of structures, Nested structures, Pointers to structures. Passing structure, structure members, structure arrays and pointer to structure as function parameters. Self-referential structures.	02	
I	Introduction to Stacks, Queues and Linked Lists	Introduction to Data Structures: Linear and Non Linear Data Structures, Static and Dynamic Data Structures. Concept of Stack and Queue. Array Implementation of Stack and Queue, Circular Queue, Double Ended Queue, Priority Queue. Concept of Linked Lists. Singly linked lists, doubly linked lists and circular linked lists. Insertion, deletion, update and copying operations with Singly linked lists, doubly linked lists and circular linked lists. Reversing a singly linked list. Self-learning Topics: Linked List Implementation of Stack, Linked List implementation of Queue, Circular Queue, Double Ended Queue, Priority Queue.	08	CO1
II	Trees	Introduction to Trees: Terminology, Types of Binary trees.	07	CO1,
		Non recursive Preorder, in-order and post-order traversal. Creation of binary trees from the traversal of binary trees. Binary search tree: Traversal, searching, insertion and deletion in binary search tree. Threaded Binary Tree: Finding in-order successor and predecessor of a node in threaded tree. Insertion and deletion in threaded binary tree. AVL Tree: Searching and traversing in AVL trees. Tree Rotations: Right Rotation, Left Rotation. Insertion and Deletion in an AVL Tree. B-tree: Searching, Insertion, Deletion from leaf node and non-leaf node. B+ Tree, Digital Search Tree, Game Tree & Decision Tree Self-learning Topics: Implementation of AVL and B+ Tree		CO 2
III	Graphs	Introduction to Graphs: Undirected Graph, Directed Graph, graph terminology, Connectivity in Undirected and Directed Graphs. Spanning tree.	05	CO1, CO3
		Representation of graph: adjacency matrix, adjacency list, Transitive closure of a directed graph and path matrix.		

		Traversals: Breadth First Search, Depth First Search.		
		Self-learning Topics: Implementation of BFS, DFS		
IV	Recursion and Storage Management	Recursion: Writing a recursive function, Flow of control in recursive functions, Winding and unwinding phase, Recursive data structures, Implementation of recursion. Tail recursion. Indirect and Direct Recursion. Storage Management: Sequential Fit Methods: First Fit, Best Fit and Worst Fit methods. Fragmentation, Freeing Memory, Boundary Tag Method. Buddy Systems: Binary Buddy System, Fibonacci Buddy System. Compaction, Garbage Collection.	06	CO5
1 7	C 1- :	Self-learning Topics: Implementation of recursion function.	0.5	CO 4
V	Searching and Sorting	Searching: Sequential Search, Binary Search. Hashing: Hash Functions: Truncation, Mid-square Method, Folding Method, Division Method. Collision Resolution: Open Addressing: Linear Probing, Quadratic Probing, Double Hashing, Separate Chaining Bucket Hashing. Analysis of all searching techniques	05	CO 4, CO5
		Sorting: Insertion sort, Selection sort, Merge sort, Quick sort and Radix sort. Analysis of all sorting techniques Self-learning Topics: Implementation of different sorting		
		techniques and searching.		
VI	Applications of Data Structures	Applications of Linked Lists: Addition of 2 Polynomials and Multiplication of 2 polynomials. Applications of Stacks: Reversal of a String, Checking validity of an expression containing nested parenthesis, Function calls, Polish Notation: Introduction to infix, prefix and postfix expressions and their evaluation and conversions. Application of Queues: Scheduling, Round Robin Scheduling Applications of Trees: Huffman Tree and Heap Sort. Applications of Graphs: Dijkstra's Algorithm, Minimum Spanning Tree: Prim's Algorithm, Kruskal's Algorithm. Self-learning Topics: Implementation of applications for	06	CO6
		Stack, Queues, Linked List, Trees and Graph.		

Text Books:

- 1. S. K Srivastava, Deepali Srivastava; Data Structures through C in Depth; BPB Publications; 2011.
- 2. Yedidya Langsam, Moshej Augenstein, Aaron M. Tenenbaum; Data Structure Using C & C++; Prentice Hall of India; 1996.
- 3. Reema Thareja; Data Structures using C; Oxford.

References:

- 1. Ellis Horowitz, Sartaj Sahni; Fundamentals of Data Structures; Galgotia Publications; 2010.
- 2. Jean Paul Tremblay, Paul G. Sorenson; An introduction to data structures with applications; Tata McGrawHill; 1984.
- 3. Rajesh K. Shukla; Data Structures using C and C++; Wiley India; 2009.

Online References:

Sr. No.	Website Name
2.	https://www.nptel.ac.in
3.	https://opendatastructures.org/
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

		Teaching Scheme			Credits Assigned				
Course Code	Course	(Contact	(Contact Hours)						
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
						/Oral			
ITC303	Database Management	03			03			03	
	System								

Course	Course				Examina	ation Scheme		
Code	Name	Theory Marks						Total
		Internal assessment			End	Term Work	Pract. /Oral	
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Fract./Oral	Total
ITC303	Database Management System	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives
The cour	se aims:
1	To learn the basics and understand the need of database management system.
2	To construct conceptual data model for real world applications
3	To Build Relational Model from ER/EER.
4	To introduce the concept of SQL to store and retrieve data efficiently.
5	To demonstrate notions of normalization for database design.
6	To understand the concepts of transaction processing- concurrency control & recovery procedures.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	ccessful completion, of course, learner/student will be able to:	
1	Identify the need of Database Management System.	L1, L2
2	Design conceptual model for real life applications.	L6
3	Create Relational Model for real life applications	L6
4	Formulate query using SQL commands.	L3
5	Apply the concept of normalization to relational database design.	L3
6	Demonstrate the concept of transaction, concurrency and recovery.	L2

Prerequisite: C Programming

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	CommentBasic knowledge of operating systems and file systems, Any programming	02	
I	Database System Concepts and Architecture	Introduction, Characteristics of Databases, File system v/s Database system, Data abstraction and Data Independence, DBMS system architecture, Database Administrator (DBA), Role of DBA Self-learning Topics: Identify the types of Databases.	05	CO1
II	The Entity- Relationship Model	Conceptual Modeling of a database, The Entity-Relationship (ER) Model, Entity Type, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Weak entity Types Generalization, Specialization and Aggregation, Extended Entity-Relationship (EER) Model. Self-learning Topics: Design an ER model for any real time case study.	05	CO2
III	Relational Model & Relational Algebra	Introduction to Relational Model, Relational Model Constraints and Relational Database Schemas, Concept of Keys: Primary Kay, Secondary key, Foreign Key, Mapping the ER and EER Model to the Relational Model, Introduction to Relational Algebra, Relational Algebra expressions for Unary Relational Operations,	05	CO3
IV	Structured Query Language (SQL) & Indexing	Overview of SQL, Data Definition Commands, Set operations, aggregate function, null values, Data Manipulation commands, Data Control commands, Complex Retrieval Queries using Group By, Recursive Queries, nested Queries; ; Integrity constraints in SQL. Database Programming with JDBC, Security and authorization: Grant & Revoke in SQL Functions and Procedures in SQL and cursors. Indexing:Basic Concepts, Ordered Indices, Index Definition in SQL Self-learning Topics: Physical design of database for the relational model designed in module III and fire various queries.	08	CO4

V	Relational Database Design	Design guidelines for relational Schema, Functional Dependencies, Database tables and normalization, The need for normalization, The normalization process, Improving the design, Definition of Normal Forms- 1NF, 2NF, 3NF & The Boyce-Codd Normal Form (BCNF). Self-learning Topics: Consider any real time application and normalization upto 3NF/BCNF	07	CO5
VI	Transactions	Transaction:	07	CO6
	Management and	Transaction concept, State Diagram, ACID		
	Concurrency and	Properties, Transaction Control Commands,		
	Recovery	Concurrent Executions, Serializability – Conflict and View, Concurrency Control:		
		Lock-based-protocols, Deadlock handling		
		Timestamp-based protocols,		
		Recovery System:		
		Recovery Concepts, Log based recovery.		
		Self-learning Topics: Study the various deadlock		
		situation which may occur for a database designed		
		in module V.		

Text Books:

- 1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Pearson education
- 3. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH

References:

- 1. Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Managementl, Thomson Learning, 9th Edition.
- 2. SQL & PL / SQL for Oracle 11g Black Book, Dreamtech Press
- 3. G. K. Gupta: "Database Management Systems", McGraw Hill

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.oreilly.com
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC304	Principle of Communication	03			03			03

Course	Course Name	Examination Scheme							
Code	Theory Marks								
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term work		rotar	
ITC304	Principle of Communication	20	20	20	80			100	

Course Objectives:

Sr. No.	Course Objectives						
The cours	The course aims:						
1	Study the basic of Analog and Digital Communication Systems.						
2	Describe the concept of Noise and Fourier Transform for analyzing communication systems.						
3	Acquire the knowledge of different modulation techniques such as AM, FM and study the						
	block diagram of transmitter and receiver.						
4	Study the Sampling theorem and Pulse Analog and digital modulation techniques						
5	Learn the concept of multiplexing and digital band pass modulation techniques						
6	Gain the core idea of electromagnetic radiation and propagation of waves.						

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	· · · · · · · · · · · · · · · · · · ·
1	Describe analog and digital communication systems	L1,L2
2	Differentiate types of noise, analyses the Fourier transform of time and frequency domain.	L1, L2, L3, L4
3	Design transmitter and receiver of AM, DSB, SSB and FM.	L1,L2,L3,L4
4	Describe Sampling theorem and pulse modulation systems.	L1,L2,L3
5	Explain multiplexing and digital band pass modulation techniques.	L1, L2
6	Describe electromagnetic radiation and propagation of waves.	L1,L2

Prerequisite: Basic of electrical engineering

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Terminologies in communication systems, analog and digital electronics	02	
I	Introduction	Basics of analog communication and digital communication systems (Block diagram), Electromagnetic Spectrum and application, Types of Communication channels. Self-learning Topics: Applications areas of analog and digital communication.	03	CO1
II	Noise and Fourier Representation of Signal and System	Basics of signal representation and analyses, Introduction to Fourier Transform, its properties (time and frequency shifting, Fourier transform of unit step, delta and gate function. Types of Noise, Noise parameters –Signal to noise ratio, Noise factor, Noise figure, Friss formula and Equivalent noise temperature. Self-learning Topics: Practice Numerical on above topic.	06	CO2
III	Amplitude and Angle modulation Techniques.	Need for modulation, Amplitude Modulation Techniques: DSBFC AM,DSBSC-AM, SSB SC AM- block diagram spectrum, waveforms, bandwidth, Power calculations. Generation of AM using Diode, generation of DSB using Balanced modulator, Generation of SSB using Phase Shift Method. AM Transmitter (Block Diagram) AM Receivers – Block diagram of TRF receivers and Super heterodyne receiver and its characteristics- Sensitivity, Selectivity, Fidelity, Image frequency and its rejection and double spotting Angle Modulation FM: Principle of FM- waveforms, spectrum, bandwidth. Pre- emphasis and de-emphasis in FM, FM generation: Direct method –Varactor diode Modulator, Indirect method (Armstrong method) block diagram and waveforms. FM demodulator: Foster Seeley discriminator, Ratio detector. Self-learning Topics: Use of AM and FM in Modern Communication Technology. Challenges faced by radio business.	12	CO1, CO2, CO3
IV	Pulse Analog Modulation and Digital Modulation	Sampling theorem for low pass and band pass signals with proof, Anti- aliasing filter, PAM, PWM and PPM generation and Degeneration. Quantization process, Pulse code modulation, Delta modulation, Adaptive delta modulation. Introduction to Line Codes and ISI.	08	CO1, CO2, CO4

		Self-learning Topics: Implementation of Pulse code modulation and demodulation.		
V	Multiplexing and Digital Band Pass Modulation Techniques	Principle of Time Division Multiplexing, Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing and its applications .ASK, FSK, PSK QPSK Generation and detection.	04	CO1, CO2, CO5
	Techniques	Self-learning Topics: Implement TDM, FDM, OFDM.		
VI	Radiation and Propagation of Waves	Electromagnetic radiation, fundamentals, types of propagation, ground wave, sky wave, space wave tropospheric scatter propagation Self-learning Topics: List the real time examples for different types of propagation waves.	04	CO6

Text Books:

- [1]. George Kennedy, Bernard Davis, SRM Prasanna, Electronic Communication Systems, Tata McGraw Hill, 5th Ed
- [2]. Simon Haykin, Michael Moher, Introduction to Analog & Digital Communications, Wiley India Pvt. Ltd., 2nd Ed.
- [3]. Wireless Communication and Networking, Vijay Garg

References:

- [1]. Wayne Tomasi, Electronic Communications Systems, Pearson Publication, 5th Ed.
- [2]. B P Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University
- [3]. Herbert Taub, Donald L Schilling, Goutam Saha, Principles of Communication Systems, Tata McGraw Hill, 3rdEd.
- [4]. K Sam Shanmugam, Digital and Analog Communication Systems, Wiley India Pvt. Ltd, 1st Ed.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.classcentral.com
3.	http://www.vlab.co.in/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code Course		Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC305	Paradigms and Computer Programming Fundamentals	03			03			03

Course	Course	Examination Scheme						
Code	Name		Theo	ry Marks				
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work		
ITC305	Paradigms and Computer Programming Fundamentals	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives					
The cours	The course aims:					
1	To introduce various programming paradigms and the basic constructs that underline any					
	programming language.					
2	To understand data abstraction and object orientation					
3	To introduce the basic concepts of declarative programming paradigms through functional and					
	logic programming.					
4	To design solutions using declarative programming paradigms through functional and logic					
	programming.					
5	To introduce the concepts of concurrent program execution.					
6	To understand use of scripting language for different problem domains					

Course Outcomes:

Sr.	Course Outcomes	Cognitive levels
No.		of attainment as per Bloom's
		Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Understand and Compare different programming paradigms.	L1, L2
2	Understand the Object Oriented Constructs and use them in program design.	L1, L2
3	Understand the concepts of declarative programming paradigms through	L1, L2
	functional and logic programming.	
4	Design and Develop programs based on declarative programming paradigm	L5, L6
	using functional and/or logic programming.	
5	Understand the role of concurrency in parallel and distributed programming.	L1, L2
6	Understand different application domains for use of scripting languages.	L1. L2

Prerequisite: Students must have learned C Programming (FEC205 and FEL204),

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Compilation and interpretation Focus on overview of compilation steps.	02	CO1
I	Introduction to Programming Paradigms and Core Language Design Issues	Introduction to different programming paradigms. Names, Scopes, and Bindings, Scope Rules, Storage Management. Type Systems, Type Checking, Equality Testing and Assignment. Subroutine and Control Abstraction: Stack Layout, Calling sequence, parameter passing Generic subroutines and modules. Exception handling, Coroutines and Events. Self-Learning Topic: Implementation of basic	10	CO1
II	Imperative Paradigm: Data Abstraction in Object Orientation	Concepts using programming language. Grouping of data and Operations- Encapsulation, Overloading, Polymorphism, Inheritance, Initialization and Finalization, Dynamic Binding. Self-Learning Topic: Implementation of OOP concepts using preferrably C++ and Java language.	05	CO2
III	Declarative Programming Paradigm: Functional Programming	Introduction to Lambda Calculus, Functional Programming Concepts, Evaluation order, Higher order functions, I/O-Streams and Monads. Self-Learning Topic: Implementation of programs using functional programming Language Haskel can refer to hacker rank website for problem statements.	07	CO3, CO4
IV	Declarative Programming Paradigm: Logic Programming	Logic Programming with PROLOG - Resolution and Unification, Lists, Arithmetic execution order, imperative control flow, database manipulation, PROLOG facilities and deficiencies. Self-Learning Topic: Identification of different application domains for use of Prolog and Logic programming	06	CO3, CO4
V	Alternative Paradigms: Concurrency	Concurrent Programming Fundamentals, Implementing synchronisation, Message Passing - Background and Motivation, Multithreaded programs, Communication and Synchronization, Language and Libraries, Thread creation Syntax. Self-Learning Topic: Study Implementation of concurrency concepts for real time application.	04	CO5
VI	Alternative Paradigms: Scripting Languages	Common characteristics, Different Problem domains for using scripting, Use of scripting in Web development—server and clients side scripting, Innovative features of scripting languages - Names and Scopes, string and pattern manipulation, data types, object orientation.	05	CO6

Self-Learning Topic: Review small client server	ļ	
application code in any scripting language to realise	ļ	
applicability of features learned in Module.		

Text Books:

- 1. Scott M L, Programming Language Pragmatics, 3rd Edn., Morgan Kaufmann Publishers, 2009
- 2. Graham Hutton, Programming in Haskell, 2nd Edition, Cambridge University Press, 2016
- 3. Programming Languages: Concepts and Constructs; 2nd Edition, Ravi Sethi, Pearson Education Asia, 1996.

References:

- 1. Harold Abelson and Gerald Jay Sussman with Julie Sussman foreword by Alan J. Perlis, Structure and Interpretation of Computer Programs (2nd Edition) (February 2, 2016)
- 2. Programming Languages: Design and Implementation (4th Edition), by Terrence W. Pratt, Marvin V. Zelkowitz, Pearson, 2000
- 3. Rajkumar Buyya, Object-oriented Programming with Java: Essentials and Applications, Tata McGraw Hill Education Private Limited
- 4. Max Bramer, Logic Programming with Prolog, Springer ISBN-13: 978-1852-33938-8

Online References:

Sr No	Website Name	Link
1	Principles of programming Languages (Videos)	https://nptel.ac.in/courses/106/102/106102067/
2	Edx course Paradigms of Computer Programming – Fundamentals	https://www.classcentral.com/course/edx- paradigms-of-computer-programming- fundamentals-2298
3	Udemy Couses	https://www.udemy.com

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

▶ Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of four questions need to be answered

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL301	Data Structure Lab		02			01		01

Lab Code	Lab Name				Examina	ation Scheme		
			Theo	ry Marks				
		Internal assessment End			Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem.	Telli Work	Tract. /Orai	Total
		16811	1681 2	Avg.	Exam			
ITL301	Data Structure							
	Lab					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives					
The Lab	The Lab experiments aims:					
1	To use data structures as the introductory foundation for computer automation to engineering					
	problems.					
2	To use the basic principles of programming as applied to complex data structures.					
3	To learn the principles of stack, queue, linked lists and its various operations.					
4	To learn fundamentals of binary search tree, implementation and use of advanced tree like					
	AVL, B trees and graphs.					
5	To learn about searching, hashing and sorting.					
6	To learn the applications of linked lists, stacks, queues, trees and graphs.					

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Understand and use the basic concepts and principles of various linked lists, stacks and queues.	L1, L2, L3
2	Understand the concepts and apply the methods in basic trees.	L1, L2
3	Use and identify the methods in advanced trees.	L3, L4
4	Understand the concepts and apply the methods in graphs.	L2, L3
5	Understand the concepts and apply the techniques of searching, hashing and sorting	L2, L3
6	Illustrate and examine the methods of linked lists, stacks, queues, trees and graphs to various real time problems	L3, L4

Prerequisite: C Programming

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Turbo/Borland C complier

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Introduction of C programming language.	02	
I	Stacks, Queues and Linked Lists	 Array Implementation of Stack and Queue. Insertion, deletion operations with Singly linked lists Insertion, deletion operations Doubly linked lists Insertion, deletion operations Circular linked lists. Reversing a singly linked list. * Linked List implementation of Stack and Queue 	04	LO 1
II	Trees	 * Implementation of operations (insertion, deletion, counting of nodes, counting of leaf nodes etc.) in a binary search tree. Implementation of insertion, deletion and traversal for fully in-threaded binary search tree. 	04	LO 2
III	Advanced Trees	 * Implementation of AVL tree. Implementation of operations in a B tree. 	04	LO 3
IV	Graphs	 Implementation of adjacency matrix creation. Implementation of addition and deletion of edges in a directed graph using adjacency matrix. Implementation of insertion and deletion of vertices and edges in a directed graph using adjacency list. 	04	LO 4
V	Searching and Sorting	 Implementation of Heap Sort Implementation of Binary Search. Implementation of Selection sort, Bubble sort, Insertion sort, Quick sort 	04	LO 5

VI	Applications of Data Structures	 * Implementation of infix to postfix conversion and evaluation of postfix expression 	04	LO 6
		• * Implementation of Josephus Problem using circular linked list		
		 * Implementation of traversal of a directed graph through BFS and DFS. 		
		 Implementation of finding shortest distances using Dijkstra's algorithm 		
		 *Implementation of hashing functions with different collision resolution techniques 		

Text Books:

- 1. S. K Srivastava, Deepali Srivastava; Data Structures through C in Depth; BPB Publications; 2011.
- 2. Yedidya Langsam, Moshej Augenstein, Aaron M. Tenenbaum; Data Structure Using C & C++; Prentice Hall of India; 1996.
- 3. Reema Thareja; Data Structures using C; Oxford.

References:

- 1. Ellis Horowitz, Sartaj Sahni; Fundamentals of Data Structures; Galgotia Publications; 2010.
- 2. Jean Paul Tremblay, Paul G. Sorenson; An introduction to data structures with applications; Tata McGrawHill; 1984.
- 3. Rajesh K. Shukla; Data Structures using C and C++; Wiley India; 2009.

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching (Contact			Credits	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL302	SQL Lab		02			01		01

Lab Code	Lab Name		Examination Scheme						
			Theo	ry Marks					
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem.	Term work	Tract. /Orai	Tract. / Orar	Total
		10311	1030 2	Avg.	Exam				
ITL302	SQL Lab					2.5	25	50	
						25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives
The Lab	experiments aims:
1	To identify and define problem statements for real life applications
2	To construct conceptual data model for real life applications
3	To Build Relational Model from ER/EER and demonstrate usage of relational algebra.
4	To Apply SQL to store and retrieve data efficiently
5	To implement database connectivity using JDBC
6	To understand the concepts of transaction processing- concurrency control & recovery procedures.

Lab Outcomes:

Sr.	Lab Outcomes	Cognitive levels
No.		of attainment as per Bloom's
		Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Define problem statement and Construct the conceptual model for real life application.	L1, L3, L4, L6
2	Create and populate a RDBMS using SQL.	L3, L4
3	Formulate and write SQL queries for efficient information retrieval	L3, L4
4	Apply view, triggers and procedures to demonstrate specific event handling.	L1, L3, L4
5	Demonstrate database connectivity using JDBC.	L3
6	Demonstrate the concept of concurrent transactions.	L3, L4

Prerequisite: C Programming

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Any SQL Compiler, Java Programming Language

DETAILED SYLLABUS:

Sr. No.	Detailed Content	Hours	LO Mapping
1.	Identify real world problem and develop the problem statement. Design an Entity-Relationship (ER) / Extended Entity-Relationship (EER) Model.	02	LO1
2.	Mapping ER/EER to Relational schema model.	02	LO1
3.	Create a database using DDL and apply integrity constraints.	02	LO2, LO3
4.	Perform data manipulations operations on populated database.	02	LO3
5.	Perform Authorization using Grant and Revoke.	02	LO2, LO3
6.	Implement Basic and complex SQL queries.	02	LO3, LO4
7.	Implementation of Views and Triggers.	02	LO4
8.	Demonstrate database connectivity using JDBC.	02	LO5
9.	Execute TCL commands.	02	LO4
10.	Implement functions and procedures in SQL	02	LO3, LO4
11.	Implementation of Cursor.	02	LO3, LO4
12.	Implementation and demonstration of Transaction and Concurrency control techniques using locks.	02	LO6

Text Books:

- 1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Pearson education
- 3. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH

References:

- 1. Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Management^{||}, Thomson Learning, 9th Edition.
- 2. SQL & PL / SQL for Oracle 11g Black Book, Dreamtech Press
- 3. G. K. Gupta: "Database Management Systems", McGraw Hill

Term Work:

Term Work shall consist of at least 10 Practical's based on the above list, but not limited to. Also, Term work Journal must include at least 2 assignments:

The first assignment may be based on: Relational Algebra and Second may be based on Transactions

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching (Contact			Credits	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL303	Computer programming Paradigms Lab		02			01		01

Lab Code	Lab Name	Examination Scheme						
			Theo	ry Marks				
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Tract./Orar	Total
ITL303	Computer programming Paradigms Lab					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives
The Lab	experiments aims:
1	Understand data abstraction and object orientation
2	Design and implement declarative programs in functional and logic programming languages
3	Introduce the concepts of concurrent program execution
4	Understand run time program management
5	Understand how to implement a programming solution using different programming paradigms.
6	Learn to compare implementation in different programming paradigms.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's
_		Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Implement Object Oriented concepts in C++.	L1, L2, L3
2	Design and Develop solution based on declarative programming paradigm using functional and logic programming.	L6
3	Understand the multi threaded programs in Java and C++	L1, L2
4	Understand the need and use of exception handling and garbage collection in C++ and JAVA	L2, L3
5	Implement a solution to the same problem using multiple paradigms.	L6
6	Compare the implementations in multiple paradigms at coding and	L4

execution level.	xecution level.				
------------------	-----------------	--	--	--	--

Prerequisite: Students must have learned C Programming (FEC205 and FEL204)

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	C++ compiler, Java Languge support, SWI Prolog, GHC Compiler.

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Demonstrate Compilation and interpretation stages to students for C, C++, JAVA along with how to debug the code.	02	
I	Imperative Paradigm: Data Abstraction in Object Orientation	At least two Programming Implementations Preferably in C++ to demonstrate concepts like - Encapsulation, Inheritance, Initialization and Finalization, Dynamic Binding.	05	LO1
II	Declarative Programming Paradigm: Functional Programming	 Tutorial Introduction to Haskell programming environment Tutorial exercise on operators, types etc. in Haskell At least 5 Haskell Programs to demonstrate Functional Programming Concepts. Sample Programs but not limited to: Implement safetail function that behaves in the same way as tail, except that safetail maps the empty list to the empty list, whereas tail gives an error in this case. Define safetail using: (a) a conditional expression; (b) guarded equations; (c) pattern matching. Hint: the library function null :: [a]-> Bool can be used to test if a list is empty. Simple List Comprehension Higher-Order Functions Write recursive function to multiply two natural numbers that uses pre defined add funion. Implement the game of nim in Haskell to apply list processing. Haskell code to represent infinite list e.g. fibobacci series Implement simple Calculator Students should clearly understand the syntax and the execution of the Functional Implementation using Haskell. 	06	LO2

III	Declarative Programming Paradigm: Logic Programming	 Tutorial Installation and working of SWI Prolog Environment Implement at least 5 Prolog programs to understand declarative programming concepts. Students should clearly understand the syntax and the execution of the Prolog code Implementation. 	05	LO2
IV	Alternative Paradigms: Concurrency	At least two Programs preferably in c++ and java to demonstrate Thread management and synchronization	02	LO4
V	Run Time Program Management	A Program to understand Exception handling and Garbage collection, preferably in C++ and JAVA Students should understand the syntactic differences in the solutions in both Object Oriented Languages.	02	LO4
VI	Programming Assignment For comparative study of Different Paradigms	At Least two implementations each implemented on multiple paradigms like procedural, object oriented, functional, logic. The implementations should be done in a group of two/three students with appropriate difficulty level. Student should prepare small report and present the solution code and demonstrate execution for alternative solutions they build.	04	LO5, LO6

Text Books:

- 1. Scott M L, Programming Language Pragmatics, 3rd Edn., Morgan Kaufmann Publishers, 2009
- 2. Harold Abelson and Gerald Jay Sussman with Julie Sussman foreword by Alan J. Perlis, Structure and Interpretation of Computer Programs (2nd Edition)
- 3. Graham Hutton, Programming in Haskell, 2nd Edition, Cambridge University Press, 2016 4.

References:

- 1. Sethi R, Programming Languages Concepts and Constructs, 2nd Ed, Pearson Education
- 2. Yogesh Sajanikar, Haskell Cookbook, Packt Publishing, 2017

Online References:

Sr No	Website Description	Link
1	University Stuttgart Germany Lab Course on Programming Paradigms	http://software- lab.org/teaching/winter2019/pp/
2	Course at MIT Structure and Interpretation of Computer Programs [2019]	https://web.mit.edu/u/6.037
3	Edx Course Paradigms of Computer Programming – Fundamentals,	https://www.edx.org/course/paradigms- of-computer-programming- fundamentals
4	Tutorials point link for Haskel	https://www.tutorialspoint.com/haskell

Term Work: Term Work shall consist of at least 15 Practicals based on the above modules, but not limited to. Also, Term work Journal must include at least 3 tutorial reports and 01 report of programming assignment

as mentioned in module VI.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiments/Tutorials) + 5 Marks (Assignment write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & 1 Hr Practical exam will be held based on the above syllabus

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL304	Java Lab (SBL)		04			02		02

Lab Code Lab Name Exar				Examina	nation Scheme			
			Theo	ry Marks				
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem.	Telli Wolk		Total
		16811	1681 2	Avg.	Exam			
ITL304	Java Lab (SBL)					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives					
The Lab	The Lab experiments aims:					
1	To understand the concepts of object-oriented paradigm in the Java programming language.					
2	To understand the importance of Classes & objects along with constructors, Arrays ,Strings and vectors					
3	To learn the principles of inheritance, interface and packages and demonstrate the concept of reusability for faster development.					
4	To recognize usage of Exception Handling, Multithreading, Input Output streams in various applications					
5	To learn designing, implementing, testing, and debugging graphical user interfaces in Java using Swings and AWT components that can react to different user events.					
6	To develop graphical user interfaces using JavaFX controls.					

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy	
On suc	cessful completion, of course, learner/student will be able to:		
1	Explain the fundamental concepts of Java Programing.	L1, L2	
2	Use the concepts of classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem.	L3	
3	Demonstrate how to extend java classes and achieve reusability using Inheritance, Interface and Packages.	L3	
4	Construct robust and faster programmed solutions to problems using concept of Multithreading, exceptions and file handling	L3	
5	Design and develop Graphical User Interface using Abstract Window Toolkit and Swings along with response to the events.	L6	
6	Develop Graphical User Interface by exploring JavaFX framework based on MVC architecture.	L6	

Prerequisite: Basics of Computer Programming

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements
PC With Following	1. Windows or Linux Desktop OS	1. Internet Connection for installing
Configuration	2. JDK 1.8 or higher	additional packages if required
1. Intel PIV Processor	3. Notepad ++	
2. 2 GB RAM	4.JAVA IDEs like Netbeans or	
3. 500 GB Harddisk	Eclipse	
4. Network interface card	_	

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Basics of Computer Programming.	02	-
I	Java Fundamentals	Overview of procedure and object oriented Programming, Java Designing Goals and Features of Java Language. Introduction to the principles of object-oriented programming: Classes, Objects, Abstraction, Encapsulation, Inheritance, Polymorphism. Keywords, Data types, Variables, Operators, Expressions, Types of variables and methods. Control Statements: If Statement, If-else, Nested if, switch Statement, break, continue. Iteration Statements: for loop, while loop, and dowhile loop (Perform any 2 programs that covers Classes, Methods, Control structures and Looping statements) 1) Implement a java program to calculate gross salary & net salary taking the following data. Input: empno, empname, basic Process: DA=70% of basic HRA=30% of basic CCA=Rs240/- PF=10% of basic PT= Rs100/- 2) Five Bikers Compete in a race such that they drive at a constant speed which may or may not be the same as the other. To qualify the race, the speed of a racer must be more than the average speed of all 5 racers. Write a Java program to take as input the speed of each racer and print back the speed of qualifying racers. 3) Write a Java program that prints all real solutions to the quadratic equation ax²+bx+c = 0. Read in a, b, c and use the quadratic formula. If the discriminate b²-4ac is negative, display a message stating that there are no real solutions? 4) Write a Menu driven program in java to implement simple banking application Application should read.	07	LO1
		simple banking application. Application should read		<u> </u>

		the customer name, account number, initial balance, rate of interest, contact number and address field etc.		
		Application should have following methods.		
		1. createAccount()		
		2. deposit()		
		3. withdraw()		
		4. computeInterest()		
		5. displayBalance()		
		5)Write a menu driven Java program which will read a number and should implement the following		
		methods		
		1. factorial()		
		2. testArmstrong()		
		3. testPalindrome() 4. testPrime()		
		5. fibonacciSeries()		
		6) Create a Java based application to perform various		
		ways of Method overloading.		
II	Classes, objects,	Classes & Objects: Reference Variables, Passing	07	LO1
	Arrays and Strings	parameters to Methods and Returning parameters from		LO2
		the methods, Static members, Non-Static members		
		Nested and Inner Classes. Static Initialization		
		Block(SIB), Instance Initialization Block(IIB)		
		Constructors: Parameterized Constructors, chaining		
		of constructor, finalize() Method, Method overloading,		
		Constructors Overloading.		
		Recursion, Command-Line Arguments. Wrapper classes, InputBufferReader, OutputBufferReader,		
		String Buffer classes, String functions.		
		Arrays & Vectors: One and Two Dimensional arrays,		
		Irregular arrays, dynamic arrays, Array List and Array		
		of Object.		
		(Perform any 3 programs that covers Classes & objects,		
		Constructors, Command Line Arguments, Arrays/Vectors, String function and recursions).		
		E-marin and a		
		Experiments: 1) Write a program that would print the information		
		(name, year of joining, salary, address) of three		
		employees by creating a class named 'Employee'.		
		The output should be as follows:		
		Name Year of joining Address		
		Robert 1994 64C- WallsStreat		
		Sam 2000 68D- WallsStreat		
		John 1999 26B- WallsStreat		
		2) Write a program to print the area of a rectangle by		
		creating a class named 'Area' having two methods. First		
		method named as 'setDim' takes length and breadth of		
		rectangle as parameters and the second method named		
		as 'getArea' returns the area of the rectangle. Length and		
		breadth of rectangle are entered through keyboard. 3) Write a Java program to illustrate Constructor		
		Chaining.		
	<u> </u>	Chaming.		

4) Create a class 'Student' with three data members	
which are name, age and address. The constructor of the	
class assigns default values name as "unknown", age as	
'0' and address as "not available". It has two members	
with the same name 'setInfo'. First method has two	
parameters for name and age and assigns the same	
whereas the second method takes has three parameters	
which are assigned to name, age and address	
respectively. Print the name, age and address of 10	
students. Hint - Use array of objects.	
5) Write a java programs to add n strings in a vector	
array. Input new string and check whether it is present in the vector. If it is present delete it otherwise add it to	
the vector.	
6) Print the sum, difference and product of two complex	
numbers by creating a class named 'Complex' with	
separate methods for each operation whose real and	
imaginary parts are entered by user.	
7)Write menu driven program to implement recursive	
Functions for following tasks.	
a) To find GCD and LCM	
b) To print n Fibonacci numbers	
c) To find reverse of number	
d) To solve 1 +2+3+4++(n-1)+n	
8) Print Reverse Array list in java by writing our own	
function.	
, yı	LO1
	LO3
Interfaces. Constructor, to access member of super class(variables and methods), creating multilevel hierarchy,	
Constructors in inheritance, method overriding,	
Abstract classes and methods, using final, Dynamic	
Method Dispatch	
Packages: Defining packages, creating packages and	
Importing and accessing packages	
Interfaces: Defining, implementing and extending	
interfaces, variables in interfaces, Default Method in	
Interface ,Static Method in interface, Abstract Classes	
vs Interfaces.	
(Perform any 3 programs covering Inheritance,	
Interfaces and Packages).	
Experiments	
1) Create a Teacher class and derive Professor/	
Associate_Professor/Assistant_Professor class from	
Teacher class. Define appropriate constructor for all the	
classes. Also define a method to display information of Teacher. Make necessary assumptions as required.	
reacher. Wake necessary assumptions as required.	
2) Create a class Book and define a display method to	
display book information. Inherit Reference_Book and	
Magazine classes from Book class and override display	
method of Book class in Reference_Book and Magazine	

3) A university has two types of students — graduate students and research students. The University maintains the record of name, age and programme of every student. For graduate students, additional information like percentage of marks and stream, like science, commerce, etc. is recorded; whereas for research students, additionally, specialization and years of working experience, if any, is recorded. Each class has a constructor. The constructor of subclasses makes a call to constructor of the superclass. Assume that every constructor has the same number of parameters as the number of instance variables. In addition, every subclass has a method that may update the instance variable values of that subclass. All the classes have a function display student info(), the subclasses must override this method of the base class. Every student is either a graduate student or a research student.

Perform the following tasks for the description given above using Java:

- (i) Create the three classes with proper instance variables and methods, with suitable inheritance.
- (ii) Create at least one parameterised constructor for each class.
- (iii) Implement the display_student_info() method in each class.
- 4) An employee works in a particular department of an organization. Every employee has an employee number, name and draws a particular salary. Every department has a name and a head of department. The head of department is an employee. Every year a new head of department takes over. Also, every year an employee is given an annual salary enhancement. Identify and design the classes for the above description with suitable instance variables and methods. The classes should be such that they implement information hiding. You must give logic in support of your design. Also create two objects of each class.
- 5) Consider a hierarchy, where a sportsperson can either be an athlete or a hockey player. Every sportsperson has a unique name. An athlete is characterized by the event in which he/she participates; whereas a hockey player is characterised by the number of goals scored by him/her.

Perform the following tasks using Java:

- (i)Create the class hierarchy with suitable instance variables and methods.
- (ii) Create a suitable constructor for each class.
- (iii) Create a method named display_all_info with suitable parameters. This method should display all the information about the object of a class.
- (iv) Write the main method that demonstrates polymorphism.
- 6) Create an interface vehicle and classes like bicycle,

		car, bike etc, having common functionalities and put all the common functionalities in the interface. Classes like Bicycle, Bike, car etc implement all these functionalities in their own class in their own way		
		7) Create a class "Amount In Words" within a user defined package to convert the amount into words. (Consider amount not to be more than 100000).		
IV	Exception Handling, Multithreading, Input Output streams	Exception Handling: Exception-Handling Fundamentals, Exception Types, Exception class Hierarchy, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses Multithreaded Programming: The Java Thread Model and Thread Life Cycle, Thread Priorities, Creating a Thread, Implementing Runnable, Extending Thread, Creating Multiple Threads, Synchronization: Using Synchronized Methods, The synchronized Statement I/O Streams: Streams, Byte Streams and Character, The Predefined Streams, Reading Console Input, Reading Characters, Reading Strings, Writing Console Output, Reading and Writing Files. (Perform any 3 programs that cover Exception Handling, Multithreading and I/O Streams).	10	LO1 LO3 LO4
		Experiments:		
		1) Write java program where user will enter loginid and password as input. The password should be 8 digit containing one digit and one special symbol. If user enter valid password satisfying above criteria then show "Login Successful Message". If user enter invalid Password then create InvalidPasswordException stating Please enter valid password of length 8 containing one digit and one Special Symbol.		
		2) Java Program to Create Account with 1000 Rs Minimum Balance, Deposit Amount, Withdraw Amount and Also Throws LessBalanceException. It has a Class Called LessBalanceException Which returns the Statement that Says WithDraw Amount(_Rs) is Not Valid. It has a Class Which Creates 2 Accounts, Both Account Deposite Money and One Account Tries to WithDraw more Money Which Generates a LessBalanceException Take Appropriate Action for the Same.		
		3) Create two threads such that one thread will print even number and another will print odd number in an ordered fashion.		
		4) Assume that two brothers, Joe and John, share a common bank account. They both can, independently, read the balance, make a deposit, and withdraw some		

		money. Implement java application demonstrate how the transaction in a bank can be carried out concurrently.		
		5) You have been given the list of the names of the files in a directory. You have to select Java files from them. A file is a Java file if it's name ends with ".java". For e.g. File- "Names.java" is a Java file, "FileNames.java.pdf" is not. Input: test.java, ABC.doc, Demo.pdf, add.java, factorial.java, sum.txt Output: tset.java, add.java, factorial.java		
V	GUI programming- I (AWT, Event Handling, Swing)	Designing Graphical User Interfaces in Java: Components and Containers, Basics of Components, Using Containers, Layout Managers, AWT Components, Adding a Menu to Window, Extending GUI Features	12	LO1 LO4 LO5
		Event-Driven Programming in Java: Event-Handling Process, Event-Handling Mechanism, Delegation Modelof Event Handling, Event Classes, Event Sources, Event Listeners, Adapter Classes as Helper Classes in Event Handling.		
		Introducing Swing: AWT vs Swings, Components and Containers, Swing Packages, A Simple Swing Application, Painting in Swing, Designing Swing GUI Application using Buttons, JLabels, Checkboxes, Radio Buttons, JScrollPane, JList, JComboBox, Trees, TablesScroll pane Menus and Toolbar		
		(Perform any 3 programs that contain AWT, Event handling and Swing to build GUI application).		
		1)Write a Java program to implement Swing components namely Buttons, "JLabels, Checkboxes, Radio Buttons, JScrollPane, JList, JComboBox, Trees, Tables Scroll pane Menus and Toolbars to design interactive GUI.		
		2) Write a program to create a window with four text fields for the name, street, city and pincode with suitable labels. Also windows contains a button MyInfo. When the user types the name, his street, city and pincode and then clicks the button, the types details must appear in Arial Font with Size 32, Italics.		
		3) Write a Java program to create a simple calculator using java AWT elements. .Use a grid layout to arrange buttons for the digits and basic operation +, -, /, *. Add a text felid to display the results. 4) Write a Java Program to create a Student Profile form using AWT controls.		
		5) Write a Java Program to simulate traffic signal light using AWT and Swing Components.		

		 6) Write a Java Program to create a color palette. Declare a grid of Buttons to set the color names. Change the background color by clicking on the color button. 7) Build a GUI program that allows the user to add objects to a collection and perform search and sort on that collection.(Hint. Use Swing components like JButton, JList, JFrame, JPanel and JOptionPane.) 		
VI	GUI Programming-II (JavaFX)	JavaFX Basic Concepts, JavaFX application skeleton, Compiling and running JavaFX program,Simple JavaFX control:Label,Using Buttons and events, Drawing directly on Canvas.	04	LO1 LO5 LO6
		(Perform any one program that contains the concept of JavaFX). 1) Write a Java program to design a Login Form using JavaFX Controls. 2) Write Java program to draw various shapes on Canvas using JavaFX.		

- 1. Herbert Schildt, "Java-The Complete Reference", Tenth Edition, Oracle Press, Tata McGraw Hill Education.
- 2. E. Balguruswamy, "Programming with Java A primer", Fifth edition, Tata McGraw Hill Publication
- 3. Anita Seth, B.L.Juneja, "Java One Step Ahead", oxford university press.

References:

- 1. D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press.
- 2. Learn to Master Java by Star EDU Solutions
- 3. Yashvant Kanetkar, "Let Us Java", 4th Edition, BPB Publications.

Term Work:

The Term work shall consist of at least 15 practical based on the above list. The term work Journal must include at least 2 Programming assignments. The Programming assignments should be based on real world applications which cover concepts from more than one modules of syllabus.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Course Code	Course	Teaching (Contact	•		Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ITM301	Mini Project - 1 A for Front end /backend Application using JAVA		04			02		02	

Course	Course	Examination Scheme									
Code	Name		Theo	ry Marks							
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total			
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Tract./Orar	Total			
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA					25	25	50			

Course Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Course Outcome: Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.

- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project: Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of
 each institute. The progress of mini project to be evaluated on continuous basis, minimum two
 reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;
 - o Marks awarded by guide/supervisor based on log book : 10
 - o Marks awarded by review committee : 10
 - Quality of Project report : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines. One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalisation of problem
 - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
 - First review is based on readiness of building working prototype to be conducted.
 - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
 - o Identification of need/problem
 - o Proposed final solution
 - o Procurement of components/systems
 - o Building prototype and testing
- Two reviews will be conducted for continuous assessment,
 - First shall be for finalisation of problem and proposed solution
 - Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI

(**With Effect** from 2020-2021)

Semester IV

Course	urse ode Course Name		Teaching (Contact		?		Credits As	signed	
Code		Theor	ry Prac	et.	Γut.	Theory	Pract.	Tut.	Total
ITC401	Engineering Mathematics-IV	3			1	3		1	4
ITC402	Computer Network and Network Design	3				3			3
ITC403	Operating System	3				3			3
ITC404	Automata Theory	3				3			3
ITC405	Computer Organization and Architecture	3				3			3
ITL401	Network Lab		2				1		1
ITL402	Unix Lab		2				1		1
ITL403	Microprocessor Lab		2				1		1
ITL404	Python Lab (SBL)		4				2		2
ITM401	Mini Project – 1 B for Python based automation projects		4\$				2		2
	Total	15	14		1	15	7	1	23
			L		Exam	ination Scl	neme	1	<u> </u>
		Theory					Term Work	Pract/ oral	Total
Course Code	Course Name	Inter	nal Asses	sment	End Sem Exan	. Duratio	n		
		Test 1	Test 2	Avg.					
ITC401	Engineering Mathematics-IV	20	20	20	80	3	25		125
ITC402	Computer Network and Network Design	20	20	20	80	3			100
ITC403	Operating System	20	20	20	80	3			100
ITC404	Automata Theory	20	20	20	80	3			100
ITC405	Computer Organization and Architecture	20	20	20	80	3			100
ITL401	Network Lab						25	25	50
ITL402	Unix Lab						25	25	50
ITL403	Microprocessor Lab						25	25	50
ITL404	Python Lab (SBL)						25	25	50
ITM401	Mini Project – 1 B for Python based automation projects						25	25	50
·	Total			100	400		150	75	775

^{\$} indicates work load of Learner (Not Faculty), for Mini Project. Students can form groups with minimum

^{2 (}Two) and not more than 4 (Four) Faculty Load: 1 hour per week per four groups

Course	Course Name		ing Sche tact Hou		Credits Assigned			
Code		Theory	Prac t.	Tut.	Theory	TW/Pract	Tut.	Total
ITC401	Engineering Mathematics-IV	03	-	01	03	-	01	04

		Examination Scheme									
		Inter		heory sessment							
Course Code	Course Name	Test1	Test2	Avg of Test 1 & 2	End Sem Exam	Term Work	Pract	Oral	Total		
ITC401	Engineering Mathematics-IV	20	20	20	80	25	-	-	125		

Pre-requisite: Engineering Mathematics-I, Engineering Mathematics-II, Engineering Mathematics-III, Binomial Distribution.

Course Objectives:

Sr. No.	Course Objectives
The cours	se aims:
1	To study Matrix algebra and its application in engineering problems.
2	To learn Line and Contour integrals and expansion of complex valued function in a power series.
3	To study Z-Transforms and Inverse Z-Transforms with its properties.
4	To acquaint with the concepts of probability distributions and sampling theory for small samples.
5	To study and apply Linear and Non-linear programming Techniques to solve the optimization problems

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Apply the concepts of eigen values and eigen vectors to solve engineering problems.	L1, L2, L3
2	Illustrate the use of concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals.	L3
3	Apply the concept of Z- transformation and its inverse in engineering problems.	L1,L2,L3

4	Apply the concept of probability distribution to engineering problems & testing hypothesis of small samples using sampling theory.	L3
5	Apply the concept of Linear Programming to solve the optimization problems	L1, L2, L3
6	Use the Non-Linear Programming techniques to solve the optimization problems.	L3

Module	Detailed Contents	Hours	CO Mapping
	Module: Linear Algebra (Theory of Matrices) 1.1 Characteristic Equation, Eigenvalues and Eigenvectors and properties (without proof)		
01	1.2 Cayley-Hamilton Theorem (without proof), verification and reduction of higher degree polynomials1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices	7	CO1
	Self-learning Topics: Derogatory and non-derogatory matrices, Functions of Square Matrix, Linear Transformations, Quadratic forms.		
	 Module: Complex Integration 2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). 2.2 Taylor's and Laurent's series (without proof). 2.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real integrations. 	7	CO2
03	 Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {kⁿa^k}, {a^k}, {^{k+n}C. a^k}, {c^k sin(αk + β)}, {c^k sinh αk}, {c^k cosh αk}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k, Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of 	5	CO3
04	Module: Probability Distribution and Sampling Theory 4.1 Probability Distribution: Poisson and Normal distribution 4.2 Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom. 4.3 Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table. Self-learning Topics: Test significance for Large samples, Estimate parameters of a population., Yate's Correction.	7	CO4
05	Module: Linear Programming Problems	6	

	5.1 Types of solutions, Standard and Canonical of LPP, Basic and Feasible solutions, slack variables, surplus variables, Simplex method.		CO5
	5.2 Artificial variables, Big-M method (Method of penalty)		
	5.3 Duality, Dual of LPP and Dual Simplex Method		
	Self-learning Topics: Sensitivity Analysis, Two-Phase Simplex Method,		
	Revised Simplex Method		
	Module: Nonlinear Programming Problems		
	6.1 NLPP with one equality constraint (two or three variables) using the method of Lagrange's multipliers		
	6.2 NLPP with two equality constraints		~ 0.4
06	6.3 NLPP with inequality constraint: Kuhn-Tucker conditions	7	CO6
	Self-learning Topics: Problems with two inequality constraints,		
	Unconstrained optimization: One dimensional search method (Golden		
	Search method, Newton's method). Gradient Search method		

References:

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons.
- 2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa.
- 3. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 4. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 5. Operations Research: An Introduction, Hamdy A Taha, Pearson.
- 6. Engineering Optimization: Theory and Practice, S.S Rao, Wiley-Blackwell.
- 7. Operations Research, Hira and Gupta, S. Chand Publication.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in

Term Work:

General Instructions:

- 1. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 2. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering Mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows –

1. Attendance (Theory and Tutorial)	05 marks
2. Class Tutorials on entire syllabus	10 marks
3. Mini project	10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein 4 sub-questions of 5 marks each will be asked.
- 4. Remaining questions will be randomly selected from all the modules.
- 5. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Course Code	Course	Teaching Scheme (Contact Hours)		Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC402	Computer Network and Network Design	03			03			03

Course	Course	Examination Scheme						
Code	Name	Theory Marks						
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work		
ITC402	Computer Network and Network Design	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives				
The cour	se aims:				
1	Understand the division of network functionalities into layers.				
2	Understand the types of transmission media along with data link layer concepts, design issues and protocols				
3	Analyze the strength and weaknesses of routing protocols and gain knowledge about IP addressing				
4	Understand the data transportation, issues and related protocols for end to end delivery of data.				
5	Understand the data presentation techniques used in presentation layer & client/server model in application layer protocols.				
6	Design a network for an organization using networking concepts				

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy	
On suc	cessful completion, of course, learner/student will be able to:	_	
1	Describe the functionalities of each layer of the models and compare the Models.	L1	
2	Categorize the types of transmission media and explain data link layer concepts, design issues and protocols.	L2, L3, L4	
3	Analyze the routing protocols and assign IP address to networks.	L4	
4	Explain the data transportation and session management issues and related protocols used for end to end delivery of data.	L1, L2	
5	List the data presentation techniques and illustrate the client/server model in application layer protocols.	L1, L3	
6	Use of networking concepts of IP address, Routing, and application services to design a network for an organization	L3	

Prerequisite: PCOM

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Terminologies of communication	02	-
I	Introduction to Computer Networks	Uses Of Computer Networks, Network Hardware, Network Software, Protocol Layering, Reference Models: OSI, TCP/IP, Comparison of OSI & TCP/IP, Network Devices.	03	CO1
		Self-learning Topics: Identify the different devices used in Network connection. College campus		
II	Physical Layer & Data Link Layer	Physical layer: Guided Media, Unguided Media, Wireless Transmission: Electromagnetic Spectrum. Switching: Circuit-Switched Networks, Packet Switching, Structure Of A Switch	08	CO2
		DLL Design Issues (Services, Framing, Error Control, Flow Control), Error Detection and Correction(Hamming Code,Parity, CRC, Checksum), Elementary Data Link protocols: Stop and Wait, Sliding Window(Go Back N, Selective Repeat), Piggybacking, HDLC		
		Medium Access Protocols: Random Access, Controlled Access, Channelization. Ethernet Protocol: Standard Ethernet, Fast Ethernet (100 Mbps), Gigabit Ethernet, 10-Gigabit Ethernet.		
		Self-learning Topics: Differentiate link layer in IOT network and Normal Network.		
III	Network Layer	Network Layer Services, Packet Switching, Network Layer Performance, IPv4 Addressing (classful and classless), Subnetting, Supernetting, IPv4 Protocol, DHCP, Network Address Translation (NAT).	08	CO3
		Routing algorithms: Distance Vector Routing, Link state routing, Path Vector Routing.		
		Protocols –RIP,OSPF,BGP.		
		Next Generation IP: IPv6 Addressing,IPv6 Protocol, Transition fromIPV4 to IPV6		
		Self-learning Topics: Study difference between IPV4 and IPV6. Network Class A, B, C, D, E and subnet mask.		

IV	Transport Layer & Session Layer	Transport Layer: Transport Layer Services, Connectionless & Connection-oriented Protocols, Transport Layer protocols: User Datagram Protocol: UDP Services, UDP Applications, Transmission Control Protocol: TCP Services, TCP Features, Segment, A TCP Connection, Windows in TCP, Flow Control, Error Control, TCP Congestion Control, TCP Timers. Session Layer: Session layer design issues, Session Layer protocol - Remote Procedure Call (RPC), Self-learning Topics: List real time example of UDP and TCP.	07	CO4
V	Presentation Layer & Application Layer	Presentation layer: Compression: Comparison between Lossy Compression and Lossless Compression, Huffman Coding, Speech Compression, LZW, RLE, Image Compression – GIF, JPEG. Application layer: Standard Client-Server Protocols: World Wide Web, HTTP, FTP, Electronic Mail, Domain Name System (DNS), SNMP Self-learning Topics: Difference between HTTP and FTP Protocol.	05	CO5
VI	Network Design Concepts	Introduction to VLAN, VPN A case study to design a network for an organization meeting the following guidelines: Networking Devices, IP addressing: Subnetting, Supernetting, Routing Protocols to be used, Services to be used: TELNET, SSH, FTP server, Web server, File server, DHCP server and DNS server. Self-learning Topics: Study the Network Design of your college campus.	06	CO6

- 1. Andrew S Tanenbaum, Computer Networks -, 4th Edition, Pearson Education.
- 2. Behrouz A. Forouzan, Data Communications and Networking ,4th Edition,Mc Graw Hill education.

References:

- 1. S. Keshav, An Engineering Approach to Computer Networks, 2nd Edition, Pearson Education.
- 2.B. A. Forouzan, "TCP/IP Protocol Suite", Tata McGraw Hill edition, Third Edition.
- 3. Ranjan Bose, Information Theory, Coding and Cryptography, Ranjan Bose, Tata McGrawHill , Second Edition.
- 4. Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufman.

Online References:

Sr. No.	Website Name		
1.	https://www.nptel.ac.in		
2.	https://swayam.gov.in		
3.	https://www.coursera.org/		

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course	Teaching Scheme (Contact Hours)			Credits Assigned			
Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
					/Orai		
Operating System	03			03			03
	Name	Course (Contact Name Theory Operating 03	Course Name(Contact Hours) TheoryPracticalOperating03	Course Name(Contact Hours) TheoryPracticalTutorialOperating03	Course Name(Contact Hours)TheoryPracticalTutorialTheoryOperating0303	Course Name(Contact Hours)TheoryPracticalTutorialTheoryPractical /OralOperating0303	Course Name(Contact Hours)TheoryPracticalTutorialTheoryPractical /OralTutorial /OralOperating0303

Course	Course				Examina	ation Scheme		
Code	Name	Theory Marks						
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work		
ITC403	Operating System	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives
The cours	se aims:
1	To understand the major components of Operating System &its functions.
2	To introduce the concept of a process and its management like transition, scheduling, etc.
3	To understand basic concepts related to Inter-process Communication (IPC) like mutual
	exclusion, deadlock, etc. and role of an Operating System in IPC.
4	To understand the concepts and implementation of memory management policies and virtual
	memory.
5	To understand functions of Operating System for storage management and device management.
6	To study the need and fundamentalsof special-purpose operating system with the advent of new
	emerging technologies.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Understand the basic concepts related to Operating System.	L1, L2
2	Describe the process management policies and illustrate scheduling of processes by CPU.	L1
3	Explain and apply synchronization primitives and evaluate deadlock conditions as handled by Operating System.	L2
4	Describe and analyze the memory allocation and management functions of Operating System.	L1
5	Analyze and evaluate the services provided by Operating System for storage management.	L4, L5
6	Compare the functions of various special-purpose Operating Systems.	L2

Prerequisite: Programming Language C

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Programming Language C; Basic of Hardware i.e. ALU, RAM, ROM, HDD, etc.; Computer-System Organization.	02	-
I	Fundamentals of Operating System	Introduction to Operating Systems; Operating System Structure and Operations; Functions of Operating Systems; Operating System Services and Interface; System Calls and its Types; System Programs; Operating System Structure; System Boot.	03	CO1
		Self-learning Topics: Study of any three different OS. System calls with examples for different OS.		
II	Process Management	Basic Concepts of Process; Operation on Process; Process State Model and Transition; Process Control Block; Context Switching; Introduction to Threads; Types of Threads, Thread Models; Basic Concepts of Scheduling; Types of Schedulers; Scheduling Criteria; Scheduling Algorithms.	06	CO2
		Self-learning Topics: Performance comparison of Scheduling Algorithms, Selection of Scheduling Algorithms for different situations, Real-time Scheduling		
III	ProcessCoordinati on	Basic Concepts of Inter-process Communication and Synchronization; Race Condition; Critical Region and Problem; Peterson's Solution; Synchronization Hardware and Semaphores; Classic Problems of Synchronization; Message Passing; Introduction to Deadlocks; System Model, Deadlock Characterization; Deadlock Detection and Recovery; Deadlock Prevention; Deadlock Avoidance.	09	CO3
		Self-learning Topics: Study a real time case study for Deadlock detection and recovery.		
IV	Memory Management	Basic Concepts of Memory Management; Swapping; Contiguous Memory Allocation; Paging; Structure of Page Table; Segmentation; Basic Concepts of Virtual Memory; Demand Paging, Copy-on Write; Page Replacement Algorithms; Thrashing.	09	CO4
		Self-learning Topics: Memory Management for any one Operating System, Implementation of Page Replacement Algorithms.		

V	Storage Management	Basic Concepts of File System; File Access Methods; Directory Structure; File-System Implementation; Allocation Methods; Free Space Management; Overview of Mass-Storage Structure; Disk Structure; Disk Scheduling; RAID Structure; Introduction to I/O Systems. Self-learning Topics: File System for Linux and Windows, Features of I/O facility for	06	CO5
VI	Special-purpose Operating Systems	Open-source and Proprietary Operating System; Fundamentals of Distributed Operating System; Network Operating System; Embedded Operating Systems; Cloud and IoT Operating Systems; Real-Time Operating System; Mobile Operating System; Multimedia Operating System; Comparison between Functions of various Special-purpose Operating Systems. Self-learning Topics: Case Study on any one Special-purpose Operating Systems.	04	CO6

- 1. A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts, 10th ed., Wiley, 2018.
- 2. W. Stallings, Operating Systems: Internal and Design Principles, 9th ed., Pearson, 2018.
- 3. A. Tanenbaum, Modern Operating Systems, Pearson, 4th ed., 2015.

Reference Books:

- 1. N. Chauhan, Principles of Operating Systems, 1st ed., Oxford University Press, 2014.
- 2. A. Tanenbaum and A. Woodhull, Operating System Design and Implementation, 3rd ed., Pearson.
- 3. R. Arpaci-Dusseau and A. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, CreateSpace Independent Publishing Platform, 1st ed., 2018.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://swayam.gov.in
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC404	Automata Theory	03			03			03

Course	Course				Examina	ation Scheme		
Code	Name	Theory Marks						
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term work		
ITC404	Automata Theory	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives
The cours	se aims:
1	To learn fundamentals of Regular and Context Free Grammars and Languages.
2	To understand the relation between Regular Language and Finite Automata and machines.
3	To learn how to design Automata's as Acceptors, Verifiers and Translators.
4	To understand the relation between Regular Languages, Contexts free Languages, PDA and
	TM.
5	To learn how to design PDA as acceptor and TM as Calculators.
6	To learn applications of Automata Theory.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as
		per Bloom's
On suc	cessful completion, of course, learner/student will be able to:	Taxonomy
1	Explain, analyze and design Regular languages, Expression and Grammars.	L2, L4, L6
2	Design different types of Finite Automata and Machines as Acceptor,	L6
	Verifier and Translator.	
3	Analyze and design Context Free languages and Grammars.	L4, L6
4	Design different types of Push down Automata as Simple Parser.	L6
5	Design different types of Turing Machines as Acceptor, Verifier, Translator	L6
	and Basic computing machine.	
6	Develop understanding of applications of various Automata.	L6

 $\textbf{Prerequisite:} \ Basic \ Mathematical \ Fundamentals: \ Sets, \ Logic, \ Relations, \ Functions.$

Sr.	Module	Detailed Content	Hours	CO
No.				Mapping

0	Prerequisite	Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.	02	-
I	Introduction and Regular Languages	Languages: Alphabets and Strings. Regular Languages: Regular Expressions, Regular Languages, Regular Grammars, RL and LL grammars, Closure properties Self-learning Topics: Practice exercise on Regular Expressions. Identify the tools also.	05	CO1
II	Finite Automata	Finite Automata: FA as language acceptor or verifier, NFA (with and without ε), DFA, RE to NFA, NFA to DFA, Reduced DFA, NFA-DFA equivalence, FA to RE. Finite State Machines with output: Moore and Mealy machines. Moore and Mealy M/C conversion. Limitations of FA. Self-learning Topics: Practice exercise on FA and NFA	09	CO2
III	Context Free Grammars	Context Free Languages: CFG, Leftmost and Rightmost derivations, Ambiguity, Simplification and Normalization (CNF & GNF) and Chomsky Hierarchy (Types 0 to 3) Self-learning Topics: Practice numerical or exercise on CFG	08	CO3
IV	Push Down Automata	Push Down Automata: Deterministic (single stack) PDA, Equivalence between PDA and CFG. Power and Limitations of PDA. Self-learning Topics: List the examples of PDA.	05	CO4
V	Turing Machine	Turing Machine: Deterministic TM, Variants of TM, Halting problem, Power of TM. Self-learning Topics: Practice numerical of TM.	07	CO5
VI	Applications of Automata	Applications of FA, CFG, PDA & TM. Introduction to Compiler & Its phases. Self-learning Topics: Case study on any one compiler.	03	CO2,CO 3, CO4,CO 5, CO6

Text books

- 1. J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.
- 2. Kavi Mahesh, "Theory of Computation A Problem Solving Approach", Wiley India
- 3. A. V. Aho, R. Shethi, Monica Lam , J.D. Ulman , "Compilers Principles, Techniques and Tools ",Pearson Education.

References

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons.
- 3. Vivek Kulkarni," Theory of Computation", Oxford University.
- 4. N.Chandrashekhar, K.L.P. Mishra, "Theory of Computer Science, Automata Languages & Computations", PHI publications.
- 5.J. J. Donovan, "Systems Programming", TMH.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://online.stanford.edu
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

.

Course Code	Course	Teaching (Contact		Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC405	Computer Organization and Architecture	03			03			03

Course	Course	Examination Scheme						
Code	Name		Theory Marks					
			Internal assessment			Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term work	Tract./Oral	Total
ITC405	Computer Organization and Architecture	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives						
The cours	The course aims:						
1	Learn the fundamentals of Digital Logic Design.						
2	Conceptualize the basics of organizational and features of a digital computer.						
3	Study microprocessor architecture and assembly language programming.						
4	Study processor organization and parameters influencing performance of a processor.						
5	Analyse various algorithms used for arithmetic operations.						
6	Study the function of each element of memory hierarchy and various data transfer techniques used in digital computer.						

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Demonstrate the fundamentals of Digital Logic Design	L1, L2
2	Describe basic organization of computer, the architecture of 8086 microprocessor and implement assembly language programming for 8086 microprocessors.	L1
3	Demonstrate control unit operations and conceptualize instruction level parallelism.	L1, L2
4	List and Identify integers and real numbers and perform computer arithmetic operations on integers.	L1,L4
5	Categorize memory organization and explain the function of each element of a memory hierarchy.	L4
6	Examine different methods for computer I/O mechanism.	L3

Prerequisite: Basics of Electrical Engineering, Fundamentals of Computer.

Sr. No.	Module	Hours	CO Mapping	
0	Prerequisite	Basics of Electrical Engineering, Fundamentals of Computer	02	
I	Fundamentals of Logic Design	Number systems: Introduction to Number systems, Binary Number systems, Signed Binary Numbers, Binary, Octal, Decimal and Hexadecimal number and their conversions, 1's and 2's complement Combinational Circuits: NOT,AND,OR,NAND,NOR,EX-OR,EX-NOR Gates. Half & Full Adder and subtractor, Reduction of Boolean functions using K-map method (2,3,4 Variable), introduction to Multiplexers and Demultiplexers, Encoders & Decoders. Sequential Circuits: Introduction to Flip Flops: SR, JK, D, T, master slave flip flop, Truth Table. Self-learning Topics: Number System, Quine-	07	CO1
II	Overview of Computer Architecture & Organization	McCluskey,Flip-Flop conversion, Counter Design. Introduction of Computer Organization and Architecture. Basic organization of computer and block level description of the functional units. Evolution of Computers, Von Neumann model. Performance measure of Computer Architecture, Amdahl's Law Architecture of 8086 Family, Instruction Set, Addressing Modes, Assembler Directives, Mixed- Language Programming, Stack, Procedure, Macro. Self-learning Topics: Interfacing of I/O devices	08	CO2
III	Processor Organization and Architecture	with 8086(8255,ADC,DAC). CPU Architecture, Instruction formats, basic instruction cycle with Interrupt processing. Instruction interpretation and sequencing. Control Unit: Soft wired (Microprogrammed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations, concepts of nano programming. Introduction to parallel processing concepts, Flynn's classifications, instruction pipelining, pipeline hazards. Self-learning Topics: Study the examples on instruction pipelining for practice.	07	CO3
IV	Data Representation and Arithmetic Algorithms	Booth's algorithm. Division of integers: Restoring and non-restoring division, signed division, basics of floating-point representation IEEE 754 floating point (Single & double precision) number representation. Self-learning Topics: Implement Booth's Algorithm and Division methods.	04	CO4
V	Memory Organization	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics. Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory	07	CO5

		Self-learning Topics: Case study on Memory Organization, Numerical on finding EAT, Address		
VI	I/O Organization	mapping. Input/output systems, I/O module-need & functions	04	CO6
V I	1/O Organization	and Types of data transfer techniques: Programmed	04	
		I/O, Interrupt driven I/O and DMA		
		Self-learning Topics: Comparison of all I/O		
		methods.		

- 1. R. P. Jain,"Modern Digital Electronics", TMH
- 2. M. Morris Mano,"Digital Logic and Computer Design", PHI
- 3. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, Computer Organization, Fifth Edition, Tata McGraw-Hill.
- 4. William Stallings, Computer Organization and Architecture: Designing for Performance, Eighth Edition., Pearson
- 5. John Uffenbeck, 8086/8088 family: Design Programming and Interfacing, (Pearson Education

References:

- 1. A. Anand Kumar, "Fundamentals of Digital Circuits",. PHI
- 2. Donald P Leach, Albert Paul Malvino, "Digital Principals & Applications", TMH.
- 3. B. Govindarajulu, Computer Architecture and Organization: Design Principles and Applications, Computer Architecture and Organization: Design Principles and Applications, Tata McGraw-Hill
- 4. Dr. M. Usha, T. S. Srikanth, Computer System Architecture and Organization, First Edition, Wiley-India.
- 5. John P. Hayes, Computer Architecture and Organization, Third Edition., McGraw-Hill
- 6. K Bhurchandi, Advanced Microprocessors & Peripherals, Tata McGraw-Hill Education

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.geeksforgeeks.org
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL401	Network Lab		02			01		01

Lab Code	Lab Name	Examination Scheme							
			Theo	ry Marks					
		Internal assessment			End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Tract./Oran	Total	
ITL401	Network Lab					25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives							
The Lab	The Lab experiments aims:							
1	To get familiar with the basic network administration commands							
2	To install and configure network simulator and learn basics of TCL scripting.							
3	To understand the network simulator environment and visualize a network topology and							
	observe its performance							
4	To implement client-server socket programs.							
5	To observe and study the traffic flow and the contents of protocol frames.							
6	To design and configure a network for an organization							

Lab Outcomes:

Sr.	Lab Outcomes	Cognitive levels
No.		of attainment as
		per Bloom's
		Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Execute and evaluate network administration commands and demonstrate their	L3, L5
	use in different network scenarios	
2	Demonstrate the installation and configuration of network simulator.	L1, L2
3	Demonstrate and measure different network scenarios and their performance	L1, L2
	behavior.	
4	Implement the socket programming for client server architecture.	L3
5	Analyze the traffic flow of different protocols	L4
6	Design a network for an organization using a network design tool	L6

Prerequisite: C /Java

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	NS2.34, Protocol Analyzer (eg. Wireshark), C/Java/python

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Programming Language (C/Java), Basic commands of windows and Unix/Linux operating system. editor commands (eg nano/vi editor etc)	02	-
I	Fundamentals of Computer Network	Understanding Basic networking Commands: ifconfig ,ip, traceroute, tracepath, ping, netstat, ss, dig, nslookup, route, host, arp, hostname, curl or wget, mtr, whois, tcpdump • Execute and analyze basic networking commands.	02	LO1
II	Basics of Network simulation	Installation and configuration of NS2. Introduction to Tcl Hello Programming • Installation and configuring of NS-2 simulator and introduction to Tcl using Hello program	02	LO2
III	Simulation of Network Topology with different Protocols	Implementation of Specific Network topology with respect to 1. Number of nodes and physical layer configuration 2. Graphical simulation ofnetwork with RoutingProtocols(Distance Vector/ Link State Routing) and trafficconsideration (TCP, UDP)using NAM. 3. Analysis of networkperformance for quality ofservice parameters such aspacket-delivery-ratio, delayand throughput 4. Comparative analysis of routing protocols with respect to QOS parametersusing Xgraph/gnuplot fordifferent load conditions. • Write TCL scripts to create topologies. Create and run traffics and analyze the result using NS2 • Write TCL scripts for topology with Graphical simulation of traffic consideration (TCP, UDP) using NAM and plot the graph • Implement distance vector and link state routing protocols in NS2.	06	LO3 LO5
IV	Socket Programming	Socket Programming with C/Java/python 1. TCP Client, TCP Server 2. UDP Client, UDP Server • To study and Implement Socket Programming using TCP.	04	LO4

		To study and Implement Socket Programming using UDP		
V	Protocol Analyzer	 Study of various Network Protocol Analyzer Tools likeWireshark, tcpdump, Windump, Microsoft Message Analyzer, Ettercap, Nirsoft SmartSniff etc. Install one of the Network protocol analyzer tools and analyze the traffic Study various network protocol analyzer tools and analyze the network traffics using one of the network protocol analyzer tools. 	04	LO5
VI	Network Design	Network Design for an organization using the following concepts: 1. Addressing (IP Address Assignment), 2. Naming (DNS) 3. Routing • Perform remote login using Telnet Server • Design a network for an organization using the concepts of Addressing (IP Address Assignment), Naming (DNS) and Routing. Also mention the internetworking devices used	06	LO6

- 1. Computer Network Simulation in NS2 Basic Concepts and Protocol Implementation.-Prof Neeraj Bhargava, Pramod Singh Rathore, Dr. Ritu Bhargava, Dr. Abhishek Kumar, First Edition. BPB Publication.
- 2. Packet analysis with Wire shark, Anish Nath, PACKT publishing
- 3. TCP/IP Protocol Suite 4th Edition by Behrouz A. Forouzan

References:

- **1.** NS2.34 Manual
- 2. Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems by Chris Sanders

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL402	Unix Lab		02			01		01

Lab Code Lab Name		Examination Scheme						
			Theo	ry Marks				
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Fract./Orar	Total
ITL402	Unix Lab					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives				
The Lab e	experiments aims:				
1	1 To understand architecture and installation of Unix Operating System				
2	To learn Unix general purpose commands and programming in Unix editor environment				
3	To understand file system management and user management commands in Unix.				
4	To understand process management and memory management commands in Unix				
5	To learn basic shell scripting.				
6	To learn scripting using awk and perl languages.				

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Understand the architecture and functioning of Unix	L1, L2
2	Identify the Unix general purpose commands	L4
3	Apply Unix commands for system administrative tasks such as file system management and user management.	L3
4	Execute Unix commands for system administrative tasks such as process management and memory management	L4
5	Implement basic shell scripts for different applications.	L3
6	Implement advanced scripts using awk & perl languages and grep, sed, etc. commandsfor performing various tasks.	L3

Prerequisite: Programming Language C

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Unix, Editor, Bash shell, Bourne shell and C shell

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Basic Programming Skills, Concepts of Operating System	02	-
I	Introduction to Unix	Case Study: Brief History of UNIX, Unix Architecture; Installation of Unix Operating System	03	LO1
II	Basic Commands	a) Execution of Unix General Purpose Utility Commands like echo, clear, exit, date, time, uptime, cal, cat, tty, man, which, history, id, pwd, whoami, ping, ifconfig, pr, lp, lpr, lpstat, lpq, lprm, cancel, mail, etc.	03	LO2
		b) Working with Editor Vi/other editor.		
III	Commands for File System Management and	a) Study of Unix file system (tree structure), file and directory permissions, single and multiuser environment.	04	LO3
	User Management	b) Execution of File System Management Commands like ls, cd, pwd, cat, mkdir, rmdir, rm, cp, mv, chmod, wc, piping and redirection, grep, tr, echo, sort, head, tail, diff, comm, less, more, file, type, wc, split, cmp, tar, find, vim, gzip, bzip2, unzip, locate, etc.		
		c) Execution of User Management Commands like who, whoami, su, sudo, login, logout, exit, passwd, useradd/adduser, usermod, userdel, groupadd, groupmod, groupdel, gpasswd, chown, chage, chgrp, chfn, etc.		
IV	Commands for Process Management and	a) Execution of Process Management Commands like ps, pstree, nice, kill, pkill, killall, xkill, fg, bg, pgrep, renice, etc.	04	LO4
	Memory Management	b) Execution of Memory Management Commands like free, /proc/meminfo, top, htop, df, du, vmstat, demidecode, sar, pagesize, etc.		
V	Basic Scripts	a) Study of Shell, Types of Shell, Variables andOperatorsb) Execute the following Scripts (at least 6):	04	L02, L03, L05
		 (i) Write a shell script to perform arithmetic operations. (ii) Write a shell script to calculate simple interest. (iii) Write a shell script to determine largest among three integer numbers. (iv) Write a shell script to determine a given year is leap year or not. (v) Write a shell script to print multiplication table of given number using while statement. 		200

VI	Advanced Scripts	 (vi) Write a shell script to search whether element is present is in the list or not. (vii) Write a shell script to compare two strings. (viii) Write a shell script to read and check if the directory / file exists or not, if not make the directory / file. (ix) Write a shell script to implement menu-driven calculator using case statement. (x) Write a shell script to print following pattern: * ** *** (xi) Write a shell script to perform operations on directory like: display name of current directory; display list of directory contents; create another directory, write contents on that and copy it to a suitable location in your home directory; etc. a) Execute the following scripts using grep / sed 	06	LO2,
		commands: (i) Write a script using grep command to find the number of words character, words and lines in a file. (ii) Write ascriptusing egrep command to display list of specific type of files in the directory. (iii) Write a script using sed command to replace all occurrences of particular word in given a file. (iv) Write a script using sedcommand to print duplicated lines in input. b) Execute the following scripts using awk / perl languages: (i) Write an awk script to print all even numbers in a given range. (ii) Write an awk script to develop a Fibonacci series (take user input for number of terms). (iii) Write a perl script to sort elements of an array. (iv) Write a perl script to check a number is prime or not.		L03, L06

- 1. S. Das, Unix Concepts and Applications, 4th ed., McGraw Hill, 2017.
- 2. R. Michael, Mastering Unix Shell Scripting, 2nd ed., Wiley, 2008.
- 3. D. Ambawade, D. Shah, Linux Labs and Open Source Technologies, Dreamtech Press, 2014.

References:

- 1. Y. Kanetkar, Unix Shell Programming, BPB Publications, 2003.
- 2. B. Forouzan and R. Gilberg, Unix and Shell Programming, Cengage Learning, 2003.

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	_	ching Scheme ntact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ITL403	Microprocessor Lab		02			01		01	

Lab Code	Lab Name	Examination Scheme							
		Theory Marks							
		Internal assessment End Term Work Pract. /Oral			Total				
		Test1	Test 2	Avg.	Sem. Exam	Term work	Fract./Orar	Total	
ITL403	Microprocessor Lab					25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives					
The Lab	experiments aims:					
1	Learn assembling and disassembling of PC					
2	Design, simulate and implement different digital circuits					
3	Get hands on experience with Assembly Language Programming.					
4	Study interfacing of peripheral devices with 8086 microprocessor.					
5	Realize techniques for faster execution of instructions and improve speed of operation and					
	performance of microprocessors.					
6	Write and debug programs in TASM/MASM/hardware kits					

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy				
On suc	On successful completion, of course, learner/student will be able to:					
1	Demonstrate various components and peripheral of computer system	L2				
2	Analyze and design combinational circuits	L4, L6				
3	Build a program on a microprocessor using arithmetic & logical instruction set of 8086.	L3				
4	Develop the assembly level programming using 8086 loop instruction set	L6				
5	Write programs based on string and procedure for 8086 microprocessor.	L1				
6	Design interfacing of peripheral devices with 8086 microprocessor.	L6				

Prerequisite: Logic Design, Programming Languages(C, C++)

Hardware & Software Requirements:

NOTE: Programs can be executed on assembler or hardware boards.

Hardware Requirement:

- ➤ Motherboard, RAM, Processor, Connectors, Cables, SMPS, HDD, Monitor, Graphics card (optional), and Cabinet.
- ➤ 8086 microprocessor experiment kits with specified interfacing study boards

Software requirement:

- Microsoft Macro Assembler (TASM)/Turbo Assembler (TASM)
- > Virtual simulator lab.
- > Proteus design suite

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours	LO
No.				Mapping
I	PC Assembly	Study of PC Motherboard Technology (South Bridge and North Bridge), Internal Components and Connections used in computer system.	02	LO1
II	Implementation of combinational circuits	Verify the truth table of various logic gates (basic and universal gates) Realize Half adder and Full adder Implementation of MUX and DeMUX	06	LO2
III	Arithmetic and logical operations in 8086 Assembly language programming	 Program for 16 bit BCD addition Program to evaluate given logical expression. Convert two digit Packed BCD to Unpacked BCD. (any two) 	05	LO3
IV	Loop operations in 8086 Assembly language programming	 Program to move set of numbers from one memory block to another. Program to count number of 1's and 0's in a given 8 bit number Program to find even and odd numbers from a given list Program to search for a given number (any three) 	06	LO4
V	String &Procedure in 8086 Assembly language programming	 Check whether a given string is a palindrome or not. Compute the factorial of a positive integer 'n' using procedure. OR Generate the first 'n' Fibonacci numbers. 	04	LO5
VI	Interfacing with 8086 microprocessor	 Interfacing Seven Segment Display Interfacing keyboard matrix Interfacing DAC (any one) 	03	LO6

Text Books:

- 1. Scott Mueller, "Upgrading and repairing PCs", Pearson,
- 2. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 3. John Uffenbeck, "8086/8088 family: Design Programming and Interfacing:"Pearson Education

Reference Books:

- 1. M. Morris Mano, "Digital Logic and computer Design", PHI
- 2. K Bhurchandi, "Advanced Microprocessors & Peripherals", Tata McGraw-Hill Education

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL404	Python Lab (SBL)		04			02		02

Lab Code	Lab Name		Examination Scheme					
			Theo	ry Marks				
		Inte	Internal assessment End				Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Tract./Oral	Total
ITL404	Python Lab (SBL)			-1		25	25	50

Lab Objectives:

Sr. No.	Lab Objectives
The Lab	experiments aims:
1	Basics of python including data types, operator, conditional statements, looping statements, input and output functions in Python
2	List, tuple, set, dictionary, string, array and functions
3	Object Oriented Programming concepts in python
4	Concepts of modules, packages, multithreading and exception handling
5	File handling, GUI & database programming
6	Data visualization using Matplotlib, Data analysis using Pandas and Web programming using Flask

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Understand the structure, syntax, and semantics of the Python language.	L1, L2
2	Interpret advanced data types and functions in python	L1, L2
3	illustrate the concepts of object-oriented programming as used in Python	L2
4	Create Python applications using modules, packages, multithreading and exception handling.	L6
5	Gain proficiency in writing File Handling programs ,also create GUI applications and evaluate database operations in python.	L1, L2
6	Design and Develop cost-effective robust applications using the latest Python trends and technologies	L6

Prerequisite: Structured Programming Approach & Java Programming Lab

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements
PC With following Configuration	1. Windows or Linux Desktop OS	1. Internet Connection for installing additional packages if required
Configuration	2. Python 3.6 or higher	if required
1. Intel Dual core Processor or higher	3. Notepad ++	
2. Minimum 2 GB RAM	4.Python IDEs like IDLE, Pycharm, Pydev, Netbeans or	
3. Minimum 40 GB Hard	Eclipse	
disk	5. Mysql	
4. Network interface card		

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Python IDE installation and environment setup.	02	
I	Basics of Python	Introduction, Features, Python building blocks – Identifiers, Keywords, Indention, Variables and Comments, Basic data types (Numeric, Boolean, Compound) Operators: Arithmetic, comparison, relational, assignment, logical, bitwise, membership, identity operators, operator precedence Control flow statements: Conditional statements (if, ifelse, nested if) Looping in Python (while loop, for loop, nested loops) Loop manipulation using continue, pass, break. Input/output Functions, Decorators, Iterators and Generators.	08	LO 1
II	Advanced data types & Functions	Lists: a) Defining lists, accessing values in list, deleting values in list, updating lists b) Basic list operations c) Built-in list functions Tuples: a) Accessing values in Tuples, deleting values in Tuples, and updating Tuples b) Basic Tuple operations c) Built-in Tuple functions Dictionaries: a) Accessing values in Dictionary, deleting values in Dictionary, and updating Dictionary b) Basic Dictionary operations c) Built-in Dictionary functions Sets: a) Accessing values in Set, deleting values in Set, updating Sets b) Basic Set operations, c) Built-in Set functions Strings: a) String initialization, Indexing, Slicing, Concatenation, Membership & Immutability b) Built-in String functions Arrays: a) Working with Single dimensional Arrays: Creating, importing, Indexing, Slicing, copying and processing array arrays. b) Working with Multi-dimensional Arrays using Numpy: Mathematical operations, Matrix operations, aggregate and other Built-in functions	09	LO 1 LO 2

		Functions: a) Built-in functions in python b) Defining function, calling function, returning values, passing parameters c) Nested and Recursive functions d) Anonymous Functions		
		(Lambda, Map, Reduce, Filter)		
III	Object Oriented	Overview of Object-oriented programming,	08	LO 1
111	Object Oriented Programming	Creating Classes and Objects, Self-Variable,	UO	LO 1 LO 3
	Frogramming	Constructors, Inner class, Static method,		LO 3
		Namespaces.		
		Inheritance: Types of Inheritance (Single,		
		Multiple, Multi-level, Hierarchical), Super()		
		method, Constructors in inheritance, operator		
		overloading, Method overloading, Method		
		overriding, Abstract class, Abstract method,		
		Interfaces in Python.		
IV	Exploring concept	Modules: Writing modules, importing objects	06	LO 1
	of modules,	from modules, Python built-in modules (e.g.		LO 4
	packages,	Numeric and Mathematical module, Functional		
	multithreading and	Programming module, Regular Expression		
	exception handling	module), Namespace and Scoping.		
		Packages: creating user defined packages and		
		importing packages.		
		Multi-threading: process vs thread, use of threads,		
		types of threads, creating threads in python, thread		
		synchronization, deadlock of threads.		
		Exception handling: Compile time errors,		
		Runtime errors, exceptions, types of exception, try		
		statement, except block, raise statement, Assert statement, User-Defined Exceptions.		
V	File handling, GUI	File Handling: Opening file in different modes,	09	LO 1
•		The Handing. Opening the in different modes,	0)	LOI
	& database	closing a file writing to a file accessing file		LO 5
	& database	closing a file, writing to a file, accessing file contents using standard library functions, reading		LO 5
	& database programming	contents using standard library functions, reading		LO 5
		contents using standard library functions, reading from a file – read (), readline (), readlines (),		LO 5
		contents using standard library functions, reading		LO 5
		contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions,		LO 5
		contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.),		LO 5
		contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame,		LO 5
		contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check		LO 5
		contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message		LO 5
		contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform		LO 5
		contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like		LO 5
VI	programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.).	10	
VI	programming Data visualization,	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with	10	LO 1
VI	Data visualization, analysis and web	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph,	10	
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.),	10	LO 1
VI	Data visualization, analysis and web	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph,	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures.	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas:	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas: Introduction to Pandas, importing data into Python, series, data frames, indexing data frames, basic operations with data frame, filtering,	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas: Introduction to Pandas, importing data into Python, series, data frames, indexing data frames, basic operations with data frame, filtering, combining and merging data frames, Removing	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas: Introduction to Pandas, importing data into Python, series, data frames, indexing data frames, basic operations with data frame, filtering, combining and merging data frames, Removing Duplicates.	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas: Introduction to Pandas, importing data into Python, series, data frames, indexing data frames, basic operations with data frame, filtering, combining and merging data frames, Removing Duplicates. SciPy: Linear algebra functions using Numpy and	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas: Introduction to Pandas, importing data into Python, series, data frames, indexing data frames, basic operations with data frame, filtering, combining and merging data frames, Removing Duplicates. SciPy: Linear algebra functions using Numpy and Scipy.	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas: Introduction to Pandas, importing data into Python, series, data frames, indexing data frames, basic operations with data frame, filtering, combining and merging data frames, Removing Duplicates. SciPy: Linear algebra functions using Numpy and Scipy. Web programming: Introduction to Flask,	10	LO 1
VI	Data visualization, analysis and web programming	contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.). Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas: Introduction to Pandas, importing data into Python, series, data frames, indexing data frames, basic operations with data frame, filtering, combining and merging data frames, Removing Duplicates. SciPy: Linear algebra functions using Numpy and Scipy.	10	LO 1

List of Experiments/Mini-Project.

Dist of Emp	Crinches with-1 roject.
1)	 Write python programs to understand a) Basic data types, Operators, expressions and Input Output Statements b) Control flow statements: Conditional statements (if, ifelse, nested if) c) Looping in Python (while loop, for loop, nested loops) d) Decorators, Iterators and Generators.
2)	Write python programs to understand a) Different List and Tuple operations using Built-in functions b) Built-in Set and String functions c) Basic Array operations on 1-D and Multidimensional arrays using Numpy d) Implementing User defined and Anonymous Functions
3)	Write python programs to understand a) Classes, Objects, Constructors, Inner class and Static method b) Different types of Inheritance c) Polymorphism using Operator overloading, Method overloading, Method overriding, Abstract class, Abstract method and Interfaces in Python.
4)	Write python programs to understand a) Creating User-defined modules/packages and import them in a program b) Creating user defined multithreaded application with thread synchronization and deadlocks c) Creating a menu driven application which should cover all the built-in exceptions in python
5)	 Write python programs to understand a) Different File Handling operations in Python b) Designing Graphical user interface (GUI) using built-in tools in python (Tkinter, PyQt, Kivy etc.). c) GUI database connectivity to perform CRUD operations in python (Use any one database like SQLite, MySQL, Oracle, PostgreSQL etc.)
6)	 Write python programs to implement a) Different types of plots using Numpy and Matplotlob b) Basic operations using pandas like series, data frames, indexing, filtering, combining and merging data frames. c) Different Linear algebra functions using Scipy. d) A Basic Flask Application to build a Simple REST API.

❖ Mini Project

Mini-project have to be developed in a group of three students which should cover all above topics. **Suggested Mini-Project Topics:**

1. Railway reservation	27 IT Team	52. Business Directory	78. Practice Test
system	Workspace		Management.
2. Inventory Management	29 Job Requisition and	53. Education	79. Asset Management
system.	Interview Management	Directory	System
3 Classroom Management	28 Knowledge Base	54. Dental Clinic	80. Travel Agency
		Management	System.
4 Clinical Trial Initiation	29 Lending Library	55. Fund Raising	81. Placement
and Management		Management	Management System.

5 Competitive Analysis	30 Physical Asset	56. Clinic/ Health	82. Polls Management
Web Site	Tracking and	Management	
	Management		
6 Discussion Forum	31 Project Tracking	57. Cable Management	83. Customer
website	Workspace	System	Management
7 Disputed Invoice	32. Shopping Cart .	58. Survey Creation	84. Project
Management		and Analytics	Management System.
8 Employee Training	33 Knowledge Base	59. Museum	85. Network Marketing
Scheduling and Materials	33 Illio Wieuge Buse	Management System	System
9 Equity Research	34 Lending Library	60. Multi-Level	86. Yoga Health Care
Management	3 · Zenamg Zierary	Marketing System	Management
10 Integrated Marketing	35 Physical Asset	61. Learning	87. Personal Finance
Campaign Tracking	Tracking and	Management System	Management System
Campaign Tracking	Management	Wanagement System	Wanagement System
11 Manufacturina Draces	36 Project Tracking	62 Vnoviladas	88. Real Estate
11 Manufacturing Process		62. Knowledge	
Managements	Workspace	Management System	Management System 89. Stock Mutual
12 Product and Marketing	37 Room and	63. Missing Person	
Requirements Planning	Equipment	Site	Funds Management
10.5	Reservations		
13 Request for Proposal	38 Sales Lead Pipeline	64. Disaster	90. Careers and
Software		Management Site	Employment
			Management System
14 Sports League	39. Yellow Pages &	65. Job Management	91. Music Albums
Management	Business Directory	Site	Management System
15 Absence Request and	40. Time & Billing	66. Financial Portfolio	92. Classified Ads
Vacation Schedule		Management	Managements
Management			
16 Budgeting and Tracking	41. Class Room	67. Market Research	93. Property
Multiple Projects	Management	Management	Management System
17 Bug Database	42. Expense Report	68. Order Management	94. Sales & Retail
Management	Database	System	Management
18 Call Center	43. Sales Contact	69. Point of Sale	95. Dating Site
Management Software	Management Database	os. I omit of Bare	33. Butting Site
19 Change Request	44. Inventory	70. Advertisement	96. Hotel Management
Management Management	Management Database	/Banner Management	System
Management	Wanagement Database	and Analytics	System
20 Compliance Process	45. Issue Database	71. Export	97. Search Engine
•	43. Issue Database		97. Search Engine
Support Site	AC Frank Managana	Management System	00 Outing Name Dance
21 Contacts Management	46. Event Management	72. Invoice	98. Online News Paper
Software	Database	Management	Site
22 Document Library and	47. Service Call	73. Recruitment	99. Image Gallery
Review	Management Database	Management System	
23 Event Planning and	48. Accounting Ledger	74. Articles / Blog /	100. Staffing and
Management	Database	Wiki Web site	Human Capital
			Management
24 Expense Reimbursement	49. Asset Tracking	75. Online Planner	101. Development of a
and Approval	Database		feature-rich, practical
			Online Survey Tool
			(OST)
25 Help Desk and Ticket	50. Cycle Factory	76. Mock Tests and	102 Development of a
Management	Works Management	Examination	Web/Email based
		Management	Search Engine
26 Inventory Tracking	51. Sales Corporation	77. Examination	103. Development of a
	Management	System	web-based
		2,5000111	Recruitment Process
			System for the HR
			group for a company
	1	1	group for a company

- 1. Dr. R. Nageswara Rao," Core Python Programming", Dreamtech Press, Wiley Publication
- 2. M. T. Savaliya, R. K. Maurya, "Programming through Python", StarEdu Solutions.
- 3. E Balagurusamy, "Introduction to computing and problem-solving using python", McGraw Hill Publication.

References:

- 1. Zed A. Shaw, "Learn Python 3 the Hard Way", Zed Shaw's Hard Way Series.
- 2. Martin C. Brown," Python: The Complete Reference", McGraw-Hill Publication.
- 3. Paul Barry," Head First Python", 2nd Edition, O'Reilly Media, Inc.

Online resources:

- 1) https://docs.scipy.org/doc/numpy/user/quickstart.html
- 2) https://matplotlib.org/tutorials/
- 3) https://pandas.pydata.org/docs/getting_started/
- 4) https://www.geeksforgeeks.org/python-build-a-rest-api-using-flask/

Term Work:

The Term work shall consist of at least 15 practical based on the above list. The term work Journal must include at least 2 Programming assignments. The Programming assignments should be based on real world applications which cover concepts from more than one modules of syllabus.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Course Code Course		Teaching (Contact			Credits	Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ITM401	Mini Project - 1 B for Python based automation projects		04			02		02	

Course	Course	Examination Scheme									
Code Name			Theo	ry Marks							
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total			
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Tract. / Oran				
ITM401	Mini Project – 1 B for Python based automation projects					25	25	50			

Course Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentalsto attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Course Outcome: Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.

- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project: Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;

o Marks awarded by guide/supervisor based on log book : 10

o Marks awarded by review committee : 10

Quality of Project report : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines. One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalisation of problem
 - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
 - First review is based on readiness of building working prototype to be conducted.
 - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
 - o Identification of need/problem
 - o Proposed final solution
 - o Procurement of components/systems
 - o Building prototype and testing
- Two reviews will be conducted for continuous assessment,
 - First shall be for finalisation of problem and proposed solution
 - Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

UNIVERSITYOFMUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Information Technology

Second Year with Effect from AY 2017-18

Third Year with Effect from AY 2018-19

Final Year with Effect from AY 2019-20

As per Choice Based Credit and Grading System

with effect from the AY 2016-17

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be

addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality

assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the

program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a

lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of

Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to

add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for

each course, so that all faculty members in affiliated institutes understand the depth and approach of course to

be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty

from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that,

each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed

curriculum accordingly. In addition to outcome based education, semester based credit and grading system is

also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-

centric education since the workload estimated is based on the investment of time in learning and not in

teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of

Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology

has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance.

Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to

be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of

content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional

courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-

18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande

Co-ordinator,

Faculty of Technology,

Member - Academic Council

University of Mumbai, Mumbai

Preamble

It is an honor and a privilege to present the revised syllabus of Bachelor of Engineering in Information Technology (effective from year 2016-17) with inclusion of cutting edge technology.

Information Technology is comparatively a young branch among other engineering disciplines in the University of Mumbai. It is evident from the placement statistics of various colleges affiliated to the University of Mumbai that IT branch has taken the lead in the placement. The branch also provides multi-faceted scope like better placement and promotion of entrepreneurship culture among students, and increased Industry Institute Interactions.

Industries views are that, only 16 % graduates are directly employable. One of the reasons is a syllabus which is not in line with the latest technologies. Our team of faculties has tried to include all the latest technologies in the syllabus. Also the first time we are giving the choice of elective from fifth semester such that students will be master in one of the IT domain.

The syllabus is peer reviewed by experts from reputed industries and as per their suggestions it covers future trends in IT technology and research opportunities available due to these trends.

I would like to thank senior faculties of IT department of all colleges affiliated to Mumbai University for significant contribution in framing the syllabus. Also behalf of all faculties I thank all the industry experts for their valuable feedback and suggestions.

I sincerely hope that the revised syllabus will help all graduate engineers to face the future challenges in the field of information and technology

Program Outcome for graduate Program in Information Technology

- 1. Apply Core Information Technology knowledge to develop stable and secure IT system.
- 2. Design, IT infrastructures for an enterprise using concepts of best practices in information Technology management and security to enterprise processes.
- 3. Manage IT projects using written and oral communication skills in collaborative environments by Participating on teams that address solutions for IT management challenges.
- 4. Identify and discuss professional, individual, organizational, societal, and regulatory implications of Information systems and technology.
- 5. Assess Security of the IT Systems and able to respond to any breach in IT system
- 6. Ability to work in multidisciplinary projects and make it IT enabled.
- 7. Ability to propose the system to reduce carbon footprint.
- 8. Ability to adapt the lifelong learning process to be in sync with trends in Information Technology

Dr. Deven Shah

Chairman (Ad-hoc Board Information Technology)
University of Mumbai)

University of Mumbai

Program Structure B.E. Information Technology, (Rev. 2016)

S. E. Information Technology (Semester-III)

Course	Course	Teaching (Contact			Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
ITC301	Applied Mathematics III	4+1@	-	ı	5	ı	-	5	
ITC302	Logic Design	4	-	ı	4	-	-	4	
ITC303	Data Structures & Analysis	4	-	-	4	-	-	4	
ITC304	Database Management System	4	-	-	4	-		4	
ITC305	Principle of Communications	3+1\$	-	-	4	Sai	_	4	
ITL301	Digital Design Lab	-	2	-	-	1	-	1	
ITL302	Data Structures Lab	-	2	-	7-1	1	-	1	
IT303	SQL Lab	-	2			1	-	1	
ITL304	Java Programming Lab	-	2+2*		-	2	-	2	
	Total	21	10	_	21	5	=	26	

					Exa	mination Sc	Scheme			
Course	Course			Theo	-	I			01	
Code	Name	Inte	rnal As	sessment	Liiu	Exam	TW	Oral	Oral &	
	*	Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)			Pract	Total
ITC301	Applied Mathematics III	20	20	20	80	3	-	-	-	100
ITC302	Logic Design	20	20	20	80	3	-	1	-	100
ITC303	Data Structures & Analysis	20	20	20	80	3	1	1	-	100
ITC304	Database Management System	20	20	20	80	3	ı	1	-	100
ITC305	Principle of Communications	20	20	20	80	3		1	-	100
ITL301	Digital Design Lab	-	-	-	-	-	25		25	50
ITL302	Data Structures Lab	-	-	-	1	-	25		25	50
IT303	SQL Lab	-	-	-	-	-	25	-	25	50
ITL304	Java Programming Lab	-	-	-	-	-	50	-	50	100
	Total	100	100	100	400	-	125		125	750

- @ 4 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as class wise \$ 3 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as batch wise
- \ast 2 hours shown as practical's to be taken class wise lecture and another 2 hours to be taken as batch wise practices in the lab.

Course	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
Code						Practical		
ITC301	Applied Mathematics III	04		01	04			05

		Examination Scheme								
			Theo	ry Marks						
Course Code	Course Name	Inte	ernal asse	ssment	End	Term	Oral &	Oral	Total	
		Test1	Test 2	Avg. of Two Tests	Sem. Exam	Work	Practical		Total	
ITC301	Applied Mathematics III	20	20	20	80		C		100	

Course Objectives: Students will try to learn:

- 1. The concepts of Set theory and Relation.
- 2. The concepts of Functions and define the recursive functions.
- 3. The concept of Laplace transforms.
- 4. The concept of Inverse Laplace transforms.
- 5. The concept of permutations and combinations.
- 6. The concept of variable and also identify the mapping.

Course Outcomes: Students will able to:

- 1. Apply the Set theory and Relation concepts.
- 2. Apply the Functions and define the recursive functions.
- 3. Apply Laplace transform to different applications.
- 4. Apply Inverse Laplace transform to different applications.
- 5. Identify the permutations and combinations.
- 6. Define variable and also identify the mapping.

Prerequisite: Applied Mathematics I, Applied Mathematics II

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Basic of AM-I and AM-II.	02	
I	Set Theory	Set Theory: Definition of Sets, Venn Diagrams, complements, cartesian products, power sets, counting principle, cardinality and countability (Countable and Uncountable sets), proofs of some general identities on sets, pigeonhole principle.	08	CO1

University of Mumbai, B. E. (Information Technology), Rev 2016

II	Relation & Function	Relation: Definition, types of relation, composition of relations, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation. Function: Definition and types of function, composition of functions,	08	CO1 CO2
III	Laplace Transform	recursively defined functions. Introduction, Definition of Laplace transforms Laplace transform of constant, trigonometrical, exponential functions. Important properties of Laplace transform: First shifting theorem, Laplace transform of $L\{f(at)\}$, $L\{t^n f(t)\}$, $L\{\frac{f(t)}{t}\}$, $L\{\frac{d^n f(t)}{dt^n}\}$, $L\{\int_0^t f(u)du\}$ (all without proof). Unit step function, Heavi side function, Dirac-delta function, Periodic function and their Laplace transforms, Second shifting	08	CO3
IV	Inverse Laplace Transform	theorem. Inverse Laplace transform with Partial fraction and Convolution theorem (without proof). Application to solve initial and boundary value problem involving ordinary differential equations with one dependent variable and constant coefficients.	08	CO4
V	Complex Variable & mapping	Functions of a complex variable, Analytic functions, Cauchy- Riemann equations in Cartesian co- ordinates, Polar co-ordinates. Harmonic functions, Analytic method and Milne Thomson methods to find f(z), Orthogonal trajectories. Conformal Mapping, Linear, Bilinear transformations, Cross ratio, fixed points and standard transformation such as rotation and magnification, inversion, translation.	10	CO6
VI	Permutations, Combinations and Probability	Rule of sum and product, Permutations, Combinations, Algorithms for generation of	08	CO5

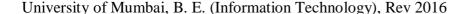
Permutations and Combinations.
Discrete Probability, Conditional
Probability, Bayes' Theorem,
Information and Mutual
Information.

- 1. Higher Engineering Mathematics by Grewal B. S. 38th edition, Khanna Publication 2005.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 3. A Text Book of Applied Mathematics Vol. I & II by P.N. Wartilar & J.N. Wartikar, Pune, Vidyarthi Griha Prakashan, Pune.
- 4. Modern Digital Electronics by R. P. Jain 8th edition, Tata Mcgraw Hill
- 5. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", SiE Edition, TataMcGraw-Hill.

References:

- 1. Advanced Engineering Mathematics by C. Ray Wylie & Louis Barrett, TMH International Edition.
- 2. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 3. Lapplace Transforms by Murray R. Spiegel, Schaun's out line series-McGraw Hill Publication.

Assessment:


Internal Assessment for 20 marks:

Consisting of **Two Compulsory Class Tests**

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if 0.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
Code						Practical		
ITC302	Logic Design	04			04			04
110302	Logic Design							

		Examination Scheme								
Course	Course		Theo	ry Marks						
Code	Name	Inte	ernal asse		End	Term	Oral &	Oral	Total	
		Test1	Test2	Avg. of Two Tests	Sem. Exam	Work	Practical			
ITC302	Logic Design	20	20	20	80		2		100	

Course Objectives: Students will try to learn:

- 1. The concept of various components.
- 2. The concepts that underpin the disciplines of Analog and digital electronic logic circuits.
- 3. Various Number system and Boolean algebra.
- 4. Design and implementation of combinational circuits
- 5. Design and implementation of Sequential circuits
- 6. Hardware description language

Course Outcomes: Students will able to:

- 1. Understand the concepts of various components to design stable analog circuits.
- 2. Represent numbers and perform arithmetic operations.
- 3. Minimize the Boolean expression using Boolean algebra and design it using logic gates
- 4. Analyze and design combinational circuit.
- 5. Design and develop sequential circuits
- 6. Translate real world problems into digital logic formulations using VHDL.

Prerequisite: Basic Electrical Engineering

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Semiconductor theory, Diodes,	02	
		Integrated Circuits		
I	Biasing of BJT	Biasing of BJT: DC operating	08	CO1
		point, BJT characteristics &		
		parameters, all biasing circuits,		
		analysis of above circuits and their		
		design, variation of operation point		
		and its stability. Differential		

University of Mumbai, B. E. (Information Technology), Rev 2016

		Amplifier, constant current source,		
17	N. I. C.	current mirror.	00	G02
П	Number System and codes	Introduction to Number systems, Binary Number systems, Signed Binary Numbers, Binary, Octal, Decimal and Hexadecimal number Systems and their conversion, Binary arithmetic using compliments, Gray Code, BCD Code, Excess-3 code, ASCII	08	CO2
		Code.inter-conversion of codes,		
III	Boolean Algebra and Logic gates	Introduction, NAND and NOR operations, Exclusive –OR and Exclusive –NOR operations, Boolean Algebra Theorems and Properties, Standard SOP and POS form, Reduction of Boolean functions using Algebric method, K-map method (2,3,4 Variable). Variable entered Maps, Quine Mc Cluskey, Mixed Logic Combinational Circuits and multiple output function Basic Digital Circuits: NOT,AND,	10	CO2 CO3
		OR,NAND,NOR,EX-OR,EX-NOR		
IV	Design and Analysis of Combinational Circuits	Gates. Introduction, Half and Full Adder, Half and Full Subtractor, Four Bit Binary Adder, One digit BCD Adder, code conversion, Encoder and Decoder ,Multiplexers and Demultiplexers, Decoders, Binary comparator (2,3 variable)4-bit Magnitude Comparator IC 7485 and ALU IC74181.	08	CO2 CO3 CO4
V	Sequential Logic Design	Flip Flops: SR, JK, D, T, master slave flip flop, Truth Table, excitation table and conversion Register: Shift register, SISO, SIPO, PISO, PIPO, Bi-directional and universal shift register. Counters: Design of synchronous	9	CO4 CO5
VI	VHDL	and asynchronous ,Modulo Counter, Up Down counter IC 74193, Ring and Johnson Counter Introduction to VHDL, Library,	07	CO5
		Entity, Architecture Modeling styles, Concurrent and Sequential statements, data objects and data types, attributes, design examples		CO6

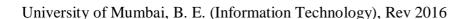
	for combinational circuits	

- 1. Robert L. Boylestad, Louis Nashelsky, "Electronic devices and circuit Theory", PHI
- 2. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 3. M. Morris Mano, "Digital Logic and computer Design", PHI
- 4. J. Bhasker." VHDL Primer", Pearson Education.
- 5. Balbaniam, Carison, "Digital Logic Design Principles", Wiley Publication

References:

- 1. Martin s. Roden, Gordon L. Carpenter, William R. Wieserman "Electronic Design-From Concept to Reality", Shroff Publishers and Distributors.
- 2. A. Anand Kumar, "Fundamentals of Digital Circuits", Prentice Hall India
- 3. Subrata Ghosal, "Digital Electronics", Cengage Learning.
- 4. Anil K. Maini, "Digital Electronics Principles and Integrated Circuits", Wiley India
- 5. Donald p Leach, Albert Paul Malvino, "Digital principles and Applications", Tata McGraw Hill

Assessment:


Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC303	Data Structures & Analysis	04			04			04

	Course Name	Examination Scheme								
Course Code		Theory Marks								
		Internal assessment			EHG I	Term Work		Oral	Total	
		Test1	Test 2	Avg. of two Tests			4C)·		
ITC303	Data Structures & Analysis	20	20	20	80	(2		100	

Course Objectives: Students will try to:

- 1. Understand and remember algorithms and its analysis procedure.
- 2. Introduce the concept of data structures through ADT including List, Stack, Queues .
- 3. To design and implement various data structure algorithms.
- 4. To introduce various techniques for representation of the data in the real world.
- 5. To develop application using data structure algorithms.
- 6. Compute the complexity of various algorithms.

Course Outcomes: Students will be able to:

- 1. Select appropriate data structures as applied to specified problem definition.
- 2. Implement operations like searching, insertion, and deletion, traversing mechanism etc. on various data structures.
- 3. Students will be able to implement Linear and Non-Linear data structures.
- 4. Implement appropriate sorting/searching technique for given problem.
- 5. Design advance data structure using Non-Linear data structure.
- 6. Determine and analyze the complexity of given Algorithms.

Prerequisite: C Programming Language

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	C Programming Language	02	
I		Introduction to Data structures, Need of Data structures, Types of	07	CO1

University of Mumbai, B. E. (Information Technology), Rev 2016

	Introduction to	Data structures : Linear and non		CO2
	Data structures and	linear data structures		
	Analysis			CO3
		Arrays, Stacks, Queue, Linked list and Tree, Graph, Recursion, ADT		CO6
		(Abstract Data type).		
		Introduction to Analysis,		
		Algorithms, characteristics of an		
		algorithms, Time and Space		
		complexities, Order of growth functions, Asymptotic notations		
				G01
		Introduction to Stack, Stack as ADT, Operations on stack,		CO1
TT	Stack	Application of stack: – reversing	07	CO2
II	Stack	string, Polish notations	07	CO3
				CO6
		Inter-denting to 0		
		Introduction to Queue, Queue as ADT, Operations on Queue, Linear		
		representation of queue, Circular		CO1
		Queue, Priority Queue, De-queue,		
III	Queue	Application of Queues	06	CO2
				CO3
				CO6
		· () '		
		Introduction to Linked List, Basic		
		concept of Linked List, Memory		CO1
	.V	allocation & de allocation of Linked list, Singly Linked list,		
IV	Linked list	Doubly Linked list, Circular linked	08	CO2
		list, Operations on linked list,		CO3
	1	Linked representation of stack,		CO6
		Linked representation of Queue, Application of linked list.		
		Introduction to Sorting: Bubble Sort, Selection Sort, Insertion Sort,		GO 4
		Quick Sort, Merge Sort, Heap Sort,		CO4
V	Sorting and	Shell Sort, Radix sort. Analysis of	12	CO5
	Searching	Sorting Techniques. Comparison of sorting Techniques		CO6
		Introduction to Searching: Linear		

University of Mumbai, B. E. (Information Technology), Rev 2016

		search, Binary search, Hashing Techniques, Different Hash functions, Collision& Collision resolution techniques, Analysis of searching Techniques. Introduction to Trees, Definitions&		
VI	Trees & Graph	Tree terminologies, Binary tree representation, Operations on binary tree, Traversal of binary trees, Binary search tree, Threaded Binary tree, Expression tree, Application of Trees Introduction to Graph, Introduction Graph Terminologies, Graph Representation, Type of graphs, Graph traversal:Depth first search(DFS)&Breadth First search(BFS), Minimum Spanning Tree: Prim's & Kruskal's Shortest Path Algorithm — Dijkstra's Algorithm. Applications of graph	10	CO1 CO2 CO3 CO6

- 1. Data structures using C by Tenenbaum, Langsam, Augenstein, Pearson.
- 2. Data Structures using C, ReemaThareja, Oxford.
- 3. C and Data structures, Prof. P.S.Deshpande, Prof. O.G.Kakde, Dreamtech Press.
- 4. Introduction to Data Structure and its Applications Jean-Paul Tremblay, P. G. Sorenson

Reference Books:

- 1. Data Structures Using C & C++, Rajesh K. Shukla, Wiley- India.
- 2. Data Structures and Algorithm Analysis in C ,Mark A.Weiss ,Pearson
- 3. ALGORITHMS Design and Analysis, Bhasin, OXFORD.
- 4. Computer Algorithms by Ellis Horowitz and Sartaj Sahni, Universities Press.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.

- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
						Practical		
ITC304	Database	04			04			04
	Management							
	Systems							
	Systems							

Course Code	Course Name		Examination Scheme								
		Theory Marks									
		Internal assessment			End	Term Work	Oral & Practical	Oral	Total		
		Test1	Test 2	Avg. of two Tests	Sem. Exam						
ITC304	Database Management Systems	20	20	20	80		₹C.)	100		

Course Objectives: Students will try:

- 1. To describe a sound introduction to the discipline of database management systems.
- 2. To give a good formal foundation on the relational model of data and usage of Relational Algebra
- 3. To introduce the concepts of basic SQL as a universal Database language
- 4. To enhance knowledge to advanced SQL topics like embedded SQL, procedures connectivity through JDBC
- 5. To demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- 6. To provide an overview of physical design of a database system, by discussing Database indexing techniques and storage techniques.

Course Outcomes: Student should be able to:

- 1. Explain the features of database management systems and Relational database
- 2. Design conceptual models of a database using ER modeling for real life applications and also construct queries in Relational Algebra
- 3. Create and populate a RDBMS for a real life application, with constraints and keys, using SQL.
- 4. Retrieve any type of information from a data base by formulating complex queries in SQL.
- 5. Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database.
- 6. Build indexing mechanisms for efficient retrieval of information from a database

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisites	Basic knowledge of operating systems and file systems, Any programming	02	

		knowledge		
I	Introduction Database Concepts	Introduction, Characteristics of databases, File system V/s Database system, Users of a Database system Data Models, Schemas, and Instances, Three-Schema Architecture and Data Independence, Database Administrator (DBA), Role of a DBA	05	CO 1
II	Entity– Relationship Data Model	Conceptual Modeling of a database, The Entity-Relationship (ER) Model, Entity Types, Entity Sets, Attributes, and Keys, Relationship Types, Relationship Sets, Weak Entity Types Generalization, Specialization and Aggregation, Extended Entity- Relationship (EER) Model.	09	CO 2
III	Relational Model and Relational Algebra	Introduction to Relational Model, Relational Model Constraints and Relational Database Schemas, Concept of Keys: Primary Kay, Secondary key, Foreign Key, Mapping the ER and EER Model to the Relational Model, Introduction to Relational Algebra, Relational Algebra expressions for • Unary Relational Operations, • Set Theory operations, • Binary Relational operation Relational Algebra Queries	09	CO 2
IV	Structured Query Language (SQL)	Overview of SQL, Data Definition Commands, Set operations, aggregate function, null values, Data Manipulation commands, Data Control commands, Views in SQL, Complex Retrieval Queries using Group By, Recursive Queries, nested Queries; Referential integrity in SQL. Event Condition Action (ECA) model (Triggers) in SQL; Database Programming with JDBC, Security and authorization in SQL Functions and Procedures in SQL and cursors.	10	CO 3, CO 4
V	Relational– Database Design	Design guidelines for relational schema, Functional Dependencies, Definition of Normal Forms- 1NF, 2NF, 3NF, BCNF, Converting Relational Schema to higher normal forms.	08	CO 5

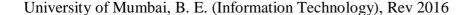
VI	Storage	and	Operation	on	Files;	hashing	09	CO 6
	Indexing		Techniques;	Types	of Indexe	es: Single-		
	_		Level Orde	ered I	ndexes;	Multilevel		
			Indexes; Ov	erview	of B-Tre	es and B+-		
			Trees; Index	es on N	Aultiple K	Keys.		
					1			

- 1. Korth, Slberchatz, Sudarshan, "Database System Concepts", 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, PEARSON Education.
- 3. G. K. Gupta:"Database Management Systems", McGraw Hill

References:

- 1. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 2. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom "Database System Implementation", Pearson Ltd. 1/e
- 3. Thomas M. Connolly Carolyn Begg, Database Systems : A Practical Approach to Design, Implementation and Management, 4/e, Pearson Education.

Assessment:


Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
Code						Practical		
ITC305	Principle of	03		01	03		01	04
	Communications							

					Exam	Examination Scheme				
Comme			Theory Marks							
Course Code	Course Name	Inter			End	Term	Oral & Oral	Oral	Total	
		Test1	Test 2	Avg. of 2 Tests	Sem. Exa m	Work	Practical			
ITC305	Principle of Communications	20	20	20	80	(100	

^{\$ 3} hours shown as theory to be taken class wise and 1 hour to be taken tutorial as batch wise

Course Objectives: Students will try to:

- 1. Study the basic principles and techniques used in analog and digital communications.
- 2. Understand the concept of noise and Fourier transform for designing and analysing communication system.
- 3. Acquire the knowledge of different modulation techniques such as AM, FM and study the block diagrams of transmitter and receiver.
- 4. Study the Sampling theorem and Pulse Analog Modulation techniques.
- 5. Learn the concepts of Digital modulation techniques such as PCM, DM, ADM and multiplexing techniques.
- 6. Gain the core idea of Electromagnetic Radiation and propagation of waves.

Course Outcomes: Students will be able to:

- 1. Differentiate analog and digital communication systems
- 2. Identify different types of noise occurred, its minimization and able to apply Fourier analysis in frequency & time domain to quantify bandwidth requirement of variety of analog and digital communication systems.
- 3. Design generation & detection AM, DSB, SSB, FM transmitter and receiver.
- 4. Apply sampling theorem to quantify the fundamental relationship between channel bandwidth, digital symbol rate and bit rate
- 5. Explain different types of line coding techniques for generation and detection of signals.
- 6. Describe Electromagnetic Radiation and propagation of waves.

Prerequisite: Basic Electrical Engineering

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Electrical engineering concepts,	02	
		analog and digital electronics.		
I	Introduction	Basics of analog communication systems (Block diagram), Sources of information, Baseband and band pass signals, Types of communication channels, Frequency / Spectrum allocations, Need for modulation and	03	CO1
TT	F:	demodulation	05	CO2
II	Fourier Transform and Noise	Introduction to Fourier Transform, its properties (time and frequency shifting and convolution property), Fourier transform of unit step, delta and gate function. Correlated and uncorrelated sources of noise in communication system, Noise parameters –Signal to noise ratio, Noise factor, Noise figure, Friis formula and Equivalent noise temperature	05	CO2
III	Modulation and	AM: Amplitude modulation	12	CO3
	Demodulation (AM and FM)	techniques and its types- DSBFC AM, DSBSC-AM, SSB SC AM-spectrum, waveforms, bandwidth, Power calculations. AM Receivers – Block diagram of TRF receivers and Super heterodyne receiver. Receiver characteristics - Sensitivity, Selectivity, Fidelity, Image frequency and its rejection and double spotting FM: Principle of FM- waveforms, spectrum, bandwidth. Preemphasis and de-emphasis in FM, FM noise triangle, Comparison of AM and FM systems, FM generation: Direct method –Varactor diode Modulator, Indirect method (Armstrong method) block diagram and waveforms. FM demodulator: Foster Seely discriminator, Ratio detector.		
IV	Pulse Analog Modulation	Sampling theorem for low pass and band pass signals with proof, Anti- aliasing filter, PAM, PWM and PPM generation and	05	CO4

University of Mumbai, B. E. (Information Technology), Rev 2016

		Degeneration.		
V	Digital Modulation Techniques and Transmission	Introduction to digital communication (Block diagram), Quantization process, Pulse code modulation, Delta modulation, Adaptive delta modulation, Principle of time division multiplexing, Frequency division multiplexing and its applications. Introduction to Line codes, Intersymbol interference, Binary phase shift keying, Differentially encoded phase shift keying, Quadrature	08	CO5
		phase shift keying, M-ary phase shift keying, Quadrature amplitude shift keying		
VI	Radiation and Propagation of Waves	Electromagnetic radiation, fundamentals, types of propagation, ground wave, sky wave, tropospheric scatter propagation	04	CO6

- 1. Simon Haykin, Michael Moher, Introduction to Analog & Digital Communications, Wiley India Pvt. Ltd., 2nd Ed.
- 2. Herbert Taub, Donald L Schilling, Goutam Saha, Principles of Communication Systems, Tata McGraw Hill, 3rdEd.
- 3. V Chandrasekar, Communication Systems, Oxford University Press, Ist Ed.

References:

- 1. George Kennedy, Bernard Davis, SRM Prasanna, Electronic Communication Systems, Tata McGraw Hill, 5th Ed.
- 2. Wayne Tomasi, Electronic Communications Systems, Pearson Publication, 5th Ed.
- 3. BP Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University.
- 4. K Sam Shanmugam, Digital and Analog Communication Systems, Wiley India Pvt. Ltd, 1st Ed.

Suggested Topics for Tutorials (Any 10):

- 1. Demonstration of Amplitude modulation.
- 2. Demonstration of Frequency modulation.
- 3. Study of AM/FM receiver.
- 4. Demonstration of Signal sampling and reconstruction.
- 5. Study of PWM generation and detection.
- 6. Study of PCM coding and decoding.
- 7. Study of Delta modulation and demodulation
- B. Demonstration of TDM/ FDM.
- 9. Demonstration of BPSK, BFSK, BASK
- 10. Study of QPSK
- 11. Study of Inter symbol Interference and Line coding.
- 12. Study of different types of Propagation.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	TW/Prac	Tutorial	Tota
	Name					tical		1
ITL301	Digital Design Lab		2			1		01

					Examina	ation Scheme				
Course	Course		Theo	ory Marks						
Code	Name	Internal assessment			End	Term Work	Oral & Practical	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam	,,, 0111	40)			
ITL301	Digital Design Lab					25	25	50		

Lab Objectives: Students will try to:

- 1. Learn to minimize and design combinational logic;
- 2. Understand the relationships between combination logic and Boolean algebra, and between sequential logic and finite state machines;
- 3. Appreciate tradeoffs in complexity and speed of combinational designs;
- 4. Understand how state can be stored in a digital logic circuit;
- 5. Study how to design a simple finite state machine from a specification and be able to implement this in gates and edge triggered flip-flops
- 6. Learn to translate real world problems into digital logic formulations

Lab Outcomes: Students will be able to:

- 1. Minimize the Boolean algebra and design it using logic gates.
- 2. Analyse and design combinational circuit.
- 3. Realise given function using combinational circuit.
- 4. Design and develop sequential circuits
- 5. Implement digital systems using programmable logic devices
- 6. Translate real world problems into digital logic formulations using VHDL.

Prerequisite: Concepts of Logic Design

Hardware requirement:

Digital Trainer kit, ICs for various logic gates and functions, connecting wires

Software requirement:

VHDL tool

Detail Syllabus:

Detailed Content	Hours	LO
		Mapping
	Detailed Content	Detailed Content Hours

I	Boolean Algebra and Logic gates	a. Verify the truth table of logic gates (basic and universal gates)b. Realization of Boolean algebra using gates	04	LO1
II	Design and Analysis of Combinational Circuits	a. Design of Full Adder and Full Subtractor.b. verify the operation of 4- bit magnitude comparator	04	LO2
III	Implementation of Combinational Circuits	a. Implementation of MUX and DeMUX.b. Implementation of Encoder and Decoder	04	LO3
IV	Sequential Logic Design	a. To verify and observe the operation of flip-flop(any two)b. To design any two shift register.c. To design Modulo and ring Counter	06	LO4
V	Programmable logic Devices	a. Evaluate and observe Boolean expression using PALs and PLAs	04	LO5
VI	VHDL	 a. Implementation of Logic Gates using VHD b. Evaluate and observe combinational circuits on VHDL. 	04	LO6

- 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 2. Balbaniam, Carison, "Digital Logic Design Principles", Wiley Publication

References:

- 1. M. Morris Mano, "Digital Logic and computer Design", PHI
- 2. J. Bhasker." VHDL Primer", Pearson Education.

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

Course	Course Name	Theory	Practical	Tutorial	Theory	TW/Pra	Tutorial	Total
Code						ctical		
ITL302	Data Structures		2			1		1
	Lab							

					Examinat	tion Scheme			
Carana		Theo	ry Marks			0.10			
Course Code	Course Name	Internal assessment			End	Term	Oral & Practical	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	C	3,	
ITL302	Data Structures Lab					25	25	50	

Lab Objectives: Students will try:

- 1. Understand and remember algorithms and its analysis procedure.
- 2. Introduce the concept of data structures through ADT including List, Stack, Queues .
- 3. To design and implement various data structure algorithms.
- 4. To introduce various techniques for representation of the data in the real world.
- 5. To develop application using data structure algorithms.
- 6. Compute the complexity of various algorithms.

Lab Outcomes: Students will be able to:

- 1. Select appropriate data structures as applied to specified problem definition.
- 2. Implement operations like searching, insertion, and deletion, traversing mechanism etc. on various data structures.
- 3. Students will be able to implement Linear and Non-Linear data structures.
- 4. Implement appropriate sorting/searching technique for given problem.
- 5. Design advance data structure using Non-Linear data structure.
- 6. Determine and analyze the complexity of given Algorithms.

Prerequisite: C Programming Language

Hardware Requirement:	Software requirement:
PC i3 processor and above	Turbo/Borland C complier.

Detailed Syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Introduction of C programming language		
I	Stack	Implementations of stack menu driven program	04	LO1
		2. Implementation of multistack in one array.		LO2
		3. *Implementations of Infix to Postfix		LO3
		Transformation and its evaluation program.		LO6
		4. Implementations of Infix to Prefix Transformation and its evaluation program.	•	
II	Queue	1. Implementations of circular queue menu driven	04	LO1
		program		LO2
		2. * Implementations of double ended queue menu driven program		LO3
		3. Implementations of queue menu driven program		LO6
		4. Implementation of Priority queue program using array.		
III	Linked List	Implementations of Linked Lists menu driven program.	04	LO1
		2. *Implementation of different operations		LO2
		on linked list -copy, concatenate, split,		LO3
	. (0	reverse, count no. of nodes etc 3. Implementation of polynomials operations (addition, subtraction) using Linked List.		LO6
	0	4. Implementations of Linked Lists menu driven program (stack and queue)		
IV	Tree & Graph	1. Implementations of Binary Tree menu driven	04	LO1
		program		LO2
		2. Implementation of Binary Tree Traversal program.		LO3
7		 3. *Implementation of construction of expression tree using postfix expression. 4. Implementations of BST program 		LO6
		5. Implementation of various operations on tree like – copying tree, mirroring a tree, counting the number of nodes in the tree, counting only		

		leaf nodes in the tree. 5. Implementation of Preorder traversal of a threaded binary tree. 7. Implementations of Huffman code construction 8. Implementations of Graph menu driven program (DFS & BSF)		
V		 Implementations of Shell sort, Radix sort and Insertion sort menu driven program. *Implementations of Quick Sort, Merge sort and Heap Sort menu driven program Implementations of Advanced Bubble Sort, Insertion Sort and Selection Sort menu driven program 	04	LO4 LO5 LO6
VI	Searching	 Implementations of searching methods (Index Sequential, Interpolation Search) menu driven program *Implementation of hashing functions with different collision resolution techniques 	02	LO4 LO5 LO6

Text Books:

- 1. Data structures using C by Tenenbaum, Langsam, Augenstein, Pearson.
- 2. Data Structures using C, ReemaThareja, Oxford.

Reference Books:

- 1. C and Data structures, Prof. P.S.Deshpande, Prof. O.G.Kakde, Dreamtech Press.
- 2. Data Structures A Pseudocode Approach with C, Richard F. Gilberg & Behrouz A. Forouzan, second edition, CENGAGE Learning.

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

		Theory	Practical	Tutorial	Theory	TW/Prac	Tutorial	Total
						tical		
ITL303	SQL Lab		2			01		01

		Examination Scheme						
Subject	Subject Name		Theory Marks				0.10 P: 1	
Code		Internal assessment End			Term Work	Oral & Practical	Total	
		Test 1	Test 2	Avg. of 2 Tests	Sem. Exam		10.	
ITL303	SQL Lab					25	25	50

Course Objectives: Students will try:

- 1. To provide a sound introduction to the creation of problem statements from real life situations.
- 2. To give a good formal foundation on the relational model of data and usage of Relational Algebra.
- 3. To introduce the concepts of basic SQL as a universal Database language.
- 4. To enhance knowledge to advanced SQL topics like embedded SQL, procedures connectivity through JDBC.
- 5. To enable the design of an efficient database using normalization concepts.
- 6. To enable students to be create indexes for databases for efficient retrieval.

Course Outcomes: Student should be able to:

- 1. Construct problem definition statements for real life applications and implement a database for the same.
- 2. Design conceptual models of a database using ER modeling for real life applications and also construct queries in Relational Algebra.
- 3. Create and populate a RDBMS, using SQL.
- 4. Write queries in SQL to retrieve any type of information from a data base.
- 5. Analyze and apply concepts of normalization to design an optimal database.
- 6. Implement indexes for a database using techniques like B or B+ trees.

Hardware Requirement:	Software requirement:
PC i3 processor and above	Any SQL Compiler

Detailed syllabus:

Sr. No.	Detailed Content	Hours	CO Mapping
1	 a) Students to be given assignments to construct detailed problem definitions for real life applications. b) Construction of ER/EER diagrams for the given problems. c) Assignment based on relational Algebra 	4	CO 1 CO 2
2	a) Basic SQL Queries-DDL and DML.b) Construction of Database-Keysc) Population of the database	5	CO 3
3	Complex Queries using group by, nested queries, recursive queries, joins, views, Triggers, Cursors	5	CO 4
4	Design and Implementation of a fully fledged Database with front end for a real life application (Using JDBC)	4	CO 1
5	Assignment for conversion of relation to different normal forms.	2	CO 5
6	Program for construction of index- B-Tree / B+-Tree	4	CO 6

Text Books:

- 1. SQL The Complete Reference, 3rd Edition, James R Groff, Paul N. Weinberg, Andy Oppel, McGraw Hill.
- 2. G. K. Gupta:"Database Management Systems", McGraw Hill

References:

- 1. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 2. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above SQL syllabus.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ITL304	Java Programming Lab	ŀ	2+2*	ŀ		2		2

	Course Name	Examination Scheme							
			Theor	y Marks					
Course Code		Internal assessment			End	Term	Oral & Practical	Total	
		Test1	Test 2	Avg. of two Tests	Sem. Exam	Work	2	10.01	
ITL304	Java Programming Lab				7	50	50	100	

^{* 2} hours shown as practical's to be taken class wise lecture and other 2 hours to be taken as batch wise practical's in Lab.

Lab Objectives: Students will try:

- 1. To understand how to design, implement, test, debug, and document programs that use basic data types and computation, simple I/O, conditional and control structures, string handling and functions.
- 2. To understand the importance of Classes & objects along with constructors, Arrays and Vectors.
- 3. Discuss the principles of inheritance, interface and packages and demonstrate though problem analysis assignments how they relate to the design of methods, abstract classes and interfaces and packages.
- 4. To understand importance of Multi-threading & different exception handling mechanisms.
- 5. To learn experience of designing, implementing, testing, and debugging graphical user interfaces in Java using applet and AWT that respond to different user events.
- 6. To understand Java Swings for designing GUI applications based on MVC architecture.

Lab Outcomes: Upon Completion of the course the learner should be able to:

- 1. Implement Object Oriented programming concept using basic syntaxes of control Structures, strings and function for developing skills of logic building activity.
- 2. Identify classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem
- 3. Demonstrates how to achieve reusability using inheritance, interfaces and packages and describes faster application development can be achieved.
- 4. Demonstrate understanding and use of different exception handling mechanisms and

- concept of multithreading for robust faster and efficient application development.
- 5. Identify and describe common abstract user interface components to design GUI in Java using Applet & AWT along with response to events
- 6. Identify, Design & develop complex Graphical user interfaces using principal Java Swing classes based on MVC architecture

Hardware Requirements	Software Requirements	Other Requirements			
PC With Following Configuration 1. Intel PIV Processor 2. 2 GB RAM 3. 500 GB Harddisk 4. Network interface card	1. Windows or Linux Desktop OS 2. JDK 1.8 or higher 3. Notepad ++ 4.JAVA IDEs like Netbeans or Eclipse	1. Internet Connection for installing additional packages if required			

Detailed Syllabus:

No. Module Detailed Contents Hours	Mapping
1.1 Overview of procedure and object oriented Programming, Java Designing Goals, Features of Java Language. 1.2 Introduction to the principles of object-oriented programming: Classes, Objects, Abstraction, Encapsulation, Inheritance, Polymorphism, Fundamental of Java Expressions, Types of variables and methods. Programming 1.4 Control Statements: If Statement, If-else, Nested if, switch Statement, break, continue. Iteration Statements: for loop, while loop, and do-while loop. Experiment 1: (Perform any three programs that covers Classes, Methods, Control structures and Looping statements) i) Write a Java program to understand how to accept input using Scanner or	LO 1 LO 2

- BufferedReader and print output using System.out.println statement.
- Write a Java program to display the default value of all primitive data types in Java.
- iii) Write a Java program that prints all real solutions to the quadratic equation ax2+bx+c=0. Read in a, b, c and use the quadratic formula. If the discriminate b2-4ac is negative, display a message stating that there are no real solutions.
- iv) Write a java program to test whether string is palindrome or not
- v) Write a java program to count number of alphabets, digits, special symbols, blank spaces and words from the given sentence.
- vi) Write a java program to count number of vowels and consonants from the given strings.
- vii) Write a Menu driven program in java to implement simple banking application. Application should read the customer name, account number, initial balance, rate of interest, contact number and address field etc. Application should have following methods.
 - 1. createAccount()
 - 2. deposit()
 - 3. withdraw()
 - 4. computeInterest()
 - 5. displayBalance()
- viii) Write a menu driven Java program which will

	T			1
		read a number and should implement the following		
		methods		
		1. factorial()		
		2. reverse()		
		3. testArmstrong()		
		4. testPalindrome()		
		5. testPrime()		
		6. fibonacciSeries()	_ '	
		ix) Write a Java program to demonstrate Method	5	•
		overloading		
2)		Theory		
	Classes, Objects, Arrays and Recursion	2.1 Classes & Objects: Class Fundamentals: Assigning Object Reference Variables, Passing parameters to Methods and Returning parameters from the methods, Nested and Inner Classes. 2.2 Constructors: Parameterized Constructors, finalize() Method, Method overloading, Constructors overloading, Recursion, Command-Line Arguments. 2.3 Wrapper classes, Java.util.Scanner, Java. io.BufferedReader, Java.io.DataInputStream, Java.io.DataOutputStream and String Buffer classes and String functions. 2.4 Arrays & Vectors: One Dimensional arrays, Two Dimensional array, Irregular arrays, dynamic arrays, Array List and Array of Object. Experiment 2 (Perform any Five programs that covers Classes &	12	LO 1 LO 2
		objects, Constructors, Command Line Arguments,		

Arrays/Vectors & recursions) i) Write a java program to demonstrate Constructors, Parameterized Constructors and Constructor Overloading Write a java program to demonstrate ii) **Command Line Arguments** Write a java program to demonstrate String iii) **Functions** iv) Write a java program to demonstrate Array and Vectors operations Write a java programs to add n strings in a v) vector array. Input new string and check whether it is present in the vector. If it is present delete it otherwise add it to the vector. Write a java programs to test whether the vi) given element is present in the vector array. Write a java programs to find frequency of vii) a element in the given Vector array. viii) Write a java programs to add n strings in a vector array. Input new string and check whether it is present in the vector. If it is present delete it otherwise add it to the vector. ix) Write menu driven program to implement recursive functions for following

tasks.

b) To find X^Y

a) To find GCD and LCM

c) To print n Fibonacci numbers

		d) To find reverse of number		
		e) To $1+2+3+4++(n-1)+n$		
		x) Write the Menu driven program to perform		
		a) Addition of two matrices of order m*n and		
		p*q		
		b) Multiplication of two matrices of order m*n		
		and p*q		
		c) Transpose of matrix of order m*n		
		d) addition of diagonal and non-diagonal		
		elements		
			· ·	
3)		Theory	5	•
		3.1 Inheritance Basics, , Types of Inheritance in		
		Java, Concept of Super and sub class, inheriting		
		Data members and Methods, Role of		
		Constructors in inheritance, Making methods and		
		classes final, Method overriding, Dynamic Method		
		Dispatch, Abstract classes and methods		
		3.2 Defining an interface, extending interfaces,		
		implementing interfaces, accessing implementations		
	Inheritance,	through interface references, Interfaces vs. Abstract		
	Interface and	classes.	08	LO 3
	Packages	2.2 Deckages Stone for defining questing and		
		3.3 Packages – Steps for defining, creating and accessing a Package, importing packages, Making		
		JAR Files for Library Packages, java.util.Vector		
		JAK Thes for Library Lackages, Java.utii. Vector		
•	ナ	Experiment 3		
		(Perform any Two programs that covers Inheritance,		
		interfaces and packages)		
		i) Write a java programs to demonstrate		
		hierarchical inheritance		
		ii) Write a java program to demonstrate extending		
		& implementing Interfaces		

		iii) Write a java program to demonstrate Modules		
		and packages		
		iv) Write a java program to create user defined		
		packages		
4)		Theory:		
4)		Theory.		
		4.1 Exception handling Mechanism: try, catch,		
		throw, throws and finally.		
			`	
		4.2 Multithreading: Need of Multithreading, Java	Ca	•
		thread Model, thread Life-Cycle, thread class		
		Methods, Implementing Runnable, Extending thread,		
		Synchronizing threads, synchronized Statement,		
		Critical Factor in Thread –Deadlock.		
		Experiment 4		
		Experiment 4		
		(Perform any Two programs that covers Exception		
	Exception	Handling & Multithreading)		
	Handling and	i) White ions programs to demonstrate Evacation		
	Multithreading	i) Write java programs to demonstrate Exception	06	
	_	handling using try, catch, throw, throws and finally		
		statements.		LO3
		ii) Write a Java Program to input the data through		104
		command Line and Find out total valid and in-valid		LO 4
		integers. (Hint: use exception handling).		
		iii) Write a Java Program to calculate the Result.		
		Result should consist of name, seatno, date, center		
		number and marks of semester three exam. Create a		
		User Defined Exception class		
		MarksOutOfBoundsException, If Entered marks of		
7,		any subject is greater than 100 or less than 0, and		
		then program should create a user defined Exception		
		of type MarksOutOfBoundsException and must have		
		a provision to handle it.		
		a proviolon to mandio it.		

		iv) Write java program to create a user defined		
		Exception class known as		
		PayOutOfBoundsException. Organization does not		
		offer basic salary less than 8000. If entered salary is		
		less than 8000 then program should create an		
		Exception of Type PayOutOfBoundsException.		
		Program should calculate gross salary by considering		
		salary parameters such as DA, HRA, CA, TA,		
		Professional tax, TDS, PF etc		
		v) Write java programs to create user defined threads		
		by extending thread class and by implementing		
		runnable.	5	
		vi) Write java program to print Table of Five, Seven		
		and Thirteen using Multithreading (Use Thread class	•	
		for the implementation).		
		vii) Write a java program to print first 20 prime		
		numbers and 15 Fibonacci numbers by creating two		
		child threads and also print the total time taken by		
		each thread for the execution.		
		viii) Write a java program to implement use of nested		
		try-catch concept using appropriate example.		
		ix) Write java program to create the child thread.		
		Comment on the execution of main and Child		
		Thread.		
		x) Write java program to implement the concept of		
•		Thread Synchronization		
		xi) Write a Java program to identify whether inputted		
		data is byte/short/int/long/float/double/String/char		
		type. (Use Exception Handling)		
5)	Applet	5.1 Applet: Applet fundamentals, Applet lifecycle,		LO3
	Programming,	Creating applet, paint method Applet tag, Applet	10	1.04
	GUI	class methods.		LO4
		D. F. (Information Technology), Pay 2016		

5.2 Designing Graphical User Interfaces in Java, LO₅ development ofusing AWT Components and Containers. **Basics** and Event Components, Using Containers, Layout Managers, handling AWT Components, Adding a Menu to Window, **Extending GUI Features** 5.3 Event-Driven Programming in Java, Event-Handling Process, Event- Handling Mechanism, Delegation Model of Event Handling, Event Classes, Event Sources, Event Listeners, Adapter Classes as Helper Classes in Event Handling. **Experiment 5** (Perform any Three programs that covers Applet Programming, GUI development using AWT and Event handling) i) Write java program to draw the house on an applet. ii) On Applet: Take a Login and Password from the user and display it on the third Text Field which appears only on clicking OK button and clear both the Text Fields on clicking RESET button Perform same using AWT and Swings as well. Login []X Login: Password: OK RESET iii) Write java program to create an advertisement banner on an applet using multithreading iv) Write java program to create a registration form using AWT. v) Write a Java program to demonstrate the use of AWT components namely buttons, labels, text boxes, lists/combos, menus with event handling.

		vi) Write a java program to store personal telephone		
		directory in such a way that when user hits a		
		character, the names which starts with the character		
		and telephone numbers should appear.		
<u> </u>		TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER		
6)		Theory		
İ		6.1 Introducing Swing: AWT vs Swings,		
l		Components and Containers, Swing Packages, A		
		Simple Swing Application, Painting in Swing,		
		Designing Swing GUI Application using		
		Buttons, JLabels, Checkboxes, Radio Buttons,	\ \	
		JScrollPane, JList, JComboBox, Trees, Tables Scroll	Ca	•
		pane Menus and Toolbars		
		Experiment 6		
		(Perform any one programs that covers concept of		
		Swings)		LO4
	Java Swings		06	
		i) Write a Java program to implement Swing		LO 6
		components namely Buttons, ,JLabels, Checkboxes,		
		Radio Buttons, JScrollPane, JList, JComboBox,		
		Trees, Tables Scroll pane Menus and Toolbars to		
		design interactive GUI.		
		ii) Write a program to create a window with four		
		text fields for the name, street, city and pincode with		
		suitable labels. Also windows contains a button		
		MyInfo. When the user types the name, his street,		
		city and pincode and then clicks the button, the		
•		types details must appear in Arial Font with Size 32,		
		Italics.		

Textbook Books:

- 1. Herbert Schildt, "Java-The Complete Reference", Seventh Edition, Tata McGraw Hill Publication
- 2. E. Balguruswamy, "Programming with java A primer", Fifth edition, Tata McGraw Hill Publication

Reference Books:

1. D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press University of Mumbai, B. E. (Information Technology), Rev 2016

2. H. M.Deitel, P. J. Deitel, S. E. Santry, "Advanced Java 2 Platform How to Program" Prentice Hall

3. Learn to Master JAVA, from Star EDU solutions, by ScriptDemics

Term Work:

The term Work shall consist of at least 12 to 15 practical's based on the above list. The also Term work Journal must include at least 2 assignments.

Term Work Marks: 50 Marks (Total marks) = 40 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

University of Mumbai

Program Structure B.E. Information Technology, (Rev. 2016)

S. E. Information Technology (Semester-IV)

Course	Course	Teaching (Contact				Credit	ts Assig	ned
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
ITC401	Applied Mathematics-IV	4+1@	-	-	5	-	-	5
ITC402	Computer Networks	4	-	-	4	-	-	4
ITC403	Operating Systems	4	-	-	4	-	-	4
ITC404	Computer Organization and Architecture	4	-	-	4	-	-	4
ITC405	Automata Theory	3+1\$	-	-	4		-	4
ITL401	Networking Lab	-	2	-		1	-	1
ITL402	Unix Lab	-	2			1	-	1
ITL403	Microprocessor Programming Lab	-	2		-	1	-	1
ITL404	Python Lab	-	2+2*	-	-	2	-	2
	Total	21	10	-	21	5	-	26

					Ex	amination S	Scheme			
ourse	Course			Theor	y					
Code	Name	Inte	ernal As	sessment	End	Exam	TW	Oral	Oral &	Total
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)			Pract	
ITC401	Applied Mathematics-IV	20	20	20	80	3	-	-	-	100
ITC402	Computer Networks	20	20	20	80	3	-	-	-	100
ITC403	Operating Systems	20	20	20	80	3	-	-	-	100
ITC404	Computer Organization and Architecture	20	20	20	80	3	-	-	-	100
ITC405	Automata Theory	20	20	20	80	3		-	-	100
ITL401	Networking Lab	-	-	-	-	-	25	25		50
ITL402	Unix Lab	-	-	ı	-	-	25		25	50
ITL403	Microprocessor Programming Lab	-	-	-	-	-	25	25		50
ITL404	Python Lab	-	-		-	-	50		50	100
	Total	100	100	100	400	-	125	50	75	750

- @ 4 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as class wise \$ 3 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as batch wise *2 hours shown as practical's to be taken class wise lecture and other 2 hours to be taken as batch wise practicals in Lab.

Course	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
Code						Practical		
ITC401	Applied Mathematics IV	04		01	04			05

	Course Name	Examination Scheme								
Course Code		Theory Marks								
		Internal assessment			End	Term	Oral &	Oral	Total	
		Test1	Test2	Avg. of Two Tests	Sem. Exam	Work	Practical			
ITC401	Applied Mathematic s IV	20	20	20	80		70) `	100	

Course Objectives: Students will try to learn:

- 1. The concepts of Number Theory by using different theorem.
- 2. The concepts of probability and study PDF.
- 3. The concept of sampling theory and correlation.
- 4. The concept of graphs and trees.
- 5. The concept of groups theory.
- 6. The concept of Lattice theory.

Course Outcomes: Students will able to:

- 1. Apply the Number Theory to different applications using theorem.
- 2. Apply probability and understand PDF.
- 3. Understand sampling theory and correlation.
- 4. Apply the graphs and trees concepts to different applications.
- 5. Understand group's theory.
- 6. Understand the Lattice theory.

Prerequisite: Applied Mathematics III

Detailed syllabus:

Sr.	Module	Detailed Content	Hours	CO
No.				Mapping
0	Prerequisite	Basic of Set, Permutations, Combination and Probability.	02	
		, and the second		
I	Elements of	Modular Arithmetic, Divisibility	06	CO1
	Number Theory I	and Euclid Algorithm, Primes and		
		the Sieve of Eratosthenes, Testing		
		for primes, Prime Number		
		Theorem		

II	Elements of	Euler's, Fermat's Little theorems,	06	CO1
11	Number Theory II	Congruences, Computing Inverse	00	COI
		in Congruences, Legendre and		
		Jacobi Symbols, Chinese		
		Remainder Theorem		
III	Probability	Statistics: Formal concept, sample	08	CO2
		space, outcomes, events		
		Random Variables: discrete &		
		continuous random variables,		
		expectation, Variance, Probability		
		Density Function & Cumulative		
		Density Function		
		Moments, Moment Generating		
		Function Probability distribution: binomial		
		distribution, Poisson & normal		
		distribution distribution		
		distribution		
IV	Sampling theory	Test of Hypothesis, Level of	10	CO3
		significance, Critical region, One		
		Tailed and two Tailed test, Test of		
		significant for Large Samples:-		
		Means of the samples and test of		
		significant of means of two large		
		samples		
		Test of significant of small		
		samples:- Students t- distribution		
		for dependent and independent		
		samples Chi square test. Test of goodness		
		Chi square test:- Test of goodness of fit and independence of		
		attributes, Contingency table.		
		Correlation		
		Scattered diagrams		
		Karl Pearson's coefficient of		
		correlation		
		Spearman's Rank correlation		
		Regression Lines		
* * *	G 1 0 G		10	G 0.4
V	Graph & Groups	Introduction to graphs, graph	12	CO4
	theory.	terminology, representing graphs and graph isomorphism,		CO5
		connectivity, Euler and Hamilton		
		paths, planar graphs, graph		
		coloring, introduction to trees,		
		application of trees.		
		Groups, subgroups, generators and		
		evaluation of powers, cosets and		
		Lagrange's theorem, permutation		
		groups and Burnside's theorem,		
		isomorphism, automorphisms,		
		homomorphism and normal		

University of Mumbai, B. E. (Information Technology), Rev 2016

		subgroups, rings, integral domains and fields.		
VI	Lattice theory	Lattices and algebras systems, principles of duality, basic properties of algebraic systems defined by lattices, distributive and complimented lattices, Boolean lattices and Boolean algebras, uniqueness of finite Boolean expressions, prepositional calculus. Coding theory: Coding of binary information and error detection, decoding and error correction.	08	CO5

Text Books:

- 1. Cryptograph and Network Security by B. A. Forouzan & D. Mukhopadhyay, 11th edition, McGraw Hill Publication.
- 2. Network Security and Cryptograph by Bernard Menezes, Cengage Learning Publication.
- 3. Higher Engineering Mathematics by Grewal B. S. 38th edition, Khanna Publication 2005.
- 4. Probability and Statistics for Engineering, Dr. J Ravichandran, Wiley-India.
- 5. Mathematical Statistics by H. C Saxena, S Chand & Co.
- 6. C. L. Liu: Elements of Discrete Mathematics, 2nd edition, TMH

References:

- 1. Elementary Number Theory and its applications by Kenneth H. Rosen, 5th edition, Addison Wesley Publication.
- Abstract Algebra by I. N. Herstain, 3rd eition, John Wiley and Sons Publication.
 Discrete Mathematics by Norman Biggs, 2rd edition, Oxford University Press.
- 4. Advanced Engg. Mathematics by C. Ray Wylie & Louis Barrett.TMH International Edition.
- 5. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 6. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 7. Probability by Seymour Lipschutz, McGraw-Hill publication.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

- Some guidelines for setting the question papers are as: Weightage of each module in end semester examination is
- expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of** the syllabus.

- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC402	Computer Networks	04			04			04

	Course Name		Examination Scheme							
Course Code		Theory Marks								
		Inte	ernal asse	essment	End	Term Work	Oral & Practical	Oral	Total	
		Test1	Test 2	Avg. of two Tests	Sem. Exam					
ITC402	Computer Networks	20	20	20	80		₹ <u>C</u>) *	100	

Course Objectives: Students will try to:

- 1. Study the basic taxonomy and terminology of the computer networking and enumerate the layers of OSI model and TCP/IP model.
- 2. Acquire knowledge of Application layer and Presentation layer paradigms and protocols.
- 3. Study Session layer design issues, Transport layer services, and protocols.
- 4. Gain core knowledge of Network layer routing protocols and IP addressing.
- 5. Study data link layer concepts, design issues, and protocols.
- 6. Read the fundamentals and basics of Physical layer, and will apply them in real time applications.

Course Outcomes: Students will be able to:

- 1. Describe the functions of each layer in OSI and TCP/IP model.
- 2. Explain the functions of Application layer and Presentation layer paradigms and Protocols.
- 3. Describe the Session layer design issues and Transport layer services.
- 4. Classify the routing protocols and analyze how to assign the IP addresses for the given network.
- 5. Describe the functions of data link layer and explain the protocols.
- 6. Explain the types of transmission media with real time applications.

Prerequisite: COA, Logic Design

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Von Neumann model, Modulation, Demodulation, encoding, Decoding.	02	

I	Introduction	Network Criteria, Physical Structures,	04	CO1
		Network Types: LAN, WAN, Switching, OSI Reference model, TCP/IP suite, Comparison of OSI and TCP/IP, Network devices.		
II	Application layer and Presentation layer	Introduction: Providing Services, Application layer Paradigms, Client-Server Paradigm: Application Programming Interface, Using Services of the Transport Layer, Standard Client Server applications: World Wide Web and HTTP, FTP, Electronic Mail, TELNET, Secure Shell (SSH), Domain Name System (DNS), Compression: Lossless Compression, Lossy Compression, Multimedia data: Text, Image, Video , Audio ,Multimedia in the Internet: Streaming Stored Audio/Video, Streaming Live Audio/Video, Real-Time Interactive Audio/Video, Optimal Compression Algorithms, Huffman Coding, Adaptive Huffman Compression, Dictionary Based Compression, Speech Compression – GIF, JPEG.	10	CO1 CO2
III	Session layer and Transport layer	Session layer design issues, Session Layer protocol - Remote Procedure Call (RPC), Transport layer services, Transport Layer Protocols: Simple Protocol, Stop-and-Wait Protocol, Go-Back-N Protocol (GBN), Selective-Repeat Protocol, Bidirectional Protocols: Piggybacking, Internet Transport-Layer Protocols, User Datagram Protocol: User Datagram, UDP Services, UDP Applications, Transmission Control Protocol: TCP Services, TCP Features, Segment, Segment, A TCP Connection, State Transition Diagram, Windows in TCP, Flow Control, Error Control, TCP Congestion Control, TCP Timers, Options.	10	CO1 CO3
IV	Network Layer	Introduction: Network-Layer Services, Packet Switching, Network-Layer Performance, Network-Layer Performance, Network-Layer Congestion, Structure of A Router, Network Layer Protocols: IPv4 Datagram Format, IPv4 Addresses,	12	CO1 CO4

		Forwarding of IP Packets, ICMPv4, Unicast Routing: General Idea, Routing Algorithms, Unicast Routing Protocols, Multicast Routing: Introduction, Multicasting Basics, Intradomain Routing Protocols, Interdomain Routing Protocols, Next generation IP: Packet Format, IPv6 Addressing, Transition from IPv4 to IPv6, ICMPv6, Mobile IP: Addressing, Agents, Three Phases, Inefficiency in Mobile IP.		
V	Data Link Layer	Wired Networks; Introduction: Nodes and Links, Two Types of Links, Two Sublayers, Data Link Control: Framing, Flow and Error Control, Error Detection and Correction, Two DLC Protocols, Medium Access Protocols: Random Access, Controlled Access, Channelization, Link Layer Addressing, Wired LANS: Ethernet Protocol; IEEE Project 802, Standard Ethernet, Fast Ethernet (100 Mbps), Gigabit Ethernet, 10-Gigabit Ethernet, Virtual LANs, Other Wired Networks: Point-to-Point Networks, SONET, Switched Network: ATM, Connecting Devices: Repeaters or Hubs, Link-Layer Switches, Routers, Sliding Window Compression.	09	CO1 CO5
VI	Physical Layer	Data and Signals: Analog and Digital, Transmission Impairment, Data Rate Limits, Performance, Digital Transmission: Digital-to-Digital Conversion, Analog-to-Digital Conversion, Analog Transmission: Digital-to-Analog Conversion, Analog-to-Analog Conversion, Bandwidth Utilization: Multiplexing, Spread Spectrum, Transmission Media: Guided Media, Unguided Media: Wireless, Real Time Interactive Protocols: Rationale for New Protocols, RTP, Session Initialization Protocol (SIP), H.323, SCTP.	05	CO1 CO6

Text Books:

- 1. Behrouz A. Forouzan, Forouzan Mosharrat , Computer Networks A Top down Approach, Mc Graw Hill education.
- 2. Andrew S Tanenbaum, Computer Networks -, 4th Edition, Pearson Education.
- 3. Ranjan Bose, Information Theory, Coding and Cryptography, Ranjan Bose, Tata McGrawHill, Second Edition.

4. Diane Teare, "Authorized Self- Study Guide Designing for CISCO Internetwork Solutions(DESGN), Second Edition.

References:

- 1. Behrouz A. Forouzan, Data communications and Networking, Fifth edition TMH 2013.
- 2. James F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, 3rd Edition, Pearson Eduction.
- 3. L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach, 4th Ed, Elsevier India
- 4. S. Keshav, An Engineering Approach to Computer Networks, 2nd Edition, Pearson Edication.
- 5. W. A. Shay, Understanding communications and Networks, 3rd Edition, W. A. Shay, Cengage Learning.
- 6. Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufman.

Assessment:


Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
	Name					Practical		
ITC403	Operating	04			04			04
	System							

		Examination Scheme							
	Course Name		Theo	ry Marks					
Course Code		Internal assessment			End	Term	Oral &	Oral	Total
		Test1	Test 2	Avg. of two Tests	Sem. Exam	Work	Practical		
ITC403	Operating System	20	20	20	80	(2		100

Course Objectives: Students will try:

- 1. To understand the main components of an OS & their functions.
- 2. To study the process management and scheduling.
- 3. To understand various issues in Inter Process Communication (IPC) and the role of OS in IPC.
- 4. To understand the concepts and implementation Memory management policies and virtual memory.
- 5. To understand the working of an OS as a resource manager, file system manager, process manager, memory manager and I/O manager and methods used to implement the different parts of OS
- 6. To study the need for special purpose operating system with the advent of new emerging technologies

Course Outcomes: Student will be able to

- 1. Describe the important computer system resources and the role of operating system in their management policies and algorithms.
- 2. Understand the process management policies and scheduling of processes by CPU
- 3. Evaluate the requirement for process synchronization and coordination handled by operating system
- 4. Describe and analyze the memory management and its allocation policies.
- 5. Identify use and evaluate the storage management policies with respect to different storage management technologies.
- 6. Identify the need to create the special purpose operating system.

Prerequisite: Programming Language C

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Programming Language C. Basic of Hardware i.e. ALU,RAM,ROM, HDD etc.	02	
I	Overview of Operating System	Introduction: Operating System Structure and operations, Process management, Memory management, storage management, Protection and security, Distributed and special purpose Systems; System Structure: Operating system services and interface, System calls and its types, System programs, Operating System Design and implementation, OS structure, Virtual machines, OS debugging and generation, System boot.	07	C01
II	Process Management	Process concept: Process Scheduling, Operation on process and Interprocess communication;, Multithreading, Process: Multithreading models and thread libraries, threading issues; Process Scheduling: Basic concepts, Scheduling algorithms and Criteria, Thread Scheduling and Multiple Processor Scheduling;	09	C02
III	Process coordination	Synchronization: The critical Section Problem, Peterson's Solution, synchronization Hardware and semaphores, Classic problems of synchronization, monitors, Atomic transactions; Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock.	09	CO3
IV	Memory Management	Memory Management strategies: Background, Swapping, Contiguous Memory Allocation, Paging, Structure of the Page Table, Segmentation; Virtual Memory Management: Demand Paging, Copy-on- Write, Page Replacement, Allocation of Frames, Thrashing, Memory-Mapped Files, Allocating Kernel Memory, Other Considerations.	10	C04
V	Storage Management	File system: File Concept, Access Methods, Directory and Disk Structure, File-System Mounting, File Sharing, Protection; Implementing file System: File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free-Space Management, Efficiency and Performance, Recovery, NFS; Secondary Storage Structure: Overview of Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, Disk Management, RAID Structure, Stable-Storage Implementation, Tertiary-Storage Structure, Swap-Space Management; I/O systems: Overview I/O Hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O Requests to	09	C05

University of Mumbai, B. E. (Information Technology), Rev 2016

		Hardware Operations, STREAMS, Performance		
VI	Distributed Systems	Distributed operating System: Network based OS, Network Structure and Topology, Communication Structure and Protocols; Distributed File system: Naming and transparency, Remote file access, Stateful Versus Stateless Service, File Replication; Distributed Synchronization: Mutual Exclusion, Concurrency Control and Deadlock Handling,	06	C06

Text Books:

- 1. Operating System Concepts, Abraham Silberschatz, Greg Gagne, Peter Baer Galvin, 8th edition Wiley.
- 2. Modern Operating System, Tanenbaum, Pearson Education.
- 3. Operating Systems: Internal and Design Principles: William Stallings, PHI

Reference Books:

- 1. Operating System Design and Implementation, A Tanenbaum, Pearson
- 2. Real Time Systems Design and Analysis, Wiley, IEEE Press
- 3. Principles of Operating Systems: Naresh Chauhan, Oxford Higher Education

Assessment:

Internal Assessment for 20 marks:


Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
						Practical		
ITC404	Computer Organization and Architecture	04			04	1		04

			Examination Scheme						
Course	Course Name	Theory Marks							
Code		Internal assessment		Ella	Term Work	Oral & Practical	Total		
		Test1	Test 2	Avg. of two Tests	Sem. Exam		C		
ITC404	Computer Organizatio n and Architecture	20	20	20	80		€.	100	

Course Objectives: Students will try to:

- 1. Conceptualize the basics of organizational and architectural issues of a digital computer.
- 2. Analyze processor performance improvement using instruction level parallelism.
- 3. Learn the function of each element of a memory hierarchy.
- 4. Study various data transfer techniques in digital computer.
- 5. Articulate design issues in the development of processor or other components that satisfy design requirements and objectives.
- 6. Learn microprocessor architecture and study assembly language programming.

Course Outcomes: Students will be able to:

- 1. Describe basic organization of computer and the architecture of 8086 microprocessor.
- 2. Implement assembly language program for given task for 8086 microprocessor.
- 3. Demonstrate control unit operations and conceptualize instruction level parallelism.
- 4. Demonstrate and perform computer arithmetic operations on integer and real numbers.
- 5. Categorize memory organization and explain the function of each element of a memory hierarchy.
- 6. Identify and compare different methods for computer I/O mechanisms.

Prerequisite: Fundamentals of Computer, Digital Logic Design

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	basic combinational and sequential logic circuits, binary numbers and arithmetic, basic computer organizations	02	
I	Overview of Computer	Introduction of Computer Organization and Architecture. Basic organization of computer	07	CO1
	Architecture &	and block level description of the functional		

University of Mumbai, B. E. (Information Technology), Rev 2016

			ı	
	Organization	units. Evolution of Computers, Von Neumann model. Performance measure of Computer Architecture.		
		Architecture of 8086 family, 8086 Hardware Design, Minimum mode & Maximum mode of Operation. Study of bus controller 8288 & its use in Maximum mode.		
II	Programming 8086	Addressing modes, Instruction Set, Assembly Language Programming, Mixed Language Programming, Programs based on Stacks, Strings, Procedures, Macros, Timers, Counters & delay.	10	CO2
III	Processor Organization and Architecture	CPU Architecture, Register Organization, Instruction formats, basic instruction cycle. Instruction interpretation and sequencing.	11	CO3
		Control Unit: Soft wired (Microprogrammed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations, concepts of nano programming. Introduction to parallel processing concepts, Flynn's classifications, pipeline processing, instruction pipelining, pipeline stages, pipeline hazards.		
IV	Data Representation and Arithmetic Algorithms	Number representation: Binary Data representation, two's complement representation and Floating-point representation. Integer Data arithmetic: Addition, Subtraction. Multiplication: Unsigned & Signed multiplication- Add & Shift Method, Booth's algorithm. Division of integers: Restoring and non-restoring division, signed division, basics of floating point representation IEEE 754 floating point(Single & double precision) number representation. Floating point arithmetic: Addition, subtraction	10	CO4
V	Memory Organization	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics. Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory.	07	CO5
VI	I/O Organization	Input/output systems, I/O modules and 8089 IO processor. Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	05	CO6

Text Books:

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw-Hill.
- 2. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- 3. 8086/8088 family: Design Programming and Interfacing: By John Uffenbeck (Pearson Education)
- 4. Microprocessor and Interfacing: By Douglas Hall (TMH Publication).

References:

- 1. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications" Second Edition, Tata McGraw-Hill.
- 2. Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.
- 3. John P. Hayes, "Computer Architecture and Organization", McGraw-Hill., Third Edition.
- 4. K Bhurchandi, "Advanced Microprocessors & Peripherals", Tata McGraw-Hill Education

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Course Name	Theory	Practical	Tutorial	Theory		Tutorial	Total
Code						Practical		
ITC405	Automata Theory	03		01	03		01	04

		Course Name	Examination Scheme							
	ourse Code		Theory Marks							
			Internal assessment			End	Term	Oral &	Oral	Total
			Test1	Test 2	Avg. of two Tests	Sem. Exam	Work	Practical		95
ITC	2405	Automata Theory	20	20	20	80		(0	100

\$ 3 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as batch wise

Course Objectives: Students will try:

- 1. To learn fundamentals of Regular and Context Free Grammars and Languages
- 2. To understand the relation between Regular Language and Finite Automata and machines.
- 3. To learn how to design Automata's and machines as Acceptors, Verifiers and Translators.
- 4. To understand the relation between Contexts free Languages, PDA and TM.
- 5. To learn how to design PDA as acceptor and TM as Calculators.
- 6. To learn how to co-relate Automata's with Programs and Functions.

Course Outcomes: The students will be able to:

- 1. Understand, design, construct, analyze and interpret Regular languages, Expression and Grammars.
- 2. Design different types of Finite Automata and Machines as Acceptor, Verifier and Translator.
- 3. Understand, design, analyze and interpret Context Free languages, Expression and Grammars.
- 4. Design different types of Push down Automata as Simple Parser.
- 5. Design different types of Turing Machines as Acceptor, Verifier, Translator and Basic computing machine.
- 6. Compare, understand and analyze different languages, grammars, Automata and Machines and appreciate their power and convert Automata to Programs and Functions

Prerequisite: Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.

Detailed syllabus:

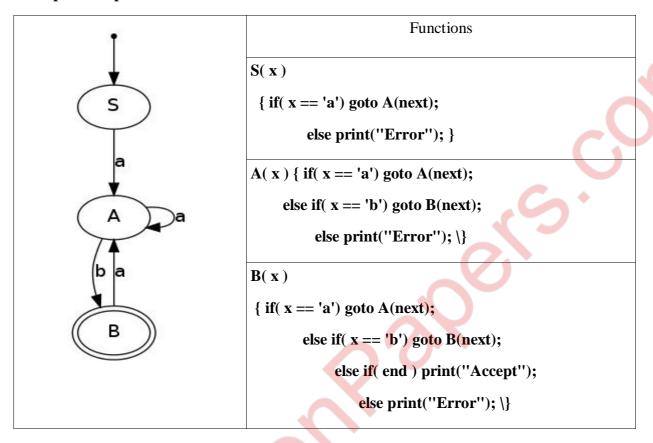
Sr. No.	Module	Detailed Content	Hours	CO Mapping
I	Introductio	Languages: Alphabets and Strings.	06	CO1
	n and	Regular Languages: Regular		
	Regular	Expressions, Regular Languages,		
		Regular Grammars, RL and LL		

University of Mumbai, B. E. (Information Technology), Rev 2016

	Т		1	
	Languages	grammars, Closure properties		
II	Finite	Finite Automata: FA as language	09	CO2
	Automata	acceptor or verifier, NFA (with and		
	and	without ε), DFA, RE to NFA, NFA to		
	machines	DFA, Reduced DFA, NFA-DFA		
		equivalence, FA to RE.		
		Finite State Machines: m/c with output		
		Moore and Mealy machines. M/c as		
		translators. Melay and Moore m/c		
		conversion		
III	Context	Context Free Languages: CFG,	08	CO3
	Free	Leftmost and Rightmost derivations,		
	Grammars	Ambiguity,		
		Simplification and Normalization (
		CNF) and Chomskey Hierarchy (Types		
		0 to 3)		
IV	Push Down	Push Down Automata: Deterministic (05	CO4
	Automata	single stack)PDA, Equivalence		
		between PDA		
T 7	m ·	and CFG.	07	005
V	Turing	Turing Machine: Deterministic TM,	07	CO5
	Machine	Multi-track and Multi-tape TMs,		
		concept of UTM and idea of system		
		program. Issue and concept of Halting Problem		
VI	Application	1.Power and Limitations of Regular and	04	CO2
V 1	s of	Context Free Grammars and Machines	04	CO2
	Automata	Context Free Grammars and Machines		CO4
	7 Idiomata	2.Designing Functions:		a c =
		FA: Acceptor and Verifier.		CO5
		FSM: Translator		CO6
		PDA: Simple Parser for WF parenthesis,		200
		palindromes etc.		
		TM: Basic bit wise calculator(+ /-		
		/AND/OR) and Translator		
		(Note Added)		

Text books

- 1. J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.
- 2. Kavi Mahesh, "Theory of Computation A Problem Solving Approach", Wiley India


References

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons.
- 3. Theory of Computation By Vivek Kulkarni from Oxford University.
- 4. N.Chandrashekhar& K.L.P. Mishra, "Theory of Computer Science, Automata Languages & Computations", PHI publications.

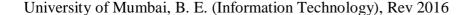
Sample Example for Tutorial: Applications of Automata

An automata can be easily converted to functions by converting *States* to *functions* and *Transitions* to *function calls* or *gotos* begining with Starting state and *Accepting* in a terminating state.

A simple example of DFA is:

Suggested Tutorials:

Sr.	Module	Detailed Content
No.		
I	Introduction and	1 Tutorial on design of RE, RG, RLG and LLG for given Regular
	Regular	Language.
	Languages	
II	Finite Automata	3 Tutorials for converting RE to NFA, NFA to DFA to Reduced DFA,
	and machines	FA to RE.
		1 Tutorial on design of Moore and Mealy machines.
III	Context Free	1 Tutorial on design of CFG and Leftmost and Rightmost derivations.
	Grammars	1 Tutorial for converting CFG to CNF.
IV	Push Down Automata	1 Tutorial on design of Push Down Automata.
V	Turing Machine	1 Tutorial on design of single tape Turing Machine.
		1 Tutorial on design of Multi-track and Multi-tape TMs.
VI	Applications of	2 Tutorials for converting Automata to Functions:
	Automata	a. FA to Acceptor / Verifier.
		b. FSM to Translator.
		c. PDA to Simple Parser for WF parenthesis, palindromes etc.
		d. TM to Basic bit wise calculator(+/-/AND/OR) / Translator


Assessment:

Internal Assessment for 20 marks:

Consisting of **Two Compulsory Class Tests**

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

- **End Semester Examination:** Some guidelines for setting the question papers are as:
 - Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
 - Question paper will comprise of total six questions, each carrying 20 marks.
 - Q.1 will be compulsory and should cover maximum contents of the syllabus.
 - Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
 - Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Prac tical	Tutorial	Total
ITL401	Networking Lab		02			1		1

	Course Name	Examination Scheme							
Course		Theory Marks							
Code		Internal assessment			End	Term Work	Oral	Total	
		Test 1	Test 2	Avg. of 2 Tests	Sem. Exam		S.		
ITL401	Networking Lab					25	25	50	

Lab Objectives: Students will try:

- 1. To get familiar with the basic network administration commands.
- 2. To install and configure network simulator and learn basics of TCL scripting.
- 3. To understand the network simulator environment and visualize a network topology and observe its performance
- 4. To analyze the traffic flow and the contents of protocol frames.
- 5. To implement client-server socket programs.
- 6. To design and configure a network for an organization.

Lab Outcomes: Student will be able to

- 1. Execute and evaluate network administration commands and demonstrate their use in different network scenarios
- 2. Demonstrate the installation and configuration of network simulator.
- 3. Demonstrate and measure different network scenarios and their performance behavior.
- 4. Analyze the contents the packet contents of different protocols.
- 5. Implement the socket programming for client server architecture.
- 6. Design and setup a organization network using packet tracer.

j	Hardware Requirement:	Software requirement:				
]	PC i3 processor and above	NS2.34, Protocol Analyzer (eg. Wireshark), Packet tracer (Eg. CISCO packet tracer)				

Prerequisite: C Programming Language

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Programming Language (C/java), Basic commands of windows and unix operating system, editor commands (eg nano/vi editor etc)	02	
I	Fundamentals of Computer Network	Understanding Basic networking Commands: Ping, Tracert, traceroute, ipconfig, ifconfig, nslookup, netstat	02	LO1
II	Basics of Network simulation	Installation and configuration of NS2 Introduction to Tcl Hello Programming	03	LO2
III	Simulation of Network Topology	Implementation of Specific Network topology with respect to 1. Number of nodes and physical layer configuration 2. Graphical simulation of network with Routing Protocols and traffic consideration (TCP, UDP) using NAM. 3. Analysis of network performance for quality of service parameters such as packet-delivery-ratio, delay and throughput 4. Comparative analysis of routing protocols with respect to QOS parameters using Xgraph/gnuplot for different load conditions.	05	LO3
IV	Protocol Analyzer	Installation of Wire shark Analysis of Packet headers,	04	LO4
V	Socket Programming	Socket Programming with C/Java 1.TCP Client, TCP Server	04	LO5

		2. UDP Client, UDP Server		
VI	Case study on designing network topology	A case study to design and configure any organization network eg. College network or campus network, using any packet tracer or network topology design software based on infrastructure requirements, servers and clients, traffic consideration and application requirements.	06	L06

- 1. Computer Network: Top Down approach, Behrouz Forouzan, Firoz Mossharraf. MGH
- 2. Packet analysis with Wire shark, Anish Nath, PACKT publishing

Reference Books:

- 1. NS2.34 Manual
- 2. Introduction to Network Simulator NS2, 2nd Edition, Teerawat Issariyakul, Ekram Hossain, Springer

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Prac tical	Tutorial	Total
ITL402	Unix Lab	-	2			1		1

1				Examination Scheme						
	Course	C N	Theory Marks							
	Code	Course Name	Internal assessment			End	Term Work	Oral & Practical	Total	
			Test 1 Test 2 Avg. of two Tests		Sem. Exam					

ITL402	Unix Lab			25	25	50
		 	 	23	23	50

Lab Objectives: Students will try:

- 1. To introduce Basic Unix general purpose Commands
- 2. To learn network Unix commands.
- 3. To learn C programming in Unix editor environment.
- 4. To learn shell script and sed concepts.
- 5. To learn file management and permission advance commands.
- 6. To learn awk, grap, perl scripts.

Lab Outcomes: Student will be able to:

- 1. Identify the basic Unix general purpose commands.
- 2. Apply and change the ownership and file permissions using advance Unix commands.
- 3. Use the awk, grep, perl scripts.
- 4. Implement shell scripts and sed.
- 5. Apply basic of administrative task.
- 6. Apply networking Unix commands.

Prerequisite: C Programming Language and Operating System

Hardware requirement:

PC i3 and above.

Software requirement:

Unix, Editor, Bash shell, Bourne shell and C shell.

Detailed syllabus:

Sr.	Module	Detailed Content	Hours	LO
No.				Mapping
0	Prerequisite	Programming syntax, Installation of	02	
I	Basic Commands	Unix, concepts of operating system A brief history of UNIX, Unix Architecture. Logging into (and out of) UNIX systems, Changing your password, General format of UNIX commands. a) Installation of Unix operating system. b) User management in Unix.	04	LO1
		c) Study of Unix general purpose		

		utility command list obtained from		
		(cd, cp, ps, ls, mv, rm, mkdir,		
		rmdir, man, who, cat, echo, more,		
		date, time, kill, history, chmod,		
		passwd, who am i, who, time, bc,		
		history, clear, man, lost, chown,		
		finger, pwd, cal, logout, shutdown)		
		commands.		
II	Advance	a) Study of Unix networking	04	LO1
	Commands	commands (ifconfig, ping,		LO2
		traceroute, netstat, nslookup, whois,		LO5
		hostname, tcpdump).		
		b) Study of Unix file system (tree	•	LO6
		structure).		
		c) Study of .bashrc, /etc/bashrc and		
		Environment variables.		
		d) Study File and directory		
		permissions.		
		e) Study of Editor Vi/other editor.		
		f) Study of Bash shell, Bourne shell		
		and C shell in Unix operating		
		system.		
III	Basic System	Process management	04	LO1
111	administrative task	Memory management	01	
	doministrative task	File system management		LO2
		User management		LO5
IV	Shell scripts	a) Write a shell script program to	04	LO1
1 4	Shell seripts	display list of user currently logged	0-1	
		in.		LO4
		b) Write a shell script program to		
		display "HELLO WORLD".		
		c) Write a shell script program to		
		develop a scientific calculator.		
		d) Write a shell Script program to		
		check whether the given number is		
		check whether the given number is		

even or odd. e) Shell script Program to search whether element is present is in the list or not. V Shell scripts and a) Shell script program to check whether given file is a directory or not. b) Shell script program to count number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not. f) Write an egrep script to display	1						
whether element is present is in the list or not. V Shell scripts and a) Shell script program to check whether given file is a directory or not. b) Shell script program to count number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					even or odd.		
V Shell scripts and a) Shell script program to check whether given file is a directory or not. b) Shell script program to count number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					e) Shell script Program to search		
V Shell scripts and a) Shell script program to check whether given file is a directory or not. b) Shell script program to count number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					whether element is present is in the		
whether given file is a directory or not. b) Shell script program to count number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					list or not.		
whether given file is a directory or not. b) Shell script program to count number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
not. b) Shell script program to count number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.	V	Shell s	cripts	and	a) Shell script program to check	06	LO1
b) Shell script program to count number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.		sed			whether given file is a directory or		LO4
number of files in a Directory. c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					not.		
c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					b) Shell script program to count		
c) Shell script program to copy contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					number of files in a Directory.		
contents of one file to another. d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					•		
d) Create directory, write contents on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					, 1 1 0 10		C .
on that and Copy to a suitable location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find scripts the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					d) Create directory, write contents	5	
location in your home directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable, f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl scripts a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					•		
directory. e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					• •		•
e) Use a pipeline and command substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
substitution to set the length of a line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
line in file to a variable. f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
f) Write a program using sed command to print duplicated lines of Input. VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
VI grep, awk, perl a) Write a grep/egrep script to find the number of words character, words and lines in a file. LO2 LO3 b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
scripts the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					of input.		
scripts the number of words character, words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.	371	~***	a1.	1	a) Write a green/a green against to find	0.4	1.01
words and lines in a file. b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.	VI	0 1	awk,	peri		04	
b) Write an awk script to develop a Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.		scripts					LO2
Fibonacci series. c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							LO3
c) Write a perl script to compute the power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.					· •		
power of a given number. d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.			+				
d) Write an awk script to display the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
the pattern of given string or number. e) Write a perl script to check a number is prime or not.							
number. e) Write a perl script to check a number is prime or not.							
e) Write a perl script to check a number is prime or not.							
number is prime or not.					number.		
					e) Write a perl script to check a		
f) Write an egrep script to display					number is prime or not.		
					f) Write an egrep script to display		

	list of files in the directory.	

- 1. Unix, concepts and applications by Sumitabha Das, McGraw-Hill
- 2. Mastering Shell Scripting, Randal. K. Michael, Second Edition, Wiley Publication

References:

- 1. Unix Shell Programming by Yashwant Kanetkar
- 2. Unix shell programming by forozun

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

Co	ourse Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Prac	Tutorial	Total
							tical		
	ITL403	Microprocessor Programming Lab		2	-0		1		1

	Course Name	Examination Scheme						
Course Code		Internal as Test1 Test	End Sem. Exam	Term Work	Oral	Total		
ITL403	Microprocessor Programming Lab				25	25	50	

Lab Objectives: Students will try to:

- 1. Learn assembling and disassembling of PC.
- 2. Get hands on experience with Assembly Language Programming.
- 3. Study interfacing of peripheral devices with 8086 microprocessor.
- 4. Understand techniques for faster execution of instructions and improve speed of operation and performance of microprocessors.
- **5.** Learn fundamentals of designing embedded systems
- 6. Write and debug programs in TASM/MASM/hardware kits

Lab Outcomes: Students will be able to:

- 1. Apply the fundamentals of assembly level programming of microprocessors.
- 2. Build a program on a microprocessor using arithmetic & logical instruction set of 8086.
- 3. Develop the assembly level programming using 8086 loop instruction set.
- 4. Write programs based on string and procedure for 8086 microprocessor.
- 5. Analyze abstract problems and apply a combination of hardware and software to address the problem
- 6. Make use of standard test and measurement equipment to evaluate digital interfaces.

Prerequisite: Logic Design, Programming Languages(C, C++), COA

Hardware Requirement:

- Motherboard, RAM, Processor, Connectors, Cables, SMPS, HDD, Monitor, Graphics card (optional), Cabinet.
- 8086 microprocessor experiment kits with specified interfacing study boards.

Software Requirement:

• Microsoft Macro Assembler (TASM)/Turbo Assembler(TASM)

NOTE: Programs can be executed on assembler or hardware boards,

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
I	PC Assembly	 Study of PC Motherboard Technology (South Bridge and North Bridge). Disassembling the System Unit & Identifying Internal Components and Connections. Study of various connections and ports used in computer communication. 	06	LO1
II	Arithmetic and logical operations in 8086 Assembly language programming	 Program for 16 bit BCD addition Program to evaluate given logical expression. Convert two digit Packed BCD to Unpacked BCD. (any two) 	04	LO2 LO6
III	Loop operations in 8086 Assembly language programming	 Program to move set of numbers from one memory block to another. Program to count number of 1's 	06	LO3 LO6

		and 0;s in a given 8 bit number 3. Program to find the smallest/largest number from a given set of numbers. 4. Program to search for a given number (any three)	
IV	String and procedure in 8086 Assembly language programming	Check whether a given string is a palindrome or not. 04	LO4 LO6
V	Procedure in 8086 Assembly language programming	 Compute the factorial of a positive integer 'n' using recursive procedure. Generate the first 'n' Fibonacci numbers. (any one) 	LO4 LO6
VI	Interfacing with 8086 microprocessor	 3. Interfacing Seven Segment Display 4. Interfacing keyboard matrix 5. Interfacing DAC (any two) 	LO5 LO6

- 1. Scott Mueller,"Upgrading and repairing PCs", Pearson,
- 2. John Uffenbeck, "8086/8088 family: Design Programming and Interfacing:"Pearson Education

Reference Books:

1. K Bhurchandi, "Advanced Microprocessors & Peripherals", Tata McGraw-Hill Education

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Pract ical	Tutorial	Total
ITL404	Python lab		2+2*			02		02

					Examina	ation Scheme				
			Theor	y Marks						
Course Code	Course Name	Internal assessment		End	Term	Oral & Practical	Total			
		Test1	Test 2	Avg. of two Tests	Sem. Exam	Work		Total		
ITL404	Python lab					50	50	100		

^{*2} hours shown as practical's to be taken class wise lecture and other 2 hours to be taken as batch wise practicals in Lab.

Lab Objectives: The course will help the students to get familiar with:

- 1. Basics of Python programming
- 2. Decision Making and Functions in Python
- 3. Object Oriented Programming using Python
- 4. Files Handling in Python
- 5. GUI Programming and Databases operations in Python
- 6. Network Programming in Python

Lab Outcomes: Upon Completion of the course the learner should be able to:

- 1. Describe the Numbers, Math functions, Strings, List, Tuples and Dictionaries in Python
- 2. Express different Decision Making statements and Functions
- 3. Interpret Object oriented programming in Python
- 4. Understand and summarize different File handling operations
- 5. Explain how to design GUI Applications in Python and evaluate different database operations
- 6. Design and develop Client Server network applications using Python

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements 1. Internet Connection for installing additional packages				
PC With following	1. Windows or Linux Desktop OS	1. Internet Connection for				
Configuration	2. Python 3.6 or higher					
1. Intel PIV Processor	3. Notepad ++	mistaming additional packages				
2. 2 GB RAM	4.Python IDEs like Pydev,					
3. 500 GB Harddisk	Netbeans or Eclipse					
4. Network interface card	5. Mysql					

Prerequisite Subjects: Structured Programming Approach & Java Programming

Detailed Syllabus:

Sr.	Module	Detailed Content	Hours	LO
No.				Mapping
0	Prerequisite	Basic Programming syntax of Java/C.	02	
		Installation and configuration of python.		
I	Basics of Python	Theory : Numbers in Python, Basic & Built-in	10	LO 1
		Math functions, Number Formats, Strings,		
		Quotes, print() Function, Assigning Values to		
		Names & Changing Data Through Names,	·	
		Copying Data, Tuples — Unchanging		
		Sequences of Data, Lists — Changeable		
		Sequences of Data, Dictionaries — Groupings		
		of Data Indexed by Name, Special String		
		Substitution Using Dictionaries , Arrays,		
		Treating a String Like a List, Special Types,		
		Ranges of Sequences, Working with Sets,		
		Arrays.		
		Lab Experiment:		
		Write python programs to understand		
	C	Expressions, Variables, Quotes, Basic Math		
	0.5	operations, Strings: Basic String Operations &		
		String Methods, List, Tuples, Dictionaries,		
		Arrays.		
	(+	(Minimum Three Programs based on math		
		operations, Strings and List/Tuples/		
		Dictionaries)		
II	Decision Making and	Theory: If statement, if-elif-else, Repetition	10	LO 2
11	Functions	using while loop, for loop, break statement,	10	LO 2
	Tunctions	Handling Errors- try: statement, except:		
		statement, Functions-Grouping Code under a		
		Name, defining a Function, describing a		

		function in the function Charling & Satting		
		function in the function, Checking & Setting		
		Your Parameters, Calling Functions from		
		within Other Functions, Functions Inside of		
		Functions, Layers of Functions		
		Lab Experiment:		
		Write python programs to understand		
		different decision making statements and		
		Functions.		
		(Minimum Three Programs based on		
		Decision making, Looping Statements and	•	
		Functions)	9	
III	Object Oriented	Theory: Creating a Class, Self Variables,	10	LO 3
	Programming using	Constructors, Types of Methods, Inner		
	Python programming	Classes, Constructors in Inheritance,		
		Polymorphism,, The super() Method, Method		
		Resolution Order (MRO), Operator		
		Overloading, Method Overloading &		
		Overriding, Interfaces in Python. Exceptions		
		Handling: Errors in a Python Program,		
		Exceptions, Exception Handling, Types of		
		Exceptions, The Except Block, The assert		
	C	Statement.		
	01	Modules and Packages: Creating Modules and		
		Packages, Documenting & Viewing Module,		
		Basics of Testing Your Modules and		
		Packages, Importing & exporting Modules.		
		Lab Experiment:		
		Eus Experiment		
		Write python programs to understand		
		different Object oriented features in Python		
		(Minimum four programs based on		
		a) Classes & objects,		

		b) Constructors,		
		c) Inheritance & Polymorphism,		
		d) Everation bondling		
		d) Exception handling		
IV	Files Handling	Theory: Types of Files in Python, Opening a	07	LO 4
		File, Closing a File. Writing Text Files,		
		Knowing Whether a File Exists or Not,		
		Working with Binary Files, Appending Text		
		to a File, Reading Text Files, File Exceptions,		
		The with Statement		
		Pickle in Python, Lambda and Filter, Map &	*	
		range functions.	9	
		Lab Experiment:		
		Write python programs to understand		
		different File handling operations		
V	GIII Programming and	Theory CIII Programming Writing a CIII	07	LO 5
·	GUI Programming and Databases	Theory: GUI Programming - Writing a GUI with Python: GUI Programming Toolkits,	07	LOS
	Databases	Creating GUI Widgets with Tkinter, Creating		
		Layouts, Radio Buttons and Checkboxes,		
		Dialog Boxes.		
		Didiog Boxes.		
	C	Database Access - Python's Database		
	0.5	Connectivity, Types of Databases Used with		
		Python, Mysql database Connectivity with		
		Python, Performing Insert, Deleting & Update		
	(}	operations on database		
		Lab Experiment:		
		Write python programs to understand GUI		
		designing and database operations		
		(Minimum Three programs based on		
		GUI designing using Tkinter, Mysql database		
		creation & Database connectivity with DML		

		operations using python		
VI	Web Programming	Theory: Understanding Protocols,	06	LO 6
		Introduction to Sockets, TCP/IP Server,		
		TCP/IP Client, UDP Server, UDP Client, File		
		Server, File Client, Two-Way Communication		
		between Server and Client, Multithreaded		
		Client-Server Chat Application		
		Lab Experiment:		
		Write python programs to understand TCP		
		and UDP Sockets in Python		
		(Minimum One programs based on TCP or		
		UDP Sockets)		

- 1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1", Wrox Publication
- 2. Dr. R. Nageswara Rao,"Core Python Programming", Dreamtech Press, Wiley Publication.
- 3. Magnus Lie Hetland,"Beginning Python From Novice to Professional", Second Edition", Apress Publication.

Reference Books:

- 1. Wesley J Chun," Core Python Applications Programming", Third Edition, Pearson Publication.
- 2. E. Balguruswamy," Introduction to Computing and Problem Solving using Python", McGraw Hill Publication
- 3. Learn to Master Python, from Star EDU solutions, by ScriptDemics

Term Work:

Term Work shall consist of at least 12 to 15 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 50 Marks (Total marks) = 40 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

University of Mumbai

Program Structure B.E. Information Technology, (Rev. 2016)

T. E. Information Technology (Semester-V)

Course	Course	Teaching (Contac	Scheme t Hours)			Credi	ts Assig	ned
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
ITC501	Microcontroller and Embedded Programming	4	-	-	4	ı		4
ITC502	Internet Programming	4	-	-	4	-	-	4
ITC503	Advanced Data Management Technology	4	-	-	4	S	-	4
ITC504	Cryptography & Network Security	4	-	-	4	-	-	4
ITDLO-I	Department Level Optional Course-I	4	-		4	-	-	4
ITL501	Internet Programming Lab	-	2	-	-	1		1
ITL502	Security Lab	-	2		-	1	-	1
ITL503	OLAP Lab	-	2	-	-	1	-	1
ITL504	IOT (Mini Project) Lab	-	2	-	-	1	-	1
ITL505	Business Communication and Ethics	-	2+2*	-	-	2	-	2
	Total	20	14	-	20	7	-	26

Commo	Commo					Examina	tion Scl	heme		
Course	Course			Theory	У					
Code	Name	Inte	rnal As	sessment	End	Exam	TW		Oral &	Total
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)		Oral	Pract	
ITC501	Microcontroller and Embedded Programming	20	20	20	80	3	-		-	100
ITC502	Internet Programming	20	20	20	80	3	-		-	100
ITC503	Advanced Data Management Technology	20	20	20	80	3	-		-	100
ITC504	Cryptography & Network Security	20	20	20	80	3	-		-	100
ITDLO-I	Department Level Optional Course-I	20	20	20	80	3			-	100
ITL501	Internet Programming Lab	-	-	-	-	-	25		25	50
ITL502	Security Lab	-	-	-	-	-	25	25		50
ITL503	OLAP Lab	_	-	_	_	_	25	25		50

ITL504	IOT (Mini Project) Lab	-	-	-	_	-	25	25		50
ITL505	Business Communication and Ethics	-	-	-	-	-	50			50
	Total	100	100	100	400	-	150	75	25	750

Department Level Optional Course (DLO)

Every student is required to take one Department Elective Course for Semester V. Different sets of courses will run in both the semesters. Students can take these courses from the list of department electives, which are closely allied to their disciplines.

(DLO-I subjects will have no Labs only Theory)

Subject Code	Department Level Optional Course						
	(DLO)						
	Semester V						
ITDLO5011	Advanced Data Structures & Analysis of Algorithms						
ITDLO5012	Image Processing						
ITDLO5013	E-Commerce & E-Business						
ITDLO5014	IT Enabled Services						
ITDLO5015	Computer Graphics & Virtual Reality						

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC501	Microcontroller and Embedded Programming	04			04			04

	Course Name	Examination Scheme								
Course Code				ry Marks		_			\bigcirc	
		Internal assessment			End	Term	Oral &	Oral	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	Practical	*		
ITC501	Microcontroller and Embedded Programming	20	20	20	80		<u> </u>		100	

Course Objectives: Students will try to learn:

- 1. The concepts and architecture of embedded systems
- 2. Basic of microcontroller 8051.
- 3. The concepts of microcontroller interface.
- 4. The concepts of ARM architecture
- 5. The concepts of real-time operating system
- 6. Different design platforms used for an embedded systems application

Course Outcomes: Students will be able to:

- 1. Explain the embedded system concepts and architecture of embedded systems
- 2. Describe the architecture of 8051 microcontroller and write embedded program for 8051 microcontroller.
- 3. Design the interfacing for 8051 microcontroller.
- 4. Understand the concepts of ARM architecture.
- 5. Demonstrate the open source RTOS and solve the design issues for the same.
- 6. Select elements for an embedded systems tool.

Prerequisite: COA, Microprocessors and Assembly Programming languages

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Revision of microcomputer system terminologies, High level, Machine level and Assembly level programming language, difference between microprocessor and microcontroller	02	

I	Introduction to Embedded systems	Overview of Embedded System Architecture, Application areas, Categories of embedded systems, specialties of embedded systems. Recent trends in embedded systems. Brief introduction to embedded microcontroller cores CISC, RISC, ARM, DSP and SoC.	05	CO1
II	The Microcontroller Architecture and Programming of 8051:	Introduction to 8051 Microcontroller, Architecture, Pin configuration, Memory organization, Input /Output Ports, Counter and Timers, Serial communication, Interrupts. Instruction set, Addressing modes, Development tools, Assembler Directives, Programming based on Arithmetic & Logical Operations, I/O parallel and serial ports,	14	CO2
		Timers & Counters, and ISR.		
III	Interfacing with 8051Microcontr oller	Interfacing ADC, DAC, Stepper motor, LCD, KBD matrix, 8255 PPI	06	CO3
IV	ARM 7 Architecture	Architectural inheritance, Detailed study of Programmer's model, ARM Development tools, Instruction set: Data processing, Data Transfer, Control flow. Addressing modes. Writing simple assembly language programs. Pipelining, Brief introduction to exceptions and interrupts handling.	10	CO4
V	Open source RTOS	Basics of RTOS: Real-time concepts, Hard Real time and Soft Real-time, differences between general purpose OS & RTOS, basic architecture of an RTOS, scheduling systems, inter-process communication, performance Matrix in scheduling models, interrupt management in RTOS environment, memory management, file systems, I/O systems, advantage and disadvantage of RTOS. POSIX standards, RTOS issues – selecting a Real Time Operating System, RTOS comparative study.	07	CO5
VI	Introduction to Embedded target boards	Introduction to Arduino, Raspberry Pi, ARM Cortex, Intel Galileo etc. Open- source prototyping platforms. Basic Arduino programming; Extended Arduino libraries; Arduino-based Internet communication; Raspberry pi; ARM	08	CO6

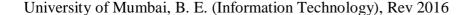
	Cortex Processors; Intel Galileo boards;	
	Sensors and Interfacing: Temperature,	
	Pressure, Humidity	

- 1. M. A. Mazidi, J. G. Mazidi, R. D., McKinlay, "The 8051 microcontroller & Embedded systems Using Assembly and C", Pearson, 3rd edition
- 2. Embedded / real time systems: concepts, design & programming, Black Book, Dr. K. V. K. K. Prasad, Dreamtech press, Reprint edition 2013
- 3. Shibu K. V., "Introduction to embedded systems", McGraw Hil

References:

- 1. Laya B. Das, "Embedded systems an integrated approach", Pearson, Third impression, 2013
- 2. Steve Furber, "ARM System on chip Architecture", Pearson, edition second
- 3. Michael Margolis, "Arduino Cookbook", O'reilly
- 4. Simon Monk," Raspberry Pi Cookbok", O'reilly
- 5. Raspberry Pi User Guide.
- 6. Massimo Banzi, "Getting Started with Arduino: The Open Source Electronics Prototyping Platform (Make)", O'Reilly Media.

Assessment:


Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
Code						Practical		
ITC502	Internet	04			04			04
	Programming							

		Examination Scheme							
Course Code	Course Name		Theor	y Marks					
		Inte	ernal asses	ssment	End	Term Work		Oral	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam	,, 3211		*	
ITC502	Internet Programming	20	20	20	80	-	-		100

Course Objectives: Students will try to learn:

- 1 To get familiar with basics of the Internet Programming.
- 2. To acquire knowledge and skills for creation of web site considering both client and server side programming
- 3. To gain ability to develop responsive web applications
- 4. To explore different web extensions and web services standards
- 5. To learn characteristics of RIA Web Mashup Eco System
- 6. To be familiarized with Python web framework-Django.

Course Outcomes: Students will be able to:

- 1. Implement interactive web page(s) using HTML,CSS and JavaScript.
- 2. Design a responsive web site using HTML5 and CSS3.
- 3. Demonstrate Rich Internet Application.
- 4. Build Dynamic web site using server side PHP Programming and Database connectivity.
- 5. Describe and differentiate different Web Extensions and Web Services.
- 6. Demonstrate web application using Python web Framework-Django

Prerequisite: Basic Java Programming and Python Programming.

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Introduction to web technologies: Introduction to OSI layers,	02	
I	Client Side Programming :HTML, CSS and JavaScript	Basic of HTML: Web System architecture-1,2,3 and n tier architecture, URL, domain name system, overview of HTTP and FTP, Cross browser compatibility issues, W3C Validators. Formatting and Fonts, Anchors, images, lists, tables, frames and forms. Introduction to CSS: Evolution of CSS, Syntax of CSS, Exploring CSS Selectors, Inserting CSS in an HTML Document, Defining Inheritance in CSS. Introduction to JavaScript: JavaScript language constructs, Objects in JavaScript- Built in, Browser objects and DOM objects, event handling, form validation and cookies.	09	CO1
П	HTML5 and Responsive Web Design with CSS3	HTML 5: Fundamental Syntax and Semantics, Native Audio and Video, Micro data and Custom data, Accessibility, Geo-location, Canvas CSS3 and Responsive Web Design Media Queries: Supporting Differing Viewports, Embracing Fluid Layout. CSS3: Selectors, Typography and color Modes, Stunning Aesthetics with CSS3, CSS3 Transitions, Transformations and Animations, Conquer Forms HTML5 and CSS3	12	CO1 CO2
III	Rich Internet Application(RIA)	Characteristics of RIA, Introduction to AJAX : AJAX design basics, AJAX vs Traditional Approach, , Rich User Interface using Ajax. Working with JavaScript Object Notation(JSON): Create data in JSON format, JSON Parser .	09	CO3

		W. 1 3 6 1 D 0		
		Web Mashup Eco Systems –Mashup		
		Techniques: Mashing on the Web		
		Server, Mashing with JSON		
IV	Server Side	Introduction to PHP- Data types,	08	CO4
	Programming:	control structures, built in functions,		
	PHP	Building web applications using		
		PHP- tracking users, PHP and Mysql		
		database connectivity with example.		
		Introduction to PHP Framework.		
V	Web Extensions	Web Extensions: Introduction to	07	CO5
	and Web Services	XML, Introducing XSL.		
		Web services: Evolution and		
		differences with Distributed		
		computing, WSDL, SOAP, UDDI.		
		REST-ful web services, Resource		
		Oriented Architecture		
VI	Python Web	Introduction, Web Frameworks,	05	CO6
	Framework:	Introduction to Django ,Projects and		
	Django	Apps, "Hello World" Application.		
	ů č			

- 1. HTML 5 Black Book: Kogent Learning solutions
- 2. "Learning PHP 5", David Sklar, O'Reilly Publication
- 3. Rich Internet Application AJAX and Beyond WROX press
- 4. Responsive Web Design with HTML5 and CSS3, Ben Frain, PACKT Publication

References:

- 1. "Web Technologies: Black Book", Dreamtech publication
- 2. HTML5 Cookbook, By Christopher Schmitt, Kyle Simpson, O'Reilly Media
- 3. Core Python Applications Programming by Wesley J Chun Third edition Pearson Publication
- 4. Advanced Internet Technologies (includes practicals), Deven Shah, Dreamtech publication

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
						Practical		
ITC503	Advanced Data Management Technology	04			04			04

	Course Name		Examination Scheme									
Course Code			Theor	ry Marks								
		Internal assessment End				Term Work	Oral & Practical	Oral	Total			
		Test1	Test2	Avg. of two Tests	Sem. Exam							
ITC503	Advanced Data Management Technology	20	20	20	80		2)) <u>.</u> .	100			

Course Objectives: Students will try to learn:

- 1. To introduce advanced concepts of transaction management and recovery techniques.
- 2. To impart knowledge related to query processing and query optimizer phases of a database management system
- 3. To introduce concepts of advanced access control techniques like role based and discretionary methods
- 4. To introduce advanced database models like distributed databases.
- 5. To impart an overview of emerging data models like temporal, mobile and spatial databases.
- 6. To create awareness of how enterprise can organize and analyze large amounts of data by creating a Data Warehouse.

Course Outcomes: Students will be able to:

- 1. Explain and understand the concept of a transaction and how ACID properties are maintained when concurrent transaction occur in a database
- 2. Measure query costs and design alternate efficient paths for query execution.
- 3. Apply sophisticated access protocols to control access to the database.
- 4. Implement alternate models like Distributed databases and Design applications using advanced models like mobile, spatial databases.
- 5. Organize strategic data in an enterprise and build a data Warehouse.
- 6. Analyze data using OLAP operations so as to take strategic decisions.

Prerequisite: Database Management System.

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisites	Reviewing basic concepts of a Relational database, SQL concepts	02	
I	Query Processing and Optimization:	Overview, Measures of Query Cost Selection Operation, Sorting, Join Operation, Other Operations Evaluation of Expressions. Query Optimization Overview,	06	CO1
		Transformation of Relational Expressions Estimating Statistics of Expression Results Choice of Evaluation Plans		S:
II	Transactions Management and Concurrency:	Transaction concept, Transaction states, ACID properties, Implementation of atomicity and durability, Concurrent Executions, Serializability, Recoverability, Implementation of isolation, Concurrency Control: Lock-based, Time-stamp based Deadlock handling, Recovery System: Failure Classification, Storage structure, Recovery & atomicity, Log based recovery, Checkpoints, Shadow Paging, ARIES Algorithm.	10	CO2
III	Advanced Data Management techniques	Advanced Database Access protocols: Discretionary Access Control Based on Granting and Revoking Privileges; Mandatory Access Control and Role-Based Access Control. Overview of Advanced Database models like Mobile databases, Temporal databases, Spatial databases.	09	CO3 CO4
IV	Distributed Databases	Introduction: Distributed Data Processing, What is a Distributed Database System? Design Issues. Distributed DBMS Architecture. Distributed Database Design: Top-Down Design Process, Distribution Design Issues, Fragmentation, Allocation. Overview of Query Processing: Query Processing Problem, Objectives of Query Processing, Complexity of Relational Algebra Operations, Characterization of Query Processors, Layers of Query Processing, Query Optimization in Distributed Databases;	09	CO4

		Overview of Transaction Management in DDB; Overview of Concurrency Control in DDB; Overview of Recovery in DDB		
V	Data Warehousing, Dimensional Modeling and OLAP	The Need for Data Warehousing; Data Warehouse Defined; Benefits of Data Warehousing; Features of a Data Warehouse; Data Warehouse Architecture; Data Warehouse and Data Marts; Data Warehousing Design Strategies.	10	CO5
		Dimensional Model Vs ER Model; The Star Schema; How Does a Query Execute? The Snowflake Schema; Fact Tables and Dimension Tables; Factless Fact Table; Updates To Dimension Tables, Primary Keys, Surrogate Keys & Foreign Keys; Aggregate Tables; Fact Constellation Schema or Families of Star	O'	S.
		Need for Online Analytical Processing; OLTP vs OLAP; OLAP Operations in a cube: Roll-up, Drill- down, Slice, Dice, Pivot; OLAP Models: MOLAP, ROLAP, HOLAP.		
VI	ETL Process	Challenges in ETL Functions; Data Extraction; Identification of Data Sources; Immediate Data Extraction, Deferred Data Extraction; Data Transformation: Tasks Involved in Data Transformation, Techniques of Data Loading, Loading the Fact Tables and Dimension Tables	06	CO6

- 1. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, PEARSON Education.
- 3. Theraja Reema, "Data Warehousing", Oxford University Press, 2009.
- 4. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems" 3rd Edition McGraw Hill

References:

- 1. Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India.
- 2. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom "Database System Implementation", Pearson Ltd. 1/e
- 3. Thomas M. Connolly Carolyn Begg, Database Systems : A Practical Approach to Design, Implementation and Management, 4/e, Pearson Ltd.
- 4. Ralph Kimball, Margy Ross, "The Data Warehouse Toolkit: The Definitive Guide To Dimensional Modeling", 3rd Edition. Wiley India.
- 5. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC504	Cryptography & Network Security	04			04			04

					Examina	ation Sch	neme		
Course		_	Theo	ory Marks					2
Code	Course Name	Int	ernal asse	essment	End	Term Work	Oral & Practical	Oral	Total
		Test 1	Test2	Avg. of two Tests	Sem. Exam	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tractical		O,
ITC504	Cryptography & Network Security	20	20	20	80			- 1	100

Course Objectives: Students will try to learn:

- 1. The concepts of classical encryption techniques and concepts of finite fields and number theory.
- 2. And explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, and public key algorithms
- 3. And explore the design issues and working principles of various authentication protocols, PKI standards.
- 4. And explore various secure communication standards including Kerberos, IPsec, and SSL/TLS and email.
- 5. The ability to use existing cryptographic utilities to build programs for secure communication.
- 6. The concepts of cryptographic utilities and authentication mechanisms to design secure applications

Course Outcomes: Students will be able to:

- 1. Identify information security goals, classical encryption techniques and acquire fundamental knowledge on the concepts of finite fields and number theory.
- 2. Understand, compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication
- 3. Apply the knowledge of cryptographic checksums and evaluate the performance of different message digest algorithms for verifying the integrity of varying message sizes
- 4. Apply different digital signature algorithms to achieve authentication and create secure applications
- 5. Apply network security basics, analyze different attacks on networks and evaluate the performance of firewalls and security protocols like SSL, IPSec, and PGP.
- 6. Apply the knowledge of cryptographic utilities and authentication mechanisms to design secure applications

Prerequisite: Computer Networks

Detailed syllabus:

Sr No	Module	Detailed Content	Hours	CO Mapping
0	Prerequisites	Basic concepts of OSI Layer	02	
I	Introduction & Number Theory	Services, Mechanisms and attacks-the OSI security architecture-Network security model-Classical Encryption techniques (Symmetric cipher model, mono-alphabetic and poly-alphabetic substitution techniques: Vignere cipher, playfair cipher, Hill cipher, transposition techniques: keyed and keyless transposition ciphers, steganography).	09	CO1
II	Block Ciphers & Public Key Cryptography	Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Triple DES-Blowfish-RC5 algorithm. Public key cryptography: Principles of public key cryptosystems-The RSA algorithm, The knapsack algorithm, El-Gamal Algorithm. Key management – Diffie Hellman Key exchange	09	CO2 CO6
III	Cryptographi c Hashes, Message Digests and Digital Certificates	Authentication requirement – Authentication function, Types of Authentication, MAC – Hash function – Security of hash function and MAC – MD5 – SHA – HMAC – CMAC, Digital Certificate: X.509, PKI	09	CO3
IV	Digital signature schemes and authenticatio n Protocols	Digital signature and authentication protocols : Needham Schroeder Authentication protocol, Digital Signature Schemes – RSA, EI Gamal and Schnorr, DSS.	07	CO4
V	Network Security	Network security basics: TCP/IP vulnerabilities (Layer wise), Packet Sniffing, ARP spoofing, port scanning, IP spoofing, TCP syn flood, DNS Spoofing. Denial of Service: Classic DOS attacks, Source Address spoofing, ICMP flood, SYN flood, UDP flood, Distributed Denial of Service, Defenses against Denial of Service Attacks.	10	CO5

		Firewalls, Intrusion Detection Systems: Host Based and Network Based IDS, Honey pots.		
VI	Network Security Applications	Authentication Applications, Kerberos, Internet Security Protocols: SSL, TLS, IPSEC:AH, ESP, Secure Email: PGP and S/MIME, Key Management.	06	CO5 CO6

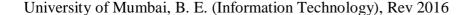
- 1. Mark Stamp's Information Security Principles and Practice, Wiley
- 2. William Stallings, Cryptography and Network Security, Principles and Practice, 6th Edition, Pearson Education, March 2013
- 3. Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill
- 4. Bernard Menezes, "Cryptography & Network Security", Cengage Learning

Reference Books:

- 1. Applied Cryptography, Protocols Algorithms and Source Code in C, Bruce Schneier, Wiley.
- 2. Cryptography and Network Security, Atul Kahate, Tata Mc Graw Hill.

Assessment:

Internal Assessment for 20 marks:


Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Course Name	Theory	Practical	Tutorial	Theory	TW	Tutorial	Total
Code						/Practical		
ITL501	Internet		2			1		1
	Programming							
	Lab							

					Examina	ation Sch	neme		
Course Code			Theory Marks						
	Course Name	Int	ernal asse	essment	End	Term Work	Oral & Practical	Total	
		Test 1	Test 2	Avg. of two Tests	Sem. Exam	.,, 0.55	·Co·		
ITL501	Internet Programming Lab					25	25	50	

Lab Objectives: Students will try:

- 1. To Acquire knowledge and Skills for creation of Web Site considering both client- and server-side Programming.
- 2. To create Web application using tools and techniques used in industry.
- 3. To learn the characteristics of RIA
- 4. To Demonstrate Amazon/Google or Yahoo mashup
- 5. To be well versed with XML and web services Technologies.
- 6. To be familiarized with open source Frameworks for web development.

Lab Outcomes: Students will learn to:

- 1. Design a basic web site using HTML5 and CSS3 to demonstrate responsive web design.
- 2. Implement dynamic web pages with validation using JavaScript objects by applying different event handling mechanism.
- 3. Use AJAX Programming Technique to develop RIA
- 4. Develop simple web application using server side PHP programing and Database Connectivity using MySQL.
- 5. Build well-formed XML Document and implement Web Service using Java.
- 6. Demonstrate simple web application using Python Django Framework.

Hardware and Software requirements:

Hardware Requirements	Software Requirements	Other Requirements
PC With following	1. Windows or Linux Desktop OS	1. Internet Connection
Configuration	2. HTML5 compatible web	installation of web
1. Intel Core i3/i5/i7	browsers(Chrome, Opera,	frameworks
Processor	Firefox, Safari etc)	
2. 4 GB RAM	3. HTML,CSS editors like	
3. 500 GB Harddisk	Dreamweaver, Notepad++ etc.	
2.000 32 11 33	4. Netbeans or Eclipse IDE	Co
	5. XAMPP	

Prerequisite: Basics of Java and Python Programming

Guidelines

- 1. The mini project work is to be conducted by a group of three students
- 2. Each group will be associated with a subject Incharge/ mini project mentor. The group should meet with the concerned faculty during Laboratory hours and the progress of work discussed must be documented.
- 3. The students may do will visit different websites to identify their website topic for the mini project.
- **4.** Each group will identify the Hardware and software requirement for their mini project problem statement.
- 5. Mini Project consists of Responsive Website Development.
- **6.** Which includes following points
 - **a.** Introduction to RWD frame work?
 - **b.** Identify tools
 - c. CSS preprocessor
 - d. Construction and design of skeleton for website
 - e. Enhancing CSS3 and HTML5 in website
 - **f.** Server Side Programming: website using server side scripting in PHP and database connectivity using MySQL (PHP framework like Laravel/Joomla can be used)
 - g. XML ,XSL and Web Services

- **h.** Developing RIA using AJAX including -A browser built-in XMLHttpRequest object (to request data from a web server) and JavaScript and HTML DOM (to display or use the data) Building Amazon/Yahoo /Google Web Mashups for the website.
- i. Website Security
- **j.** Develop full website and launch it.
- 7. Each group may present their work in various project competitions and paper presentations.
- **8.** A detailed report is to be prepared as per guidelines given by the concerned faculty.

- 1. Responsive Web Design by Example Beginner's Guide by Thoriq Firdaus, PACKT
- 2. Responsive Web Design with HTML5 and CSS3 PACKT
- 3. Professional Rich Internet Application: AJAX and Beyond WROX press

References:

- 1. Laravel: Up and Running, By Matt Stauffer O'Reilly Media.
- 2. Advanced Internet Technologies (includes practicals) ,Deven Shah ,Dreamtech publication
- 3. Django By Example By Antonio Melé, Pakt Publication

Term Work:

Term Work shall consist of full Mini Project on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Mini Project) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the Mini Project and Presentation.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW /Practical	Tutorial	Total
ITL502	Security Lab		2	-		1	-	1

]	Examination Sche	eme							
Course	Course			Theory Mark	S		Oral &						
Code	Name	Int	ernal ass	essment	End Sem.	Term	Practical	Oral	Total				
		Test1	Test2	Avg. of two Tests	Exam	Work		Orar	Total				
ITL502													
	Security Lab					25		25	50				

Lab Objectives: Students will try:

- 1. To be able to apply the knowledge of symmetric cryptography to implement simple ciphers
- 2. To be able to analyze and implement public key algorithms like RSA and El Gamal
- 3. To analyze and evaluate performance of hashing algorithms
- 4. To explore the different network reconnaissance tools to gather information about networks
- 5. To explore and use tools like sniffers, port scanners and other related tools for analyzing packets in a network.
- 6. To be able to set up firewalls and intrusion detection systems using open source technologies and to explore email security.

Lab Outcome: Students will learn to:

- 1. Apply the knowledge of symmetric cryptography to implement simple ciphers
- 2. Analyze and implement public key algorithms like RSA and El Gamal
- 3. Analyze and evaluate performance of hashing algorithms
- 4. Explore the different network reconnaissance tools to gather information about networks
- 5. Use tools like sniffers, port scanners and other related tools for analyzing packets in a network.
- 6. Apply and set up firewalls and intrusion detection systems using open source technologies and to explore email security.

Hardware and Software requirements:

Software Requirements
1. Windows or Linux Desktop OS
2. wireshark
3. ARPWATCH
4. Kismet, NetStumbler
5. NESSUS

Detail Syllabus:

Module No.	Description	Hours	CO mapping
I	 a) Design and Implementation of a product cipher using Substitution and Transposition ciphers b) Implementation and analysis of RSA cryptosystem and Digital signature scheme using RSA/El Gamal 	4	LO1 LO2
II	 a) Implementation of Diffie Hellman Key exchange algorithm b) For varying message sizes, test integrity of message using MD-5, SHA-1, and analyse the performance of the two protocols. Use crypt APIs c) Exploring wireless security tools like Kismet, NetStumbler etc. 	4	LO2 LO3
III	 a) Study the use of network reconnaissance tools like WHOIS, dig,traceroute, nslookup to gather information about networks and domain registrars. b)Study of packet sniffer tools wireshark, :- 1. Observer performance in promiscuous as well as non-promiscuous mode. 2. Show the packets can be traced based on different filters. 	4	LO4 LO5
IV	Download and install nmap. Use it with different options to scan open ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, etc.	4	LO5
V	 a) Detect ARP spoofing using nmap and/or open source tool ARPWATCH and wireshark. b) Simulate DOS attack using Hping and other tools c) Use the NESSUS/ISO Kaali Linux tool to scan the network for vulnerabilities. 	6	LO4 LO5

VI	a) Set up IPSEC under LINUX.b) Set up Snort and study the logs.	4	LO6
	c) Explore the GPG tool of linux to implement email security		

- 1. Build your own Security Lab, Michael Gregg, Wiley India
- 2. CCNA Security, Study Guide, TIm Boyles, Sybex

Reference Books:

1. Network Security Bible, Eric Cole, Wiley India

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

Course Code	Course	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
	Name					Practical		
ITL503	OLAP Lab		2			1		01

		Examination Scheme							
Course		Theory Marks				Term Work	Oral & Practical	Oral	Total
Code	Code Course Name		Internal assessment						
		Test	Test2	Avg. of two Tests	Sem. Exam	Work	Tructicur		
ITL503	OLAP Lab					25	3C	25	50

Lab Objectives: Students will try:

- 1. To introduce advanced concepts of transaction management and recovery techniques.
- 2. To impart knowledge related to query processing and query optimizer phases of a database management system
- 3. To initiate awareness about the potential security threats that exists in database systems and how to tackle them.
- 4. To introduce advanced database models like distributed databases.
- 5. To impart an overview of emerging data models like temporal, mobile and spatial databases.
- 6. To create awareness of how enterprise can organize and analyze large amounts of data by creating a Data Warehouse.

Lab Outcomes: Student should be able:

- 1. Implement simple query optimizers and design alternate efficient paths for query execution.
- 2. Simulate the working of concurrency protocols, recovery mechanisms in a database
- 3. Design applications using advanced models like mobile, spatial databases.
- 4. Implement a distributed database and understand its query processing and transaction processing mechanisms
- 5. Build a data warehouse
- 6. Analyze data using OLAP operations so as to take strategic decisions.

Hardware and Software requirements:

Hardware Requirements	Software Requirements		
PC With following	1. ETL tools		
Configuration 1. Intel Core i3/i5/i7	2. Warehouse tools		
	3. Java/Python compiler		

Processor	
2. 4 GB RAM	
3. 500 GB Harddisk	

Prerequisite: DBMS.

Detailed syllabus:

Module	Detailed Content	Hours	CO Mapping
No.			
I	a) Implementation of any Query	4	LO 2
	optimizer (Java/Python)		
	b) Assignments for query evaluation		·60.
	path expressions.		
II	c) Simulation of Concurrency Control	4	LO1
	Algorithm, Recovery Algorithm		
	(Java/Python)		
III	a) Design of a distributed database for a	4	LO 4
	real life application - Fragmentation,		
	Query Processing		
	b) Simulation of Recovery methods.		
IV	Advanced Database Models	4	LO 3
	Case study based assignments for		
	Temporal, Mobile or Spatial databases		
V	Data Warehouse Construction	6	LO 4
	a) Real life Problem to be defined for		
	Warehouse Design		
	b) Construction of star schema		
	c) ETL Operations.		
VI	OLAP Exercise	4	LO 6
	a) Construction of Cubes		
	b) OLAP Operations, OLAP Queries		

Text Books:

- 1. Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, PEARSON Education.
- 2. Theraja Reema, "Data Warehousing", Oxford University Press, 2009.
- 3. Data Warehousing, Data Mining, & OLAP by Alex Berson McGraw Hill.

References:

- 1. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom "Database System Implementation", Pearson Ltd. 1/e
- 2. Thomas M. Connolly Carolyn Begg, Database Systems : A Practical Approach to Design, Implementation and Management, 4/e Pearson Ltd

3. Ralph Kimball, Margy Ross, "The Data Warehouse Toolkit: The Definitive Guide To Dimensional Modeling", 3rd Edition. Wiley India.

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

Course Code	Course	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
	Name					Practical		
ITL504	IOT (Mini		2			1		1
	Project) Lab							

Course Code	Course Name		Examination Scheme								
		Theory Marks									
		Inte	ernal asse	essment	End Sem. Exam	Term Work	Oral & Practical	Oral	Total		
		Test1	Test2	Avg. of two Tests) *			
ITL504	IOT (Mini Project) Lab					25		25	50		

Lab Objectives: Students will try to:

- 1. Address the real world problems and find the required solution.
- 2. Design the problem solution as per the requirement analysis done.
- 3. Study the basic concepts of programming/ hardware/ emulator for Raspberry pi/Arduino/ ARM Cortex/ Intel Galileo etc.
- 4. Fabricate and implement the mini project intended solution for project based learning.
- 5. Build and test the mini project successfully.
- 6. Improve the team building, communication and management skills of the students.

Lab Outcomes: Student will be able to:

- 1. Identify the requirements for the real world problems.
- 2. Conduct a survey of several available literatures in the preferred field of study.
- 3. Study and enhance software/ hardware skills.
- 4. Demonstrate and build the project successfully by hardware requirements, coding, emulating and testing.
- 5. To report and present the findings of the study conducted in the preferred domain
- 6. Demonstrate an ability to work in teams and manage the conduct of the research study.

Guidelines

- 1. The mini project work is to be conducted by a group of three students
- 2. Each group will be associated with a subject Incharge/ mini project mentor. The group should meet with the concerned faculty during Laboratory hours and the progress of work discussed must be documented.
- **3.** The students may do survey for different application using Raspberry pi/Arduino/ ARM Cortex/ Intel Galileo etc topics for the mini project.

- **4.** Each group will identify the Hardware and software requirement for their mini project problem statement.
- **5.** Prototype/Design your own circuit board using Raspberry pi/Arduino/ ARM Cortex/ Intel Galileo etc.
- **6.** Installation, configure and manage your Raspberry pi/Arduino/ ARM Cortex/ Intel Galileo etc board/kit.
- **7.** Work with operating system and do coding to for input devices on board.
- 8. The project assessment for term work will be done at least two times at department level by giving presentation to panel members which consist of at least three (3) members as Internal examiners (including the project guide/mentor) appointed by the Head of the department of respective Programme.
- **9.** Create and interface using Web to publish or remotely access the data on Internet.
- **10.** Each group along with the concerned faculty shall identify a potential problem statement, on which the study and implementation is to be conducted.
- 11. Each group may present their work in various project competitions and paper presentations.
- 12. A detailed report is to be prepared as per guidelines given by the concerned faculty.

- 1. Massimo Banzi, "Getting Started with Arduino", O'reilly, 2nd edition
- 2. Simon Monk," Raspberry Pi Cookbok", O'reilly
- 3. Raspberry Pi User Guide

References:

1. Internet of Things (A Hands-on-Approach), Vijay Madisetti, Arshdeep Bahga

Term Work:

Term Work shall consist of full Mini Project on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Mini Project) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the Mini Project and Presentation.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
						Practical		
ITL505	Business Communication and Ethics	2	2*			2		2

			Examination Scheme							
Course Code		Theory Marks								
	Course Name	Internal assessment			End	Term	Oral &	Oral	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	Practical) *	Total	
ITL505	Business Communication and Ethics					50	<u>), </u>		50	

^{*} Batch wise practical's

Pre-requisite

Communication Skills

Course Objective: Students will try:

- 1. To inculcate professional and ethical attitude at the workplace
- 2. To enhance effective communication and interpersonal skills
- 3. To build multidisciplinary approach towards all life tasks
- 4. To hone analytical and logical skills for problem-solving

Course Outcomes: Students will learn to:

- 1. Design a technical document using precise language, suitable vocabulary and apt style.
- 2. Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships.
- 3. Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities.
- 4. Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
- 5. Deliver formal presentations effectively implementing the verbal and non-verbal skills.

Module	Detailed Contents	Hrs.
01	Report Writing	05
1.1	Objectives of Report Writing	
1.2	Language and Style in a report	
1.3	Types: Informative and Interpretative (Analytical, Survey and Feasibility) and Formats of reports (Memo, Letter, Short and Long Report)	
02	Technical Writing	03
2.1	Technical Paper Writing (IEEE Format)	
2.2	Proposal Writing	
03	Introduction to Interpersonal Skills	08
3.1	Emotional Intelligence	
3.2	Leadership and Motivation	
3.3	Team Building	
3.4	Assertiveness	
3.5	Conflict Resolution and Negotiation Skills	
3.6	Time Management	
3.7	Decision Making	
04	Meetings and Documentation	02
4.1	Strategies for conducting effective meetings	
4.2	Notice, Agenda and Minutes of a meeting	
4.3	Business meeting etiquettes	
05	Introduction to Corporate Ethics	02
5.1	Professional and work ethics (responsible use of social media -	
	Facebook, WA, Twitter etc.)	
5.2	Introduction to Intellectual Property Rights	
5.4	Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and	
	making ethical decisions)	
06	Employment Skills	06

6.1	Group Discussion		
6.2	Resume Writing		
6.3	Interview Skills		
6.4	Presentation Skills		
6.5	Statement of Purpose		
		26	

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper)
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

1. Term Work:

- 2. Term work shall consist of all assignments from the list. The distribution of marks for term
- 3. work shall be as follows:
- 4. Book Report.....(10) Marks
- 5. Assignments (10) Marks
- 6. Project Report Presentation......(15) Marks
- 8. Attendance(05) Marks
- 9. TOTAL:(50) Marks

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

References

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill

- 4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education
- 7. Ghosh, B. N., "Managing Soft Skills for Personality Development", Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 9. Bell, Smith, "Management Communication" Wiley India Edition, 3rd edition.
- 10. Dr. Alex, K., "Soft Skills", S Chand and Company
- 11. Subramaniam, R., "Professional Ethics" Oxford University Press.
- 12. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 13. https://grad.ucla.edu/asis/agep/advsopstem.pdf

Course	Course Name	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
Code						Practical		
ITDLO50	Advanced Data Structures & Analysis of Algorithms	04			04			04

	Course Name		Examination Scheme								
Course Code		Theory Marks					0.1.0				
		Internal assessment			End	Term	Oral & Practical	Total			
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	2				
ITDLO50	Advanced Data Structures & Analysis of Algorithms	20	20	20	80	8		100			

- Course Objectives: Students will try:

 1. To learn mathematical background for analysis of algorithm
 2. To learn various advanced data structures.
 3. To understand the concept of designing an algorithm.
 4. To learn dynamic programming and greedy method.
 5. To understand the concept of pattern matching
 6. To learn advanced tree and graph applications.

Course Outcomes:

- 1. Students will be able to choose appropriate advanced data structure for given problem.
- 2. Students will be able to calculate complexity.
- 3. Students will be able to select appropriate design techniques to solve real world problems.
- 4. Students will able to apply the dynamic programming technique to solve the problems.
- 5. Students will be able to apply the greedy programming technique to solve the problems.
- 6. Students will be able to select a proper pattern matching algorithm for given problem.

Prerequisite: Knowledge Any Programming Language, Data structures and Analysis

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
	Prerequisite	Data structures and analysis	02	
I	Introduction	Introduction Introduction to advanced data structures: Introduction/Fundamentals of the analysis of algorithms Recurrences: The substitution method Recursive tree method Masters method Probabilistic analysis Amortized analysis Randomized algorithms Mathematical aspects and analysis of algorithms	10	CO1 CO2
II	Advanced Data Structures	 Introduction AVL tree Huffman algorithm B/B+ tree 2-3 tree operations Red-Black Trees tries Heap operations Implementation of priority queue using heap Topological sort Analysis of All problems 	11	CO1 CO2 CO3
ш	Divide and Conquer	 Introduction Binary search Finding the minimum and maximum Merge sort Quick sort Strassen's matrix multiplication Analysis of All problems 	7	CO2 CO3
IV	Greedy algorithms	 Introduction Knapsack problem Job sequencing with deadlines Minimum cost spanning trees 	8	CO2 CO3

		 Kruskal's algorithm Prim's algorithm Optimal storage on tapes Optimal merge pattern Subset cover problem Container loading problem Analysis of All problems 		CO5
1	Dynamic algorithms And NP-Hard and NP- Complete	 All pair shortest path 0/1 knapsack Travelling salesman problem Coin Changing Problem Matrix Chain Multiplication Flow shop scheduling Optimal binary search tree (OBST) Analysis of All problems Introduction to NP-Hard And NP-Complete Problems 	8	CO2 CO3 CO4
VI	String Matching	 introduction The naïve string matching algorithm Rabin Karp algorithm Knuth-Morris-Pratt algorithm (KMP) Longest common subsequence(LCS) Analysis of All problems Genetic algorithms 	6	CO2 CO3 CO6

- 1. Introduction to ALGORITHMS, Cormen, Leiserson, Rivest, Stein, PHI.
- 2. Algorithms: Design and Analysis, Harsh Bhasin, OXFORD.
- 3. Fundamentals of Computer Algorithms, Horowitz, Sahani, Rajsekaran, Universities Press.
- 4. C and Data structures, Deshpande, Kakde, Dreamtech Press.

Reference Books:

- 1. Data Structures and Algorithms in C++, Goodritch, Tamassia, Mount, WILEY.
- 2. Data Structures using C, Reema Thareja, OXFORD.
- 3. Data Structures and Algorithm Analysis in C, Mark A. Weiss, Pearson.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
Name					Practical		
Image	04			04			04
Processing							
	Name Image	Name Image 04	Name Image 04	Name Image 04	Name	Name Practical Image 04 04	Name Practical Image 04 04

	Subject Name	Examination Scheme								
Subject Code		Theory Marks					0.10 P: 1			
		Internal assessment			End	Term Work	Oral & Practical	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam					
ITDLO5012	Image	20	20	20	00		·60.	100		
	Processing	20	20	20	80			100		

Course Objectives: The course will help the students to get familiar with

- 1. Fundamental concepts of a digital image processing system.
- 2. Concepts of image enhancement techniques.
- 3. Various Image Transforms.
- 4. Compression techniques and Morphological concepts
- 5. Various segmentation techniques, and object descriptors.
- 6. Color models and various applications of image processing.

Course Outcomes: Students should be able to:

- 1. Remember the fundamental concepts of image processing.
- 2. Explain different Image enhancement techniques
- 3. Understand and review image transforms
- 4. Analyze the basic algorithms used for image processing &image compression with morphological image processing.
- 5. Contrast Image Segmentation and Representation
- 6. Design & Synthesize Color image processing and its real world applications.

Prerequisite: Mathematics and Statistics.

Detail Syllabus:

Sr. No	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	As images are two dimensional signals, the single dimensional Digital Signal Processing fundamentals.	02	

			T	
I	Introduction to digital image processing system	Fundamental Steps in Digital Image Processing, Components of an Image Processing System, Image Sensing and Acquisition, Image Sampling and Quantization, Basic Relationships between Pixels.	07	CO 1
II	Image enhancement	Intensity Transformations and Spatial Filtering, Histogram processing, Filtering in Frequency Domain	09	CO 2
III	Image transforms	Discrete Fourier transform - Properties of two dimensional DFT, DCT, DST, Walsh, Hadamard, Haar Transform and their properties.	07	CO 3
IV	Image compression and morphological image processing	Fundamentals of compression, Basic compression Methods, Huffman Coding, Arithmetic Coding, LZW Coding, Run-Length Coding, Symbol-Based Coding, Bit-Plane Coding, Block Transform Coding, Predictive Coding. Image morphology, Opening & Closing, Hit or Miss Transform, Basic Morphological Algorithms	11	CO 4
V	Image segmentation and representation	The detection of discontinuities - Point, Line and Edge detections , Hough Transform, Thresholding Region based segmentation Chain codes, Polygon approximation, Shape numbers, Fourier descriptors, statistical Moments.	08	CO 5

		Color Fundamentals and Models, Pseudocolor Image Processing,		
VI	Color Image Processing and Applications	Pseudocolor Image Processing, Smoothing and Sharpening, Image Segmentation Based on Color. Biometric Authentication, Digital watermarking, Content Base Image Retrieval. Vector quantization	08	CO 6

- 1. Rafael C. Gonzalez and Richard E.woods, "Digital Image Processing", Addition Wesley Publishing Company, New Delhi, Third Edition, 2007.
- 2. William K. Pratt, "Digital Image Processing", John Wiley, NJ, Fourth Edition 2007.

Reference Books:

- 1. Sid Ahmed M.A., "Image Processing Theory, Algorithm and Architectures", McGraw-Hill, 1995.
- 2. Kenneth R Castleman, "Digital Image Processing", Prentice Hall, New Delhi, 1996.
- 3. Anil.K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India Pvt Ltd., New Delhi, 1995.
- **4.** S. Sridhar, "Digital Image Processing", second Edition, Oxford university press, New Delhi, 2016
- **5.** S. Jayaraman, S. Esakkirajan, T. Veerakumar "Digital Image Processing", McGraw-Hill, 2016

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Course Name	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
Code						Practical		
ITDLO5013	E-Commerce &	04			04			04
	E-Business							

	Course Name	Examination Scheme							
Common Conta			Theo	ory Marks			0.10 P.		
Course Code		Internal assessment			End	Term Work	Oral & Practical	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam		(5)		
ITDLO5013	E-Commerce	20	20	20	80		5	100	

Course Objectives: Students will try to:

- 1. Understand concept of Ecommerce and its types.
- 2. Be familiarized with technologies for Ecommerce.
- 3. Understand different types of Online Payment systems.
- 4. Understand Selling and marketing on web.
- 5. Be familiarized with concept of E-business and E-business Models.
- 6. Understand various E-business Strategies.

Course Outcomes: Students will be able to:

- 1. Define and differentiate various types of E-commerce.
- 2. Describe Hardware and Software Technologies for E-commerce.
- 3. Explain payment systems for E -commerce.
- 4. Describe the process of Selling and Marketing on web.
- 5. Define and Describe E-business and its Models.
- 6. Discuss various E-business Strategies.

Prerequisite: Internet Technologies, Internet Security, Middleware technologies, web services

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Internet Technologies, Internet Security, Middleware technologies, web services	02	
I	Introduction to E	E –commerce :Definition of e commerce , different types of E-commerce ,Examples	04	CO1

			ı	
	-commerce	of E- commerce, E-commerce trade cycle, advantages and disadvantages of E-commerce, Traditional commerce Vs E-commerce		
II	Overview of Hardware and Software Technologies for Ecommerce	Overview of Client side programming (Dream weaver, Front page) Hardware and, Server side Programming (PHP), Database Software connectivity, session tracking, middleware technologies for ecommerce perspective and security aspects with respect to e commerce, integration of web services	08	CO2
III	Payment System for Ecommerce	Traditional payment model, Characteristics of payment, Online Payment Basics, Payment Cards, Electronic Cash, Electronic Wallets, Stored-Value Cards, SET Protocol for credit card payment, Internet Technologies and the Banking Industry	10	CO3
IV	Selling and Marketing on Web	Selling on the Web: Revenue Models and Building a Web Presence: Revenue Models, Revenue Models in Transition, Revenue Strategy Issues, Creating an Effective Web Presence, Web Site Usability, Connecting with Customers Marketing on the Web: Web Marketing Strategies, Communicating with Different Market Segments, Beyond Market Segmentation: Customer Behavior and Relationship Intensity, Advertising on the Web, E-Mail Marketing, Technology-Enabled Customer Relationship Management, Creating and Maintaining Brands on the Web	10	CO4
V	E business:- Introduction to e business and Developing E-business models	Online Auctions, Virtual Communities, and Web Portals Definition of e- business, Characteristics, elements of e business, e business roles, Impact of e business, challenges of e business, difference between e business and e commerce, E-business structure, Evolution of E-business and stages, E-business models, Characteristics of Internet based software and e business solutions	10	CO5
VI	E business strategies	Strategic planning process, SCM, CRM, ERP, procurement	08	CO6

- 1 E -Commerce Fundamentals and application (Henry Chan) Wiley publication
- 2. Electronics Commerce (Gary Schneider) Thomson Course technology
- $3.E\,$ –Business , Parag Kulkarni , Sunita Jahirabadkar, Pradip Chande , Oxford Higher Education , Oxford University Press
- 4. E –business and E –commerce Management , Dave Chaffey , Pearson , 3rd edition
- 5. E commerce by Laudon

References:

- 1. E-Commerce Strategies, Technology and applications (David Whitley) Tata McGrawHill
- 2. Introduction to E-commerce Elias Awad

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
	Name					Practical		
ITDLO5014	IT Enabled	04			04			04
	Services							

		Examination Scheme							
Course Code	Course Name		Theo	ry Marks					
		Internal assessment			End	Term Work	Oral & Practical	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	VV OIL		O,	
ITDLO5014	IT Enabled Services	20	20	20	80		45.	100	

Course Objectives: Students will try:

- 1. To understand importance of IT enabled services and challenges for the same.
- 2. To understand strategic IT planning for industries.
- 3. To develop enterprise IT architecture for Information technology.
- 4. To encourage the use of Information Technology so as to enable students to improve their skills, knowledge and job prospects and enable them to obtain employment in sunrise industries.
- 5. To develop the ability to integrate various resources for optimization in the industry as well as for strategic utilization of IT enabled services and functions.
- 6. To develop competence in global sourcing: strategy and management to gain a perspective on the global services sourcing landscape: past, present, and future.

Course Outcomes: Students will be able to:

- 1. Describe the importance of IT enabled services and challenges.
- 2. Identify strategic IT planning for software development.
- 3. Recognize enterprise IT architecture for Information technology.
- 4. Use of Information Technology so as to enable them for job in sunrise industries.
- 5. Illustrate various IT web services for betterment of knowledge.
- 6. Use their skills to find out various current IT trends in ITES.

Prerequisite: Internet Programming.

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Information Technology and Project Management, Web Engineering and Technology.	02	
I	Business strategy: challenges and opportunities for IT	Business Strategy: Challenges and Opportunities in the Globalized, Interconnected, Convergent World, Establish Principles before Practice, IT Strategy, Application Strategy, Technology Strategy for IT, IT Management Strategy, Developing IT Strategy for Competitive Advantage, Stages of IT Strategy Development and Implementation, Challenges of IT and Business Strategy Alignment, Inhibitors of Business and IT Strategy Alignment, Three-D Framework for Business and IT Strategy Alignment.	09	CO1
II	Strategic IT planning	Business Implications for IT Strategic and Planning, Strategic IT Planning Motivations, SITP Process: Prevalent Planning Approaches, Difficulties in Developing and Executing SITP, Best Practices for Achieving Good SITP, SITP Approaches-Prevalent Researches.	09	CO2
III	Enterprise IT architecture	Defining EITA, Contents of a Typical Enterprise IT Architecture, Standard for Enterprise IT Architecture, Technology Management strategy Framework, Prevalent Technology Reference Architectures Framework and Standards, Program Management, Benefits of PMO, Desired Qualities of a Program Office Manager, Maturity of PMO, Implementation of PMO Strategy, Measuring PMO Performance, Success Factors for PMO, Project Scope Management, PMO Dashboard and Reporting.	08	CO3

IV	IT service management strategy	Information Technology Infrastructure Library (ITIL), ITIL Overview, ITIL Service Support Processes, Incident Management, Problem Management, Service Delivery, Service Level Management, Financial Management, Capacity Management, IT Service Continuity Management (ITSCM), Availability Management, Imperatives for Outsourcing, IT Management Layers, Variants of Outsourcing, Business Process Outsourcing, In sourcing.	08	CO4
V	IT enabled web services	Overview of basic features of PHP: arrays, functions and state management, working with PHP forms, More advanced PHP, OOP's concept in PHP, Portable database supported with different, exception handling, concepts of UDDI, WSDL, SOAP.	08	CO5
VI	Current trends in ITES	Current Employment in the IT and ITES industry: Newly emerging area and requirement of IT enabled service sector. Industry Oriented Human Resource Requirement: Outlook of the IT and ITES Industry. Barriers to Trade in ITES Role of International Bodies (WTO & UNCTAD) in facilitating Trade in ITEST/ITES, experiences and Case studies of ITES-call centers, ERP, google.	08	CO6

- 1. Sanjiva Shankar Dubey, "IT strategy and Management", PHI.
- 2. K. Venkatesh, "Marketing of Information Technology", TMH.
- 3. Steve Suehring, Timconverse, Joyoe Park, "PHP 6 and MySQL Bible", Wiley.

References:

- 1. Shiro Uesugi, "IT Enabled Services", Springer; 2013 edition, 2013.
- 2. Sanjiva Shankar Dubey, "IT Services Business Management: Concepts, Processes and Practices", PHI, 2012.
- 3. Nikhil Treebhoohu, "Promoting IT Enabled Services", Addison-Wesley, 2013.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
Course Code	Course Name							
	1	04			04			04
ITDLO5015								
	Virtual							
	Reality							

					Examinat	ion Sche	me	
			Theo	ory Marks	ī			
		Interna	nternal assessment			Term	6	T-4-1
Course Code	Course Name	Test1	Test2	Avg. of two Tests	Sem. Exam	Work	Oral & Practical	Total
ITDLO50		20	20		80	(100
	Computer Graphics & Virtual Reality				0)		

Course Objectives: Students will try:

- 1. To introduce the use of the components of a graphics system and become familiar with building approach of graphics system components and algorithms related with them.
- 2. To learn the basic principles of 3-dimensional computer graphics.
- 3. Provide an understanding of how to scan convert the basic geometrical primitives, how to transform the shapes to fit them as per the picture definition.
- 4. Provide an understanding of mapping from a world coordinates to device coordinates, clipping, and projections.
- 5. To be able to discuss the application of computer graphics concepts in the development of computer games, information visualization, and business applications.
- 6. To comprehend and analyze the fundamentals of animation, virtual reality, underlying technologies, principles, and applications.

Course Outcomes: Students will be able to:

- 1. To list the basic concepts used in computer graphics.
- 2. To implement various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping.
- 3. To describe the importance of viewing and projections.
- 4. To define the fundamentals of animation, virtual reality and its related technologies.
- 5. To understand a typical graphics pipeline
- 6. To design an application with the principles of virtual reality

Prerequisite: Basic Mathematics

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Knowledge of Mathematics	2	
I.	Introduction to Computer graphics and Output primitives	Introduction: Display Devices, Bitmap and Vector based graphics, Overview of Coordinate System. Scan Conversion of: point, line using Digital differential analyzer & Bresenham's algorithm, circle using midpoint approach, Curve Generation: Bezier and B-Spline curves. Introduction to fractals: generation procedure, classification, dimension and Koch Curve.		CO1
II.	Area Filling, Transformations (2D and 3D)	Area filling: Inside/Outside Test, Scan line Polygon Fill Algorithm, Boundary Fill and Flood Fill algorithm. Basic Geometrical 2D Transformations: Translation, Rotation, Scaling, Reflection, Shear, their homogeneous Matrix representation and Composite transformation. Three Dimensional transformations: Translation, Scaling, Rotations, Composite.	8	CO1 CO2
III.	Viewing (2D and 3D) Projection and Clipping	Viewing: Introduction, Viewing Pipeline, View Coordinate reference frame, Window to viewport transformation. Three-Dimensional Viewing: 3D Pipeline, Viewing transformation, Projections: Parallel (Oblique and orthographic), Perspective (one Point) Clipping: Point clipping, Line clipping: Cohen Sutherland Algorithm, Liang Barsky algorithms, Polygon clipping: Sutherland Hodgeman polygon clipping and Weiler Atherton. Text Clipping.	10	CO1 CO2 CO3

IV.	Introduction To Animation	Animation: Key Frame Animation, Animation Sequence, Motion Control Methods, Morphing, Warping- Mesh Warping.	4	CO1 CO2 CO4 CO5
V.	Introduction to Virtual Reality	Virtual Reality: Basic Concepts, Overview and perspective on virtual reality, Human sensation and perception. Classical Components of VR System, Types of VR Systems, Three-Dimensional Position Trackers, Navigation and Manipulation Interfaces, Gesture Interfaces, Input Devices, Graphical Display, Sound displays, and Haptic Feedback. Graphical Rendering Pipeline, Haptic Rendering Pipeline, Open GL rendering pipeline. Applications of Virtual Reality.	9	CO1 CO2 CO4 CO6
VI.	VR Modeling and Programming	Geometric Modeling: Virtual Object Shape, Object Visual Appearance. Kinematics Modeling: Object Position, Transformation Invariants, Object Hierarchies, Physical Modeling: Collision Detection, Surface Deformation, Force Computation. Behavior Modeling. Programming through VRML/X3D: Defining and Using Nodes and Shapes, VRML Browsers, Java 3D, OpenCV for augmented reality	12	CO1 CO2 CO4 CO6

- 1 Donald Hearn and M. Pauline Baker, "Computer Graphics", Pearson Education.
- 2 R. K Maurya, "Computer Graphics with Virtual Reality", Wiley India.

Reference Books

- 1. Grigore Burdea, Philippe Coiffet, "Virtual Reality Technology", Wiley.
- 2. Steven Harrington, "Computer Graphics", McGraw Hill.
- 3. Rogers, "Procedural Elements of Computer Graphics", Tata McGraw Hill.
- 4. Vince, "Virtual Reality Systems", Pearson Education.
- 5. F.S. Hill, Stephen M. Kelley, "Computer Graphics using Open GL" Prentice Hall
- 6. Samyak Datta, "Learning OpenCV 3 Application Development", Packt

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

University of Mumbai

Program Structure B.E. Information Technology, (Rev. 2016)

T. E. Information Technology (Semester-VI)

Course	Course	Teaching (Contact				Credi	ts Assig	ned
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
ITC601	Software Engineering with Project Management	4	-	-	4	-	-	4
ITC602	Data Mining and Business Intelligence	4	-	-	4	-	-	4
ITC603	Cloud Computing & Services	4	-	1	4	-		4
ITC604	Wireless Networks	4	-	-	4	-		4
ITDLO-II	Department Level Optional Course -II	4	-	-	4		-	4
ITL601	Software Design Lab	-	2	-		1	ı	1
ITL602	Business Intelligence Lab	-	2		0	1	ı	1
ITL603	Cloud Service Design Lab	-	2		-	1	-	1
ITL604	Sensor Network Lab	-	2		-	1	1	1
ITM605	Mini-project		4	-	-	2	-	2
	Total	20	12	-	20	6	-	26

	_				E	xamination S	cheme			
Course	Course			Theor	y					
Code	Name	Inte	ernal As	sessment	End Exam		TW	Oral	Oral &	Total
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)	1 ***		Pract	10411
ITC601	Software Engineering with Project Management	20	20	20	80	3	ı	-	-	100
ITC602	Data Mining and Business Intelligence	20	20	20	80	3	1	1	-	100
ITC603	Cloud Computing & Services	20	20	20	80	3	-	-	-	100
ITC604	Wireless Networks	20	20	20	80	3	-	-	-	100
ITDLO-II	Department Level Optional Course -II	20	20	20	80	3	-	-		100
ITL601	Software Design Lab	-	-	-	-	-	25	25		50
ITL602	Business Intelligence Lab	-	-	-	-	-	25	25		50
ITL603	Cloud Service Design Lab	-	-	-	-	-	25	25		50
ITL604	Sensor Network Lab	-	-	-	-	-	25	25		50
ITM605	Mini-Project	-	-	-	- <		25	25		50
	Total	100	100	100	400		125	125		750

Department Level Optional Course (DLO)

Every student is required to take one Department Elective Course for Semester VI. Different sets of courses will run in both the semesters. Students can take these courses from the list of department electives, which are closely allied to their disciplines.

(DLO-I subjects will have no Labs only Theory)

Subject Code	Department Level Optional Course (DLO)
	Semester VI
ITDLO6021	Advance Internet Programming
ITDLO6022	Software Architecture
ITDLO6023	Digital Forensics
ITDLO6024	Multimedia Systems
ITDLO6025	Green IT

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC601	Software Engineering with Project Management	04			04			04

	Course Name	Examination Scheme									
Course Code			Theo	ry Marks							
		Internal assessment End				Term Work	Oral & Practical	Total			
		Test1	Test2	Avg. of two Tests	Sem. Exam	III.					
ITC601	Software Engineering with Project Management	20	20	20	80	6		100			

Course Objectives: Students will try:

- 1. To understand the nature of software development and software life cycle process models, agile software development, SCRUM and other agile practices.
- 2. To Explain methods of capturing, specifying, visualizing and analyzing software requirements.
- 3. To understand concepts and principles of software design and user-centric approach and principles of effective user interfaces.
- 4. To know basics of testing and understanding concept of software quality assurance and software configuration management process.
- 5. To understand need of project management and project management life cycle.
- 6. To understand project scheduling concept and risk management associated to various type of projects.

Course Outcomes: Students will be able to:

- 1. Define various software application domains and remember different process model used in software development.
- 2. Explain needs for software specifications also they can classify different types of software requirements and their gathering techniques.
- 3. Convert the requirements model into the design model and demonstrate use of software and user-interface design principles.
- 4. Distinguish among SCM and SQA and can classify different testing and compare them.
- 5. Justify role of SDLC in Software Project Development and they can evaluate importance of Software Engineering in PLC.
- 6. Generate project schedule and can construct, design and develop network diagram for different type of Projects. They can also organize different activities of project as per Risk impact factor.

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Nature of Software, Software Definition, Software Characteristics, Software Application Domains	02	
I	The Software Process	Generic view of Process, Prescriptive Models: Waterfall Model, Incremental-RAD Model, Evolutionary Process Model- Prototyping, Spiral and Concurrent Development Model, Specialized Models: Component based, Aspect Oriented Development, Agile Methodology, Scrum and Extreme Programming	07	CO1
II	Requirements Engineering and Cost Estimation	Requirement, Types of Requirements, Requirement gathering, Requirement Engineering Task, Identifying Stakeholders, Multiple viewpoints, SRS (Software Requirement Specification) Project Estimation, LOC based, FP based and Use case based estimation.	07	CO1 CO2
III	Analysis and Design Engineering	Introduction of Analysis elements, Scenario based, Flow based, behavior and class based Design Concepts and Principles, Architecture Design, Component Level Design, System Level Design, User Interface Design.	09	CO1 CO2 CO3
IV	Quality & Configuration Management	Need for Testing, Testing Tactics, Testing strategies, McCall's Quality Factor, Software Configuration Management, SCM Process	07	CO4
V	IT Project Management	Introduction, 4 P's, W5HH Principle, Need for Project Management, Project Life cycle and ITPM, Project Feasibility, RFP, PMBOK Knowledge areas, Business Case, Project Planning, Project Charter and Project Scope.	10	CO5

VI	Project Scheduling	WBS, Developing the Project	10	CO1
	and Risk Management	Schedule, Network Diagrams (AON, AOA), CPM and PERT,		CO2
		Gantt Chart, Risk Identification, Risk Projection and RMMM		CO3
		v		CO4
				CO6

- 1. Roger S Pressman "Software Engineering: A Practitioner's Approach" 7th Edition Mcgraw-Hill ISBN:0073375977
- 2. Jack T. Marchewka, "Information Technology Project Management" 4th Edition ,Wiley India

References:

- 1. "Software Engineering: A Precise Approach" Pankaj Jalote, Wiley India
- 2. Ian Sommerville "Software Engineering" 9th edition Pearson Education SBN-13: 978-0-13-703515-1, ISBN-10: 0-13-703515-2
- 3. John M. Nicholas, Project Management for Business and Technology, 3rd edition, Pearson Education.
- 4. Software Project management by Bob Hughes, Mike Cotterell, Rajib Mall

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC602	Data Mining and Business Intelligence	04			04			04

	Course Name	Examination Scheme								
Course Code		Theory Marks								
		Internal assessment			End	Term Work	Oral & Practical	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam	VV STR	·G·			
ITC602	Data Mining and Business Intelligence	20	20	20	80	(100		

Course Objectives: Students will try:

- 1. To introduce the concept of data Mining as an important tool for enterprise data management and as a cutting edge technology for building competitive advantage.
- 2. To enable students to effectively identify sources of data and process it for data mining
- 3. To make students well versed in all data mining algorithms, methods of evaluation.
- 4. To impart knowledge of tools used for data mining
- 5. To provide knowledge on how to gather and analyze large sets of data to gain useful business understanding.
- 6. To impart skills that can enable students to approach business problems analytically by identifying opportunities to derive business value from data.

Course Outcomes: Student will be able to:

- 1. Demonstrate an understanding of the importance of data mining and the principles of business intelligence
- 2. Organize and Prepare the data needed for data mining using pre preprocessing techniques
- 3. Perform exploratory analysis of the data to be used for mining.
- 4. Implement the appropriate data mining methods like classification, clustering or Frequent Pattern mining on large data sets.
- 5. Define and apply metrics to measure the performance of various data mining algorithms.
- 6. Apply BI to solve practical problems: Analyze the problem domain, use the data collected in enterprise apply the appropriate data mining technique, interpret and visualize the results and provide decision support.

Prerequisite: Database Management System, Advanced Data Management Technology.

Detailed syllabus:

Sr. No.	Module Detailed Content		Hours	CO Mapping	
0	Prerequisites	Knowledge of databases, and Date warehousing, OLAP	02		
I	Introduction to Data Mining	What is Data Mining; Kind of patterns to be mined; Technologies used; Major issues in Data Mining	03	CO1	
II	Data Exploration and Data Preprocessing	Types of Attributes; Statistical Description of Data; Data Visualization; Measuring similarity and dissimilarity.	09	CO2 CO3	
		Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data Transformation & Data Discretization: Normalization, Binning, Histogram Analysis and Concept hierarchy generation.			
III	Classification	Basic Concepts; Classification methods: 1. Decision Tree Induction: Attribute Selection Measures, Tree pruning. 2. Bayesian Classification: Naïve Bayes" Classifier. Prediction: Structure of regression models; Simple linear regression, Multiple linear regression. Accuracy and Error measures, Precision, Recall, Holdout, Random Sampling, Cross Validation.	09	CO4 CO5	
IV	Clustering	Cluster Analysis: Basic Concepts; Partitioning Methods: K-Means, K- Mediods; Hierarchical Methods: Agglomerative, Divisive, BIRCH; Density-Based Methods: DBSCAN What are outliers? Types, Challenges; Outlier Detection Methods: Supervised, Semi Supervised, Unsupervised, Proximity based, Clustering Based.	10	CO4 CO5	
V	Frequent Pattern	Market Basket Analysis, Frequent Itemsets, Closed Itemsets, and	10	CO4	

				~~~
	Mining	Association Rules; Frequent Pattern		CO5
		Mining, Efficient and Scalable		
		Frequent Itemset Mining Methods,		
		The Apriori Algorithm for finding		
		Frequent Itemsets Using Candidate		
		Generation, Generating Association		
		Rules from Frequent Itemsets,		
		Improving the Efficiency of		
		Apriori, A pattern growth approach		
		for mining Frequent Itemsets;		
		Mining Frequent itemsets using		
		vertical data formats; Introduction		
		to Mining Multilevel Association		
		Rules and Multidimensional		
		Association Rules; From		
		Association Mining to Correlation		
		Analysis, lift, ; Introduction to		P
		Constraint-Based Association		SO.
		Mining.		
VI	Business	What is BI? Business intelligence	09	CO6
	Intelligence	architectures; Definition of decision		
		support system; Development of a		
		business intelligence system using		
		Data Mining for business		
		Applications like Fraud Detection,		
		Clickstream Mining, Market		
		Segmentation, retail industry,		
		telecommunications industry,		
		banking & finance CRM etc.		

- 1. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition.
- 2. P. N. Tan, M. Steinbach, Vipin Kumar, "Introduction to Data Mining", Pearson Education.
- 3. Business Intelligence: Data Mining and Optimization for Decision Making by Carlo Vercellis ,Wiley India Publications.
- 4. G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", 2nd Edition, Wiley India.

### **References:**

- 1. Michael Berry and Gordon Linoff "Data Mining Techniques", 2nd Edition Wiley Publications.
- 2. Michael Berry and Gordon Linoff "Mastering Data Mining- Art & science of CRM", Wiley Student Edition.
- 3. Vikram Pudi & Radha Krishna, "Data Mining", Oxford Higher Education.

#### **Assessment:**

**Internal Assessment for 20 marks:**Consisting of **Two Compulsory Class Tests** 

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
	Name					Practical		
ITC603	Cloud Computing & Services	04			04			04

	Course Name	Examination Scheme						
Course		Theory Marks				Oral &		
Code		Internal assessment			End	Term Work	Practical	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam		·Go:	
ITC603	Cloud Computing & Services	20	20	20	80			100

### **Course Objectives:** Students will try to learn:

- 1. Basics of cloud computing.
- 2. Key concepts of virtualization.
- 3. Different Cloud Computing services
- 4. Cloud Implementation, Programming and Mobile cloud computing
- 5. Key components of Amazon Web Services
- 6. Cloud Backup and solutions

### Course Outcomes: Students should be able to:

- 1. Define Cloud Computing and memorize the different Cloud service and deployment models
- 2. Describe importance of virtualization along with their technologies.
- 3. Use and Examine different cloud computing services
- 4. Analyze the components of open stack & Google Cloud platform and understand Mobile Cloud Computing
- 5. Describe the key components of Amazon web Service
- 6. Design & develop backup strategies for cloud data based on features.

### Prerequisite Subjects: Computer Network, Operating System

### **Detailed syllabus:**

Sr. No.	Module Detailed Content		Hours	CO Mapping
0	Prerequisites	OSI Layers, Basics of OS.	02	
I	Introduction	Defining Cloud Computing, Cloud and other similar configurations, Components of Cloud	06	CO1

		Computing, Cloud types: NIST and Cloud Cube Models, Cloud Deployment Models and Service Models, Cloud computing architecture, Advantages and Disadvantages of Cloud Computing.		
II	Virtualization	Virtualization: Characteristics of virtualized environment, Understanding the importance of Hypervisors, Type I & Type II Hypervisors, Taxonomy of virtualization, Implementation Levels of Virtualization, Virtualization of CPU, Memory and I/O Devices, Virtualization and	10	CO2
		Cloud Computing, Pros and Cons of virtualization, Technology Examples: KVM, Xen, Vmware and HyperV	S	
III	Cloud Computing Services	Exploring Cloud Computing Services: SPI Model: Software as a service, Platform as a service, and Infrastructure as a service.  Anything as a service or Everything as a service (XaaS): Security as a Service, Identity management as a Service, Database as a Service, Storage as a Service, Collaboration as a Service, Compliance as a Service, Monitoring as a Service, Communication as a Service, Network as a Service, Disaster recovery as a service, Analytics as a Service, Backup as a Service.	09	CO1 CO2 CO3
IV	Cloud Implementation, Programming and Mobile Cloud Computing	Open Stack Cloud Architecture: Feature of Open stack, Components of Open stack, mode of operations.  Programming support for Google apps engine-GFS, Bigtables, Chubby, Google APIs.  Mobile Cloud Computing: Definition, architecture, benefits and challenges of mobile	09	CO1 CO2 CO3 CO4

		cloud computing		
		to action paring		
V		AWS cloud computing Platform,		
	Exploring the Components of	a) Elastic Compute Cloud(EC2): Compute		
	Amazon Web Services	Basics, Instance types, Life cycle of instances.		
		b) Simple Storage Service (S3): Basics and		
		Operations, Features, Amazon Glacier, Glacier vs		
		S3.		
		c) Elastic Block Storage (EBS):Basics and Types		CO1
		of EBS Volumes	_11	CO2
		d)Amazon Virtual Private Cloud (Amazon VPC):		CO3
		Subnets, Route tables, Elastic IP Addresses (EIP),		CO4
		Elastic Network Interfaces (ENIs) & Security		CO5
		groups & ACL.		
		e) Exploring Elastic Load Balancing (ELB):		
		Basics, Types of load balancers, Configuring		
		Elastic Load Balancing, Basics of Cloud Watch		
		& Auto Scaling.		
VI	Cloud Backup &	Cloud Backup Solutions and their features, Cloud		CO1
	Solutions	data management interface (CDMI), Cloud		CO2
		Storage gateways (CSG), Comparison between		CO3
		different cloud platforms: Amazon web services	05	CO4
	. (	& Open stack (Based on Type of deployment,		
		Services supported and their components).		CO5
				CO6

- 1. Barrie Sosinsky,"Cloud Computing Bible", Wiley Publication.
- 2. Kailash Jayaswal, Jagannath Kallalurchi, Donald J. Houde, Dr. Deven Shah, "Cloud Computing Black Book", Dreamtech Press.
- 3. Joe Baron et.al, "AWS certified solution Architect", Sybex publication.
- 4. Mastering Cloud Computing, Rajkumar Buyya, MGH publication

#### **Reference Books:**

- 1. Thomas Erl,Robert Cope,Amin naserpour,"Cloud Computing Design Patterns",Pearson Publication.
- 2. Judith Hurwitz, "Cloud Computing for Dummies", Wiley Publication.

#### **Assessment:**

#### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

#### **End Semester Examination:**

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
	Name					Practical		
ITC604	Wireless	04			04			04
	Network							

		Examination Scheme									
Course	Course		Theory	Marks							
Code	Name	Inter	nal assess	ment	End	Term Work	Oral & Practical	Total			
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	50.				
ITC604	Wireless Network	20	20	20	80	(	3)	100			

# Course Objectives: Students will try to:

- 1 Understand the fundamentals of wireless networks.
- 2 Learn and analyze the different wireless technologies.
- 3 Evaluate Ad-hoc networks and wireless sensor networks.
- 4 Understand and evaluate emerging wireless technologies and standards
- 5 Understand design considerations for wireless networks
- 6 Learn and analyze and evaluate the security threats and related security standards

#### **Course Outcomes:** Students will be able to:

- 1. Explain the basic concepts of wireless network and wireless generations.
- 2. Demonstrate the different wireless technologies such as CDMA, GSM, GPRS etc
- 3. Appraise the importance of Ad-hoc networks such as MANET and VANET and Wireless Sensor networks
- 4. Describe and judge the emerging wireless technologies standards such as WLL, WLAN, WPAN, WMAN.
- 5. Explain the design considerations for deploying the wireless network infrastructure.
- 6. Differentiate and support the security measures, standards. Services and layer wise security considerations.

**Prerequisite:** Computer Networks.

# **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
0	Prerequisite	Modulation and Demodulation Techniques, PSTN	02	
I	Fundamentals Wireless Communication	Fundamentals of Wireless Communication, Advantages, limitations and application, wireless media, Infrared Modulation Techniques, DSSS and FHSS, Frequency Spectrum: Radio and Infrared; Wireless generations: 1G: Cellular,2G: Mobile Radio,3G: UMTS- Security related Encryption Algorithm,4G	07	CO1
II	Evolution of Wireless Technologies	Multiple Access Technique: TDMA, FDMA, CSMA, CDMA Wireless Technologies: GSM, GPRS, EDGE,CDMA,LTE, UMTS	10	CO1 CO2
III	Types of Wireless Networks	Ad-hoc: MANET & VANET, Application, Advantage and limitations; Wireless Sensor Network: Application, advantages and limitations	09	CO1 CO3
IV	Emerging Wireless Technologies and standards	WLL, WLAN- 802.11 (Wi-Fi), WPAN- 802.15.1/3/4 (Bluetooth, Zigbee), WMAN-802.16a (Wi- max), Wi-max and LTE /3GPP comparison, Mi-fi, Ly-fi,	10	CO1 CO2 CO4
V	Wireless Network Design Considerations	Wireless technology, Cisco Unified Wireless Network, Designing Wireless Networks with Lightweight Access Points and Wireless LAN Controllers	07	CO1 CO2 CO3 CO4 CO5
VI	Wireless Network Security	The need, attacks, security serviced, WEP, Mobile IP, VPN( PPTP, LLTP, IPSec), Network Layer Security, Transport Layer Security, Email Security: PGP, S/ MIME, Internet Firewalls for Trusted System	07	CO1 CO2 CO3 CO6

- 1. Cellular Communications: A Comprehensive and Pratical Guide, Nishith Tripathi, Jeffery H Reed, Wiley
- 2. Wireless Mobile Internet Security, 2nd Edition, Man, Young Rhee, Wiley- IEEE press
- 3. Designing for Cisco Internetwork Solutions (DESGN), 2nd Edition, CCDA, Diane Teare, cisco Press.

#### **References:**

- 1. Introduction to Digital mobile communication, 2nd Edition, Yoshihiko Akaiwa
- 2."Wireless Communications and networks", William Stallings, Pearson / Prentice Hall
- 3. Wireless communication and networking, Vijay Garg

#### **Assessment:**

## **Internal Assessment for 20 marks:**


Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITL601	Software		02			1		1
	Design Lab							

	Course Name		Examination Scheme										
Course		Theory Marks											
Code		Internal assessment			End	Term Work	Oral & Practical	Oral	Total				
		Test1	Test2	Avg. of two Tests	Sem. Exam		, C	•					
ITL601	Software Design Lab					25	3	25	50				

# Course Objectives: Students will try to:

- 1 Learn basic concepts of UML.
- 2 Master the vocabulary, rules, and idioms of the UML and learn how to model it effectively.
- 3 Understand how to apply the UML to solve a number of common modeling problems.
- 4 Model the systems, from concept to executable artifact, using object-oriented techniques.
- 5 Apply the knowledge of Software engineering and project management.
- 6 Understand the software development process using tool.

# Course Outcomes: Students will be able to:

- 1. Sketch a Modeling with UML.
- 2. Deploy Structural Modeling.
- 3. Deploy Behavioral Modeling.
- 4. Deploy Architectural Modeling.
- 5. Examine estimation about schedule and cost for project development.
- 6. Select project development tool.

**Prerequisite:** Object oriented Concept, Java programming language.

#### Requirement:-

Hardware	Software
PC i3 or above.	IBM Rational Rose Modeler,
	Dia, StarUML (Any One)
	Orange Scrum, Xampp, GitHub

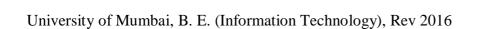
#### **Guidelines**

- 1. Students should take one case study as a mini project work which is to be conducted by a group of three students
- 2. Each group will be associated with a subject Incharge/ mini project mentor. The group should meet with the concerned faculty during Laboratory hours and the progress of work discussed must be documented.
- **3.** The students must be able to identify Object oriented Technologies, Basic expression of Classes, Attributes and operations.
- **4.** Students must develop a Conceptual Model of the UML for above case study.
- **5.** Students should define Classes, Relationships, Class Diagrams, Advanced Classes and Relationship, Object Diagrams for above case study.
- **6.** Students should define Use Cases, Use case Diagrams, Activity Diagrams, Interaction Diagrams, State Chart Diagrams for above case study.
- 7. Students should define Components, Deployment, Collaborations, Component Diagrams, Deployment Diagrams for above case study
- 8. Students should define SRS, WBS, Network Diagram, Gantt Chart, Cost Estimation Techniques
- **9.** Demonstration it using Scrum Tool
- 10. Each group may present their work in various project competitions and paper presentations.
- 11. A detailed report is to be prepared as per guidelines given by the concerned faculty.

#### **Text Books:**

- 1. "The Unified Modeling Language User Guide" by Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Publication, ISBN 978-81-7758-372-4
- 2. Jack T. Marchewka, Information Technology Project Management, 4th edition, Wiley India, 2009.

#### **References:**


- 1. UML Tutorial "www.tutorialspoints.com/uml/"
  - 2. "An Introduction to Object-Oriented Analysis: Objects and UML in plain English" by Davis William Brown, Wiley, Second Edition
  - 3. "Fundamentals of Object-Oriented Design in UML", Meilir Page-Jones, Pearson Education
- 4. UML in 24 Hours
- 5. UML Basics— an Introduction to the Unified Modeling Language IBM "www.ibm.com > Learn > Rational"

# Term Work:

Term Work shall consist of full Mini Project on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Case Study) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the Case Study and Presentation.



Course	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
Code						/Oral		
ITL602	Business		02			01		01
	Intelligence lab							

		Examination Scheme									
	Course Name		Theory	Marks							
Course Code		Internal assessment			End	Term	Oral &	Oral	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	Practical				
ITL602	Business Intelligence Lab			1		25	2	25	50		

# Lab Objectives: Students will try:

- 1. To introduce the concept of data Mining as an important tool for enterprise data management and as a cutting edge technology for building competitive advantage.
- 2. To enable students to effectively identify sources of data and process it for data mining
- 3. To make students well versed in all data mining algorithms, methods, and tools.
- 4. To learn how to gather and analyze large sets of data to gain useful business understanding.
- 5. To impart skills that can enable students to approach business problems analytically by identifying opportunities to derive business value from data.
- 6. To identify and compare the performance of business.

## Lab Outcomes: Students should be able to:

- 1. Identify sources of Data for mining and perform data exploration
- 2. Organize and prepare the data needed for data mining algorithms in terms of attributes and class inputs, training, validating, and testing files.
- 3. Implement the appropriate data mining methods like classification, clustering or association mining on large data sets using open source tools like WEKA
- 4. Implement various data mining algorithms from scratch using languages like Python/ Java etc.
- 5. Evaluate and compare performance of some available BI packages
- 6. Apply BI to solve practical problems: Analyze the problem domain, use the data collected in enterprise apply the appropriate data mining technique, interpret and visualize the results and provide decision support.

**Prerequisite:** Object oriented Concept, Java programming language.

# Requirement:-

Hardware	Software
PC i3 or above.	Open source data mining and BI tools like WEKA, Rapid Miner, Pentaho.

#### **Detailed syllabus:**

Detailed syllabus:											
Module	Detailed Content	Hours	LO Mapping								
1	2 tutorials	04	LO 1								
&	a) Solving exercises in Data Exploration		LO 2								
II	b) Solving exercises in Data preprocessing										
III	Using open source tools Implement	06	LO 3								
	a) Classifiers										
	b) Clustering Algorithms		7								
	c) Association Mining Algorithms										
IV	a) Implementation of any one classifier using languages like JAVA/ python/R	06	LO 4								
	b) Implementation of any one clustering algorithm using languages like JAVA/python										
	c) Implementation of any one association mining algorithm using languages like JAVA/ python										
V	Detailed case study of any one BI tool (open source tools like Pentaho can be used) (paper Assignment)	04	LO 5								
VI	Business Intelligence Mini Project: Each group assigned one new case study for this; A BI report must be prepared outlining the following steps:  a)Problem definition, Identifying which data	06	LO 6								
	mining task is needed b) Identify and use a standard data mining dataset available for the problem. Some links										
	for data mining datasets are: WEKA site, UCI Machine Learning Repository, KDD site, KDD Cup etc.										
	c) Implement the data mining algorithm of choice										

- 1. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition.
- 2. G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", 1st Edition, Wiley India.

#### **References:**

- 1. P. N. Tan, M. Steinbach, Vipin Kumar, "Introduction to Data Mining", Pearson Education.
- 2. WEKA, RapidMiner Pentaho resources from the Web.

#### **Term Work:**

Term Work shall consist of at least 10 to 12 practical's based on the below list. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

**Oral Exam:** An Oral exam will be held based on the above syllabus.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Tota 1
ITL603	Cloud Service Design Lab		02			01		01

			Examination Scheme								
Course			Theo	ory Marks							
Code	Course Name	Inte	ernal asse	essment	End	Term Work	Oral & Practical	Oral	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam						
ITL603	Cloud Service Design Lab					25		25	50		

## Lab Objectives: Students to get familiar with:

- 1. Key concepts of virtualization & different types of Hypervisors used in virtualization along with implementation
- 2. Concept of On demand Application Delivery like SaaS using Ulteo
- 3. Open source cloud implementation and administration using Open Stack
- 4. Various Cloud services provided by Amazon Web Services
- 5. Programming on Platform as a Service cloud
- 6. Implementation of Storage as a service using Own Cloud.

## Lab Outcomes: Students should be able to:

- 1. Define & implement Virtualization using different types of Hypervisors
- 2. Describe steps to perform on demand Application delivery using Ulteo .
- 3. Examine the installation and configuration of Open stack cloud
- 4. Analyze and understand the functioning of different components involved in Amazon web services cloud platform.
- 5. Describe the functioning of Platform as a Service
- 6. Design & Synthesize Storage as a service using own Cloud

Prerequisite Subjects: Computer Network, Operating System, Java Programming

## **Hardware & Software Requirements:**

Hardware Requirements	Software Requirements	Other Requirements
a)Hardware Configuration	a) Software Requirements for	1. Internet Connection for
for server	Server	each PC with at least 2
1.Intel or AMD Multi Core	1.Server OS for Physical Sever	MBPS bandwidth and LAN
processors (like i3/i5/i7/Quad	like CentOS /Fedora/Ubuntu/	bandwidth of 1 GBPS.
core/Octa core) with Intel	Redhat Server	
VT-X or AMD-V support	2.Pre-configured OpenSSH	

University of Mumbai, B. E. (Information Technology), Rev 2016

2. 6 GB RAM	3.Xen Server DVD			
3. 500 GB Harddisk	4.Ulteo DVD			
4. Gigabit Ethernet (GbE)	a) Software Requirements for			
network interface card (NIC)	Clients			
b)Hardware Configuration	1. JDK 1.8 or higher & .NET			
for Cloud Client	Framework 4			
PC/Laptop/Smart phone/Thin	2. Netbeans or Eclipse IDEs			
Client or Any device which	3. OpenSSH client or putty			
has built-in Wifi, Ethernet or	4.Vmware Workstation,			
data connection facility.	5.Oracle Virtualbox			
	6. Built-in web browser.			

# **Suggested List of Experiments**

Sr.	Module	<b>Detailed Content</b>	Hours	LO
No.			nours	Mapping
I	Virtualization	1. Creating and running		
		virtual machines on Hosted		
		Hypervisors like KVM Type 1		
		,Vmware Workstation,Oracle		1.01
		Virtualbox	06	LO1
		2. Creating and running		
		virtual machines on Bare-Metal		
		Hypervisors Type 0 like		
		Xen,Vmware ESXI or HyperV		
II	On demand	Installation and Configuration of		
	Application	Ulteo to demonstrate on demand		
	Delivery and	Application delivery over web	04	LO2
	Virtual Desktop	browser to explore SaaS		
	infrastructure	Environment.		
III	Open source cloud	To demonstrate installation and		
	implementation	Configuration of Open stack	04	LO3
	and administration	Private cloud.		
IV	Amazon Web	Like auto scaling, elastic load		
	Services	balancing, virtual private		
		computing & Networking. Security	06	LO4
		service provided by Amazon web		
		services. Accessing AWS using		

		web services API provided by Amazon.		
V	Platform as a Service	To Demonstrate Platform as a Service using Googleapp Engine/IBM BlueMix/tSuru	04	LO5
VI	Storage as a Service	Explore Storage as a service using own Cloud for remote file access using web interfaces. S3 storage and glacier storage and understand the storage LC management provided by AWS.	02	LO6

- 1. Barrie Sosinsky, "Cloud Computing Bible", Wiley Publication.
- 2. Kailash Jayaswal, Jagannath Kallalurchi, Donald J. Houde, Dr.Deven Shah, "Cloud Computing Black Book", Dreamtech Press.
- 3. Joe Baron et.al, "AWS certified solution Architect", Sybex publication.
- 4. Mastering Cloud Computing, Rajkumar Buyya, MGH publication

#### **Reference Books:**

- 1. Learn to Master Cloud Computing by Star EduSolutions
- 2. Kai Hwang,"Distributed and Cloud Computing", MK Publication
- 3. Thomas Erl,Robert Cope,Amin naserpour,"Cloud Computing Design Patterns",Pearson Publication.
- 4. Judith Hurwitz, "Cloud Computing for Dummies", Wiley Publication.

#### Web Resources:

- 1. http://fosshelp.blogspot.in
- 2. https://aws.amazon.com/
- 3. https://docs.openstack.org/
- 4. https://owncloud.org/
- 5. https://appengine.google.com

#### Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the below list. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Tota
	Name					& Oral		1
ITL604	Sensor Network Lab		02			1		1

Course			Examination Scheme								
			Theo	ory Marks			D:				
Code	Course Name	Int	ernal asse	essment	End	Term Work	Practic al &	Oral	Total		
		Test 1	Test2	Avg. of twoTests	Sem. Exam		Oral				
ITL604	Sensor Network Lab					25		25	50		

## **Lab Objectives:** Students will try:

- 1. To learn different types of sensors from Motes families.
- 2. To design the problem solution as per the requirement analysis done using Motes sensors.
- 3. To study the basic concepts of programming/sensors/ emulator like cooja etc.
- 4. To design and implement the mini project intended solution for project based learning.
- 5. To build and test the mini project successfully.
- 6. To improve the team building, communication and management skills of the students.

# Lab Outcomes: Student will be able to:

- 1. Identify the requirements for the real world problems.
- 2. Conduct a survey of several available literatures in the preferred field of study.
- 3. Study and enhance software/ hardware skills.
- 4. Demonstrate and build the project successfully by hardware/sensor requirements, coding, emulating and testing.
- 5. To report and present the findings of the study conducted in the preferred domain
- 6. Demonstrate an ability to work in teams and manage the conduct of the research study.

## Guidelines

- 1. The mini project work is to be conducted by a group of three students
- 2. Each group will be associated with a subject Incharge/ mini project mentor. The group should meet with the concerned faculty during Laboratory hours and the progress of work discussed must be documented.
- **3.** The students may do survey for different application using different types of sensors for their mini project.

- **4.** Each group will identify the Hardware (Motes from different Motes families) & sensor configuration and software requirement for their mini project problem statement.
- 5. Design your own circuit board using multiple sensors etc.
- **6.** Installation, configure and manage your sensors in such away so that they can communicate with each other.
- **7.** Work with operating system, emulator like contiki cooja and do coding to for input devices on sensors.
- **8.** Create and interface using Mobile/Web to publish or remotely access the data on Internet.
- **9.** Each group along with the concerned faculty shall identify a potential problem statement, on which the study and implementation is to be conducted.
- 10. Each group may present their work in various project competitions and paper presentations.
- 11. A detailed report is to be prepared as per guidelines given by the concerned faculty.

- 1. Fundamentals of Sensor Network Programming: Applications and Technology, By S. Sitharama Iyengar, Nandan Parameshwaran, Vir V. Phoha, N. Balakrishnan, Chuka D. Okoye, Wiley publication.
- 2. Contiki Cooja User Guide.

#### **References:**

- 1. Internet of Things (A Hands-on-Approach), Vijay Madisetti, Arshdeep Bahga
- 2. A comparative review of wireless sensor network mote technologies, IEEE paper 2009

## Term Work:

Term Work shall consist of full Mini Project on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Mini Project) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the Mini Project and Presentation.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/ Oral		
ITM605	Mini-Project		04			2		2

	Course Name		Examination Scheme								
Course Code			Theo	ory Marks			Dunatia				
		Inte	ernal asse	essment	End Sem. Exam	Term Work	Practic al & Oral	Oral	Total		
		Test1	Test2	Avg. of two Tests							
ITM605	Mini-Project					25	<u>O</u>	25	50		

# Lab Objectives: Students will try:

- 1. To offer students a glimpse into real world problems and challenges that need IT based solutions
- 2. To enable students to create very precise specifications of the IT solution to be designed.
- 3. To introduce students to the vast array of literature available of the various research challenges in the field of IT
- 4. To create awareness among the students of the characteristics of several domain areas where IT can be effectively used.
- 5. To enable students to use all concepts of IT in creating a solution for a problem
- 6. To improve the team building, communication and management skills of the students.

### **Lab Outcomes:** Student will be able to:

- 1. Discover potential research areas in the field of IT
- 2. Conduct a survey of several available literature in the preferred field of study
- 3. Compare and contrast the several existing solutions for research challenge
- 4. Demonstrate an ability to work in teams and manage the conduct of the research study.
- 5. Formulate and propose a plan for creating a solution for the research plan identified
- 6. To report and present the findings of the study conducted in the preferred domain

#### Guidelines

- 1. The project work is to be conducted by a group of three students
- 2. Each group will be associated with a project mentor/guide. The group should meet with the project mentor/guide periodically and record of the meetings and work discussed must be documented.

University of Mumbai, B. E. (Information Technology), Rev 2016

- 3. Department has to allocate half day for the project work in VI semester, 1 day in VII semester and 2 day in VIII semester every week.
- 4. To encourage project based learning in the curriculum students may identify their technical domain area in semester VI and can perform the Mini-project in the VI semester or students may do literature survey
- 5. Each group along with its guide/mentor shall identify a potential research area/problem domain, on which the study is to be conducted.
- 6. Each team will do a rigorous literature survey of the problem domain by reading and understanding at least 3-5 research papers from current good quality national/international journals/conferences. (Papers selected must be indexed by Scopus/IEEE/Springer/ACM etc.). The list of papers surveyed must be clearly documented.
- 7. The project assessment for term work will be done at least two times at department level by giving presentation to panel members which consist of at least three (3) members as Internal examiners (including the project guide/mentor) appointed by the Head of the department of respective Programme.
- 8. A report is to be prepared summarizing the findings of the literature survey. A comparative evaluation of the different techniques surveyed is also to be done.
- 9. Teams must analyze all the results obtained by comparing with other standard techniques.
- 10. Every team must publish their work in national / international conference/journals (if possible publish in Scopus indexed journals).
- 11. The team will finally propose a plan for project work to be continued in the final year.
- 12. Semester VII to carry out the project good quality project and all these project part

## **Evaluation**

- 1. Each team has to give presentation/demo to the Internal Panel and External examiner.
- 2. Each team will prepare a report that will summarize the results of the literature survey and the project proposal. The list of papers surveyed must be clearly documented.
- 3. Each group will be jointly evaluated by a team of Internal and External Examiners approved by the University of Mumbai.
- 4. Oral exam will be conduct on the project done by the students.

#### **Term Work:**

Term Work shall consist of full Mini Project on above guidelines/syllabus.

**Term Work Marks:** 25 Marks (Total marks) = 20 Marks (Mini Project) + 5 Marks (Attendance)

**Oral Exam:** An Oral exam will be held based on the Mini Project and Presentation.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical (Oral	Tutorial	Total
						/Oral		
ITDLO6021	Advance	04			04			04
	Internet							
	Programming							

	Course Name		Examination Scheme								
		Theory Marks									
Course Code		Internal assessment			End	Term	Oral & Practical	Total			
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	3	1 5000			
ITDLO6021	Advance Internet Programming	20	20	20	80	3		100			

# Course Objectives: Students will try:

- 1. To get familiar with the concept of Search Engine Basics.
- 2. To Understand Search Engine Optimization Techniques.
- 3. To Learn Web Service Essentials.
- 4. To gain knowledge of Rich Internet Application Technologies.
- 5. To be familiarized with Web Analytics 2.0
- 6. To explore Web 3.0 and Semantic web standards.

## Course Outcomes: Students will be able to:

- 1. Determine SEO Objectives and Develop SEO plan prior to Site Development.
- 2. Explain Search Engine Optimization Techniques and Develop Keyword Generation.
- 3. Describe different Web Services Standards.
- 4. Develop Rich Internet Application using proper choice of Framework.
- 5. Apply multiple quantitative and qualitative methods for web analytics 2.0.
- 6. Explain Web 3.0 and Semantic web standards

**Prerequisite:** Basics of Internet Programming – HTML5, CSS3, XML.

# **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
0	Prerequisite	Introduction to HTML 5 & CSS3 basics, XML basics	02	
I	Search Engine Basics	Search Engine Basics Algorithm based Ranking Systems – Determining Searcher Intent and Delivering Relevant, Fresh Content, Analyzing Ranking Factors, Using Advanced Search Techniques, Vertical Search Techniques, Country Specific search engines. Determining SEO Objective and Finding Your Site's Audience – Setting SEO Goals and Objective  Developing SEO plans Prior to Site Development, SEO for Raw traffic; E-commerce Sales; Mindshare/Branding; Direct Marketing; Reputation	09	CO1
		Management; Ideological Influence		
II	Search Engine	Getting started SEO: Defining Your Site's	09	CO1
	Optimization	Information Architecture, Auditing an Existing Site to identify SEO Problems, Identifying Current Server Statistic Software and Gaining Access – Determining Top competitors, Benchmarking Current Indexing Status, Current Rankings, Benchmarking Current Traffic Source and Volumes, Conduct SEO/Website SWOT analysis.  Keyword Generation – Creating Pages – Website Structure- Creating Content-Creating Communities-building Links-Using Google Analytics-Social Media Optimization-Creating Pay-per-click Campaigns- Optimizing PPC Campaigns through Quality Score optimization – Tracking Results and Measuring Success.		CO2
III	Web Services	Web Services: Introduction to Web Services, XML,	08	CO1
		XSL, XSLT, WSDL, SOAP, UDDI, Transaction, Business Process Execution Language for web		CO2
		Services, WS-Security and web service security specification, WS-Reliable Messaging, WS-Policy, WS-Attachments. REST-ful web services, Resource Oriented Architecture, Comparison of REST, SOA, SOAP.		CO3
IV	Rich Internet Application	Introduction to AJAX, Blogs, Wikis, RSS feedsWorkingwithJavaScriptObjectNotation(JSON),ImplementJSONonserverside,	08	CO4

		Implementing Security and Accessibility in AJAX Applications: Secure AJAX application, Accessible Rich Internet Applications  Developing RIA using AJAX Techniques: CSS, HTML, DOM, XMLHTTPRequest, JavaScript, PHP, AJAX as REST Client  Introduction to Open Source Frameworks and CMS for RIA: Django, Drupal, Joomla introduction and comparison.		
V	Web Analytics 2.0	Introduction to Web Analytics 2.0 1: State of the Analytics Union, State of the Industry, Rethinking Web Analytics: Meet Web Analytics 2.0, Optimal Strategy for Choosing Your Web Analytics Soul Mate. The Awesome World of Clickstream Analysis: Metrics. The Key to Glory: Measuring Success. Failing Faster: Unleashing the Power of Testing and Experimentation.	08	CO4 CO5
VI	Web 3.0 and Semantic Web	Web 3.0 and Semantic Web: Challenges, Components, Semantic Web Stack: RDF, RDF Schema (RDFS), Simple Knowledge Organization System (SKOS), SPARQL as RDF query language, N-Triples as a format for storing and transmitting data, Turtle (Terse RDF Triple Language), Web Ontology Language (OWL) a family of knowledge representation languages, Rule Interchange Format (RIF), a framework of web rule language dialects supporting rule interchange on the Web	08	CO4 CO5 CO6

- 1. The Art of SEO O'Reilly Publication
- 2. Web Services Essentials by Ethan Cerami O'Reilly Media
- 3. Web Analytics 2.0: The Art of Online Accountability and Science of Customer Centricity, by Avinash Kaushik, ISBN: 978-0-470-52939-3, wiley publication.
- 4. "Semantic Web Technologies: Trends and Research in Ontology-based Systems", by John Davies, Rudi Studer, and Paul Warren John, Wiley & Son'
- 5. Advance Internet Technology by Dr. Deven Shah Dreamtech.

#### **References:**

- 1. RESTful Web Services, By Leonard Richardson, Sam Ruby, O'Reilly Media
- 2. Rich Internet Application AJAX and Beyond WROX press
- 3. Handbook of Semantic Web Technologies, by John Domingue, Dieter Fensel, Springer Reference
- 4. Tim O'Reilly, What is Web 2.0?: Design Patterns and Business Models for the Next Generation of Software, O'REILLY

#### **Assessment:**

#### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical/	Tutorial	Total
	Name					Oral		
ITDLO6022	Software	04			04			04
	Architecture							

Course Code					Examin	ation Scl	heme	
	Course Nome		Theo	ory Marks			Oral &	
	Course Name	Inte	ernal asse	essment	End	Term Work	Practical	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam		C	
ITDLO6022	Software Architecture	20	20	20	80		19°	100

# Course Objectives: Students will try:

- 1. To understand importance of architecture in building effective, efficient, competitive software product.
- 2. To understand principal design decisions governing the system.
- 3. To understand role of architecture in software engineering
- 4. To understand designing application from architectural perspective
- 5. To understand different notations used for capturing design decisions.
- 6. To understand different functional and non-functional properties of complex software systems.

#### Course Outcomes Students will be able to:

- 1. Students will cite knowledge of various approaches to document a software system (Remembering)
- 2. Students will be able to describe functional and non-functional requirements (Understanding)
- 3. Students will be able to use proper architecture for software (Applying)
- 4. Students will be able to categorize different components used in the software system (Analyzing)
- 5. Students will be able to choose from different architectural styles (Evaluating)
- 6. Students will be able to improve quality of software by selecting proper architecture (Creating)

Prerequisite: Programming Language, UML

# **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
0	Prerequisite	Power of analogy: Architecture of the building, limitations of analogy, The reorientation of software engineering,	02	CO1
I	Introduction to	Evolution of Software	07	CO1
	Software Architecture and Software Product Life Cycle	Development, Fundamentals of Software Engineering, Elements of Software Architecture. Management View, Software		CO2
		Engineering View, Engineering Design View, Architectural View,	<	2.
II	Architectural	Understanding the problem,	09	CO1
	Design Process and Introduction to	Identifying design elements and their relationship, Evaluating the		CO2
	Software Design	Architecture, Transforming the Architecture, Problems in Software		CO3
		Architectural Design, Function form and Fabrication, The scope of		
		Design, Psychology and Philosophy		
		of Design, General Methodology of Design		
III	Complexity,	Complexity, Modularity, What are	09	CO1
	Modularity, Models and Knowledge Representation	Models, What are Models used for, What roles do Models Play, Modeling the Problem and Solution Domain, Views,		CO4
IV	Architecture Representation and Architectural Design Principles	Goals of Architecture Representation, Foundation of Architectural Representation, Architectural Description Language, Architectural Level of Design, Architecting with Design Operators, Functional Design Strategies.	09	CO4
V	Architectural Styles, Patterns	Defining Architectural Patterns and Style, Common Architectural	08	CO4
	Styles, Patterns and Meta models	Style, Common Architectural Styles, Understanding Metamodels, Applying Reference Models, Fundamental Metamodel for describing Software Component		CO5
VI	Architectural Description and Architectural	Standardizing Architectural Description, Creating an Architectural Description, Applying	08	CO1

University of Mumbai, B. E. (Information Technology), Rev 2016

Framework,	Architectural Description, Software	CO6
Architecture	Architecture Framework, 4+1 View	
Quality	Model of Architecture, Reference	
_	Model for Open Distributed	
	Processing, Importance of	
	Assessing Software Quality, How	
	to improve Quality. DevOps	
	practice and Architecture.	

- 1. The Art of Software Architecture: Design Methods and Techniques, Stephen T.Albin, Wiley India Private Limited.
- 2. Software Architecture, Foundations, Theory, and Practise, Richard Taylor, Nenad Medvidovic, Eric M Dashofy, Wiley Student Edition.

#### **References:**

- 1. Software Architecture in Practice by Len Bass, Paul Clements, Rick Kazman, Pearson.
- 2. DevOps A Software Architect's Perspective, Len Bass, Ingo Weber, Liming Zhu, Addison Wesley

#### **Assessment:**

#### **Internal Assessment for 20 marks:**

Consisting of **Two Compulsory Class Tests** 

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
ITDLO6023	Digital Forensics	04		-	04		-	04

Course Code				]	Examination S	Scheme		
			Th	eory Marks	S			
	Course Name	Inte	rnal asse	essment	F 16	Term	Oral & Practical	Total
		Test1	Test2	Avg. of two Tests	End Sem. Exam	Work	9.	Total
ITDLO6023	Digital Forensics	20	20	20	80	S-)		100

# **Course Objectives:** Students will try:

- 1. To understand underlying principles and many of the techniques associated with the digital forensic practices and cyber crime
- 2. To explore practical knowledge about ethical hacking Methodology.
- 3. To learn the importance of evidence handling and storage for various devices
- 4. To develop an excellent understanding of current cyber security issues (Computer Security Incident) and analyzed the ways that exploits in securities.
- 5. To investigate attacks, IDS .technical exploits and router attacks and "Trap and Trace" computer networks.
- 6. To apply digital forensic knowledge to use computer forensic tools and investigation report writing.

#### **Course Outcomes:** Student will able to:

- 1. Define the concept of ethical hacking and its associated applications in Information Communication Technology (ICT) world.
- 2. Underline the need of digital forensic and role of digital evidences.
- 3. Explain the methodology of incident response and various security issues in ICT world, and identify digital forensic tools for data collection.
- 4. Recognize the importance of digital forensic duplication and various tools for analysis to achieve adequate perspectives of digital forensic investigation in various applications /devices like Windows/Unix system.
- 5. Apply the knowledge of IDS to secure network and performing router and network analysis
- 6. List the method to generate legal evidence and supporting investigation reports and will also be able to use various digital forensic tools .

**Prerequisite:** Cryptography and Security, Computer Networks

# **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
0	Prerequisite	Cryptography and Security ,Computer Networks	2	4
I	Introduction to Cyber Crime and Ethical Hacking	Introduction of Cybercrime: Types of cybercrime ,categories of cybercrime , Computers' roles in crimes, Prevention from Cyber crime, Hackers, Crackers, Phreakers  Ethical Hacking: Difference between Hacking and Ethical hacking: Steps of Ethical Hacking, Exploring some tools for ethical hacking: reconnaisance tools, scanning tools	6	CO1
II	Introduction to Digital Forensics and Digital Evidences	Digital Forensic ,Rules for Digital Forensic The Need for Digital Forensics, Types of Digital Forensics, Ethics in Digital Forensics,  Digital Evidences : Types and characteristics and challenges for Evidence Handling	6	CO2
III	Computer Security Incident Response Methodology	Introduction to Computer Security Incident Goals of Incident response, Incident Response Methodology, Formulating Response Strategy,  IR Process – Initial Response, Investigation, Remediation, Tracking of Significant ,Investigative Information, Reporting  Pre Incident Preparation, Incident Detection and Characterization.  Live Data Collection: Live Data Collection on Microsoft Windows Systems: Live Data	11	CO3

		Collection on Unix-Based Systems		
IV	Forensic Duplication and Disk Analysis, and Investigation	Forensic Duplication  Forensic Image Formats, Traditional Duplication, Live System Duplication, Forensic Duplication tools  Disk and File System Analysis: Media Analysis Concepts, File System Abstraction Model  The Sleuth Kit: Installing the Sleuth Kit, Sleuth Kit Tools  Partitioning and Disk Layouts: Partition Identification and Recovery, Redundant Array of Inexpensive Disks  Special Containers: Virtual Machine Disk Images, Forensic Containers Hashing, Carving: Foremost, Forensic Imaging: Deleted Data, File	41	CO4
		Slack, dd, defldd, de3dd  Data Analysis  Analysis Methodology Investigating Windows systems, Investigating UNIX systems, Investigating Applications, Web Browsers, Email, Malware Handling: Static and Dynamic Analysis		
V	Network Forensics	Technical Exploits and Password Cracking,  Introduction to Intrusion Detection systems, Types of IDS  Understanding Network intrusion and attacks, Analyzing Network Traffic, Collecting Network based evidence, Evidence Handling.  Investigating Routers, Handling Router Table Manipulation Incidents, Using Routers as Response Tools	9	CO5
VI	Forensic Investigation	Report :Goals of Report, Layout of an		

University of Mumbai, B. E. (Information Technology), Rev 2016

Report and Forensic Tools	Investigative Report, Guidelines for Writing a Report, sample for writing a		
	forensic report.		
		7	COC
	Computer Forensic Tools : need and		CO6
	types of computer forensic tools, task		
	performed by computer forensic tools.		
	Study of open source Tools like SFIT,		
	Autopsy etc. to acquire, search, analyze and store digital evidence		
	anaryze and store digital evidence		

- 1. Jason Luttgens, Matthew Pepe, Kevin Mandia, "Incident Response and computer forensics", 3rd Edition Tata McGraw Hill, 2014.
- 2. Nilakshi Jain, Dhananjay Kalbande, "Digital Forensic: The fascinating world of Digital Evidences" Wiley India Pvt Ltd 2017.
- 3. Cory Altheide, Harlan Carvey "Digital forensics with open source tools "Syngress Publishing, Inc. 2011.
- 4. Chris McNab, Network Security Assessment, By O'Reily.

#### **References:**

- 1. Clint P Garrison "Digital Forensics for Network, Internet, and Cloud Computing A forensic evidence guide for moving targets and data, Syngress Publishing, Inc. 2010
- 2. Bill Nelson, Amelia Phillips, Christopher Steuart, "Guide to Computer Forensics and Investigations". Cengage Learning, 2014
- 3. Debra Littlejohn Shinder Michael Cross "Scene of the Cybercrime: Computer Forensics Handbook", 2nd Edition Syngress Publishing, Inc.2008.
- 4. Marjie T. Britz, Computer Forensics and Cyber Crime, Pearson, Third Edition.

#### **Assessment:**

### **Internal Assessment for 20 marks:**

Consisting of **Two Compulsory Class Tests** 

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
ITDLO6024	Multimedia	04			04			04
	Systems							

	Course Name	Examination Scheme						
Course Code		Theory Marks					Oral &	
		Internal assessment			End	Term Work	Practical	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam	em.		
ITDLO60 24	Multimedia Systems	20	20	20	80		3/2	100

# Course Objectives: Students will try:

- 1. To learn and understand technical aspect of Multimedia Systems.
- 2. To understand the standards available for different audio, video and text applications.
- 3. To Design and develop various Multimedia Systems applicable in real time.
- 4. To learn various multimedia authoring systems.
- 5. To understand various networking aspects used for multimedia applications.
- 6. To develop multimedia application and analyze the performance of the same.

### Course Outcomes: Students will be able to:

- 1. Developed understanding of technical aspect of Multimedia Systems.
- 2. Understand various file formats for audio, video and text media.
- 3. Develop various Multimedia Systems applicable in real time.
- 4. Design interactive multimedia software.
- 5. Apply various networking protocols for multimedia applications.
- 6. To evaluate multimedia application for its optimum performance.

**Prerequisite:** Knowledge of computer graphics, computer networking and database systems.

## **Detailed syllabus:**

Sr. No.		Detailed Content	Hours	CO Mapping
0	Prerequisite	Basic of database, computer networks and computer graphics.	2	
I	Multimedia Systems Design: An Introduction	Multimedia Elements. Multimedia Systems Architecture, Evolving Technologies for Multimedia Systems, Defining Objects For	9	CO1

University of Mumbai, B. E. (Information Technology), Rev 2016

			•	
		Multimedia Systems. Multimedia Data Interface Standards. The Need for Data Compression. Multimedia applications including digital libraries, system software, streaming videos and its applications.		
II	Compression and Decompression Data and File Format Standards	Types of Compression. Image Compression Schemes. Video Compression. Audio Compression. Rich-Text Format. TIFF File Format. Resource Interchange File Format (RIFF), MIDI File Format. JPEG DIB File Format for Still and Motion Images. JPEG Still Image. AVI video File Format. MPEG Standards.	10	CO1 CO2
III	Multimedia Application Design	Multimedia Application Classes. Types of Multimedia Systems. Virtual Reality Design. Components of Multimedia Systems. Multimedia database issues and solutions. Organizing Multimedia Databases.	8	CO1 CO2 CO3
IV	Multimedia Authoring, User Interface and	Multimedia Authoring Systems. Hypermedia Application Design Considerations. User Interface Design. Information Access. Object Display/Playback Issues	7	CO4
V	Distributed Multimedia Systems	Components of a Distributed Multimedia System. Distributed Client-Server Operation. Middleware in Distributed Workgroup Computing. Multiserver Network Topologies. Distributed Multimedia Databases. Managing Distributed Objects. Application Workflow Design Issues. Distributed Application Design Issues	8	CO4 CO5
VI	System Design: Methodology and Considerations.	Fundamental Design Issues. Determining Enterprise Requirements. Examining Current Architecture and Feasibility. Performance Analysis. Designing for Performance Multimedia System Design. System Extensibility. Multimedia Systems Design Example.	8	CO5 CO6

- 1. **Prabhat K. Andleigh, Kiran Thakrar** "Multimedia Systems Design" 1/e, Pearson, ISBN 978-93-325-4938-8
- 2. Fundamentals of Multimedia by Ze-Nian Li& Mark.S.Drew
- 3. Introduction to Multimedia Communication, Application, Middleware, Networking by K.R.Roa, Zoran S,Bojkovic & Dragorad A. Milovanovic.

## **References:**

- 1. Organization of Multimedia Resources: Principles and Practice of Information Retrieval by Mary A. Burke
- 2. Multimedia Systems Design by Prabhat K.Andleigh/ Kiran Thakrar

#### **Assessment:**

#### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course	Theory	Practical	Tutorial	Theory		Tutorial	Total
Name					/Oral		
Green IT	04			04			04
	Name	Name	Name	Name	Name	Name /Oral	Name /Oral

		Examination Scheme						
Course	Course Name		Theo	ory Marks			Oral &	
Code	Course Name	Internal assessment			End	Term Work	Practical	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam		Co	
ITDLO6025	Green IT	20	20	20	80			100

# Course Objectives: Students will try:

- 1. To understand what Green IT is and How it can help improve environmental Sustainability
- 2. To understand the principles and practices of Green IT.
- 3. To understand how Green IT is adopted or deployed in enterprises.
- 4. To understand how data centres, cloud computing, storage systems, software and networks can be made greener.
- 5. To measure the Maturity of Sustainable ICT world.
- 6. To implement the concept of Green IT in Information Assurance in Communication and Social Media and all other commercial field.

### Course Outcomes: Students will be able to:

- 1. Describe awareness among stakeholders and promote green agenda and green initiatives in their working environments leading to green movement
- 2. Identify IT Infrastructure Management and Green Data Centre Metrics for software development
- 3. Recognize Objectives of Green Network Protocols for Data communication.
- 4. Use Green IT Strategies and metrics for ICT development.
- 5. Illustrate various green IT services and its roles.
- 6. Use new career opportunities available in IT profession, audits and others with special skills such as energy efficiency, ethical IT assets disposal, carbon footprint estimation, reporting and development of green products, applications and services.

**Prerequisite:** Environmental Studies

# **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
110.				Mapping
0	Prerequisite	Environmental Studies	2	
I	Introduction	Environmental Impacts of IT, Holistic Approach to Greening IT, Green IT Standards and Eco-Labeling, Enterprise Green IT Strategy, Green IT: Burden or Opportunity?  Hardware: Life Cycle of a Device or Hardware, Reuse, Recycle and Dispose.  Software: Introduction, Energy-Saving Software Techniques, Evaluating and Measuring Software	9	CO1
		Impact to Platform Power.		
II	Software		9	CO1
	development and data centers	Sustainable Software, Software Sustainability Attributes, Software Sustainability Metrics, Sustainable	2	CO2
		Software Methodology, Data Centres and Associated Energy Challenges, Data Centre IT Infrastructure, Data Centre Facility Infrastructure: Implications for Energy Efficiency, IT Infrastructure Management, Green Data Centre Metrics		
III	Data storage and communication	Storage Media Power Characteristics, Energy Management Techniques for Hard Disks, System-Level Energy Management, Objectives of Green Network Protocols, Green Network Protocols and Standards.	9	CO1 CO3
IV	Information	Approaching Green IT Strategies,	8	CO1
	systems, green it strategy and metrics	Business Drivers of Green IT Strategy, Business Dimensions for Green IT Transformation, Multilevel Sustainable Information, Sustainability Hierarchy Models, Product Level Information, Individual Level Information, Functional Level Information, Organizational Level Information,		CO4
		Regional/City Level Information, Measuring the Maturity of Sustainable ICT.		

University of Mumbai, B. E. (Information Technology), Rev 2016

_	1			7
V	Green it services	Factors Driving the Development	9	CO1
	and roles	of Sustainable IT, Sustainable IT Services (SITS), SITS Strategic		CO4
		Framework, Sustainable IT Roadmap, Organizational and		CO5
		Enterprise Greening, Information Systems in Greening Enterprises,		
		Greening the Enterprise: IT Usage and Hardware, Inter-organizational		
		Enterprise Activities and Green Issues,		
		Enablers and Making the Case for IT and the Green Enterprise.		
VI	Managing and	Strategizing Green Initiatives,	6	CO1
	regulating green it	Implementation of Green IT, Information Assurance,	5	CO5
		Communication and Social Media, The Regulatory Environment and		CO6
		IT Manufacturers, Nonregulatory		
		Government Initiatives, Industry Associations and Standards Bodies,		
		Green Building Standards, Green Data Centres, Social Movements		
		and Greenpeace.		

- 1. San Murugesan, G. R. Gangadharan, Harnessing Green IT, WILEY 1st Edition-2013
- 2. Mohammad Dastbaz Colin Pattinson Babak Akhgar, Green Information Technology A Sustainable Approach, Elsevier 2015
- 3. Reinhold, Carol Baroudi, and Jeffrey HillGreen IT for Dummies, Wiley 2009

#### **References:**

- 1. Mark O'Neil, Green IT for Sustainable Business Practice: An ISEB Foundation Guide, BCS
- 2.Jae H. Kim, Myung J. Lee Green IT: Technologies and Applications, Springer, ISBN: 978-3-642-22178-1
- 3. Elizabeth Rogers, Thomas M. Kostigen The Green Book: The Everyday Guide to Saving the Planet One Simple Step at a Time, Springer

#### **Assessment:**

## **Internal Assessment for 20 marks:**

## Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

## **University of Mumbai**

## Program Structure B.E. Information Technology, (Rev. 2016)

## B. E. Information Technology (Semester-VII)

Course	Course	Teaching (Contact				Credi	ts Assig	ned
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
ITC701	Enterprise Network Design	4	-	-	4	-	-	4
ITC702	Infrastructure Security	4	-	-	4	-		4
ITC703	Artificial Intelligence	4	-	-	4	-	(	4
ITDLO-II	Department Level Optional Course -III	4	-	-	4	S	-	4
ILO-I	Institute Level Optional Course-I	3	-	-	3	7	-	3
ITL701	Network Design Lab	-	2	-		1		1
ITL702	Advanced Security Lab	-	2	(		1		1
ITL703	Intelligence System Lab	-	2			1		1
ITL704	Android Apps Development Lab	-	2	J		1		1
ITM705	Project-I	-	6/8			3	-	3
	Total	19	14	-	19	7	-	26

					E	xamination S	Scheme	e		
Course	Course			The	ory				Oral	
Code	Name	Inter	nal Ass	essment	End Sem.	Exam Duration	TW	Oral	&	Total
		Test 1	Test 2	Avg.	Exam	( in Hrs)			Pract	
ITC701	Enterprise Network Design	20	20	20	80	3	-		-	100
ITC702	Infrastructure Security	20	20	20	80	3	-		-	100
ITC703	Artificial Intelligence	20	20	20	80	3	-		-	100
ITDLO-II	Department Level Optional Course -III	20	20	20	80	3	-		-	100
ILO-I	Institute Level Optional Course-I	20	20	20	80	3				100
ITL701	Network Design Lab	-	-	-	-	-	25	25	1	50
ITL702	Advanced Security Lab	-	-	-	-	-	25	25		50
ITL703	Intelligence System Lab		-	_	-		25	25		50
ITL704	Android Apps Development Lab						25	25		25
ITM705	Project-I	-	_	-	- 4		50	25		75
Total			100	100	400		150	125		750

### # Department Level Optional Course (DLO)

Every student is required to take one Department Elective Course for Semester VII. Different sets of courses will run in both the semesters. Students can take these courses from the list of department electives, which are closely allied to their disciplines.

(DLO-I subjects will have no Labs only Theory)

### **# Institute Level Optional Course (ILO)**

Every student is required to take one Institute Elective Course for Semester VII, which is not closely allied to their disciplines. Different sets of courses will run in the both the semesters.

Subject Code	Department Level Optional Course (DLO)	Subject Code	Institute Level Optional Course (ILO)
	Sen	nester VII	
ITDLO7031	Storage Area Networks	ILO7011	Product Lifecycle Management
ITDLO7032	Mobile Application Development	ILO7012	Reliability Engineering
ITDLO7033	High Performance Computing	ILO7013	Management Information System
ITDLO7034	Software Testing and Quality Assurance	ILO7014	Design of Experiments
ITDLO7035	Soft Computing	ILO7015	Operation Research
	::(O)	ILO7016	Cyber Security and Laws
	65	ILO7017	Disaster Management and Mitigation Measures
		ILO7018	Energy Audit and Management
(J-		ILO7019	Development Engineering

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC701	Enterprise Network Design	04			04			04

	Course Name		Examination Scheme								
Course Code			Theory Marks				Oral &				
		Internal assessment			End	Term Work	Practical	Total			
		Test1	Test2	Avg. of two Tests	Sem. Exam	,,, 0111	13				
ITC701	Enterprise Network Design	20	20	20	80	O	<u>o</u>	100			

### **Course Objectives:** Students will try:

- 1. To be familiarized with the methodologies and approaches of the network design for an enterprise network.
- 2. To understand the network hierarchy and use modular approach to network design for an enterprise network.
- 3. To understand the campus design and data center design considerations for designing an enterprise campus.
- 4. To study Enterprise Edge WAN Technologies and design a WAN using them
- 5. Designing an IP addressing plan and selecting a Route protocol for an enterprise network.
- 6. To design enterprise network for given user requirements in an application.

### Course Outcomes: Student should be able to:

- 1. Understand the customer requirements and Apply a Methodology to Network Design
- 2. Structure and Modularize the Network
- 3. Design Basic Campus and Data Center Network.
- 4. Design Remote Connectivity
- 5. Design IP Addressing and Select suitable Routing Protocols for the Network
- 6. Compare Openflow controllers and switches with other enterprise networks.

**Pre-requisite:** Computer Networks

### **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
0	Prerequisite	<ol> <li>OSI Reference Model and TCP/IP Protocol Suite</li> <li>Routing IP Addresses</li> <li>Internetworking Devices</li> </ol>	02	
I	Applying a Methodology to Network Design:	The Cisco Service Oriented Network Architecture, Network Design Methodology, Identifying Customer Requirements, Characterizing the Existing Network and Sites, Using the Top- Down Approach to Network Design, The Design Implementation Process.	08	CO1, CO6
II	Structuring and Modularizing the Network:	Network Hierarchy, Using a Modular Approach to Network Design, Services Within Modular Networks, Network Management Protocols and Features	09	CO2, CO6
III	Designing Basic Campus and Data Center Networks	Campus Design Considerations, Enterprise Campus Design, Enterprise Data Center Design Considerations	09	CO3, CO6
IV	Designing Remote Connectivity	Enterprise Edge WAN Technologies, WAN Design, Using WAN Technologies, Enterprise Edge WAN and MAN Architecture, Selecting Enterprise Edge Components, Enterprise Branch and Teleworker Design.	09	CO4, CO6
V	Designing IP Addressing in the Network & Selecting Routing Protocols	Designing an IP Addressing Plan, Introduction to IPv6, Routing Protocol Features, Routing Protocols for the Enterprise, Routing Protocol Deployment, Route Redistribution, Route Filtering, Redistributing and Filtering with BGP, Route Summarization	10	CO5
VI	Software Defined	Understanding SDN and Open Flow: SDN – SDN Building		CO6

Network	Blocks, OpenFlow messages – Controller to Switch, Symmetric and Asynchronous messages,	05
	Implementing OpenFlow Switch, OpenFlow controllers , POX and NOX, Open Flow in Cloud Computing, Case study: how SDN changed Traditional Enterprise network Design	

- 1. Authorized Self-Study Guide, Designing for Cisco Internetwork Solutions (DESGN), Second Edition, Cisco Press-Diane Teare.
- 2. Network Analysis, Architecture, and Design 3rd Edition, Morgan Kaufman, James D.
- 3. CCDA Cisco official Guide
- 4. Software Defined Networking with Open Flow: PACKT Publishing Siamak Azodolmolky

#### **References:**

- 1. Top-Down Network Design (Networking Technology) 3rd Edition, Priscilla Oppenheimer, Cisco Press Book
- 2. Network Planning and Design Guide Paperback 2000, Shaun Hummel

#### **Assessment:**


### **Internal Assessment for 20 marks:**

Consisting of **Two Compulsory Class Tests** 

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
ITC702	Infrastructure Security	04		-	04		-	04

Course Code	Course Name		Examination Scheme							
			T	heory Marks			Oral &	7		
		Internal assessment End Sem.				Term	Practical	Total		
		Test1	Test2	Avg. of two Tests	End Seni.  Exam	Work		Total		
ITC702	Infrastructure Security	20	20	20	80			100		

### **Course Objectives:** Students will try:

- 1. To understand underlying principles of infrastructure security
- 2. To explore software vulnerabilities, attacks and protection mechanisms

  To learn security aspects of wireless network infrastructure and protocols
- 3. To investigate web server vulnerabilities and their countermeasures
- 4. To develop policies for security management and mitigate security related risks in the organization
- 5. To Learn the different attacks on Open Web Applications and Web services.
- 6. To Learn the different security policies.

#### **Course Outcomes:** Students will be able to:

- 1. Understand the concept of vulnerabilities, attacks and protection mechanisms
- 2. Analyze and evaluate software vulnerabilities and attacks on databases and operating systems
- 3. Explain the need for security protocols in the context of wireless communication
- 4. Understand and explain various security solutions for Web and Cloud infrastructure
- 5. Understand, and evaluate different attacks on Open Web Applications and Web services
- 6. Design appropriate security policies to protect infrastructure components

Prerequisite: Computer Networks, Cryptography and Network Security

### **Detail Syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
I	Introduction	Cyber-attacks, Vulnerabilities, Defense Strategies and Techniques, Authentication Methods- Password, Token and Biometric, Access Control Policies and Models (DAC,MAC, RBAC, ABAC, BIBA, Bell La Padula), Authentication and Access Control Services- RADIUS, TACACS, and TACACS+	6	CO1

		Software Vulnerabilities:		
		Buffer overflow, Format String, Cross-Site Scripting, SQL Injection, Malware: Viruses, Worms, Trojans, Logic Bomb, Bots, Rootkits		
		Operating System Security:		
II	Software Security	Memory and Address Protection, File Protection Mechanism, User Authentication.	12	CO2
		Linux and Windows: Vulnerabilities, File System Security		CC
		Database Security:		
		Database Security Requirements, Reliability and Integrity, Sensitive Data, Inference Attacks, Multilevel Database Security	5	<b>*</b>
III	Wireless Security	Mobile Device Security- Security Threats, Device Security, GSM, UMTS and 4G Security, IEEE 802.11xWireless LAN Security, VPN Security, Wireless Intrusion Detection System (WIDS)	9	CO3
IV	Cloud Security	Cloud Security Risks and Countermeasures, Data Protection in Cloud, Cloud Application Security, Cloud Identity and Access Management, Cloud Security as a Service, SAML, OAuth	8	CO4
V	Web Security	Web Security Considerations, User Authentication and Session Management, Cookies, SSL, HTTPS, SSH, Privacy on Web, Web Browser Attacks, Account Harvesting, Web Bugs, Clickjacking, Cross-Site Request Forgery, Session Hijacking and Management, Phishing and Pharming Techniques, DNS Attacks, Web Service Security, Secure Electronic Transaction, Email Attacks, Web Server Security as per OWASP, Firewalls, Penetration Testing	12	CO4, CO5
VI	Information Security and Risk Management	Security Policies, Business Continuity Plan, Risk Analysis, Incident Management, Legal System and Cybercrime, Ethical Issues in Security Management.	5	CO6

- 1. Computer Security Principles and Practice, William Stallings, Sixth Edition, Pearson Education
- 2. Security in Computing, Charles P. Pfleeger, Fifth Edition, Pearson Education
- 3. Network Security and Cryptography, Bernard Menezes, Cengage Learning
- 4. Network Security Bible, Eric Cole, Second Edition, Wiley

### **Reference Books:**

- 1. Web Application Hackers Handbook by Wiley.
- 2. Computer Security, Dieter Gollman, Third Edition, Wiley
- 3. CCNA Security Study Guide, Tim Boyle, Wiley
- 4. Introduction to Computer Security, Matt Bishop, Pearson.
- 5. Cloud Security and Privacy, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Riely

#### **Assessment:**

### **Internal Assessment for 20 marks:**


Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

### **End Semester Examination:**

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC703	Artificial	04			04			04
	Intelligence	Hr/Week						

Course Code	Course Name	Examination Scheme								
		Theory Marks					Oral &			
		Internal assessment			End	Term Work	Practical	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam	,,, 9222		O,		
ITC703	Artificial Intelligence	20	20	20	80		·G·	100		

### **Course Objectives:** Students will try:

- 1. To create appreciation and understanding of both the achievements of AI and the theory underlying those achievements.
- 2. To introduce the concepts of a Rational Intelligent Agent and the different types of Agents that can be designed to solve problems
- 3. To review the different stages of development of the AI field from human like behavior to Rational Agents.
- 4. To impart basic proficiency in representing difficult real life problems in a state space representation so as to solve them using AI techniques like searching and game playing.
- 5. To create an understanding of the basic issues of knowledge representation and Logic and blind and heuristic search, as well as an understanding of other topics such as minimal, resolution, etc. that play an important role in AI programs.
- 6. To introduce advanced topics of AI such as planning, Bayes networks, natural language processing and Cognitive Computing.

### **Course Outcomes:** Students will be able to:

- 1. Demonstrate knowledge of the building blocks of AI as presented in terms of intelligent agents.
- 2. Analyze and formalize the problem as a state space, graph, design heuristics and select amongst different search or game based techniques to solve them.
- 3. Develop intelligent algorithms for constraint satisfaction problems and also design intelligent systems for Game Playing
- 4. Attain the capability to represent various real life problem domains using logic based techniques and use this to perform inference or planning.
- 5. Formulate and solve problems with uncertain information using Bayesian approaches.
- 6. Apply concept Natural Language processing to problems leading to understanding of cognitive computing.

**Prerequisite:** Programming, Data Structures.

## **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
0	Prerequisites	Knowledge of any programming language, Data structures.	2	
I	Introduction to Intelligent Systems and Intelligent Agents	Introduction to AI, AI Problems and AI techniques, Solving problems by searching, Problem Formulation. State Space Representation	07	CO 1 CO 2
		Structure of Intelligent agents, Types of Agents, Agent Environments PEAS representation for an Agent.	\$	5
II	Search Techniques	Uninformed Search: DFS, BFS, Uniform cost search, Depth Limited Search, Iterative Deepening.  Informed Search: Heuristic functions, Hill Climbing, Simulated Annealing, Best First Search, A*,  Constraint Satisfaction Programming: Crypto Arithmetic, Map Coloring, N-Queens.  Adversarial Search: Game Playing, Min-Max Search, Alpha	11	CO 2 CO 3
III	Knowledge and Reasoning	Beta Pruning  A Knowledge Based Agent, Overview of Propositional Logic, First Order Predicate Logic, Inference in First Order Predicate Logic: Forward and Backward Chaining, Resolution.	10	CO 4
IV	Planning	Introduction to Planning, Planning with State Space Search, Partial Ordered planning, Hierarchical Planning, Conditional Planning.	06	CO 4
V	Uncertain Knowledge and Reasoning	Uncertainly, Representing Knowledge in an Uncertain Domain, Conditional Probability, Joint Probability, Bayes' theorem, Belief Networks, Simple Inference in Belief Networks.	06	CO 5
VI	Natural Language	Language Models, Natural Language for Communication:	10	CO 6

Processing	Syntactic Analysis, Augmented Grammars and Semantic Interpretation, Machine Translation.	
	Overview of Cognitive Computing: Foundation of Cognitive Computing, List of Design Principles for Cognitive Systems, Natural Language Processing in Support of a Cognitive System (First three chapters from Text book 3)	

- 1. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Pearson Education.
- 2. Elaine Rich, Kevin Knight, Shivshankar B Nair, Artificial Intelligence, McGraw Hill, 3rd Edition
- 3. Judith S. Hurwitz, Marcia Kaufman, Adrian Bowles, Cognitive Computing and Big Data Analytics, Wiley India

### **References:**

- 1. George Lugar, .AI-Structures and Strategies for Complex Problem Solving., 4/e, 2002, Pearson Education.
- 2. Nils J. Nilsson, Principles of Artificial Intelligence, Narosa Publication.
- 3. Patrick H. Winston, Artificial Intelligence, 3rd edition, Pearson Education.
- 4. Deepak Khemani, A First Course in Artificial Intelligence, McGraw Hill Publication
- 5. John Kelly, Steve Hamm, Smart Machines IBM's Watson and the Era of Cognitive Computing, Columbia Business School Publishing

#### **Assessment:**

### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Tota
	Name					& Oral		1
ITL701	Network		2			2		02
	Design Lab							

Course Code	Course Name	Examination Scheme							
		Theory	Marks					Practi	
		Internal assessment En				Term Work	Oral	cal & Oral	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam	VI OIL	.0		
ITL701	Network Design Lab					25	25		50

### **Lab Objectives:** Students will try:

- 1. To be familiarized with the requirements of an enterprise and address its major design areas
- 2. To recognize the hierarchical network model for the enterprise
- 3. Identify the networking devices and their configurations required for the design and also prepare a bill of materials
- 4. Propose a design for the Server Farm of an enterprise network and discuss up gradations if needed.
- 5. Provide suitable IP addressing plan and best possible routing protocol for an enterprise network.
- 6. Construct a suitable design for an enterprise network and test it using a tool.

### **Lab Outcomes:** Students will be able to:

- 1. Understand the requirements of an enterprise and outline its major design areas
- 2. Identify functional areas to construct high level modules for enterprise architecture and analyze them
- 3. Identify the networking devices, prepare a bill of materials and configure the devices as per the Core, Acess and Distribution layers
- 4. Design the Server Farm for an enterprise network and discuss up gradations if needed.
- 5. Identify and select the technology for Remote site Connectivity, suitable IP addressing plan and routing protocol for an enterprise network.
- 6. Test and monitor the enterprise network using a tool

**Prerequisite:** Computer Networks.

### Guidelines

- 1. The case study of College Campus Network must be designed as a mini project work which is to be conducted by a group of three students
- 2. Each group will be associated with a subject Incharge/ mini project mentor. The group should meet with the concerned faculty during Laboratory hours and the progress of work discussed must be documented.
- **3.** The students must understand the requirements of a College campus enterprise network.
- **4.** The students must outline the major design areas of a College campus enterprise network.
- **5.** The students must identify the functional areas and construct high level modules for the College campus enterprise architecture.
- **6.** The students must analyze the existing College campus enterprise network and propose up gradations to existing infrastructure.
- 7. The students must identify the network devices required and their locations to design a College campus enterprise network.
- **8.** The students must configure the network devices required as per the Core Layer, Access Layer and Distribution Layer.
- **9.** The students must Design the Server Farm for enterprise network using a configuration tool and also discuss if any other improvement is required.
- **10.** The students must Prepare a bill of materials of all the networking devices. Develop a Request for Proposal-RFP for the enterprise network
- 11. The students must identify the technology for Remote Site connectivity and evaluate it as per the application requirements of the college campus enterprise network.
- **12.** Propose a suitable IP addressing plan for the enterprise network.
- **13.** Determine a suitable routing protocol for the enterprise network.
- **14.** Create and Test the designed college campus enterprise network using a tool.
- 15. Use Nagios tool for enterprise infrastructure monitoring tool
- 16. Each group may present their work in various project competitions and paper presentations.
- 17. A detailed report is to be prepared as per guidelines given by the concerned faculty.

### **Text Books:**

- 1. Authorized Self-Study Guide, Designing for Cisco Internetwork Solutions (DESGN), Second Edition, Cisco Press-Diane Teare.
- 2. Designing and Supporting Computer Networks, CCNA Discovery Learning Guide (Cisco Systems Networking Academy Program) Paperback 2008, <u>Kenneth Stewart</u>, <u>Aubrey Adams</u>, <u>Allan Reid</u>, <u>Jim Lorenz</u>.

### **References:**

- 1. Top-Down Network Design (Networking Technology) 3rd Edition, Priscilla Oppenheimer, Cisco Press Book
- 2. Network Planning and Design Guide Paperback 2000, Shaun Hummel

## Term Work:

Term Work shall consist of full Mini Project on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Mini Project) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the Mini Project and Presentation.

Course	Course Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
Code								
ITL702	Advance		02	-		01	-	01
	Security							
	Lab							

Course Code	Course Name		Examination Scheme							
		Theory Marks								
		Inte	rnal ass	essment	End	Term	Oral &	Oral	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	Practical	Orar		
ITL702	Advance Security Lab					25		25	50	

### Lab Objective: Students will try to:

- 1. Implement and analyze program and database vulnerabilities Buffer overflow and SQL Injection.
- 2. Explore and analyze different security tools to secure mobile devices, web browser, wireless network and router
- 3. Explore reconnaissance, attack and forensics tools in Kali Linux
- 4. Learn security of system using personal firewall installation
- 5. Understand AAA using RADUIS
- 6. Understand AAA using TACACS

### **Lab Outcome:** Students will able to:

- 1. Implement and analyze program and database vulnerabilities Buffer overflow and SQL Injection.
- 2. Explore and analyze different security tools to secure mobile devices, web browser, wireless network and router
- 3. Explore reconnaissance, attack and forensics tools in Kali Linux
- 4. Learn security of system using personal firewall installation
- 5. Understand AAA using RADUIS
- 6. Understand AAA using TACACS

**Prerequisite:** Computer Networks, Cryptography and Network Security.

Hardware	Software
PC i3 or above configuration.	Kali Linux, Java, Snort, Kismet, Metasploit,
•	Wireshark, Droidcrypt

# **Detail Syllabus:**

Sr. No	Description	Hours	CO mapping
1	Exploring Kali Linux and the inbuilt tools for reconnaissance and ethical hacking.	2	LO3
2	Implementation and analysis of SQL injection Attack	4	LOI
3	Implementation of Buffer overflow attack and its analysis using Splint, Cppcheck etc.	2	LO1
4	Setting up personal Firewall using Iptables	2	LO4
5	Exploring wireless security tools like Kismet, NetStumbler etc.	2	LO2
6	Performing a penetration testing using Metasploit	2	LO3
7	Exploring Router security, access lists using packet tracer	2	LO2
8	Exploring VPN security using Packet tracer	2	LO2
9	Exploring Authentication and access control using RADIUS, TACACS and TACACS+	2	LO5

10	Install and use a security app on an Android mobile (e.g. Droidcrypt)	2	LO2
11	Explore forensics tools in Kali Linux for acquiring, analyzing and duplicating data	2	LO3
12	Configuration of mod Security, core rule set on apache server.	2	LO2

- 1. Build your own Security Lab, Michael Gregg, Wiley India
- 2. CCNA Security, Study Guide, TIm Boyles, Sybex

### **Reference Books:**

1. Network Security Bible, Eric Cole, Wiley India

### **Term Work:**

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITL703	Intelligence System Lab		2			1		01

Course Code	Course Name		Examination Scheme							
			Theo	ory Marks						
		Internal assessment			End	Term Work	Oral & Practical	Oral	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam					
ITL703	Intelligence System Lab					25	1	25	50	

### **Course Objectives:** Students will try:

- 1. To introduce the concepts of a Rational Intelligent Agent and the different types of Agents that can be designed to solve problems
- 2. To impart basic proficiency in representing difficult real life problems in a state space representation so as to solve them using AI techniques.
- 3. To make students understand various AI methods like searching and game playing and how to apply them to solve real applications
- 4. To explain to students the basic issues of knowledge representation and Logic so as to build inference engines
- 5. To impart a basic understanding of some of the more advanced topics of AI such as planning.
- 6. To understand Bayes networks, natural language processing and introduce concept of cognitive computing.

### **Course Outcomes:** Students will be able to:

- 1. Design the building blocks of an Intelligent Agent using PEAS representation.
- 2. Analyze and formalize the problem as a state space, graph, design heuristics and select amongst different search or game based techniques to solve them.
- 3. Develop intelligent algorithms for constraint satisfaction problems and also design intelligent systems for Game Playing
- 4. Attain the capability to represent various real life problem domains using logic based techniques and use this to perform inference or planning.
- 5. Formulate and solve problems with uncertain information using Bayesian approaches.
- 6. Apply concept Natural Language processing and cognitive computing for creation of domain specific ChatBots.

Hardware	Software
PC i3 or above configuration.	Java
_	Python

### **Detailed syllabus:**

Module No.	Detailed Content	Hours	LO Mapping
1	Tutorial exercise for a) Design of Intelligent System using PEAS. b) Problem Definition with State Space Representation	2	LO 1, LO 2
11	Implementation of Uninformed and Informed Search Algorithms.	6	LO 2
111	Implementation of CSP and Game playing algorithms .	4	LO 3
1V	<ul><li>a) Assignment on Predicate Logic, for forward and backward reasoning and resolution.</li><li>b) Design of a Planning system using STRIPS.</li></ul>	4	LO 4
V	Implementation of Bayes' Belief Network.	2	LO 5
VI	Mini project  Construction of a domain specific ChatBot using Natural Language Processing techniques.  ( Applications can include : Medical Diagnosis, Personal Shopping Assistant, Travel Agent, Trouble shooting etc.)	8	LO6

### **Text Books:**

- 1. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Pearson Education.
- 2. Judith S. Hurwitz, Marcia Kaufman, Adrian Bowles, Cognitive Computing and Big Data Analytics, Wiley India

### **References:**

- 1. George Lugar, .AI-Structures and Strategies for Complex Problem Solving., 4/e, 2002, Pearson Education.
- 2. John Kelly, Steve Hamm, Smart Machines IBM's Watson and the Era of Cognitive Computing, Columbia Business School Publishing

### **Term Work:**

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 20 Marks (Experiment + Mini-Project) + 5 Marks (Attendance) **Oral Exam:** An Oral exam will be held based on the above syllabus.

Course	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
Code						& Oral		
ITL704	Android Apps		2			1		1
	Development Lab							

Course Code	Course Name		Examination Scheme							
			Theory Marks							
		Into	ernal ass	essment	End Sem. Exam		Term Work	Term Practical Work & Oral	Oral	Total
		Test1	Test2	Avg. of twoTests		WOIR				
ITL704	Android Apps Development Lab					25	5	25	50	

Hardware	Software
PC i3 or above configuration.	Java
	Android SDK

### Lab Objectives: Students will try:

- 1. To gain knowledge of installing Android Studio and Cross Platform Integrated Development Environment.
- 2. To learn designing of User Interface and Layouts for Android App.
- 3. To learn how to use intents to broadcast data within and between Applications.
- 4. To use Content providers and Handle Databases using SQLite.
- 5. To introduce Android APIs for Camera and Location Based Service.
- 6. To discuss various security issues with Android Platform.

### Lab Outcomes: Students will be able to:

- 1. Experiment on Integrated Development Environment for Android Application Development.
- 2. Design and Implement User Interfaces and Layouts of Android App.
- 3. Use Intents for activity and broadcasting data in Android App.
- 4. Design and Implement Database Application and Content Providers.
- 5. Experiment with Camera and Location Based service.
- 6. Develop Android App with Security features.

### **Prerequisite:** Java Programming, Internet Programming.

### Guidelines

1. The mini project work is to be conducted by a group of three students

- 2. Each group will be associated with a subject Incharge/ mini project mentor. The group should meet with the concerned faculty during Laboratory hours and the progress of work discussed must be documented.
- 3. The students may do survey for different application which they can create Apps using Android.
- **4.** Students will do Installation, configuration of Android Studio & to create AVD and also try for Cross platform Integrated Development Environment (Any Open Source Tool).
- 5. Students will try to Design and implement following points in their Mini Project (Android Apps)
  - a. Widget box for Android phone.
  - b. Use Layouts
  - c. Use Intents
  - d. Use Activity
  - e. Use SQLite
  - f. Use Camera
  - g. Use Location API
  - h. Generate APK file
- **6.** Each group along with the concerned faculty shall identify a potential problem statement for Apps development, on which the study and implementation is to be conducted.
- 7. Each group may present their work in various project competitions and paper presentations.
- **8.** A detailed report is to be prepared as per guidelines given by the concerned faculty.

- 1. Professional Android 4 Application Development by wrox publication
- 2. Android Cookbook by o'reilly
- 3. Beginning Android Development Wrox Press

### **References:**

- 1. Android Application Development For Dummies, 2nd Edition by MichaelBurton, DonnFelker
- 2. Android Security –attack and defenses, AbhishekDubey and AnmolMisra by CRC Press

### Term Work:

Term Work shall consist of full Mini Project on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Mini Project) + 5 Marks (Assignments) + 5 Marks (Attendance)

**Oral Exam:** An Oral exam will be held based on the Mini Project and Presentation.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/ Oral		
ITM705	Project-I		06			3		3

	Course Name	Examination Scheme								
Course Code		Theory Marks					Duantia			
		Internal assessment			End	Term Work	Practic al &	Oral	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam		Oral			
ITM705	Project-I					50	40	25	75	

**Lab Objectives:** Students will try:

- 1. To offer students a glimpse into real world problems and challenges that need IT based solutions
- 2. To enable students to create very precise specifications of the IT solution to be designed.
- 3. To introduce students to the vast array of literature available of the various research challenges in the field of IT
- 4. To create awareness among the students of the characteristics of several domain areas where IT can be effectively used.
- 5. To enable students to use all concepts of IT in creating a solution for a problem
- 6. To improve the team building, communication and management skills of the students.

### **Lab Outcomes:** Student will be able to:

- 1. Discover potential research areas in the field of IT
- 2. Conduct a survey of several available literature in the preferred field of study
- 3. Compare and contrast the several existing solutions for research challenge
- 4. Demonstrate an ability to work in teams and manage the conduct of the research study.
- 5. Formulate and propose a plan for creating a solution for the research plan identified
- 6. To report and present the findings of the study conducted in the preferred domain

### Guidelines

- 1. The project work is to be conducted by a group of three students
- 2. Each group will be associated with a project mentor/guide. The group should meet with the project mentor/guide periodically and record of the meetings and work discussed must be documented.
- 3. Department has to allocate 1 day in VII semester and 2 day in VIII semester every week.
- 4. Students will do literature survey in Sem VI or Sem VII.
- 5. Students will do design, implementation and coding in Sem VII.

University of Mumbai, B. E. (Information Technology), Rev 2016

192

- 6. Each group along with its guide/mentor shall identify a potential research area/problem domain, on which the study is to be conducted.
- 7. Each team will do a rigorous literature survey of the problem domain by reading and understanding at least 3-5 research papers from current good quality national/international journals/conferences. (Papers selected must be indexed by Scopus/IEEE/Springer/ACM etc.). The list of papers surveyed must be clearly documented.
- 8. The project assessment for term work will be done at least two times at department level by giving presentation to panel members which consist of at least three (3) members as Internal examiners (including the project guide/mentor) appointed by the Head of the department of respective Programme.
- 9. A report is to be prepared summarizing the findings of the literature survey. A comparative evaluation of the different techniques surveyed is also to be done.
- 10. Students will do testing and analyze in Sem VIII
- 11. Teams must analyze all the results obtained by comparing with other standard techniques.
- 12. Every team must publish their work in national / international conference/journals (if possible publish in Scopus indexed journals).

### **Evaluation**

- 1. Each team has to give presentation/demo to the Internal Panel and External examiner.
- 2. Each team will prepare a report that will summarize the results of the literature survey and implementation and coding as project proposal in SEM VII. The list of papers surveyed must be clearly documented.
- 3. Each group will be jointly evaluated by a team of Internal and External Examiners approved by the University of Mumbai.
- 4. Oral exam will be conduct on the project done by the students.

### Term Work:

Term Work shall consist of full Project-I on above guidelines/syllabus.

**Term Work Marks:** 50 Marks (Total marks) = 45 Marks (Project-I) + 5 Marks (Attendance)

**Oral Exam:** An **O**ral exam will be held based on the Project-I and Presentation.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITDLO7031	Storage	04			04		01	05
	Area							
	Network							

Course Code	Course Name	Examination Scheme								
			Theor	ry Marks		Work				
		Inte	rnal asses	ssment	End		Work	Practical & Oral	Oral	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam			7		
ITDLO7031	Storage Area Network	20	20	20	80	Ö	<u> </u>		100	

### **Course Objectives:** Students will try to:

- 1. Understand the need for Storage Area Network and Data protection to satisfy the information explosion requirements
- 2. Study storage technologies: SAN, NAS, IP storage etc., which will bridge the gap between the emerging trends in industry and academics.
- 3. To get an insight of Storage area network architecture, protocols and its infrastructure.
- 4. To study and discuss the applications of SAN to fulfill the needs of the storage management in the heterogeneous environment..
- 5. Study and understand the management of Storage area Networks.
- 6. To understand and analyze case studies on the storage area network technology

### **Course Outcomes:** Students will able to:

- 1. Students will analyze the limitations of the client-server architecture and evaluate the need for data protection and storage centric architectures such as Intelligent storage system.
- 2. Students will understand, interpret and examine various SAN technologies.
- 3. Students will describe and sketch the SAN architecture and its uses.
- 4. Students will classify the applications as per their requirements and select relevant SAN solutions.
- 5. Students will understand and evaluate different SAN management strategies to fulfill business continuity requirements.
- 6. Students will design case studies on NAS, SAN and SAN/ NAS

Prerequisite: Computer Networks, Operating System

## **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
0	Prerequisite	Networking Protocols, File system and Memory management	02	
I	Introduction to Storage System	Introduction: Storage oriented architecture, Storage Systems, Data center Infrastructure, Challenges in managing information, Information life cycle; Basics of Storage System: Components of Storage System, Disk Drive components and Performance, Components of Host; Data Protection: Raid Components and types, RAID technologies and RAID levels, RAID impact on disk performance; Intelligent Storage System" Components of ISS, Storage Provisioning and types of ISS	09	CO1
II	Network Attached Storage	Storage on Network: NAS hardware and software architecture, NAS connectivity, NAS as a Storage System; NAS Hardware devices; NAS software components; NAS connectivity options: NAS connectivity hardware and Software Architecture.	07	CO2
III	Storage Area Networks	Architecture Overview: Creating Network for storage; Hardware devices: Fibre Channel Switch, Host Bus Adaptors, Putting the Storage in SANs, Fabric Operation from a hardware perspective, SAN hardware considerations; Software Components: The switch's operating system, device drivers, the supporting components, considerations for SAN software; Configuration options for SANs: Connecting into the data center, the evolving network and device connections, SAN configuration guidelines	10	CO3

IV	Applications-Putting it together	Defining the I/O workload: Storage planning and capacity planning, the definition and characterization of workloads, the business application, I/O content and workloads, Considerations for I/O workloads in storage networking; Applying SAN solution: SAN workload characterization, applying SAN to OLTP workloads, transactional workloads; Applying NAS solution: NAS workload characterization, applying NAS to departmental workloads, enterprise web workloads and specialized workloads; Considerations when integrating SN and NAS: Differences and similarities, the need to integrate, future storage connectivity and integration	10	CO4
V	Management	Planning business continuity: Defining the environment, the role of storage networking in business continuity, storage design and implementation of the business continuity planning; Managing availability: Availability Metrics, Implementing the plan; Maintaining Serviceability: Tracking the configurations, Investigating the changes and closing the loop on serviceability; Capacity Planning: Storage Analysis, developing and implementing plan for storage, Modelling performance and capacity requirements; Security considerations: Overview of Information security, Security methods, Storage Security challenges, FC SAN security, NAS security	09	CO5
		•		

- 1. Storage Networks: The Complete Reference. Spalding, Robert ,Tata McGraw-Hill Education, 2003
- 2. "Storage Network Management and Retrieval", Vaishali Khairnar, Nilima Dongre. Wiley

#### **References:**

- 1. Richard Barker, Paul Massiglia, "Storage Area Network Essentials: A Complete Guide to Understanding and Implementing SANs", Wiley India
- 2. Ulf Troppens, Wolfgang Muller-Friedt, Rainer Wolafka, "Storage Networks Explained" Wiley Publication
- 3. G. Somasundaram, Alok Shrivastava, "Information Storage and Management", EMC Education services", Wiley Publication

#### **Assessment:**

### **Internal Assessment for 20 marks:**

Consisting of **Two Compulsory Class Tests** 

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						& Oral		
ITDLO7032	Mobile	04	-	-	04	-	-	04
	Application							
	Development							

Course Code	Course Name	Examination Scheme							
			Theo	ry Marks					
		Inter	nal asse	ssment	End	Term		Oral	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work			2 0 0 0
ITDLO7032	Mobile Application Development	20	20	20	80			-	100

### Course Objectives: Students will try:

- 1. To introduce Android platform and its architecture.
- 2. To learn activity creation and Android UI designing.
- 3. To be familiarized with Intent, Broadcast receivers and Internet services.
- 4. To work with SQLite Database and content providers.
- 5. To integrate multimedia, camera and Location based services in Android Application.
- 6. To explore Mobile security issues.

### Course Outcomes: Students will be able to:

- 1. Describe Android platform, Architecture and features.
- 2. Design User Interface and develop activity for Android App.
- 3. Use Intent, Broadcast receivers and Internet services in Android App.
- 4. Design and implement Database Application and Content providers.
- 5. Use multimedia, camera and Location based services in Android App.
- 6. Discuss various security issues in Android platform.

### Prerequisite: Internet Programming, Database Management System.

### **Detailed syllabus:**

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Basics of HTML5,CSS3 & XML	02	-
I	Introduction to Android and Architecture of	Introduction of Android platform, Android features ,Android Marketplace, Evolution of Android OS, Android	07	CO1

	A m duo i d	Application Applitantum Developing		
	Android	Application Architecture, Developing for Android, Developing for Mobile and		
		Embedded Devices, Android		
		Development Tools		
		-		
II	Applications,	Application: Application Manifest	09	CO2
	Activities and	File, Externalizing Resources, Android		
	Building User	Application Lifecycle and Android		
	Interface	Application Class.		
		Android Activity: Creating activities,		
		Activity lifecycle and Android Activity		
		classes.		
		User Interface:Fundamental Android UI		
		Design, Layouts, Fragments, Designing		
		UI with views, Creating new views,		
TIT	Intents Duord cost	widget toolbox, Adapters.	00	CO2
III	Intents, Broad cast receiver and	Introducing Intents, Linking Activities Using intents, Calling Built-in	09	CO3
	Internet Resources	Applications Using intents, Displaying		
	internet ixesources	notifications, Creating Intent Filters and		
		Broadcast Receivers, Downloading and		
		Parsing Internet Resources, Using the		
		Download Manager, Internet Services,		
		Connecting to Google App Engine,		
		Downloading Data Without Draining		
		the Battery	•	
IV	Data Persistence	Introducing Android	09	CO4
	and Content	Databases, Introducing SQLite, Content		
	Providers	Values and Cursors, Working with		
		SQLite Databases, Parsing an		
		XMLdocument ,Parsing JSON data .		
		Creating Content Providers,		
		Using Content Providers, Adding Search		
		to Your Application, Native Android		
V	Audio Vidoo	Content Providers  Playing Audio and Video Manipulating	08	CO5
v	Audio, Video ,Camera, Maps,	Playing Audio and Video, Manipulating Raw Audio, Using Audio, Using the	00	COS
	Geocoding and	Camera for Taking Pictures, Recording		
	Location Based	Video, Using Media Effects , Adding		
	services	Media to the Media Store.		
		Using Location-Based Services ,Using		
		the Emulator with Location-Based		
		Services, Selecting a Location		
	<b>)</b>	Provider, Finding Your Current		
		Location, Location Updates, Proximity		
		Alerts, Geocoder, Map-Based		
1		Activities, Displaying Maps		
VI	Securing and	Android Security Model, Android's	08	CO6
	Publishing	Manifest Permissions, Mobile Security		
	Android	Issues,Recent Android Attacks,Pen		
	Application	Testing Android.		
		Preparing for Publishing, Deploying		
		rrepaining for rubinshing, Deploying	<u> </u>	

_		
	APK Files	
	THE INCO	
	THE THES	

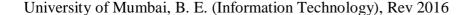
- 1. Professional Android 4 Application Development, Retomeier, by wrox publication,
- 2. Android Security –attack and defenses, AbhishekDubey and AnmolMisra by CRC Press
- 3. Beginning Android Application Development, Wei-meng lee, by wrox publication

#### **References:**

- 1. Android Application Development For Dummies, 2nd Edition by Michael Burton, DonnFelker
- 2. Android Cookbook by o'reilly

#### **Assessment:**

### **Internal Assessment for 20 marks:**


Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

### **End Semester Examination:**

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total four questions need to be solved.



Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total
ITDLO7033	High Performance Computing	04		-	04		-	04

Course Code	Course Name	Examination Scheme									
				ory Marks				-(	) '		
		Inte	rnal asse	essment	End	Term P Work	Practical &	Oral	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam		oral				
ITDLO7033	High Performance Computing	20	20	20	80	O			100		

### Course Objectives: Students will try to:

- 1. Learn the concepts of parallel processing as it pertains to high-performance computing.
- 2. Learn to design parallel programs on high performance computing.
- 3. Discuss issues of parallel programming.
- 4. Learn the concepts of message passing paradigm using open source APIs.
- 5. Learn different open source tools.
- 6. Learn the concepts of Multi-core processor.

#### **Course Outcomes:** Students will be able to:

- 1. Memorize parallel processing approaches
- 2. Describe different parallel processing platforms involved in achieving High Performance Computing.
- 3. Discuss different design issues in parallel programming
- 4. Develop efficient and high performance parallel programming
- 5. Learn parallel programming using message passing paradigm using open source APIs.
- 6. Design algorithms suited for Multicore processor and GPU systems using OpenMP and CUDA

**Prerequisite:** Computer Organization

# **Detail Syllabus:**

Sr. No.	Module	Detailed Content	Hours	CO mapping
1	Introduction	Introduction to Parallel Computing: Motivating Parallelism, Scope of Parallel Computing, Levels of parallelism (instruction, transaction, task, thread, memory, function), Models (SIMD, MIMD, SIMT, SPMD, Dataflow Models, Demand-driven Computation), Parallel Architectures: Interconnection network, Processor Array, Multiprocessor	7	CO1
2	Parallel Programming Platforms	Parallel Programming Platforms: Implicit Parallelism: Trends in Microprocessor & Architectures, Limitations of Memory System Performance, Dichotomy of Parallel Computing Platforms, Physical Organization of Parallel Platforms, Communication Costs in Parallel Machines	7	CO2
3	Parallel Algorithm Design	Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel  Algorithm Models, Basic Communication operations: Broadcast and Reduction Communication types	12	CO3
4	Performance Measures	Performance Measures: Speedup, execution time, efficiency, cost, scalability, Effect of granularity on performance, Scalability of Parallel Systems, Amdahl's Law, Gustavson's Law, Performance Bottlenecks	5	CO4
5	Fundamental Design Issues in HPC	Programming Using the Message-Passing Paradigm: Principles of Message Passing Programming, The Building Blocks: Send and Receive Operations, MPI: the Message Passing Interface, Topology and Embedding, Overlapping Communication with Computation, Collective Communication and Computation Operations,	12	CO5

		One-Dimensional Matrix-Vector Multiplication, Single-Source Shortest-Path, Sample Sort, Groups and Communicators, Two-Dimensional Matrix- Vector Multiplication, Introduction to OpenMP,		
6	General Purpose Graphics Processing Unit(GPGPU)	CUDA enabled GPGPU, GPGPU architecture, GPGPU programming using CUDA, Introduction to CUDA Programming	9	CO6

- 1. AnanthGrama, Anshul Gupta, George Karypis, Vipin Kumar, "Introduction to Parallel Computing", Pearson Education, Second Edition, 2007.
- 2. Kai Hwang, Naresh Jotwani, "Advanced Computer Architecture: Parallelism, Scalability, Programmability", McGraw Hill, Second Edition, 2010.
- 3. Edward Kandrot and Jason Sanders, "CUDA by Example An Introduction to General Purpose GPU Programming", Addison-Wesley Professional ©, 2010.
- 4. Georg Hager, Gerhard Wellein, "Introduction to High Performance Computing for Scientists and Engineers", Chapman & Hall / CRC Computational Science series, 2011.

#### **Reference Books:**

- 1. Michael J. Quinn, "Parallel Programming in C with MPI and OpenMP", McGraw-Hill International Editions, Computer Science Series, 2008.
- 2. Kai Hwang, Zhiwei Xu, "Scalable Parallel Computing: Technology, Architecture, Programming", McGraw Hill, 1998.
- **3.** Laurence T. Yang, MinyiGuo, "High-Performance Computing: Paradigm and Infrastructure" Wiley, 2006.

#### **Assessment:**

### **Internal Assessment for 20 marks:**

Consisting of **Two Compulsory Class Tests** 

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITDLO7034	Software	04			04			04
	Testing and							
	Quality							
	Assurance							

Course Code	Course Name		Examination Scheme							
		Theory Marks								
		Inte	ernal asse	essment	End		Practical & Oral	Oral	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work		•		
ITDLO7034	Software Testing and Quality Assurance	20	20	20	80	Q			100	

### **Course Objectives:** Students will try to learn:

- 1 Basic software debugging methods.
- 2 White box testing methods and techniques.
- 3 Black Box testing methods and techniques.
- 4 Designing test plans.
- 5 Different testing tools (familiar with open source tools)
- 6 Quality Assurance models.

### Course Outcomes: Students will be able to:

- 1. Investigate the reason for bugs and analyze the principles in software testing to prevent and remove bugs.
- 2. Implement various test processes for quality improvement
- 3. Design test planning.
- 4. Manage the test process
- 5. Apply the software testing techniques in commercial environment
- 6. Use practical knowledge of a variety of ways to test software and an understanding of some of the trade-offs between testing techniques.

**Prerequisite:** Software Engineering.

## **Detailed syllabus:**

Sr. No.	Module	<b>Detailed Content</b>	Hours	CO Mapping
0	Prerequisite	Software Engineering Concepts	02	
I	Testing Methodology	Introduction, Goals of Software Testing, Software Testing Definitions, Model for Software Testing, Effective Software Testing vs Exhaustive Software Testing, Software Failure Case Studies, Software Testing Terminology, Software Testing Life Cycle (STLC), Software Testing methodology, Verification and Validation, Verification requirements, Verification of high level design, Verification of low level design, validation.	09	CO1
II	Testing Techniques	Dynamic Testing: Black Box testing: boundary value analysis, equivalence class testing, state table based testing,	08	CO2 CO3
III	Managing the Test	cause-effect graphing based testing, error guessing.  White box Testing Techniques: need, logic coverage criteria, basis path testing, graph matrices, loop testing, data flow testing, mutation testing.  Static Testing.  Validation Activities: Unit validation, Integration, Function, System, Acceptance Testing.  Regression Testing: Progressive vs. Regressive, regression testing produces quality software, regression testing, regression testing, regression testing types, define problem, regression testing techniques.  Test Management: test organization,	08	CO4
III	Process Process	structure and of testing group, test planning, detailed test design and test specification.  Software Metrics: need, definition and classification of software matrices.  Testing Metrics for Monitoring and Controlling the Testing Process: attributes and corresponding metrics, estimation model for testing effort, architectural design, information flow	Uo	CO4

		matrix used for testing, function point and test point analysis.  Efficient Test Suite Management: minimizing the test suite and its benefits, test suite minimization problem, test suite prioritization its type, techniques and measuring effectiveness.		
IV	Test Automation	Automation and Testing Tools: need, categorization, selection and cost in testing tool, guidelines for testing tools. Study of testing tools: JIRA, Bugzilla, TestDirector and IBM Rational Functional Tester, Selenium etc.	09	CO1 CO5
V	Testing for specialized environment	Agile Testing, Agile Testing Life Cycle, Testing in Scrum phases, Challenges in Agile Testing Testing Web based Systems: Web based system, web technology evaluation, traditional software and web based software, challenges in testing for web based software, testing web based testing	08	CO2 CO3
VI	Quality Management	Software Quality Management, McCall's quality factors and Criteria, ISO 9126 quality characteristics, ISO9000:2000, Software quality management	06	CO6

## **Text Books:**

- 1. Software Testing Principles and Practices Naresh Chauhan Oxford Higher Education
- 2. Software Testing and quality assurance theory and practice by Kshirasagar Naik, Priyadarshi Tripathy, Wiley Publication

## **References:**

- **1.** Effective Methods for Software Testing , third edition by Willam E. Perry, Wiley Publication
- 2. Software Testing Concepts and Tools by Nageswara Rao Pusuluri, Dreamtech press

### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
Code	Name					/Oral		
ITDLO7035	Soft	04		01	04			04
	Computing							

					Examinat	ion Sche	eme		
Subject	Subject Name		Theo	ory Marks					
Code		Inte	ernal asse	essment	End Term Work		Practical & Oral		Total
		Test1	Test2	Avg. of two Tests	Sem. Exam	,,, 9111	5	*	
ITDLO7035	Soft Computing	20	20	20	80		<del>-</del>	-	100

# **Course Objectives:** Students will try:

- 1. To familiarize with soft computing concepts.
- 2. To introduce the fuzzy logic concepts, fuzzy principles and relations.
- 3. To Basics of ANN and Learning Algorithms.
- 4. Ann as function approximation.
- 5. Genetic Algorithm and its applications to soft computing.
- 6. Hybrid system usage, application and optimization.

## Course Outcomes: Students will be able to:

- 1. List the facts and outline the different process carried out in fuzzy logic, ANN and Genetic Algorithms.
- 2. Explain the concepts and meta-cognitive of soft computing.
- 3. Apply Soft computing techniques the solve character recognition, pattern classification, regression and similar problems.
- 4. Outline facts to identify process/procedures to handle real world problems using soft computing.
- 5. Evaluate various techniques of soft computing to defend the best working solutions.
- 6. Design hybrid system to revise the principles of soft computing in various applications.

**Prerequisite: NIL** 

## **Detailed syllabus:**

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Probability and Statistics, C++/Java/ Matlab	02	

University of Mumbai, B. E. (Information Technology), Rev 2016

		programming.		
I	Fuzzy Set Theory	Fuzzy Sets: Basic definition and terminology, Basic concepts of fuzzy sets, Fuzzy set operations, Fuzzy relations: Cardinality of fuzzy relations, operations on fuzzy relations, properties of fuzzy relations, Fuzzy composition Fuzzification and Defuzzification: Features of the membership Functions, Fuzzification, Lambda-Cuts for Fuzzy Sets, Lambda-Cuts for Fuzzy Relations, Defuzzification methods	06	CO1 CO2
II	Fuzzy Rules, Reasoning, and Inference System	Fuzzy Rules: Fuzzy If-Then Rules, Fuzzy Reasoning Fuzzy Inference System (FIS): Mamdani FIS, Sugeno FIS, Comparison between , Mamdani and Sugeno FIS.	06	CO1 CO2
III	Neural Network-I	Introduction: What is a Neural network? Fundamental Concepts, Basic Models of Artificial Neural Networks, Arificial Intelligence and Neural Networks, McCulloch-Pitts Neuron Learning: Error-Correction Learning, Memory based Learning, Hebbian learning, Competitive Learning, Boltzmann Learning Perceptron: Perceptron Learning Rule, Perceptron Learning Algorithm, Perceptron Convergence Theorem, Perceptron learning and Non-separable sets.	09	CO1 CO2
IV	Neural Networks -II	Back propagation: Multilayered Network Architecture, Back porpagation Algorithm, Practical Consideration in impin Implementing the Back propagation Algorithm. Back propagation and XOR problem. Adaptive resonance Theory: Noise-Saturation Dilemma, Solving the Noise-Saturation Dilemma, Recurrent On-center-Off-surround Networks, Building blocks of Adaptive Resonance, Substrate of resonance, Structural details of the resonance Model, Adaptive Resonance Theory I (ART I), Neurophysiological Evidence for ART Mechanism Character Recognition: Introduction, General Algorithm Architecture for Character Recognition: Binarization, Preprocessing, Filters, Smoothing, Skew Detection and Correction, Slant Correction, Character Normalization, Thinning, Segmentation, Multilingual OCR by Rule-Based Approach and ANN	10	CO3 CO6

		Rule-Based Approach: Classification, Tests, Rules Artificial Neural Network: Inputs, Outputs, Identification Results of Multilingual OCR		
V	Genetic Algorithm	An Introduction to genetic Algorithms: What Are Genetic Algorithms? Robustness of Traditional Optimization and Search Methods, The Goals of Optimization, How Are Genetic Algorithms Different from Traditional Methods?, A Simple Genetic Algorithm Genetic Algorithms at Work—a Simulation by hand, Grist for the Search Mill—Important Similarities, Similarity Templates (Schemata), Learning the Lingo. Genetic Algorithms: Mathematical Foundations Who Shall Live and Who Shall Die? The Fundamental Theorem, Schema Processing at Work: An Example by Hand Revisited, The Two-armed and ŭ-armed Bandit Problem, How Many Schemata Are Processed Usefully? The Building Block Hypothesis, Another Perspective: The Minimal Deceptive Problem, Schemata Revisited: Similarity Templates as Hyperplanes, Implementation of a Genetic Algorithm: Data Structures, Reproduction, Crossover, and Mutation, A Time to Reproduce, a Time to Cross, Get with the Main Program, How Well Does it Work? Mapping Objective Functions to Fitness Form, Fitness Scaling, Codings, A Multiparameter, Mapped, Fixed-Point Coding, Discretization, Constraints. Algorithm for Handwriting Recognition Using GA Generation of Graph, Fitness Function of GA: Deviation between Two Edges, Deviation of a Graph, Crossover: Matching of Points, Generate Adjacency Matrix, Find Paths, Removing and Adding Edges, Generation of Graph Results of Handwriting Recognition: Effect of Genetic Algorithms, Distance Optimization, Style Optimization	10	CO1 CO3 CO6
VI	Hybrid Computing	Introduction, Neuro-Fuzzy Hybrid Systems, Adaptive Neuro-Fuzzy Inference System (ANIFS): Introduction, ANFS Architecture, Hybrid Learning Algorithm, ANFIS as a Universal Approximator, Simulation Examples: Two-input Sinc Function and Three Input Nonlinear Function Genetic Neuro-Hybrid Systems: Properties of Genetic Neuro-Hybrid Systems, genetic Algorithm based Back-propagation Network, Advantages of Neuro-Genetic Hybrids, Genetic Fuzzy Hybrid and Fuzzy Genetic Hybrid Systems Genetic Fuzzy Rule based Systems, Advantages of Genetic Fuzzy Hybrids	09	CO4 CO6

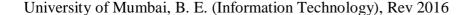
### **Text Books:**

- 1. . S.N. Sivanandan and S.N. Deepa, Principles of Soft Computing, Wiley India, 2007, ISBN: 10: 81-265-1075-7.
- 2. J.-S. R. Jang, C. –T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence, PHI Learning Private Limited-2014
- 3. Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004/2007
- 4. Simon Haykin, Neural Networks A Comprehensive Foundation, Second Edition, Pearson Education-2004
- 5. David E. Goldberg, Genetic Algorithms, in search, optimization and Machine Learning, Pearson

#### **References:**

- 1. Anupam Shukla, Ritu Tiwari, Rahul Kala, Real Life Applications of Soft Computing, CRC Press, Taylor & Francis Group, 2010.
- 2. Genetic Algorithms and Genetic Programming Modern Concepts and Practical Applications © 2009 Michael Affenzeller, Stephan Winkler, Stefan Wagner, and Andreas Beham, CRC Press
- 3. Laurene V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms And Applications, Pearson

#### **Assessment:**


#### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course Name	Credits
ILO7011	Product Life Cycle Management	03

## **Course Objectives: Students will try:**

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

### Course Outcomes: Students will be able to:

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	<b>Detailed Contents</b>	Hrs
	Introduction to Product Lifecycle Management (PLM):Product Lifecycle	10
	Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of	
	Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits	
01	of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project,	
U1	Starting the PLM Initiative, PLM Applications	
	<b>PLM Strategies:</b> Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	
	Product Design: Product Design and Development Process, Engineering Design,	09
	Organization and Decomposition in Product Design, Typologies of Design	
	Process Models, Reference Model, Product Design in the Context of the Product	
	Development Process, Relation with the Development Process Planning Phase,	
02	Relation with the Post design Planning Phase, Methodological Evolution in	
02	Product Design, Concurrent Engineering, Characteristic Features of Concurrent	
	Engineering, Concurrent Engineering and Life Cycle Approach, New Product	
	Development (NPD) and Strategies, Product Configuration and Variant	
	Management, The Design for X System, Objective Properties and Design for X	
	Tools, Choice of Design for X Tools and Their Use in the Design Process	
	Product Data Management (PDM):Product and Product Data, PDM systems	05
03	and importance, Components of PDM, Reason for implementing a PDM system,	
	financial justification of PDM, barriers to PDM implementation	05
04	<b>Virtual Product Development Tools:</b> For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques,	05

University of Mumbai, B. E. (Information Technology), Rev 2016

	Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies					
	Integration of Environmental Aspects in Product Design:Sustainable	05				
	Development, Design for Environment, Need for Life Cycle Environmental					
05	Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction					
	of Environmental Strategies into the Design Process, Life Cycle Environmental					
	Strategies and Considerations for Product Design					
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and	05				
	Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields					
06	of Application and Limitations of Life Cycle Assessment, Cost Analysis and the					
	Life Cycle Approach, General Framework for LCCA, Evolution of Models for					
	Product Life Cycle Cost Analysis					

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Course Code	Course Name	Credits
ILO7012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

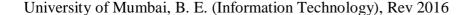
#### Outcomes: Learner will be able to...

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Hrs
	<b>Probability theory:</b> Probability: Standard definitions and concepts; Conditional	
	Probability, Baye's Theorem.	
Λ1	Probability Distributions: Central tendency and Dispersion; Binomial, Normal,	08
01	Poisson, Weibull, Exponential, relations between them and their significance.	
	Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation,	
	Standard Deviation, Variance, Skewness and Kurtosis.	
	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality	
	Assurance and Reliability, Bath Tub Curve.	
	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time	00
02	To Failure (MTTF), MTBF, Reliability Functions.	08
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time	
	Dependent Failure Rate, Weibull Model. Distribution functions and reliability	
	analysis.	
03	System Reliability: System Configurations: Series, parallel, mixed	05
03	configuration, k out of n structure, Complex systems.	
	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit	
04	redundancy, Standby redundancies. Markov analysis.	08
04	System Reliability Analysis – Enumeration method, Cut-set method, Success	
	Path method, Decomposition method.	
	Maintainability and Availability: System downtime, Design for	
. =	Maintainability: Maintenance requirements, Design methods: Fault Isolation and	05
05	self-diagnostics, Parts standardization and Interchangeability, Modularization	03
	and Accessibility, Repair Vs Replacement.	
	Availability – qualitative aspects.	
1	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis,	
06	severity/criticality analysis, FMECA examples. Fault tree construction, basic	05
-	symbols, development of functional reliability block diagram, Fau1t tree	
	analysis and Event tree Analysis	

### **Assessment:**

#### **Internal:**


Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.



Course Code	Course Name	Credits
ILO7013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

#### Outcomes: Learner will be able to...

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Imporance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management.  Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	8

# **Assessment:**

### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

University of Mumbai, B. E. (Information Technology), Rev 2016

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO7014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

## Outcomes: Learner will be able to...

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Hrs
01	Introduction  1.1 Strategy of Experimentation  1.2 Typical Applications of Experimental Design  1.3 Guidelines for Designing Experiments  1.4 Response Surface Methodology	06
02	Fitting Regression Models  2.1 Linear Regression Models  2.2 Estimation of the Parameters in Linear Regression Models  2.3 Hypothesis Testing in Multiple Regression  2.4 Confidence Intervals in Multiple Regression  2.5 Prediction of new response observation  2.6 Regression model diagnostics  2.7 Testing for lack of fit	08
03	Two-Level Factorial Designs  3.1 The 2 ² Design  3.2 The 2 ³ Design  3.3 The General2 ^k Design  3.4 A Single Replicate of the 2 ^k Design  3.5 The Addition of Center Points to the 2 ^k Design,  3.6 Blocking in the 2 ^k Factorial Design  3.7 Split-Plot Designs	07
04	Two-Level Fractional Factorial Designs  4.1 The One-Half Fraction of the 2 ^k Design  4.2 The One-Quarter Fraction of the 2 ^k Design  4.3 The General 2 ^{k-p} Fractional Factorial Design  4.4 Resolution III Designs  4.5 Resolution IV and V Designs  4.6 Fractional Factorial Split-Plot Designs	07

	Response Surface Methods and Designs	
	5.1 Introduction to Response Surface Methodology	
05	5.2 The Method of Steepest Ascent	07
	5.3 Analysis of a Second-Order Response Surface	
	5.4 Experimental Designs for Fitting Response Surfaces	
	Taguchi Approach	
06	6.1 Crossed Array Designs and Signal-to-Noise Ratios	04
VV	6.2 Analysis Methods	
	6.3 Robust design examples	

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

Course Code	Course Name	Credits
ILO7015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

### Outcomes: Learner will be able to...

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Hrs
	Introduction to Operations Research: Introduction, , Structure of the	
	Mathematical Model, Limitations of Operations Research	
	Linear Programming: Introduction, Linear Programming Problem,	
	Requirements of LPP, Mathematical Formulation of LPP, Graphical method,	
	Simplex Method Penalty Cost Method or Big M-method, Two Phase Method,	
	Revised simplex method, <b>Duality</b> , Primal – Dual construction, Symmetric and	
	Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem,	
	Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	
	Transportation Problem: Formulation, solution, unbalanced Transportation	
01	problem. Finding basic feasible solutions – Northwest corner rule, least cost	14
	method and Vogel's approximation method. Optimality test: the stepping stone	
	method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the Problem,	
	Hungarian Method Algorithm, Processing of n Jobs Through Two Machines	
	and m Machines, Graphical Method of Two Jobs m Machines Problem Routing	
	Problem, Travelling Salesman Problem	
	Integer Programming Problem: Introduction, Types of Integer Programming	
	Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique.	
	Introduction to Decomposition algorithms.	
	Queuing models: queuing systems and structures, single server and multi-server	
02	models, Poisson input, exponential service, constant rate service, finite and	05
	infinite population	
03	Simulation: Introduction, Methodology of Simulation, Basic Concepts,	05

	Simulation Procedure, Application of Simulation Monte-Carlo Method:	
	Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages	
	of Simulation, Limitations of Simulation	
	Dynamic programming. Characteristics of dynamic programming. Dynamic	
0.4	programming approach for Priority Management employment smoothening,	05
04	capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability	03
	problems.	
	Game Theory. Competitive games, rectangular game, saddle point, minimax	
0.5	(maximin) method of optimal strategies, value of the game. Solution of games	05
05	with saddle points, dominance principle. Rectangular games without saddle	03
	point – mixed strategy for 2 X 2 games.	
06	Inventory Models: Classical EOQ Models, EOQ Model with Price Breaks,	05
	EOQ with Shortage, Probabilistic EOQ Model,	03

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Course Code	Course Name	Credits
ILO7016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

#### Outcomes: Learner will be able to...

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Hrs
01	<b>Introduction to Cybercrime:</b> Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
02	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Bot nets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in  Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	9
03	Tools and Methods Used in Cyber line Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
04	The Concept of Cyberspace E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	8
05	Indian IT Act.  Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination.

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008-TIFR: https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Course Code	Course Name	Credits
ILO7017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

## Outcomes: Learner will be able to...

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Hrs
01	Introduction 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.	03
02	<ul> <li>Natural Disaster and Manmade disasters:</li> <li>2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion</li> <li>2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.</li> </ul>	09
03	<ul> <li>Disaster Management, Policy and Administration</li> <li>3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management.</li> <li>3.2 Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.</li> </ul>	06
04	Institutional Framework for Disaster Management in India: 4.1 Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of	06

	casualties, set up of emergency facilities, importance of effective	
	communication amongst different agencies in such situations.	
	4.2 Use of Internet and softwares for effective disaster management.	
	Applications of GIS, Remote sensing and GPS in this regard.	
	Financing Relief Measures:	
	5.1 Ways to raise finance for relief expenditure, role of government agencies and	
	NGO's in this process, Legal aspects related to finance raising as well as	
05	overall management of disasters. Various NGO's and the works they have	09
	carried out in the past on the occurrence of various disasters, Ways to	
	approach these teams.	
	5.2 International relief aid agencies and their role in extreme events.	
	Preventive and Mitigation Measures:	
	6.1 Pre-disaster, during disaster and post-disaster measures in some events in	
	general	
	6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and	
	embankments, Bio shield, shelters, early warning and communication	
06	6.3 Non Structural Mitigation: Community based disaster preparedness, risk	06
	transfer and risk financing, capacity development and training, awareness	
	and education, contingency plans.	
	6.4 Do's and don'ts in case of disasters and effective implementation of relief	
	aids.	ĺ

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards' and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications. (Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILO7018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

### Outcomes: Learner will be able to...

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Hrs
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
02	Energy Audit Principles:  Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis.  Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
03	Energy Management and Energy Conservation in Electrical System:  Electricity billing, Electrical load management and maximum demand Control;  Power factor improvement, Energy efficient equipments and appliances, star ratings.  Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers.  Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	10

04	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10
05	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
06	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Course Code	Course Name	Credits
ILO7019	Development Engineering	03

- 1. To familiarise the characteristics of rural Society and the Scope, Nature and Constraints of rural Development
- 2. To provide an exposure toimplications of 73rdCAA on Planning, Development and Governance of Rural Areas
- 3. An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the context of work life and the personal life of modern Indian professionals
- 4. To familiarise the Nature and Type of Human Values relevant to Planning Institutions

#### Outcomes: Learner will be able to...

- 1. Demonstrateunderstanding of knowledge for Rural Development.
- 2. Prepare solutions for Management Issues.
- 3. Take up Initiatives and design Strategies to complete the task
- 4. Develop acumen for higher education and research.
- 5. Demonstrate the art of working in group of different nature
- 6. Develop confidence to take up rural project activities independently

Module	Contents	Hrs
1	Introduction to Rural Development Meaning, nature and scope of development;	08
	Nature of rural society in India; Hierarchy of settlements; Social, economic and	
	ecological constraints for rural development	
	The state of the s	
	Roots of Rural Development in India Rural reconstruction and Sarvodaya	
	programme before independence; Impact of voluntary effort and Sarvodaya	
	Movement on rural development; Constitutional direction, directive principles;	
	Panchayati Raj - beginning of planning and community development; National	
	extension services.	
2	Post-Independence rural Development Balwant Rai Mehta Committee - three tier	06
	system of rural local Government; Need and scope for people's participation and	
	Panchayati Raj; Ashok Mehta Committee - linkage between Panchayati Raj,	
	participation and rural development.	
3	Rural Development Initiatives in Five Year Plans Five Year Plans and Rural	07
	Development; Planning process at National, State, Regional and District levels;	
	Planning, development, implementing and monitoring organizations and agencies;	
	Urban and rural interface - integrated approach and local plans; Development	
	initiatives and their convergence; Special component plan and sub-plan for the	
	weaker section; Micro-eco zones; Data base for local planning; Need for	
	decentralized planning; Sustainable rural development	
	1	

4	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule, devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Technology and rural planning; Need for further amendments.	04
5	Values and Science and Technology Material development and its values; the challenge of science and technology; Values in planning profession, research and education  Types of Values Psychological values — integrated personality; mental health; Societal values — the modern search for a good society; justice, democracy, rule of law, values in the Indian constitution; Aesthetic values — perception and enjoyment of beauty; Moral and ethical values; nature of moral judgment; Spiritual values; different concepts; secular spirituality; Relative and absolute values; Human values— humanism and human values; human rights; human values as freedom, creativity, love and wisdom	10
6	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility; Work ethics; Professional ethics; Ethics in planning profession, research and education	04

### **Internal Assessment for 20 marks:**

## Consisting Two Compulsory Class Tests

First test based onapproximately 40% of contents and second test based on remainingcontents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

#### Reference

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rdGoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington

University of Mumbai, B. E. (Information Technology), Rev 2016

- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150
- 10. Watson, V. Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395 407



# **University of Mumbai**

# Program Structure B.E. Information Technology, (Rev. 2016)

# B. E. Information Technology (Semester-VIII)

Course	Course	Teaching (Contac	Credits Assigned					
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
ITC801	Big Data Analytics	4	-	-	4	-	-	4
ITC802	Internet of Everything	4	-	-	4	-		4
ITDLO-IV	Department Level Optional Course-IV	4	-	-	4	-		4
ILO-II	Institute Level Optional Course-II	3	-	-	3	S	-	3
ITL801	Big Data Lab	-	2	-		1		1
ITL802	Internet of Everything Lab		2			1		1
ITL803	DevOps Lab	-	2		-	1		1
ITL804	R Programming Lab		2	)-		1		1
ITM805	Project-II		16			8	-	8
	Total	15	24	-	15	12	-	27

		Examination Scheme									
Course	Course			Theory	y				Oral		
Code	Name	Inte	ernal As	sessment	End Sem.	Exam Duratio	TW	Oral	&	Total	
		Test 1	Test 2	Avg.	Exam	n (in			Pract		
ITC801	Big Data Analytics	20	20	20	80	3	1	-	-	100	
ITC802	Internet of Everything	20	20	20	80	3	-	-	-	100	
ITDLO-IV	Department Level Optional Course-IV	20	20	20	80	3	-	-	-	100	
ILO-II	Institute Level Optional Course-II	20	20	20	80	3	-	-	-	100	
ITL801	Big Data Lab						25	25		50	
ITL802	Internet of Everything Lab	-	-	-	-	-	25	25		50	
ITL803	DevOps Lab	-	-	-	-	-	25		25	50	
ITL804	R Programming Lab	-	-	1	-	-	25		25	50	
ITM805	Project-II						100	50		150	
	Total	80	80	80	320	-	200	100	50	750	

# **# Department Level Optional Course (DLO)**

Every student is required to take one Department Elective Course for Semester VIII. Different sets of courses will run in both the semesters. Students can take these courses from the list of department electives, which are closely allied to their disciplines.

(DLO-I subjects will have no Labs only Theory)

# **# Institute Level Optional Course (ILO)**

Every student is required to take one Institute Elective Course for Semester VIII, which is not closely allied to their disciplines. Different sets of courses will run in the both the semesters.

Subject Code	Department Level Optional Course (DLO)	Subject Code	Institute Level Optional Course (ILO)
	Sen	nester VIII	
ITDLO8041	User Interaction Design	ILO8021	Project Management
ITDLO8042	Information Retrieval Systems	ILO8022	Finance Management
ITDLO8043	Knowledge Management	ILO8023	Entrepreneurship Development and Management
ITDLO8044	Robotics	ILO8024	Human Resource Management
ITDLO8045	Enterprise Resource Planning	ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
	:\O`	ILO8027	IPR and Patenting
	C)	ILO8028	Digital Business Management
	0	ILO8029	Environmental Management

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITC801	Big Data Analytics	04			04			04

Course Code	Course Name	Examination Scheme								
			Theo	ory Marks					Ċ	
		Inte	ernal asse	essment	End	Term Work	Practical & Oral		Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam		39	) *		
ITC801	Big Data Analytics	20	20	20	80	(			100	

## **Course Objectives:** Students will try:

- 1. To provide an overview of an exciting growing field of Big Data analytics.
- 2. To discuss the challenges traditional data mining algorithms face when analyzing Big Data.
- 3. To introduce the tools required to manage and analyze big data like Hadoop, NoSql Map-Reduce.
- 4. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 5. To introduce to the students several types of big data like social media, web graphs and data streams.
- 6. To enable students to have skills that will help them to solve complex real-world problems in for decision support.

### Course Outcomes: Student will be able to:

- 1. Explain the motivation for big data systems and identify the main sources of Big Data in the real world.
- 2. Demonstrate an ability to use frameworks like Hadoop, NOSQL to efficiently store retrieve and process Big Data for Analytics.
- 3. Implement several Data Intensive tasks using the Map Reduce Paradigm
- 4. Apply several newer algorithms for Clustering Classifying and finding associations in Big Data
- 5. Design algorithms to analyze Big data like streams, Web Graphs and Social Media data.
- 6. Design and implement successful Recommendation engines for enterprises.

**Prerequisites:** Database Management System.

# **Detailed syllabus:**

Sr.	Module	<b>Detailed Content</b>	Hours	CO
No.				Mapping
0	Prerequisites	Data Mining, database Systems, Algorithms	02	
I	Introduction to Big Data	Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach, Big Data Challenges, Examples of Big Data in Real Life, Big Data Applications	03	CO 1
II	Introduction to Big Data Frameworks: Hadoop, NOSQL	What is Hadoop? Core Hadoop Components; Hadoop Ecosystem; Overview of: Apache Spark, Pig, Hive, Hbase, Sqoop What is NoSQL? NoSQL data architecture patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Mongo DB	10	CO 2
III	MapReduce	MapReduce: The Map Tasks,	09	CO 3
	Paradigm	Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.  Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with One MapReduce Step.  Illustrating use of MapReduce with use of real life databases and applications.		
IV	Mining Big Data Streams	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing. Sampling Data in a Stream: Sampling Techniques.  Filtering Streams: The Bloom Filter	07	CO 5

		<b>Counting Distinct Elements in a</b>		
		Stream:		
		The Count-Distinct Problem, The		
		Flajolet-Martin Algorithm,		
		Combining Estimates, Space		
		Requirements . Counting Ones in		
		a Window: The Cost of Exact		
		Counts, The Datar-Gionis-Indyk-		
		Motwani Algorithm, Query		
		Answering in the DGIM Algorithm.		
V	Big Data Mining	Frequent Pattern Mining :	10	CO 4
	Algorithms	Handling Larger Datasets in Main	10	
		Memory Basic Algorithm of Park,		
		Chen, and Yu. The SON Algorithm		
		and MapReduce.		
		Clustering Algorithms: CURE		
		Algorithm. Canopy Clustering,		
		Clustering with MapReduce		
		Classification Algorithms:		
		Parallel Decision trees, Overview		
		SVM classifiers, Parallel SVM, K-		
		Nearest Neighbor classifications for		
		Big Data, One Nearest Neighbour.		
VI	Big Data Analytics	Link Analysis : PageRank	11	CO 4
, ,	Applications	Definition, Structure of the web,	11	
	rippireutions	dead ends, Using Page rank in a		CO 6
		search engine, Efficient		
		computation of Page Rank:		
		PageRank Iteration Using		
		MapReduce, Topic sensitive Page		
		Rank, link Spam, Hubs and		
		Authorities, HITS Algorithm.		
		Mining Social- Network Graphs:		
		Social Networks as Graphs, Types,		
		Clustering of Social Network		
		Graphs, Direct Discovery of		
		Communities, Counting triangles		
		using Map-Reduce.		
		<b>Recommendation Engines:</b> A		
		Model for Recommendation		
		Systems, Content-Based		
_		Recommendations, Collaborative		
		Filtering.		

## **Text Books:**

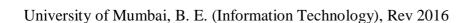
- 1. Radha Shankarmani, M Vijayalakshmi, "Big Data Analytics", Wiley Publications,
- 2. Anand Rajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press.
- 3. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 4. Professional NoSQL Paperback, by Shashank Tiwari, Dreamtech Press
- 5. MongoDB: The Definitive Guide Paperback, Kristina Chodorow (Author), Michael Dirolf, O'Reilly Publications

#### **References:**

- 1. Analytics in a Big Data World: The Essential Guide to Data Science and its Applications, Bart Baesens, WILEY Big Data Series.
- 2. Big Data Analytics with R and Hadoop by Vignesh Prajapati Paperback, Packt Publishing Limited
- 3. Hadoop: The Definitive Guide by Tom White, O'Reilly Publications

#### **Assessment:**

#### **Internal Assessment for 20 marks:**


Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC802	Internet of Everything	04			04			04

Course Code Examination Scheme  Name									
			Theo	ory Marks					
		Internal assessment			End	Term Work	Practical & Oral	Oral	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam				O'
ITC802	Internet of Everything	20	20	20	80		·C		100

# Course Objectives: Students will try:

- 1. To learn the concepts of IOT.
- 2. To identify the different technology.
- 3. To learn different applications in IOT.
- 4. To learn different protocols used in IOT.
- 5. To learn the concepts of smart city development in IOT.
- 6. To learn how to analysis the data in IOT.

## **Course Outcomes:** Student will be able to:

- 1. Apply the concepts of IOT.
- 2. Identify the different technology.
- 3. Apply IOT to different applications.
- 4. Analysis and evaluate protocols used in IOT.
- 5. Design and develop smart city in IOT.
- 6. Analysis and evaluate the data received through sensors in IOT.

**Prerequisites:** IOT Lab, Sensor Lab, Wireless Network.

## **Detailed syllabus:**

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisites	What are sensors, Sensor family, Architecture of single node sensor?	02	
I	Introduction	Introduction, History of IOT, Objects in IOT, Identifier in the IOT, Technologies in IOT	03	CO 1
II	RFID Technology	Introduction, principle of RFID, components of RFID system: RFID tag, Reader, RFID middleware,	8	CO 2

University of Mumbai, B. E. (Information Technology), Rev 2016

		Issues etc.		
III	RFID Applications	Introduction, concepts and	09	CO2
	11	technology: RFID, transponder,		
		RFID architecture, RFID		CO 3
		applications i.e. logistics and		
		supply chain, production,		
		monitoring and maintenance,		
		product safety, quality and		
		information, access control and		
		tracking and tracing of individuals,		
		payment, loyalty, household etc.		
		Hardware, Hardware issues,		
		protocols: pure aloha, slotted aloha,		
		frame slotted aloha, tree protocols,		
		tree splitting algorithms, binary		
		search algorithms, bitwise		
		arbitration protocols. Main query		
IV	Window Conserv	tree protocols.	00	CO2
1 V	Wireless Sensor Networks	History and context, Node, connecting nodes, networking	09	CO2
	Networks	connecting nodes, networking nodes, securing communication,		CO3
		standards and		
		Fora. Networking and the Internet -		CO4
		IP Addressing, Protocols - MQTT,		
		CoAP, REST Transferring data		
V	Mobility and	Introduction, localization, mobility	10	CO4
	Settings.	management, localization and		G0.
		handover management, technology		CO5
		considerations, performance		
		evaluation, simulation setup,		
		performance results. Identification		
		of IOT (data formats. IPV6,		
T /T	Data A == 1=+' C	identifiers and locators, tag etc.)	1.1	COF
VI	Data Analytics for IoE	Introduction, Apache Hadoop, Using Hadoop MapReduce for	11	CO5
	IOE	Batch Data Analysis, Apache		CO6
		Oozie, Apache Spark, Apache		
		Storm, Using Apache Storm for		
		Real-time Data Analysis, Structural		
		Health Monitoring Case Study,		
		Tools for IoT:- Chef, Chef Case		
		Studies, Puppet, Puppet Case Study		
		- Multi-tier Deployment,		
		NETCONF-YANG Case Studies,		
7		IoT Code Generator.		

# **Text Books:**

- 1 Internet of Things connecting objects to the web, by Hakima Chaouchi, Wiley.
- 2. Internet of Things (A Hands-on-Approach) by Arshdeep Bhaga and Vijay Madisetti.

#### **Reference Books:**

- 1 The Internet of Things (MIT Press) by Samuel Greengard.
- The Internet of Things (Connecting objects to the web) by Hakima Chaouchi (Wiley Publications).
- 3 RFID and the Internet of Things, by Herve chabanne, Wiley

#### **Assessment:**

## **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

#### **End Semester Examination:**

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					& Oral		
ITL801	Big Data		02			01		01
	Lab							

					Examina	tion Sch	eme		
Course	Course			ry Marks			Oral		
Code	Name	Inte	Elia W	Term Work	&	Oral	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam		Practical	) *	
ITL801	Big Data Lab					25	2	25	50

# Lab Objectives: Students will try:

- 1. To introduce the tools required to manage and analyze big data like Hadoop, NoSql
- 2. To impart knowledge of Map reduce paradigm to solve complex problems Map-Reduce.
- 3. To introduce several new algorithms for big data mining like classification, clustering and finding frequent patterns.
- 4. To introduce to the students several types of big data like social media, web graphs and data streams
- 5. To identify various sources of Big data
- 6. To enable students to have skills that will help them to solve complex real-world problems in for decision support.

## Lab Outcomes: Students will be able to:

- 1. Demonstrate capability to use Big Data Frameworks like Hadoop
- 2. Program applications using tools like Hive, pig, , NO SQL and MongoDB for Big data Applications
- 3. Construct scalable algorithms for large Datasets using Map Reduce techniques
- 4. Implement algorithms for Clustering, Classifying and finding associations in Big Data
- 5. Design and implement algorithms to analyze Big data like streams, Web Graphs and Social Media data and construct recommendation systems.
- 6. Apply the knowledge of Big Data gained to fully develop a BDA applications for real life applications.

**Prerequisite:** Java, Python

# Requirement

Compilers
(

# **Detailed syllabus:**

Module	Detailed Content	Hours	LO
		2hrs	Mapping
1	Assignment on Study of Hadoop ecosystem	02	LO 1
2	Programming exercises on Hadoop Using Hive, Pig, Hbase Sqoop  NOSQL, MongoDB	04	LO 2
	-		
3	Implementing simple algorithms in Map- Reduce Matrix multiplication, Aggregates, joins, sorting, searching etc.	04	LO3
4	Implementing Algorithms using MapReduce (Any 2)	06	LO 4
	Implementing Frequent Item set Mining		
	Implementing Clustering algorithms		
	Implementing Classification Algorithms		
5	Big Data Applications (Any 2)	05	LO 5
	Implementing Analytics on data streams		
	Implementing Social Network Analysis     Algorithms		
. (	Implementing Web Graph Algorithms		
	Implementing recommendation Engines		
6	Mini Project: One real life large data application to be implemented (Use standard	05	LO 5
	Datasets available on the web) a) Twitter data analysis b) Fraud Detection c) Text Mining d) Recommendation Engines		LO 6
	(list of datsets also given in the text book)		

- 1. Radha Shankarmani, M Vijayalakshmi, "Big Data Analytics", Wiley Publications,
- 2. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 3. Professional NoSQL Paperback, by Shashank Tiwari, Dreamtech Press
- 4. MongoDB: The Definitive Guide Paperback, Kristina Chodorow (Author), Michael Dirolf, O'Reilly Publications

#### **References:**

- 1. Analytics in a Big Data World: The Essential Guide to Data Science and its Applications, Bart Baesens, WILEY Big Data Series.
- 2. Hadoop: The Definitive Guide by Tom White, O'Reilly Publications
- 3. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services
- 4. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence by Pramod J. Sadalage, Addison Wesley

#### Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

**Oral Exam:** An Oral exam will be held based on the above syllabus.



Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					& Oral		
ITL802	Internet of Everything Lab		02			1		1

	Course Name	Examination Scheme								
Course		Theory Marks					Practical			
Code		Inte	ernal asse	essment	End	n. Work	0-	Oral	l Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam					
ITL802	Internet of Everything Lab					25	₹C.	25	50	

### Hardware and Software requirements:

<b>Hardware Requirements</b>	Software Requirements	Other Requirements
PC With following Configuration	Ubuntu or Linux Desktop OS     VMware	1. Internet Connection
1. Intel Core i3/i5/i7 Processor	3. Cooja contiki or any open source software	
2. 4 GB RAM	4. Cupcarbon	
3. 500 GB Hard disk		

### Lab Objectives: Students will try:

- 1. To learn different types of sensors from Motes families.
- 2. To design the problem solution as per the requirement analysis done using Motes sensors.
- 3. To study the basic concepts of programming/sensors/ emulator like cooja etc.
- 4. To design and implement the mini project intended solution for project based learning.
- 5. To build and test the mini project successfully.
- 6. To improve the team building, communication and management skills of the students.

#### **Lab Outcomes:** Student will be able to:

- 1. Identify the requirements for the real world problems.
- 2. Conduct a survey of several available literatures in the preferred field of study.
- 3. Study and enhance software/ hardware skills.

- 4. Demonstrate and build the project successfully by hardware/sensor requirements, coding, emulating and testing.
- 5. To report and present the findings of the study conducted in the preferred domain
- 6. Demonstrate an ability to work in teams and manage the conduct of the research study.

### **Prerequisite:** Basics of Java and Python Programming

#### **Guidelines**

- 1. The mini project work is to be conducted by a group of three students
- 2. Each group will be associated with a subject Incharge/ mini project mentor. The group should meet with the concerned faculty during Laboratory hours and the progress of work discussed must be documented.
- 3. The students must understand the
  - a. Concept
  - b. Importance
  - c. Interdisciplinary
  - d. Challenges
  - e. Various applications/smart objects
  - f. Major Players/Industry, Standards.
- **4.** The students must understand the IoT Architecture:
  - a. Node Structure: Sensing, Processing, Communication, Powering
  - **b.** Networking: Topologies, Layer/Stack architecture
  - **c.** Communication Technologies: Introduction to ZigBee, BLE, WiFi, LTE, IEEE 802.11ah, Discuss data rate, range, power, computations/bandwidth, QoS
  - **d.** Smartness Signal Processing/Analytics: Impact on Power/Energy savings, dynamic networks, simple case studies
  - e. IoT Fabricator: Introduction to Embedded electronics, fabricating electronics, Communication Network requirements, Data processing challenges recreation, IP/security, Challenges
  - **f.** Hands-on in IoT: Projects based on some Hardware (Raspberry pi, Arduino, Intel, IITH Mote, Smartphones), Software (Contiki, TinyOS, Android), IoT Fabricator etc. can be used.
- 5. The students may do will visit different websites to identify their IOT topic for the mini project.
- **6.** The students may do survey for different application using different types of sensors for their mini project.

- 7. Each group will identify the Hardware (Motes from different Motes families) & sensor configuration and software requirement for their mini project problem statement.
- 8. Design your own circuit board using multiple sensors etc.
- **9.** Installation, configure and manage your sensors in such away so that they can communicate with each other.
- **10.** Work with operating system, emulator like contiki cooja and do coding to for input devices on sensors.
- **11.** Each group will identify the Hardware and software requirement for their mini project problem statement.
- 12. Create and interface using Mobile/Web to publish or remotely access the data on Internet.
- **13.** Each group along with the concerned faculty shall identify a potential problem statement, on which the study and implementation is to be conducted.
- **14.** Each group may present their work in various project competitions and paper presentations.
- **15.** A detailed report is to be prepared as per guidelines given by the concerned faculty.

- 1. Interconnecting Smart Objects with IP: The Next Internet, Jean-Philippe Vasseur, Adam Dunkels, Morgan Kuffmann
- 2. Designing the Internet of Things, Adrian McEwen (Author), Hakim Cassimally
- 3. Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, Dr. Ovidiu Vermesan, Dr. Peter Friess, River Publishers
- 4. Internet of Things (A Hands-on-Approach), Vijay Madisetti, Arshdeep Bahga

#### **References:**

- 1. 6LoWPAN: The Wireless Embedded Internet, Zach Shelby, Carsten Bormann, Wiley
- 2. Building the internet of things with ipv6 and mipv6, The Evolving World of M2M Communications, Daniel Minoli John Wiley & Sons
- 3. Contiki Cooja User Guide.
- 4. Fundamentals of Sensor Network Programming: Applications and Technology, By S. Sitharama Iyengar, Nandan Parameshwaran, Vir V. Phoha, N. Balakrishnan, Chuka D. Okoye, Wiley publication.
- 5. Recent research/white papers

#### Term Work:

Term Work shall consist of full Mini Project on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Mini Project) + 5 Marks (Assignments) + 5 Marks (Attendance)

**Oral Exam:** An Oral exam will be held based on the Mini Project and Presentation.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical & Oral	Tutorial	Total
ITL803	DevOps Lab		2					01

		Examination Scheme							
Course	Course Nome		Theory Marks				Practical		Ċ
Code	Course Name	Inte	ernal asse	essment	End	Term Work	&	Oral	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam		Oral	•	
ITL803	DevOps Lab					25	25		50

### Lab Objectives: Students will try:

- 1. To understand the concept of DevOps with associated technologies and methodologies.
- 2. To be familiarized with Jenkins, which is used to build & test software Applications & Continuous integration in Devops environment.
- 3. To understand different Version Control tools like GIT, CVS or Mercurial
- 4. To understand Docker to build, ship and run containerized images
- 5. To use Docker to deploy and manage Software applications running on Container.
- 6. To be familiarized with concept of Software Configuration Management & provisioning using tools like Puppet, Chef, Ansible or Saltstack.

### Lab Outcomes: Students will be able to:

- 1. Remember the importance of DevOps tools used in software development life cycle
- 2. Understand the importance of Jenkins to Build, Deploy and Test Software Applications
- 3. Examine the different Version Control strategies
- 4. Analyze & Illustrate the Containerization of OS images and deployment of applications over Docker
- 5. Summarize the importance of Software Configuration Management in DevOps
- 6. Synthesize the provisioning using Chef/Puppet/Ansible or Saltstack.

### Hardware & Software Requirements:

Hardware Requirements		uirements	Software Requirements	Other Requirements
PC	With	following	1. Windows or Linux Desktop OS	1. Internet Connection for
Config	Configuration		for Client machines	each PC with at least 2 MBPS

1. Intel Core i3/i5/i7	2. CentOS/Fedora/Ubuntu/Redhat	bandwidth.
Processor with Intel VT-X	Server OS for One Server	
support	3. JDK 1.8 or higher	
2. 4 GB RAM	4. Netbeans or Eclipse	
3. 500 GB Harddisk	5. OpenSSH	
4. Gigabit Ethernet (GbE)		
network interface card		
(NIC)		

**Prerequisite Subjects:** Operating System, Virtualization, Cloud Computing, Java and Web Programming, and Software Engineering.

Sr.	Module	Detailed Content	Hours	LO
No.			( -	Mapping
0	Prerequisite	To Understand the Concept of DevOps with related technologies which are used to Code, Build, Test, Configure & Monitor the Software Applications.	02	
I	Build & Test Applications with Continuous Integration	To Install and Configure Jenkins to test, and deploy Java or Web Applications using Netbeans or eclipse.	04	LO 1 LO2
II	Version Control	To Perform Version Control on websites/ Softwares using different Version control tools like RCS/ CVS/GIT/Mercurial (Any two)	04	LO 1 LO 3
III	Virtualization & Containerizatio n	To Install and Configure Docker for creating Containers of different Operating System Images	04	LO 1 LO 4
IV	Virtualization & Containerizatio n	To Build, deploy and manage web or Java application on Docker	04	LO 1 LO 4
V	Software Configuration Management	To install and configure Software Configuration  Management using Chef/Puppet/Ansible or  Saltstack.	04	LO 1 LO 5

		To Perform	Software	Configuration		1.0.1
VI	Provisioning	Management	and provis	ioning using	04	LO 1
	S	Chef/Puppet/An	sible or Saltstac	k.		LO 6

- 1. Karl Matthias & Sean P. Kane, Docker: Up and Running, O'Reilly Publication.
- **2.** Len Bass,Ingo Weber,Liming Zhu,"DevOps, A Software Architects Perspective", Addison-Wesley-Pearson Publication.
- 3. John Ferguson Smart," Jenkins, The Definitive Guide", O'Reilly Publication.
- **4.** Learn to Master DevOps by Star EduSolutions.

#### **References:**

- 1. Sanjeev Sharma and Bernie Coyne,"DevOps for Dummies", Wiley Publication
- 2. Httermann, Michael, "DevOps for Developers", Apress Publication.
- 3. Joakim Verona, "Practical DevOps", Pack publication

#### **Term Work:**

Term Work shall consist of experiment on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

**Practical & Oral Exam:** An Oral exam will be held based on the above syllabus.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical & Oral	Tutorial	Total
ITL804	R Programming Lab		02			01		01

			Examination Scheme							
Course Code		Theory Marks								
	Course Name	Internal assessment			End	Term	Practi cal &	Oral	Total	
		Test1	Test 2	Avg. of two Tests	Sem. Exam	Work	oral	) •		
ITL804	R Programming Lab					25	25		50	

### Lab Objectives: Students will try:

- 1. To provide an overview of a new language R used for data science.
- 2. To introduce students to the R programming environment and related eco-system and thus provide them with an in-demand skill-set, in both the research and business environments
- 3. To introduce the extended R ecosystem of libraries and packages
- 4. To demonstrate usage of as standard Programming Language.
- 5. To familiarize students with how various statistics like mean median etc. can be collected for data exploration in R
- 6. To enable students to use R to conduct analytics on large real life datasets.

#### Lab Outcomes: students will be able to:

- 1. Install and use R for simple programming tasks.
- 2. Extend the functionality of R by using add-on packages
- 3. Extract data from files and other sources and perform various data manipulation tasks on them.
- 4. Code statistical functions in R.
- 5. Use R Graphics and Tables to visualize results of various statistical operations on data.
- 6. Apply the knowledge of R gained to data Analytics for real life applications.

#### **SOFTWARE** requirements:

- 1. The R statistical software program. Available from: https://www.r-project.org/
- 2. RStudio an Integrated Development Environment (IDE) for R. Available from: https://www.rstudio.com/

## **Detailed syllabus:**

Module	<b>Detailed Content</b>	Hours	LO Mapping
0	Prerequisites - Any programming Language like Java Python. Basic statistics. Data Mining Algorithms		
I	<ul> <li>Introduction: Installing R on personal machines. installing R and RStudio.</li> <li>The basic functionality of R will be demonstrated, Variable types in R. Numeric variables, strings and factors.</li> <li>Accessing the help system. Retrieving R packages.</li> <li>Basic data types and operations: numbers, characters and composites.</li> <li>Data entry and exporting data</li> </ul>	02	LO 1, LO 2, LO 3
II	Data structures: vectors, matrices, lists and data frames.	04	LO1, LO 3
III	<ul> <li>R as a programming language:</li> <li>Grouping, loops and conditional execution, Functions</li> <li>Exploratory data analysis</li> <li>Range, summary, mean, variance, median, standard deviation, histogram, box plot, scatterplot</li> </ul>	04	LO 1, LO 4
IV	<ul> <li>Graphics in R</li> <li>Graphics and tables</li> <li>Working with larger datasets</li> <li>Building tables with aggregate</li> <li>Introduction to ggplot2 graphics</li> </ul>	06	LO 3
V	Regression and correlation  Simple regression and correlation, Multiple regression  Tabular data and analysis of Categorical data	02	LO 4
VI	R for Data Science (Mini Project)  Implementing a mini project using any data mining or big data analytics algorithm in R  • Extracting data from a large Dataset  • Exploratory analysis  • Using Mining algorithm  • Visualizations and interpretation of results	06	LO 5, LO 6

- 1. URL: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf (Online Resources)
- 2. R Cookbook Paperback 2011 by Teetor Paul O Reilly Publications
- 3. Beginning R: The Statistical Programming Language by Dr. Mark Gardener, Wiley Publications
- 4. R Programming For Dummies by Joris Meys Andrie de Vries, Wiley Publications

#### **References:**

- 1. Hands-On Programming with R by Grolemund, O Reilly Publications
- 2. R for Everyone: Advanced Analytics and Graphics, 1e by Lander, Pearson Ltd.
- 3. R for Data Science Learning Dan Toomey December 2014 Packt Publishing Limited

#### **Term Work:**

Term Work shall consist of experiment on above guidelines/syllabus. Also Term work Journal must include at least 2 assignments.

**Term Work Marks:** 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral exam will be held based on the above syllabus.



Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/ Oral		
ITM805	Project-II		16			8		8

	Course Name	Examination Scheme							
Course Code		Theory Marks					Duratia		
		Internal assessment			End	Term Work	Practic al & Ora	Oral	Total
		Test1	Test2	Avg. of two Tests	Sem. Exam	, volk	Oral	9.	
ITM805	Project-II					100	3	50	150

### Lab Objectives: Students will try:

- 1. To offer students a glimpse into real world problems and challenges that need IT based solutions
- 2. To enable students to create very precise specifications of the IT solution to be designed.
- 3. To introduce students to the vast array of literature available of the various research challenges in the field of IT
- 4. To create awareness among the students of the characteristics of several domain areas where IT can be effectively used.
- 5. To enable students to use all concepts of IT in creating a solution for a problem
- 6. To improve the team building, communication and management skills of the students.

#### Lab Outcomes: Student will be able to:

- 1. Discover potential research areas in the field of IT
- 2. Conduct a survey of several available literature in the preferred field of study
- 3. Compare and contrast the several existing solutions for research challenge
- 4. Demonstrate an ability to work in teams and manage the conduct of the research study.
- 5. Formulate and propose a plan for creating a solution for the research plan identified
- 6. To report and present the findings of the study conducted in the preferred domain

#### Guidelines

- 1. The project work is to be conducted by a group of three students
- 2. Each group will be associated with a project mentor/guide. The group should meet with the project mentor/guide periodically and record of the meetings and work discussed must be documented.
- 3. Department has to allocate 1 day in VII semester and 2 day in VIII semester every week.
- 4. Students will do literature survey in Sem VI or Sem VII.
- 5. Students will do design, implementation and coding in Sem VII.
- 6. Each group along with its guide/mentor shall identify a potential research area/problem domain, on which the study is to be conducted.
- 7. Each team will do a rigorous literature survey of the problem domain by reading and understanding at least 3-5 research papers from current good quality national/international journals/conferences. (Papers selected must be indexed by Scopus/IEEE/Springer/ACM etc.). The list of papers surveyed must be clearly documented.
- 8. The project assessment for term work will be done at least two times at department level by giving presentation to panel members which consist of at least three (3) embers as Internal examiners (including the project guide/mentor) appointed by the Head of the department of respective Programme.
- 9. A report is to be prepared summarizing the findings of the literature survey. A comparative evaluation of the different techniques surveyed is also to be done.
- 10. Students will do testing and analyze in Sem VIII
- 11. Teams must analyze all the results obtained by comparing with other standard techniques.
- 12. Every team must publish their work in national / international conference/journals (if possible publish in Scopus indexed journals).

#### **Evaluation**

- 1. Each team has to give presentation/demo to the Internal Panel and External examiner.
- 2. Each team will prepare a report that will summarize the results of the literature survey and implementation and coding as project proposal in SEM VII. The list of papers surveyed must be clearly documented.
- 3. Each group will be jointly evaluated by a team of Internal and External Examiners approved by the University of Mumbai.
- 4. Oral exam will be conduct on the project done by the students.

### Term Work:

Term Work shall consist of full Project-I on above guidelines/syllabus. University of Mumbai, B. E. (Information Technology), Rev 2016

**Term Work Marks:** 100 Marks (Total marks) = 95 Marks (Project-II) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the Project-II and Presentation.



Course code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITDLO8041	User	04			04			04
	Interaction							
	Design							

	Course Name		Examination Scheme								
		Theory Marks									
Course code		Internal assessment End			End	Term	Practical	Oral	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work		)			
ITDLO8041	User Interaction Design	20	20	20	80				100		

### Course Objectives: Students will try to:

- 1 To stress the importance of good interface design.
- To understand the importance of human psychology as well as social and emotional aspect in designing good interfaces.
- To learn the techniques of data gathering, establishing requirements, analysis and data interpretation.
- To learn the techniques for prototyping and evaluating user experiences.
- 5 To understand interaction design process.
- To bring out the creativity in each student build innovative applications that are usable, effective and efficient for intended users.

#### **Course Outcomes:**

- 1. Students will be able to identify and criticize bad features of interface designs.
- 2. Students will be able to predict good features of interface designs.
- 3. Students will be able to illustrate and analyze user needs and formulate user design specifications.
- 4. Students will be able to interpret and evaluate the data collected during the process.
- 5. Students will be able to evaluate designs based on theoretical frameworks and methodological approaches.
- 6. Students will be able to produce/show better techniques to improve the user interaction design interfaces.

**Prerequisite:** Web technologies, Software Engineering, Experiences in designing interfaces for applications and web sites. Basic Knowledge of designing tools and languages like HTML, Java etc.

## **Detailed syllabus:**

Sr.	Module	<b>Detailed Content</b>	Hours	CO
No.				Mapping
0	Prerequisite	Software Engineering concepts and any programming Language	02	
I	Introduction to Interaction Design	Good and Poor Design, What is Interaction Design, The User Experience, The Process Of Interaction Design, Interaction Design and the User Experience	09	CO1,CO 2
II	Understanding and Conceptualizing Interaction	Understanding the Problem Space and Conceptualizing Design, Conceptual Model, Interface Types	09	CO2,CO 3
	Cognitive aspects and Social,	Cognitive aspects, Social Interaction and the Emerging Social Phenomena,		
	Emotional Interaction	Emotions and the User Experience, Expressive and Frustrating Interfaces, Persuasive Technologies		
III	Data Gathering, Establishing Requirements, Analysis, Interpretation and Presentation	Establishing Requirements, Five Key Issues, Techniques for Data Gathering, Data Analysis Interpretation and Presentation, Task Description and Task Analysis	09	CO4
IV	Process of Interaction Design, Prototyping, Construction,	Interaction Design Process, Prototyping and Conceptual Design, Interface Metaphors and Analogies	09	CO4
			0.5	0.5
V	Design rules and Industry standards	Design principles, Principles to support Usability, Standards and Guidelines, Golden rules and Heuristics, ISO/IEC standards	08	CO5
VI	Evaluation Techniques and Framework	The Why, What, Where and When of Evaluation, Types of Evaluation, case studies, DECIDE Framework, Usability Testing, conducting	06	CO5,CO 6

	experiments, Field studies, Heuristic Evaluation and walkthroughs, Predictive models.	

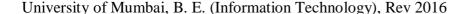
- 1. Interaction Design, by J. Preece, Y. Rogers and H. Sharp. ISBN 0-471-49278-7.
- 2. Human Computer Interaction, by Alan Dix, Janet Finlay, Gregory D Abowd, Russell Beale
- **3.** Alan Cooper, Robert Reimann, David Cronin, "About Face3: Essentials of Interaction design", Wiley publication.
- **4.** Wilbert O. Galitz, "The Essential Guide to User Interface Design", Wiley publication.

#### **References:**

- 1. The UX Book, by Rex Hartson and Pardha S Pyla.
- 2. Donald A. Norman, "The design of everyday things", Basic books.
- 3. Jeff Johnson, "Designing with the mind in mind", Morgan Kaufmann Publication.

#### **Assessment:**

#### **Internal Assessment for 20 marks:**


Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITDLO8042	Information	04			04			04
	Retrieval							
	System							
	_							

			Examination Scheme							
Course Code	CourseName	Theory Marks							)	
		Internal assessment			End	Term Work	Practical C	Oral	Total	
		Test1	Test2	Avg. of twoTests	Sem. Exam			)		
ITDL 0804 2	Information Retrieval System	20	20	20	80	0	<u> </u>		100	
2	System	20	20	20	80	P			100	

### **Course Objectives:** students will try:

- 1. To learn the fundamentals of information retrieval system.
- 2. To classify various Information retrieval models.
- 3. To demonstrate the query processing techniques and operations
- 4. To compare the relevance of query languages for text and multimedia data
- 5. To evaluate the significance of various indexing and searching techniques for information retrieval.
- 6. To develop a effective user interface for information retrieval.

#### **Course Outcomes:**

- 1. Students will define and describe the objectives the basic concepts of Information retrieval system.
- 2. Students will evaluate the taxonomy of different information retrieval models.
- 3. Students will solve and process text and multimedia retrieval queries and their operations
- 4. Students will evaluate text processing techniques and operations in information retrieval system.
- 5. Students will demonstrate and evaluate various indexing and searching techniques.
- 6. Student will design the user interface for an information retrieval system.

**Prerequisite**: Data structures and algorithms

## **Detailed syllabus:**

Sr.	Module	Detailed Content	Hours	СО
No.				Mapping
0	Prerequisite	Comment (Prerequisite syllabus should not be considered for paper setting) Indexing and searching Algorithms	02	
I	Introduction	Motivation, Basic Concepts, The retrieval Process, Information System: Components, parts and types on information system; Definition and objectives on information retrieval system	05	CO1
II	IR Models	Modeling: Taxonomy of Information Retrieval Models, Retrieval: Adhoc and filtering, Formal Characteristics of IR models, Classic Information Retrieval, Alternative Set Theoretic models, Probabilistic Models, Structured text retrieval Models, models for Browsing; Multimedia IR models: Data Modeling	09	CO2
III	Query Processing and Operations	Query Languages: Keyword based Querying, Pattern Matching, Structural Queries, Query Protocols; Query Operations: User relevance feedback, Automatic local analysis, Automatic global analysis, Multimedia IR Query Languages	10	CO3
IV	Text Processing	Text and Multimedia languages and properties: Metadata, Markup Languages, Multimedia; Text Operations: Document Preprocessing, Document Clustering, Text Compression, Comparing Text Comparison Technique	10	CO4
V	Indexing and Searching	Inverted files, Other indices for text, Boolean Queries, Sequential Searching, Pattern Matching, Structural Queries, Compression; Multimedia IR: Indexing and Searching:- Spatial Access Methods, A Generic Multimedia indexing approach, One-	11	CO5

		dimensional time series, Two dimensional color images, Automatic Feature extraction; Searching Web: Challenges, Characterizing the web, Search Engines. Browsing, Meta searches, Searching needle in haystack, Searching using Hyperlinks		
VI	User interface and visualization	Human Computer interaction, the information access process, starting points, query specifications, context, using relevance judgments, interface support for the search process	05	CO6

- 1.Modern Information Retrieval, Ricardo Baeza-Yates, berthier Ribeiro- Neto, ACM Press- Addison Wesley
- 2. Information Retrieval Systems: Theory and Implementation, Gerald Kowaski, Kluwer Academic Publisher
- 3. Storage Network Management and Retrieval by Dr. Vaishali Khairnar, Nilima Dongre, Wiley India

#### **References:**

- 1. Introduction to Information Retrieval By Christopher D. Manning and Prabhakar Raghavan, Cambridge University Press
- 2. Information Storage & Retieval By Robert Korfhage John Wiley & Sons
- 3. Introduction to Modern Information Retrieval. G.G. Chowdhury. NealSchuman

#### **Assessment:**

#### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

#### **End Semester Examination:**

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory		Tutorial	Total
	Name					/Oral		
ITDLO8043	Knowledge	04			04			04
	Managemen							
	t							

Course Code	Course Name	Examination Scheme							
		Theory Marks							
			Internal assessment End				Practical & Oral	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work	100	) *	
ITDLO80 43	Knowledge Managemen t	20	20	20	80	O	<u></u>		100

#### **Course Objectives:**

- 1 Establish a foundation of key terms and concepts, historical events and contributions, organizational benefits, and guiding principles on which to build greater understanding of knowledge management
- 2 Appreciate the role and use of knowledge for individuals, as well as organizations and institutions.
- 3 Increase information and understanding about knowledge transfer using low- and high technology strategies
- 4 Explore the future of knowledge management and its influence on our jobs, communities, and society

Course Outcomes: After completion of the course the learner will be able to

- 1) Discuss KM, learning organizations, intellectual capital and related terminologies in clear terms and understand the role of knowledge management in organizations.
- 2) Demonstrate an understanding of the history, concepts, and the antecedents of management of knowledge and describe several successful knowledge management systems
- 3) Evaluate the impact of technology including telecommunications, networks, and Internet/intranet role in managing knowledge.
- 4) Discuss new jobs, roles and responsibilities resulting from the New or Knowledge Economy Ponder KM's current and future impact on individuals, organizations and society at large

Prerequisite: An introductory course in IT/ IS

### **DETAILED SYLLABUS:**

Sr. No.	Module	Detailed Content	Hours
	Prerequisite	Meaning of data, information, knowledge and expertise Meaning of epistemology, Types of Knowledge - Subjective & Objective views of knowledge, procedural Vs. Declarative, tacit Vs. explicit, general Vs. specific.	3
I	Introduction to Knowledge Management	What is Knowledge? Types of expertise – associational, motor skill, – theoretical Characteristics of knowledge – explicitness, codifiability, teachability, specificity Reservoirs of knowledge, Meaning of Knowledge Management, Forces Driving Organizational issues in KM, KM Systems & their role Relevance of KM in today's dynamic & complex environment Future of Knowledge Management	5
II	Knowledge management system life cycle	Challenges in Building KM Systems – Conventional versus KM System Life Cycle (KMSLS)  – Knowledge Creation and Knowledge Architecture – Nonaka's Model of Knowledge Creation and Transformation. Knowledge Architecture.	8
III	KM Solutions for capture, sharing & applications	KM Processes, KM Systems, Mechanisms & Technologies  Knowledge Capturing Techniques: Brain Storming – Protocol Analysis – Consensus Decision Making – Repertory Grid- Concept Mapping –Blackboarding, Nominal Group Technique, Delphi method,	9
IV	Knowledge codification	Modes of Knowledge Conversion – Codification Tools and Procedures – Knowledge Developer's Skill Sets – System Testing and Deployment – Knowledge Testing – Approaches to Logical Testing, User Acceptance Testing – KM System Deployment Issues – User Training – Post implementation.	9
V	Knowledge transfer and sharing	Transfer Methods – Role of the Internet – Knowledge Transfer in e-world – KM System Tools – Neural Network – Association Rules – Classification Trees – Data Mining and Business Intelligence – Decision Making Architecture – Data Management – Knowledge Management Protocols – Managing Knowledge Workers.	9

VI	KM Impact	Dimensions of KM Impact – People, Processes,	9
		Products & Organizational Performance Factors	
		influencing impact – universalistic & contingency views	
		Assessment of KM Impact – Qualitative & quantitative	
		measures Identification of appropriate KM solutions,	
		Ethical Legal and Managerial Issues	

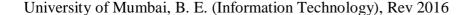
- **1.** Irma Becerra-Fernandez, Avelino Gonzalez, Rajiv Sabherwal (2004). Knowledge Management Challenges, Solutions, and Technologies . Prentice Hall. ISBN: 0-13-109931-0.
- 2. Elias M. Awad, Hassan M. Ghaziri (2004). Knowledge Management. Prentice Hall. ISBN: 0-13-034820-1
- 3. Donald Hislop, Knowledge Management in Organizations, Oxford 2nd Edition. Ian Watson (2002).
- 4. Shelda Debowski, Knowledge Management, Wiley India Edition.

#### **References:**

- **1.** Madanmohan Rao (2004). Knowledge Management Tools and Techniques: Practitioners and Experts Evaluate KM Solutions. Butterworth-Heinemann. ISBN: 0750678186.
- **2.** Stuart Barnes (Ed.) (2002). Knowledge Management Systems Theory and Practice. Thomson Learning.
- 3. Kimiz Dalkir, Knowledge Management in Theory and Practice, Elsevier, Butterworth Hinemann.
- 4. Applying Knowledge Management: Techniques for Building Corporate Memories. Morgan Kaufmann. ISBN: 1558607609.

#### **Assessment:**

#### **Internal Assessment for 20 marks:**


Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

#### **End Semester Examination:**

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITDLO8044	Robotics	04			04			04

Course Code	Course Name	Examination Scheme								
			Theory Marks						, O	
		Internal assessment		End	Term Work	Practical & Oral	Oral	Total		
		Test1	Test2	Avg. of two Tests	Sem. Exam		C	•		
ITDLO80 44	Robotics	20	20	20	80	(			100	

### Course Objectives: Students will try:

- 1. Learn the basic concepts of Robots.
- 2. Learn the concepts of Kinematics of Robotics.
- 3. Learn the concepts of Motions, velocities and dynamic analysis of force.
- 4. Learn the concepts of Motion planning.
- 5. Learn the concepts of Trajectory Planning
- 6. Learn the concepts of Potential Functions, Visibility Graphs and Coverage Planning

### Course Outcomes: Student will be able to:

- 1. Apply the basic concepts of Robots.
- 2. Apply and evaluate the concepts of Kinematics of Robotics.
- 3. Apply the Motions, velocities and dynamic analysis of force.
- 4. Apply and evaluate Motion planning.
- 5. Apply the concepts of Trajectory Planning
- 6. Apply the concepts of Potential Functions, Visibility Graphs and Coverage Planning

**Prerequisites:** Basic of Electrical Engineering.

### **Detailed syllabus:**

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisites	Basics of Electrical Engineering	02	
I	Fundamentals	Robot Classification, Robot Components, Degrees of freedom, Joints, Coordinates, Coordinate	04	CO1

		frames, workspace, applications		
II	Kinematics of Robotics	Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation, Denavit-Hatenberg representation of forward kinematics, Inverse kinematic solutions, Case studies	11	CO2
III	Motions, velocities and dynamic analysis of force	Differential relationship, Jacobian, Differential motion of a frame and robot, Inverse Jacobian.  Lagrangian mechanics, Moments of Inertia, Dynamic equations of robots, Transformation of forces and moment between coordinate frames	09	CO3
IV	Trajectory Planning	Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories	08	CO5
V	Motion Planning	Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent Bug	04	CO4
VI	Potential Functions, Visibility Graphs and Coverage Planning	Attractive/Repulsive potential, Gradient descent, wave-front planner, navigation potential functions, Visibility map, Generalized Voronoi diagrams and graphs, Silhouette methods. Cell Decomposition, Localization and Mapping	14	CO6

- 1. Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011
- 2. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementations", Prentice-Hall of India

#### References:

- 1. Mark W. Spong & M. Vidyasagar, "Robot Dynamics & Control", Wiley India Pvt. Ltd., Second Edition, 2004
- 2. John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 3. Aaron Martinez & Enrique Fernandez, "Learning ROS for Robotics Programming", Shroff Publishers, First Edition, 2013.

#### **Assessment:**

#### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** 

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Name					/Oral		
ITDLO8045	Enterprise	04			04			04
	Resource							
	Planning							

Course Code	Course Name		Examination Scheme							
			Theo	ory Marks			Practical & Oral			
		Inte	ernal asse	essment	End	Term Work		Oral	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	,,, 0111	, C	•		
ITDLO80 45	Enterprise Resource Planning	20	20	20	80	(	2		100	

### Course Objectives: Students will try:

- 1. To learn the basic concepts of ERP.
- 2. To learn different technologies used in ERP.
- 3. To learn the concepts of ERP Manufacturing Perspective and ERP Modules.
- 4. To learn what are the benefits of ERP
- 5. To study and understand the ERP life cycle.
- 6. To learn the different tools used in ERP.

### Course Outcomes: Student will be able to:

- 1. Understand the basic concepts of ERP.
- 2. Identify different technologies used in ERP.
- 3. Understand and apply the concepts of ERP Manufacturing Perspective and ERP Modules.
- 4. Discuss the benefits of ERP
- 5. Understand and implement the ERP life cycle.
- 6. Apply different tools used in ERP.

### **Detailed syllabus:**

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisites	Basics of software.	02	
I	Introduction to ERP	Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model	04	CO1

	Γ	-	T	
II	ERP Technologies	Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM), MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System	06	CO2
III	ERP Manufacturing Perspective and ERP Modules	MRP - Material Requirement Planning, BOM - Bill Of Material, MRP - Manufacturing Resource Planning, DRP - Distributed Requirement Planning, PDM - Product Data Management. Finance, Plant Maintenance, Quality Management, Materials Management.	10	CO3
IV	Benefits of ERP	Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance, Increased Flexibility, Reduced Quality, Costs, Improved Information Accuracy and Design- making Capability	08	CO4
V	ERP Life cycle	Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post- implementation (Maintenance mode).	06	CO5
VI	E-Commerce to E-business	E-Business structural transformation, Flexible Business Design, Customer Experience, Create the new techo enterprise, New generation e-business leaders, memo to CEO, Empower your customer, Integrate Sales and Service, Integrated Enterprise applications. Enterprise resource planning the E-business Backbone Enterprise architecture, planning, ERP usage in Real world, ERP Implementation, Future of ERP applications, memo to CEO ,E-Procurement, E- Governance, Developing the E-Business Design.	16	CO6

| Developing the E-Business Design. | University of Mumbai, B. E. (Information Technology), Rev 2016

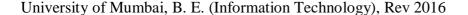
	JD	Edwards-Enterprise	One.	
	Micro	osoft Dynamics-CRM M	lodule.	

- 1. Enterprise Resource Planning Alexis Leon, Tata McGraw Hill.
- 2. Enterprise Resource Planning Diversified by Alexis Leon, TMH.
- 3. Enterprise Resource Planning Ravi Shankar & S. Jaiswal, Galgotia.

#### **References:**

- 1. Guide to Planning ERP Application, Annetta Clewwto and Dane Franklin, McGRaw-Hill,
- 2. The SAP R/3 Handbook, Jose Antonio, McGraw Hill
- 3. E-Business Network Resource planning using SAP R/3 Baan and Peoplesoft: A Practical Roadmap For Success By Dr. Ravi Kalakota

#### **Assessment:**


#### **Internal Assessment for 20 marks:**

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

**End Semester Examination:** Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining question will be mixed in nature (for example if Q.2) has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.



Course Code	Course Name	Credits
ILO8021	Project Management	03

### **Objectives:**

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

#### Outcomes: Learner will be able to...

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
01	Project Management Foundation:  Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).	5
02	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6
03	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart. Introduction to Project Management Information System (PMIS).	8
04	Planning Projects: Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan. Risk Management in projects: Risk management planning, Risk identification and risk register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	6
05	<b>5.1 Executing Projects:</b> Planning monitoring and controlling cycle. Information needs and reporting,	8

	engaging with all stakeholders of the projects.	
	Team management, communication and project meetings.	
	5.2 Monitoring and Controlling Projects:	
	Earned Value Management techniques for measuring value of work completed;	
	Using milestones for measurement; change requests and scope creep. Project	
	audit.	
	5.3 Project Contracting	
	Project procurement management, contracting and outsourcing,	
	6.1 Project Leadership and Ethics:	
	Introduction to project leadership, ethics in projects.	
	Multicultural and virtual projects.	
	6.2 Closing the Project:	
06	Customer acceptance; Reasons of project termination, Various types of project	6
	terminations (Extinction, Addition, Integration, Starvation), Process of project	
	termination, completing a final report; doing a lessons learned analysis;	
	acknowledging successes and failures; Project management templates and other	
	resources; Managing without authority; Areas of further study.	

#### **REFERENCES:**

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

### **Assessment:**

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Credits
ILO8022	Finance Management	03

### **Objectives:**

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

### Outcomes: Learner will be able to...

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	Overview of Indian Financial System: Characteristics, Components and	
	Functions of Financial System.	
	Financial Instruments: Meaning, Characteristics and Classification of Basic	
	Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures,	
0.1	Certificates of Deposit, and Treasury Bills.	06
01	Financial Markets: Meaning, Characteristics and Classification of Financial	
	Markets — Capital Market, Money Market and Foreign Currency Market	
	Financial Institutions: Meaning, Characteristics and Classification of Financial	
	Institutions — Commercial Banks, Investment-Merchant Banks and Stock	
	Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and	
	Expected Returns of a Single Security and a Two-security Portfolio;	
	Measurement of Historical Risk and Expected Risk of a Single Security and a	
02	Two-security Portfolio.	06
	Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and	
	Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity	
	Due; Continuous Compounding and Continuous Discounting.	
	Overview of Corporate Finance: Objectives of Corporate Finance; Functions	
	of Corporate Finance—Investment Decision, Financing Decision, and Dividend	
	Decision.	
03	Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet,	09
	Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio	
	Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios;	
	Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for	
	Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate	
04	of Return, Payback Period, Discounted Payback Period, Net Present	10
	Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified	
	Internal Rate of Return (MIRR)	

	Working Capital Management: Concepts of Meaning Working Capital;	
	Importance of Working Capital Management; Factors Affecting an Entity's	
	Working Capital Needs; Estimation of Working Capital Requirements;	
	Management of Inventories; Management of Receivables; and Management of	
	Cash and Marketable Securities.	
	Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids;	
	Mezzanine Finance; Sources of Short Term Finance—Trade Credit, Bank	
	Finance, Commercial Paper; Project Finance.	
0.5	Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of	05
05	Capital Structure Theories and Approaches— Net Income Approach, Net	
	Operating Income Approach; Traditional Approach, and Modigliani-Miller	
	Approach. Relation between Capital Structure and Corporate Value; Concept of	
	Optimal Capital Structure	
	Dividend Policy: Meaning and Importance of Dividend Policy; Factors	
06	Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories	03
	and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-	
	Miller Approach	

#### **REFERENCES:**

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

#### **Assessment:**

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Credits
ILO8023	Enterpreneurship Development and Management	03

# **Objectives:**

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

### Outcomes: Learner will be able to...

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs
01	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	04
02	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur  Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	09
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	08
05	<b>Effective Management of Business:</b> Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	08
06	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05

#### **REFERENCES:**

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

#### **Assessment:**

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

### **End Semester Theory Examination:**

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Credits
ILO8024	Human Resource Management	03

### **Objectives:**

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management.
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM.
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

#### Outcomes: Learner will be able to...

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and integroup environment emerging as future stable engineers and managers.

		1
Module	Detailed Contents	Hrs
01	<ul> <li>Introduction to HR</li> <li>Human Resource Management- Concept, Scope and Importance,         Interdisciplinary Approach Relationship with other Sciences,         Competencies of HR Manager, HRM functions.</li> <li>Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing,         Empowerment, TQM, Managing ethical issues.</li> </ul>	5
02	<ul> <li>Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues</li> <li>Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness</li> <li>Perception: Attitude and Value, Effect of perception on Individual Decision-making, Attitude and Behavior.</li> <li>Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor);</li> <li>Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team.</li> <li>Case study</li> </ul>	7
03	<ul> <li>Organizational Structure &amp; Design</li> <li>Structure, size, technology, Environment of organization; Organizational Roles &amp; conflicts: Concept of roles; role dynamics; role conflicts and</li> </ul>	6

	<ul> <li>stress.</li> <li>Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership.</li> <li>Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.</li> <li>Human resource Planning</li> </ul>	
04	<ul> <li>Recruitment and Selection process, Job-enrichment, Empowerment - Job-Satisfaction, employee morale.</li> <li>Performance Appraisal Systems: Traditional &amp; modern methods, Performance Counseling, Career Planning.</li> <li>Training &amp; Development: Identification of Training Needs, Training Methods</li> </ul>	5
05	<ul> <li>Emerging Trends in HR</li> <li>Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development, managing processes &amp; transformation in HR. Organizational Change, Culture, Environment</li> <li>Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.</li> </ul>	6
06	HR & MIS  Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries  Strategic HRM  Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals  Labor Laws & Industrial Relations  Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	10

## **REFERENCES:**

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

## **Assessment:**

#### Internal

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Credits
ILO8025	Professional Ethics and Corporat Social Responsibility (CSR)	03

## **Objectives:**

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

## Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs
01	Professional Ethics and Business: The Nature of Business Ethics; Ethical	
	Issues in Business; Moral Responsibility and Blame; Utilitarianism: Weighing	04
	Social Costs and Benefits; Rights and Duties of Business	
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly	
	Competition; Oligopolistic Competition; Oligopolies and Public Policy	
02	Professional Ethics and the Environment: Dimensions of Pollution and	08
	Resource Depletion; Ethics of Pollution Control; Ethics of Conserving	
	Depletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer	
	Protection; Contract View of Business Firm's Duties to Consumers; Due Care	
03	Theory; Advertising Ethics; Consumer Privacy	06
	Professional Ethics of Job Discrimination: Nature of Job Discrimination;	
	Extent of Discrimination; Reservation of Jobs.	
	Introduction to Corporate Social Responsibility: Potential Business	
04	Benefits—Triple bottom line, Human resources, Risk management, Supplier	05
04	relations; Criticisms and concerns—Nature of business; Motives; Misdirection.	
	Trajectory of Corporate Social Responsibility in India	
	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	
05	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in	08
US	India, Corporate Social Responsibility and Public-Private Partnership (PPP) in	
	India	
	Corporate Social Responsibility in Globalizing India: Corporate Social	
06	Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate	08
	Affairs, Government of India, Legal Aspects of Corporate Social	
	Responsibility—Companies Act, 2013.	

## **REFERENCES:**

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by BidyutChakrabarty, Routledge, New Delhi.

## **Assessment:**

## **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.



Course Code	Course Name	Credits
ILO8026	Research Methodology	03

## **Objectives:**

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

## Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs
01	<ul> <li>Introduction and Basic Research Concepts</li> <li>1.1 Research – Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle.Research methods vs Methodology</li> <li>1.2 Need of Research in Business and Social Sciences</li> <li>1.3 Objectives of Research</li> <li>1.4 Issues and Problems in Research</li> <li>1.5 Characteristics of Research:Systematic, Valid, Verifiable, Empirical and Critical</li> </ul>	09
02	Types of Research 2.1. Basic Research 2.2. Applied Research 2.3. Descriptive Research 2.4. Analytical Research 2.5. Empirical Research 2.6 Qualitative and Quantitative Approaches	07
03	Research Design and Sample Design 3.1 Research Design – Meaning, Types and Significance 3.2 Sample Design – Meaning and Significance Essentials of a good sampling Stages in Sample Design Sampling methods/techniques Sampling Errors	07
04	Research Methodology 4.1 Meaning of Research Methodology 4.2. Stages in Scientific Research Process: a. Identification and Selection of Research Problem b. Formulation of Research Problem c. Review of Literature d. Formulation of Hypothesis e. Formulation of research Design f. Sample Design g. Data Collection h. Data Analysis i. Hypothesis testing and Interpretation of Data	08

	j. Preparation of Research Report	
	Formulating Research Problem	
05	<b>5.1</b> Considerations: Relevance, Interest, Data Availability, Choice of data,	04
	Analysis of data, Generalization and Interpretation of analysis	
	Outcome of Research	
06	<b>6.1</b> Preparation of the report on conclusion reached	0.4
06	<b>6.2</b> Validity Testing & Ethical Issues	04
	<b>6.3</b> Suggestions and Recommendation	

## **REFERENCES:**

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R.,1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

## **Assessment:**

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

## **End Semester Theory Examination:**

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Credits
ILO8027	IPR and Patenting	03

## **Objectives:**

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

## Outcomes: Learner will be able to...

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hr
01	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc.  Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development	05
02	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active in IPR enforcement  Indian Scenario of IPR:Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc.	07
03	<b>Emerging Issues in IPR:</b> Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	05
04	<b>Basics of Patents:</b> Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	07
05	<b>Patent Rules:</b> Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
06	Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement	07

University of Mumbai, B. E. (Information Technology), Rev 2016

#### **REFERENCE BOOKS:**

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

## **Assessment:**

## **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

## **End Semester Theory Examination:**

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Credits
ILO8028	Digital Business Management	03

## **Objectives:**

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

## **Outcomes:** The learner will be able to .....

- 1. Identify drivers of digital business
- 2. Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content	Hours
1	Introduction to Digital Business- Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy,  Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services)  Opportunities and Challenges in Digital Business,	09
2	Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement  B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals  Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing  EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC	06

3	Digital Business Support services: ERP as e –business backbone, knowledge Tope Apps, Information and referral system  Application Development: Building Digital business Applications and Infrastructure	06
4	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –business  Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06
5	E-Business Strategy-E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy,  E-business strategy into Action, challenges and E-Transition  (Process of Digital Transformation)	04
6	Materializing e-business: From Idea to Realization-Business plan preparation  Case Studies and presentations	08

## **References:**

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI: 10.1787/9789264221796-en OECD Publishing

## **Assessment:**

## **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

University of Mumbai, B. E. (Information Technology), Rev 2016

## **End Semester Theory Examination:**

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Credits
ILO8029	Environmental Management	03

## **Objectives:**

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarise environment related legislations

## **Outcomes:** Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs
01	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities.  Environmental issues relevant to India, Sustainable Development, The Energy scenario.	10
02	Global Environmental concerns: Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical hazards, etc.	06
03	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
04	Scope of Environment Management, Role & functions of Government as a planning and regulating agency.  Environment Quality Management and Corporate Environmental Responsibility	10
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05
06	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

## **REFERENCES:**

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, TV Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000

University of Mumbai, B. E. (Information Technology), Rev 2016

- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

#### **Internal:**

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

## **End Semester Theory Examination:**

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.



# THADOMAL SHAHANI ENGINEERING COLLEGE

## Computer Engineering

Sr. No.	Subject Code	Subject Name	Count
1	CSL301	Data Structure Lab	1
2	CSL302	Digital Logic & Computer Architecture Lab	1
3	CSL303	Computer Graphics Lab	1
4	CSL304	Skill base Lab course: Object Oriented Programming with Java	1
5	CSM301	Mini Project – 1 A	1
6	CSL401	Analysis of Algorithm Lab	1
7	CSL402	Database Management System Lab	1
8	CSL403	Operating System Lab	1
9	CSL404	Microprocessor Lab	1
10	CSL405	Skill Base Lab Course: Python Programming	1
11	CSM401	Mini Project 1-B	1
12	CSL501	Microprocessor Lab	1
13	CSL503	Database & Info. System Lab	1
14	CSL502	Computer Network Lab	1
15	CSC504	Theory of Computer Science	1
16	CSL504	Web Design Lab	1
17	CSL601	Software Engineering Lab	1
18	CSL602	System software Lab	1
19	CSL603	Data Warehousing & Mining Lab	1
20	CSL604	System Security Lab	1
21	CSL701	Digital Signal & Image Processing Lab	1
22	CSL702	Mobile App. Development. Tech. Lab	1
23	CSL703	Artificial Intelligence & Soft Computing Lab	1
24	CSL704	Computational Lab-I	1
25	CSP705	Major Project-I	1
26	CSL801	Human Machine Interaction Lab	1
27	CSL802	Distributed Computing Lab	1
28	CSL803	Cloud Computing Lab	1
29	CSL804	Computational Lab-II	1
30	CSP805	Major Project-II	1
		Total	30

## UNIVERSITY OF MUMBAI



# **Bachelor of Engineering**

in

# **Computer Engineering**

Second Year with Effect from AY 2020-21

Third Year with Effect from AY 2021-22

Final Year with Effect from AY 2022-23

(REV-2019 'C' Scheme) from Academic Year 2019 - 20

Under

## **FACULTY OF SCIENCE & TECHNOLOGY**

(As per AICTE guidelines with effect from the academic year 2019–2020)

## **Preamble**

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development. Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore, in the present curriculum skill-based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande
Associate Dean, Faculty of Science and Technology,
Member, Academic Council, RRC in Engineering
University of Mumbai

**Incorporation and implementation of Online Contents from** 

NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and

project based activities. Self learning opportunities are provided to learners. In the revision

process this time in particular Revised syllabus of 'C' scheme wherever possible additional

resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier

revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively,

efforts were made to use online contents more appropriately as additional learning materials to

enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits

are reduced to 171, to provide opportunity of self learning to learner. Learners are now getting

sufficient time for self learning either through online courses or additional projects for enhancing

their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage

learners to use additional online resources available on platforms such as NPTEL/ Swayam.

Learners can be advised to take up online courses, on successful completion they are required to

submit certification for the same. This will definitely help learners to facilitate their enhanced

learning based on their interest.

Dr. S. K. Ukarande

Associate Dean, Faculty of Science and Technology,

Member, Academic Council, RRC in Engineering,

**University of Mumbai** 

412

## **Program Structure for Second Year Computer Engineering**

## UNIVERSITY OF MUMBAI(With Effect from 2020-2021)

## **Semester III**

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
Code		Theory	Prac	ct.	Tut.	Theory	Pract.	Tut.	Total
CSC301	C301 Applied Mathematics-III 3 1*		1*	3		1	4		
CSC302	Discrete Structures and Graph Theory	3				3			3
CSC303	Data Structure	3				3			3
CSC304	Digital Logic & Computer Architecture	3				3			3
CSC305	Computer Graphics	3				3			3
CSL301	Data Structure Lab		2				1		1
CSL302	Digital Logic & Computer Architecture Lab		2				1		1
CSL303	Computer Graphics Lab		2				1		1
CSL304	Skill base Lab course:Object Oriented Programming with Java		2+2	*		1	2		2
CSM301	Mini Project – 1 A		4\$			) '	2		2
	Total	15	14		1	15	07	1	23
					Exan	nination Sc	heme		
		Theory					Term Work	Pract &oral	Total
Course Code	Course Name	Interna Test1	Test	Ment Avg	End Sem. Exam	Exam. Duration (in Hrs)		Coru	
CSC301	Applied Mathematics-III	20	20	20	80	3	25		125
CSC302	Discrete Structures and Graph Theory	20	20	20	80	3			100
CSC303	Data Structure	20	20	20	80	3			100
CSC304	Digital Logic & Computer Architecture	20	20	20	80	3	-1		100
CSC305	Computer Graphics	20	20	20	80	3			100
CSL301	Data Structure Lab						25	25	50
CSL302	Digital Logic & Computer Architecture Lab						25		25
CSL303	Computer Graphics Lab						25	25	50
CSL304	Skill base Lab course: Object Oriented Programming with Java				50	25	75		
	Programming with Java								
CSM301	Programming with Java Mini Project – 1 A						25	25	50

^{*}Should be conducted batchwise and

^{\$} indicates workload of Learner (Not Faculty), Students can form groups with minimum 2 (Two) and not more than 4 (Four), Faculty Load: 1 hour per week per four groups

# Program Structure for Second YearComputer Engineering UNIVERSITY OF MUMBAI(With Effect from 2020-2021)

## **Semester IV**

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
Code		Theory	Prac	et. T	ut. T	heory	Pract.	Tut.	Total
CSC401	C401 Applied Mathematics-IV 3 1*		1*	3		1	4		
CSC402	Analysis of Algorithm	3				3			3
CSC403	Database Management System	3				3			3
CSC404	Operating System	3				3			3
CSC405	Microprocessor	3				3			3
CSL401	Analysis of Algorithm Lab		2				1		1
CSL402	Database Management System Lab		2				1		1
CSL403	Operating System Lab		2				1		1
CSL404	Microprocessor Lab		2				1		1
CSL405	Skill Base Lab Course: Python Programming		2*+	2		-	2		2
CSM401	Mini Project 1-B		4\$		(		2		2
	Total	15	16		1	15	7	1	24
				/ \	Examin	ation Scl	neme		
			Theory					Pract &oral	Total
Course Code	Course Name	Ô	al Assess	Exan		Exam Durati (in Hr	on		
		Test1	2	Avg.					
CSC401	Applied Mathematics-IV	20	20	20	80	3	25		125
CSC402	Analysis of Algorithm	20	20	20	80	3			100
CSC403	Database Management System	20	20	20	80	3			100
CSC404	Operating System	20	20	20	80	3			100
CSC405	Microprocessor	20	20	20	80	3			100
CSL401	Analysis of Algorithm Lab						25	25	50
CSL402	Database Management System Lab						25	25	50
CSL403	Operating System Lab						25	25	50
CSL404	Microprocessor Lab						25		25
CSL405	Skill Base Lab Course: Python Programming						25	-	25
CSM401	Mini Project 1-B						25	25	50
	Total			100	400		200	75	775

^{*}Should be conducted batchwise and

\$ indicates workload of Learner (Not Faculty), Students can form groups with minimum 2 (Two) and not more than 4 (Four), Faculty Load: 1 hour per week per four groups.

Course Code	Course Name	Credits
CSC301	Engineering Mathematics-III	4

	equisite: Engineering Mathematics-I, Engineering Mathematics-II
Cour	se Objectives: The course aims:
1	To learn the Laplace Transform, Inverse Laplace Transform of various functions,
	itsapplications.
2	To understand the concept of Fourier Series, its complex form and enhance the problem-
	solving skills.
3	To understand the concept of complex variables, C-R equations with applications.
4	To understand the basic techniques of statistics like correlation, regression, and curve
	fitting for data analysis, Machine learning, and AI.
5	To understand some advanced topics of probability, random variables with their
	distributionsandexpectations.
	•
Cour	
Cour	<b>se Outcomes:</b> On successful completion, of course, learner/student will be able to:
1	Understand the concept of Laplace transform and its application to solve the real integrals
	*
	Understand the concept of Laplace transform and its application to solve the real integrals
1	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.
1	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.  Understand the concept of inverse Laplace transform of various functions and its
2	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.  Understand the concept of inverse Laplace transform of various functions and its applications engineering problems.
2	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.  Understand the concept of inverse Laplace transform of various functions and its applications engineering problems.  Expand the periodic function by using the Fourier series for real-life problems and complex engineering problems.
2 3	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.  Understand the concept of inverse Laplace transform of various functions and its applications engineering problems.  Expand the periodic function by using the Fourier series for real-life problems and
2 3	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.  Understand the concept of inverse Laplace transform of various functions and its applications engineering problems.  Expand the periodic function by using the Fourier series for real-life problems and complex engineering problems.  Understand complex variable theory, application of harmonic conjugate to get orthogonal
1 2 3 4	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.  Understand the concept of inverse Laplace transform of various functions and its applications engineering problems.  Expand the periodic function by using the Fourier series for real-life problems and complex engineering problems.  Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic functions.
1 2 3 4	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.  Understand the concept of inverse Laplace transform of various functions and its applications engineering problems.  Expand the periodic function by using the Fourier series for real-life problems and complex engineering problems.  Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic functions.  Apply the concept of Correlation and Regression to the engineering problems in data

Module	Det	ailed Contents	Hours			
1		place Transform	6			
1	1.1		0			
	1.2 Laplace Transform (L) of standard functions like $e^{at}$ , $sin(at)$ , $cos(at)$ , $sinh(at)$ , $cosh(at)$ and $t^n$ , $n \ge 0$ .					
	1.3 Properties of Laplace Transform: Linearity, First Shifting Theorem, Second Shifting Theorem, Change of Scale, Multiplication by <i>t</i> , Division by <i>t</i> , Laplace Transform of derivatives and integrals (Properties without proof).					
	1.4	Evaluation of real improperintegrals by using Laplace Transformation.				
		(Error and Bessel)				
2	Inve	erse Laplace Transform	6			
	2.1	Definition of Inverse Laplace Transform, Linearity property, Inverse Laplace Transform of standard functions, Inverse Laplace transform using derivatives.				
	2.2	Partial fractions method to find Inverse Laplace transform.				
	2.3	Inverse Laplace transform using Convolution theorem (without proof)				
	2.4	<b>Self-learning Topics:</b> Applications to solve initial and boundary value problems involving ordinary differential equations.				
3	Fou	rier Series:	6			

	3.1	Dirichlet's conditions, Definition of Fourier series and Parseval's				
		Identity(withoutproof).				
	3.2	Fourier series of periodic function with period $2\pi$ and $2l$ .				
	3.3 Fourier series of even and odd functions.					
	3.4 Half range Sine and Cosine Series.					
	3.5 <b>Self-learning Topics:</b> Orthogonal and orthonormal set of functions,					
		Complex form of Fourier Series, Fourier Transforms.				
4	Con	ıplex Variables:	6			
	4.1	Function $f(z)$ of complex variable, Limit, Continuity				
		and Differentiability of $f(z)$ , Analytic function: Necessary and sufficient				
		conditions for $f(z)$ to be analytic (without proof).				
	4.2	Cauchy-Riemann equations in Cartesian coordinates (without proof).				
	4.3	Milne-Thomson method: Determine analytic function $f(z)$ when real				
		part				
		(u), imaginary part (v) or its combination (u+v / u-v) is given.				
	4.4	Harmonic function, Harmonic conjugate and Orthogonal trajectories.				
	4.5	Self-learning Topics: Conformal mapping, Linear and Bilinear				
		mappings, cross ratio, fixed points and standard transformations.				
5	Stat	istical Techniques	6			
	5.1	Karl Pearson's coefficient of correlation (r)				
	5.2	Spearman's Rank correlation coefficient (R) (with repeated and non-				
		repeated ranks)				
	5.3	Lines of regression				
	5.4	Fitting of first- and second-degree curves.				
	5.5	Self-learning Topics: Covariance, fitting of exponential curve.				
6	Prol	bability	6			
	6.1	Definition and basics of probability, conditional probability.				
	6.2	Total Probability theorem and Bayes' theorem.				
	6.3	Discrete and continuous random variable with probability distribution				
		and probabilitydensity function.				
	6.4	Expectation, Variance, Moment generating function, Raw and central				
		moments up to 4 th order.				
	6.5	Self-learning Topics: Skewness and Kurtosis of distribution (data).				

Ref	erences:
1	Higher Engineering Mathematics, Dr.B.S.Grewal, Khanna Publication.
2	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley EasternLimited.
3	Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa Publication.
4	Complex Variables and Applications, Brown and Churchill, McGraw-Hill Education.
5	Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill Education.
6	Theory and Problems of Fourier Analysis with applications to BVP, Murray Spiegel,
	Schaum's Outline Series.

Ter	Term Work:					
Gen	General Instructions:					
1	Batch wise tutorialshave to be conducted. The number of students per batch will be as per					
	University pattern for practical.					
2	Students must be encouraged to write at least 6 class tutorials on the entire syllabus.					
3	A group of 4-6 students should be assigned a self-learning topic. Students should prepare a					
	presentation/problem solving of 10-15 minutes. This will be considered as a mini project in					
	Engineering Mathematics. This project will be graded out of 10 marks depending on the					
	performance of the students.					

The distribution of Term Work marks will be as follows:					
1	Attendance (Theory and Tutorial)	05 marks			
2	Class Tutorials on entire syllabus	10 marks			
3	Mini project	10 marks			

## **Internal Assessment Test:**

The assessment consists of two class tests of 20 marks each. The 1stclass test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The  $2^{nd}$  class test has to be conducted (Internal Assessment II) when an additional 35% syllabus is completed. The duration of each test will be for one hour.

## **End Semester Theory Examination:**

1	The question paper will comprise a total of 6 questions, each carrying 20 marks.
2	Out of the 6 questions, 4 questions have to be attempted.
3	Question 1, based on the entire syllabus, will have 4sub-questions of 5 marks each and is
	compulsory.
4	Question 2 to Question 6 will have 3 sub-questions, each of 6, 6, and 8 marks, respectively.
5	Each sub-question in (4) will be from different modules of the syllabus.

<b>Course Code</b>	Course Name	Credits
CSC302	Discrete Structures and Graph Theory	3

Pre-r	Pre-requisite:Basic Mathematics				
Cour	se Objectives: The course aims:				
1	Cultivate clear thinking and creative problem solving.				
2	Thoroughly train in the construction and understanding of mathematical proofs.				
	Exercisecommon mathematical arguments and proof strategies.				
3	To apply graph theory in solving practical problems.				
4	Thoroughly prepare for the mathematical aspects of other Computer Engineering courses				
Cours	se Outcomes: On successful completion, of course, learner/student will be able to:				
1	Understand the notion of mathematical thinking, mathematical proofs and to apply them				
	in problem solving.				
2	Ability to reason logically.				
3	Ability to understand relations, functions, Diagraph and Lattice.				
4	Ability to understand and apply concepts of graph theory in solving real world problems.				
5	Understand use of groups and codes in Encoding-Decoding				
6	Analyze a complex computing problem and apply principles of discrete mathematics to				
	identify solutions				

Module	Detai	led Contents	Hours
1	Logic		6
		Propositional Logic, Predicate Logic, Laws of Logic, Quantifiers,	
		Normal Forms, Inference Theory of Predicate Calculus,	
		Mathematical Induction.	
2	Relat	tions and Functions	6
	2.1	Basic concepts of Set Theory	
	2.2	<b>Relations:</b> Definition, Types of Relations, Representation of	
		Relations, Closures of Relations, Warshall's algorithm, Equivalence	
		relations and Equivalence Classes	
	2.3	<b>Functions</b> : Definition, Types of functions, Composition of	
		functions, Identity and Inverse function	
3	Poset	s and Lattice	5
		Partial Order Relations, Poset, Hasse Diagram, Chain and Anti	
		chains, Lattice, Types of Lattice, Sub lattice	
4	Coun		6
	4.1	Basic Counting Principle-Sum Rule, Product Rule, Inclusion-	
		Exclusion Principle, Pigeonhole Principle	
	4.2	Recurrence relations, Solving recurrence relations	
5	Algel	praic Structures	8
	5.1	Algebraic structures with one binary operation: Semi group,	
		Monoid, Groups, Subgroups, Abelian Group, Cyclic group,	
		Isomorphism	
	5.2	Algebraic structures with two binary operations: Ring	
	5.3	<b>Coding Theory</b> : Coding, binary information and error detection,	
		decoding and error correction	
6	Grap	h Theory	8
		Types of graphs, Graph Representation, Sub graphs, Operations on	
		Graphs, Walk, Path, Circuit, Connected Graphs, Disconnected	
		Graph, Components, Homomorphism and Isomorphism of Graphs,	
		Euler and Hamiltonian Graphs, Planar Graph, Cut Set, Cut Vertex,	
		Applications.	

Te	extbooks:
1	BernadKolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman,
	"DiscreteMathematical Structures", Pearson Education.
2	C.L.Liu"Elements of Discrete Mathematics", second edition 1985, McGraw-Hill
	BookCompany.Reprinted 2000.
3	K.H.Rosen, "Discrete Mathematics and applications", fifth edition 2003, TataMcGraw Hill
	Publishing Company
Re	eferences:
1	Y N Singh, "Discrete Mathematical Structures", Wiley-India.
2	J. L.Mott, A.Kandel, T.P.Baker, "Discrete Mathematics for Computer Scientists
	andMathematicians", second edition 1986, Prentice Hall of India.
3	J. P. Trembley, R. Manohar "Discrete Mathematical Structures with Applications to
	Computer Science", TataMcgraw-Hill
4	Seymour Lipschutz, Marc Lars Lipson, "Discrete Mathematics" Schaum "sOutline,
	McGrawHill Education.
5	NarsingDeo, "Graph Theorywith applications to engineering and computer science", PHI

Publications.

## **Internal Assessment Test:**

The assessment consists of two class tests of 20 marks each. The 1st class test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The 2nd class test has to be conducted(Internal Assessment II) when an additional 40% syllabus is completed. The duration of each test will be for one hour.

6 P.K.Bisht, H.S. Dhami, "Discrete Mathematics", Oxford press.

## **End Semester Theory Examination:**

The question paper will comprise a total of 6 questions, each carrying 20 marks. Out of the 6 questions, 4 questions have to be attempted. Question 1, based on the entire syllabus, will have 4sub-questions of 5 marks each and is compulsory. Question 2 to Question 6 will have 3 sub-questions, each of 6, 6, and 8 marks, respectively. Each sub-question in (4) will be from different modules of the syllabus. Weightage of each module will be proportional to the number of lecture hours, as mentioned in the syllabus.

Use	Useful Links		
1	https://www.edx.org/learn/discrete-mathematics		
2	https://www.coursera.org/specializations/discrete-mathematics		
3	https://nptel.ac.in/courses/106/106/106106094/		
4	https://swayam.gov.in/nd1_noc19_cs67/preview		

Course Code	Course Name	Credit
CSC303	Data Structure	03

Pre-re	Pre-requisite: C Programming		
_			
Cours	se Objectives: The course aims:		
1	To understand the need and significance of Data structures as a computer Professional.		
2	To teach concept and implementation of linear and Nonlinear data structures.		
3	To analyze various data structures and select the appropriate one to solve a specific real-		
	world problem.		
4	To introduce various techniques for representation of the data in the real world.		
5	To teach various searching techniques.		
Cours	se Outcomes:		
1	Students will be able to implement Linear and Non-Linear data structures.		
2	Students will be able to handle various operations like searching, insertion, deletion and		
	traversals on various data structures.		
3	Students will be able to explain various data structures, related terminologies and its types.		
4	Students will be able to choose appropriate data structure and apply it to solve problems in		
	various domains.		
5	Students will be able to analyze and Implement appropriate searching techniques for a given		
	problem.		
6	Students will be able to demonstrate the ability to analyze, design, apply and use data		
	structures to solve engineering problems and evaluate their solutions.		

Module	Detailed Content	Hours
1	Introduction to Data Structures	2
	1.1 Introduction to Data Structures, Concept of ADT, Types of Data Structures- Linear and Nonlinear, Operations on Data Structures.	
2	Stack and Queues	8
	2.1 Introduction, ADT of Stack, Operations on Stack, Array Implementation of Stack, Applications of Stack-Well form-ness of Parenthesis, Infix to Postfix Conversion and Postfix Evaluation, Recursion.	
	2.2 Introduction, ADT of Queue, Operations on Queue, Array Implementation of Queue, Types of Queue-Circular Queue, Priority Queue, Introduction of Double Ended Queue, Applications of Queue.	
3	Linked List	9
	3.1 Introduction, Representation of Linked List, Linked List v/s Array, Types of Linked List - Singly Linked List, Circular Linked List, Doubly Linked List, Operations on Singly Linked List and Doubly Linked List, Stack and Queue using Singly Linked List, Singly Linked List Application-Polynomial Representation and Addition.	
4	Trees	10
	4.1 Introduction, Tree Terminologies, Binary Tree, Binary Tree Representation, Types of Binary Tree, Binary Tree Traversals, Binary Search Tree, Operations on Binary Search Tree, Applications of Binary Tree-Expression Tree, Huffman Encoding, Search Trees-AVL, rotations in AVL Tree, operations on AVL Tree, Introduction of B Tree, B+ Tree.	
5	Graphs	4

	5.1 Introduction, Graph Terminologies, Representation of Graph, Graph Traversals-Depth First Search (DFS) and Breadth First Search (BFS), Graph Application-Topological Sorting.		
6		Searching Techniques	3
		Linear Search, Binary Search, Hashing-Concept, Hash Functions, Collision resolution Techniques	

Te	extbooks:
1	Aaron M Tenenbaum, YedidyahLangsam, Moshe J Augenstein, "Data Structures Using C",
	Pearson Publication.
2	Reema Thareja, "Data Structures using C", Oxford Press.
3	Richard F. Gilberg and Behrouz A. Forouzan, "Data Structures: A Pseudocode Approach
	with C", 2 nd Edition, CENGAGE Learning.
4	Jean Paul Tremblay, P. G. Sorenson, "Introduction to Data Structure and Its Applications",
	McGraw-Hill Higher Education
5	Data Structures Using C, ISRD Group, 2 nd Edition, Tata McGraw-Hill.
Re	eferences:
1	Prof. P. S. Deshpande, Prof. O. G. Kakde, "C and Data Structures", DreamTech press.
2	E. Balagurusamy, "Data Structure Using C", Tata McGraw-Hill Education India.
3	Rajesh K Shukla, "Data Structures using C and C++", Wiley-India
4	GAV PAI, "Data Structures", Schaum's Outlines.
5	Robert Kruse, C. L. Tondo, Bruce Leung, "Data Structures and Program Design in C",
	Pearson Edition

## **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to beconducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

## **End Semester Theory Examination:**

Question paper will consist of 6 questions, each carrying 20 marks.
 The students need to solve a total of 4 questions.
 Question No.1 will be compulsory and based on the entire syllabus.
 Remaining question (Q.2 to Q.6) will be selected from all the modules.

Use	Useful Links		
1	https://nptel.ac.in/courses/106/102/106102064/		
2	https://www.coursera.org/specializations/data-structures-algorithms		
3	https://www.edx.org/course/data-structures-fundamentals		
4	https://swayam.gov.in/nd1 noc19 cs67/preview		

<b>Course Code</b>	Course Name	Credit
CSC304	Digital Logic & Computer Organization and Architecture	3

Pr	e-requisite: Knowledge on number systems
Co	ourse Objective:
1	To have the rough understanding of the basic structure and operation of basic digital circuits
	and digital computer.
2	To discuss in detail arithmetic operations in digital system.
3	To discuss generation of control signals and different ways of communication with I/O
	devices.
4	To study the hierarchical memory and principles of advanced computing.
Co	ourse Outcome:
1	To learn different number systems and basic structure of computer system.
2	To demonstrate the arithmetic algorithms.
3	To understand the basic concepts of digital components and processor organization.
4	To understand the generation of control signals of computer.
5	To demonstrate the memory organization.
6	To describe the concepts of parallel processing and different Buses.

Module		Detailed Content	Hours
1		Computer Fundamentals	5
	1.1	Introduction to Number System and Codes	
		Number Systems: Binary, Octal, Decimal, Hexadecimal,	
	1.3	Codes: Grey, BCD, Excess-3, ASCII, Boolean Algebra.	
	1.4	Logic Gates: AND,OR,NOT,NAND,NOR,EX-OR	
		Overview of computer organization and architecture.	
	1.6	Basic Organization of Computer and Block Level functional Units, Von-Neumann Model.	
2		Data Representation and Arithmetic algorithms	8
	2.1	Binary Arithmetic: Addition, Subtraction, Multiplication, Division using Sign Magnitude, 1's and 2's compliment, BCD and Hex Arithmetic Operation.	
	2.2	Booths Multiplication Algorithm, Restoring and Non-restoring Division Algorithm.	
	2.3	IEEE-754 Floating point Representation.	
3		Processor Organization and Architecture	6
	3.1	Introduction: Half adder, Full adder, MUX, DMUX, Encoder, Decoder(IC level).	
	3.2	Introduction to Flip Flop: SR, JK, D, T (Truth table).	
	3.3	Register Organization, Instruction Formats, Addressing modes, Instruction Cycle, Interpretation and sequencing.	
4		Control Unit Design	6
	4.1	Hardwired Control Unit: State Table Method, Delay Element Methods.	
		Microprogrammed Control Unit: Micro Instruction-Format, Sequencing and execution, Micro operations, Examples of microprograms.	
5		Memory Organization	6
	5.1	Introduction and characteristics of memory, Types of RAM and ROM, Memory Hierarchy, 2-level Memory Characteristic,	
	5.2	Cache Memory: Concept, locality of reference, Design problems based on mapping techniques, Cache coherence and write policies.  Interleaved and Associative Memory.	
6		Principles of Advanced Processor and Buses	8

	Basic Pipelined Data path and control, data dependencies, data hazards, branch hazards, delayed branch, and branch prediction, Performance measures-CPI, Speedup, Efficiency, throughput, Amdhal's law.	
6.2	Flynn's Classification, Introduction to multicore architecture.	
6.3	Introduction to buses: ISA, PCI, USB. Bus Contention and Arbitration.	

 $\alpha \mathbf{v}_1$	tha	oks	•
 CAI	เมบ	$\sigma$	•

- 1 R. P. Jain, "Modern Digital Electronic", McGraw-Hill Publication, 4thEdition.
- William Stalling, "Computer Organization and Architecture: Designing and Performance", Pearson Publication 10TH Edition.
- John P Hayes, "Computer Architecture and Organization", McGraw-Hill Publication, 3RD Edition.
- 4 Dr. M. Usha and T. S. Shrikanth, "Computer system Architecture and Organization", Wiley publication.

### **References:**

- 1 Andrew S. Tanenbaum, "Structured Computer Organization", Pearson Publication.
- 2 B.Govindarajalu, "Computer Architecture and Organization", McGraw-Hill Publication.
- 3 Malvino, "Digital computer Electronics", McGraw-Hill Publication, 3rdEdition.
- 4 Smruti Ranjan Sarangi, "Computer Organization and Architecture", McGraw-Hill Publication.

## **Assessment:**

## **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

## **End Semester Theory Examination:**

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2 The students need to solve total 4 questions.
- 3 Question No.1 will be compulsory and based on entire syllabus.
- 4 Remaining question (Q.2 to Q.6) will be selected from all the modules.

## **Useful Links**

- 1 <a href="https://www.classcentral.com/course/swayam-computer-organization-and-architecture-a-pedagogical-aspect-9824">https://www.classcentral.com/course/swayam-computer-organization-and-architecture-a-pedagogical-aspect-9824</a>
- https://nptel.ac.in/courses/106/103/106103068/
- 3 <a href="https://www.coursera.org/learn/comparch">https://www.coursera.org/learn/comparch</a>
- 4 https://www.edx.org/learn/computer-architecture

Course Code	Course Name	Credits
CSC305	Computer Graphics	3

Pr	rerequisite: Knowledge of C Programming and Basic Mathematics.
Co	ourse Objectives
1	To equip students with the fundamental knowledge and basic technical competence in the
	field of Computer Graphics.
2	To emphasize on implementation aspect of Computer Graphics Algorithms.
3	To prepare the student for advance areas and professional avenues in the field of Computer
	Graphics
Co	ourse Outcomes: At the end of the course, the students should be able to
1	Describe the basic concepts of Computer Graphics.
2	Demonstrate various algorithms for basic graphics primitives.
3	Apply 2-D geometric transformations on graphical objects.
4	Use various Clipping algorithms on graphical objects
5	Explore 3-D geometric transformations, curve representation techniques and projections
	methods.
6	Explain visible surface detection techniques and Animation.

Module		Detailed Content	Hours
1		Introduction and Overview of Graphics System:	02
	1.1	Definition and Representative uses of computer graphics, Overview of	
		coordinate system, Definition of scan conversion, rasterization and	
		rendering.	
	1.2	Raster scan & random scan displays, Architecture of raster graphics	
		system with display processor, Architecture of random scan systems.	
2		Output Primitives:	10
	2.1	Scan conversions of point, line, circle and ellipse: DDA algorithm and	
		Bresenham algorithm for line drawing, midpoint algorithm for circle,	
		midpoint algorithm for ellipse drawing (Mathematical derivation for	
		above algorithms is expected)	
	2.2	Aliasing, Antialiasing techniques like Pre and post filtering, super	
		sampling, and pixel phasing).	
	2.3	Filled Area Primitive: Scan line Polygon Fill algorithm, inside outside	
		tests, Boundary Fill and Flood fill algorithm.	
3		Two Dimensional Geometric Transformations	5
	3.1	Basic transformations: Translation, Scaling, Rotation	
	3.2	Matrix representation and Homogeneous Coordinates	
	3.3	Composite transformation	
	3.4	Other transformations: Reflection and Shear	
4		Two-Dimensional Viewing and Clipping	6
	4.1	Viewing transformation pipeline and Window to Viewport coordinate	
		transformation	
	4.2	Clipping operations: Point clipping, Line clipping algorithms: Cohen-	
		Sutherland, Liang: Barsky, Polygon Clipping Algorithms: Sutherland-	
		Hodgeman, Weiler-Atherton.	
5		Three Dimensional Geometric Transformations, Curves and	8
		Fractal Generation	
	5.1	3D Transformations: Translation, Rotation, Scaling and Reflection	
	5.2	Composite transformations: Rotation about an arbitrary axis	
	5.3	Projections – Parallel, Perspective. (Matrix Representation)	
	5.4	Bezier Curve, B-Spline Curve, Fractal-Geometry: Fractal Dimension,	

		Koch Curve.	
6		Visible Surface Detection and Animation	5
	6.1	Visible Surface Detection:Classification of Visible Surface Detection algorithm, Back Surface detection method, Depth Buffer method, Area Subdivision method	
	6.2	Animation: Introduction to Animation, Traditional Animation Techniques, Principles of Animation, Key framing: Character and Facial Animation, Deformation, Motion capture	

Te	extbooks:
1	Hearn &Baker, "Computer Graphics C version", 2nd Edition, Pearson Publication
2	James D. Foley, Andries van Dam, Steven K Feiner, John F. Hughes, "Computer Graphics
	Principles and Practice in C", 2 nd Edition, Pearson Publication
3	Samit Bhattacharya, "Computer Graphics", Oxford Publication
Re	eferences:
1	D. Rogers, "Procedural Elements for Computer Graphics", Tata McGraw-Hill Publications.
2	Zhigang Xiang, Roy Plastock, "Computer Graphics", Schaum"s Outlines McGraw-Hill
	Education
3	Rajesh K. Maurya, "Computer Graphics", Wiley India Publication.
4	F.S.Hill, "Computer Graphics using OpenGL", Third edition, Pearson Publications.

## **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

## **End Semester Theory Examination:**

Question paper will comprise of 6 questions, each carrying 20 marks. The students need to solve total 4 questions. 2 Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules

Use	Useful Links	
1	https://www.classcentral.com/course/interactivegraphics-2067	
2	https://swayam.gov.in/nd2 ntr20 ed15/preview	
3	https://nptel.ac.in/courses/106/106/106106090/	
4	https://www.edx.org/course/computer-graphics-2	

Lab Code	Lab Name	Credit
CSL301	Data Structures Lab	1

Pr	Prerequisite: C Programming Language.		
La	Lab Objectives:		
1	To implement basic data structures such as arrays, linked lists, stacks and queues		
2	Solve problem involving graphs, and trees		
3	To develop application using data structure algorithms		
4	Compute the complexity of various algorithms.		
La	Lab Outcomes:		
1	Students will be able to implement linear data structures & be able to handle operations like		
	insertion, deletion, searching and traversing on them.		
2	Students will be able to implement nonlinear data structures & be able to handle operations		
	like insertion, deletion, searching and traversing on them		
3	Students will be able to choose appropriate data structure and apply it in various problems		
4	Students will be able to select appropriate searching techniques for given problems.		

Suggested Experiments: Students are required to complete at least 10 experiments.

Star (*) marked experiments are compulsory.

Sr. No.	Name of the Experiment
1*	Implement Stack ADT using array.
2*	Convert an Infix expression to Postfix expression using stack ADT.
3*	Evaluate Postfix Expression using Stack ADT.
4	Applications of Stack ADT.
5*	Implement Linear Queue ADT using array.
6*	Implement Circular Queue ADT using array.
7	Implement Priority Queue ADT using array.
8*	Implement Singly Linked List ADT.
9*	Implement Circular Linked List ADT.
10	Implement Doubly Linked List ADT.
11*	Implement Stack / Linear Queue ADT using Linked List.
12*	Implement Binary Search Tree ADT using Linked List.
13*	Implement Graph Traversal techniques:) Depth First Search b) Breadth First Search
14	Applications of Binary Search Technique.

Usef	Useful Links:	
1	www.leetcode.com	
2	www.hackerrank.com	
3	www.cs.usfca.edu/~galles/visualization/Algorithms.html	
4	www.codechef.com	

Te	Term Work:		
1	Term work should consist of 10 experiments.		
2	Journal must include at least 2 assignments.		
3	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,		
	Assignments: 05-marks)		
O	Oral & Practical exam		
	Based on the entire syllabus of CSL301and CSC303		

Lab Code	Lab Name	Credit
CSL302	Digital Logic & Computer Organization and Architecture Lab	1

Pr	Prerequisite: C Programming Language.		
La	Lab Objectives:		
1	To implement operations of the arithmetic unit using algorithms.		
2	Design and simulate different digital circuits.		
3	To design memory subsystem including cache memory.		
4	To demonstrate CPU and ALU design.		
La	Lab Outcomes:		
1	To understand the basics of digital components		
2	Design the basic building blocks of a computer: ALU, registers, CPU and memory		
3	To recognize the importance of digital systems in computer architecture		
4	To implement various algorithms for arithmetic operations.		

List of Experiments:	
Sr. No.	Name of the Experiment
1	To verify the truth table of various logic gates using ICs.
2	To realize the gates using universal gates
3	Code conversion.
4	To realize half adder and full adder.
5	To implement logic operation using MUX IC.
6	To implement logic operation decoder IC.
7	Study of flip flop IC.
8	To implement ripplecarry adder.
9	To implement carry look ahead adder.
10	To implement Booth's algorithm.
11	To implement restoring division algorithm.
12	To implement non restoring division algorithm.
13	To implement ALU design.
14	To implement CPU design.
15	To implement memory design.
16	To implement cache memory design.

No	Note:		
1	Any Four experiments from Exp. No. 1 to Exp. No. 7 using hardware.		
2	Any Six experiments from Exp. No. 8 to Exp. No. 16 using Virtual Lab, expectExp. No.		
	10,11 and 12.		
3	Exp. No. 10 to Exp. No. 12 using Programming language.		
Di	Digital Material:		
1	Manual to use Virtual Lab simulator for Computer Organization and Architecture developed		
	by the Department of CSE, IIT Kharagpur.		
2	Link http://cse10-iitkgp.virtual-labs.ac.in/		

Term Work:		
1	Term work should consist of 10 experiments.	
2	Journal must include at least 2 assignments on content of theory and practical of "Digital	
	Logic &Computer Organization and Architecture"	
3	The final certification and acceptance of term work ensures that satisfactory performance of	

	laboratory work and minimum passing marks in term work.	
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,	
	Assignments: 05-marks)	
Oral & Practical exam		
	Based on the entire syllabus of "Digital Logic &Computer Organization and Architecture"	



<b>Course Code</b>	Lab Name	Credits
CSL303	Computer Graphics Lab	1

Pr	Prerequisite: C Programming Language.		
La	ab Objectives:		
1	Understand the need of developing graphics application		
2	Learn algorithmic development of graphics primitives like: line, circle, polygon etc.		
3	Learn the representation and transformation of graphical images and pictures		
La	<b>Lab Outcomes:</b> At the end of the course, the students should be able to		
1	Implement various output and filled area primitive algorithms		
2	Apply transformation, projection and clipping algorithms on graphical objects.		
3	Perform curve and fractal generation methods.		
4	Develop a Graphical application/Animation based on learned concept		

#### **Content:**

Scan conversions: lines, circles, ellipses. Filling algorithms, clipping algorithms. 2D and 3D transformation Curves Visible surface determination. Simple animations Application of these through exercises in C/C++

**List of Suggested Experiments:** 

List of S	List of Suggested Experiments.	
Sr. No.	Name of the Experiment	
1	Implement DDA Line Drawing algorithm (dotted/dashed/thick)	
2	Implement Bresenham's Line algorithm(dotted/dashed/thick)	
3	Implement midpoint Circle algorithm.	
4	Implement midpoint Ellipse algorithm.	
5	Implement Area Filling Algorithm: Boundary Fill, Flood Fill.	
6	Implement Scan line Polygon Filling algorithm.	
7	Implement Curve: Bezier for n control points, B Spline (Uniform)(at least one)	
8	Implement Fractal generation method (anyone)	
9	Character Generation: Bit Map method and Stroke Method	
10	Implement 2D Transformations: Translation, Scaling, Rotation, Reflection, Shear.	
11	Implement Line Clipping Algorithm: Cohen Sutherland / Liang Barsky.	
12	Implement polygon clipping algorithm (at least one)	
13	Program to perform 3D transformation.	
14	Program to perform projection of a 3D object on Projection Plane: Parallel and	
	Perspective.	
15	Program to perform Animation (such as Rising Sun, Moving Vehicle, Smileys, Screen	
	saver etc.)	

Te	Term Work:		
1	Term work should consist of 10 experiments.		
2	Journal must include at least 2 assignments		
3	Mini Project to perform using C /C++/Java/OpenGL/Blender/ any other tool (2/3 students per		
	group).Possible Ideas:Animation using multiple objects, Game development, Graphics		
	editor: Like Paint brush, Text editor etc.		
4	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		
5	Total 25 Marks (Experiments: 10-marks, Attendance Theory& Practical: 05-marks,		
	Assignments: 05-marks, Mini Project: 5-marks)		
0	Oral & Practical exam		

Based on the above contents and entire syllabus of CSC305

L	ab Code	Lab Name	Credits
	CSL304	Skill based Lab Course: Object Oriented Programming with Java	2

Pr	Prerequisite: Structured Programming Approach		
La	Lab Objectives:		
1	To learn the basic concepts of object-oriented programming		
2	To study JAVA programming language		
3	To study various concepts of JAVA programming like multithreading, exception Handling,		
	packages, etc.		
4	To explain components of GUI based programming.		
La	<b>ab Outcomes:</b> At the end of the course, the students should be able to		
1	To apply fundamental programming constructs.		
2	To illustrate the concept of packages, classes and objects.		
3	To elaborate the concept of strings, arrays and vectors.		
4	To implement the concept of inheritance and interfaces.		
5	To implement the concept of exception handling and multithreading.		
6	To develop GUI based application.		

Module		Detailed Content	Hours
1		Introduction to Object Oriented Programming	2
	1.1	OOP concepts: Objects, class, Encapsulation, Abstraction, Inheritance,	
		Polymorphism, message passing.	
	1.2	Java Virtual Machine	
	1.3	Basic programming constructs: variables, data types, operators,	
		unsigned right shift operator, expressions, branching and looping.	
2		Class, Object, Packages and Input/output	6
	2.1	Class, object, data members, member functions	
		Constructors, types, static members and functions	
		Method overloading	
		Packages in java, types, user defined packages	
		Input and output functions in Java,	
		Buffered reader class, scanner class	
3		Array, String and Vector	3
	3.1	Array, Strings, String Buffer, Vectors	
4		Inheritance	4
	4.1	Types of inheritance, Method overriding, super, abstract class and	
		abstract method, final, Multiple inheritance using interface, extends	
		keyword	
5		Exception handling and Multithreading	5
	5.1	Exception handling using try, catch, finally, throw and throws, Multiple	
		try and catch blocks, user defined exception	
		Thread lifecycle, thread class methods, creating threads using extends	
		and implements keyword.	
6		GUI programming in JAVA	6
	6.1	Applet and applet life cycle, creating applets, graphics class functions,	
		parameter passing to applet, Font and color class.	
		Event handling using event class	
		AWT: working with windows, using AWT controls for GUI design	
		Swing class in JAVA	
		Introduction to JDBC, JDBC-ODBC connectivity, JDBC architecture.	

Te	Textbooks:		
1	Herbert Schildt, 'JAVA: The Complete Reference', Ninth Edition, Oracle Press.		
2	E. Balagurusamy, 'Programming with Java', McGraw Hill Education.		
Re	eferences:		
1	Ivor Horton, "Beginning JAVA", Wiley India.		
2	DietalandDietal, "Java: How to Program", 8th Edition,PHI.		
3	"JAVA Programming", Black Book, Dreamtech Press.		
4	"Learn to Master Java programming", Staredu solutions		
Di	gital material:		
1	www.nptelvideos.in		
2	www.w3schools.com		
3	www.tutorialspoint.com		
4	https://starcertification.org/Certifications/Certificate/securejava		

Suggested List of Programming Assignments/laboratory Work:		
Sr. No.	Name of the Experiment	
1	Programs on Basic programming constructs like branching and looping	
2	Program on accepting input through keyboard.	
3	Programs on class and objects	
4	Program on method and constructor overloading.	
5	Program on Packages	
6	Program on 2D array, strings functions	
7	Program on StringBuffer and Vectors	
8	Program on types of inheritance	
9	Program on Multiple Inheritance	
10	Program on abstract class and abstract methods.	
11	Program using super and final keyword	
12	Program on Exception handling	
13	Program on user defined exception	
14	Program on Multithreading	
15	Program on Graphics class	
16	Program on applet class	
17	Program to create GUI application	
18	Mini Project based on the content of the syllabus(Group of 2-3 students)	

Te	Term Work:		
1	Term work should consist of 15 experiments.		
2	Journal must include at least 2 assignments		
3	Mini Project based on the content of the syllabus(Group of 2-3 students)		
4	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		
5	Total 50-Marks (Experiments: 15-marks, Attendance: 05-marks, Assignments: 05-marks,		
	Mini Project: 20-marks, MCQ as a part of lab assignments: 5-marks)		

Course code	Course Name	Credits
CSM301	Mini Project A	02

Ol	•4•
	jectives
1	To acquaint with the process of identifying the needs and converting it into the problem.
2	To familiarize the process of solving the problem in a group.
3	To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
4	To inculcate the process of self-learning and research.
	To medicate the process of sen rearming and research.
Ou	tcome: Learner will be able to
1	Identify problems based on societal /research needs.
2	Apply Knowledge and skill to solve societal problems in a group.
3	Develop interpersonal skills to work as member of a group or leader.
4	Draw the proper inferences from available results through theoretical/
_	experimental/simulations.
5	Analyze the impact of solutions in societal and environmental context for sustainable development.
6	Use standard norms of engineering practices
7	Excel in written and oral communication.
8	Demonstrate capabilities of self-learning in a group, which leads to lifelong learning.
9	Demonstrate project management principles during project work.
	Demonstrate project management principles during project work.
Gu	idelines for Mini Project
1	Students shall form a group of 3 to 4 students, while forming a group shall not be allowed
1	less than three or more than four students, as it is a group activity.
2	Students should do survey and identify needs, which shall be converted into problem
	statement for mini project in consultation with faculty supervisor/head of
3	department/internal committee of faculties.
3	Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
4	A logbook to be prepared by each group, wherein group can record weekly work progress,
+	guide/supervisor can verify and record notes/comments.
5	Faculty supervisor may give inputs to students during mini project activity; however, focus
3	shall be on self-learning.
6	Students in a group shall understand problem effectively, propose multiple solution and
6	select best possible solution in consultation with guide/ supervisor.
7	
7	Students shall convert the best solution into working model using various components of
0	their domain areas and demonstrate.
8	The solution to be validated with proper justification and report to be compiled in standard
	format of University of Mumbai.
9	With the focus on the self-learning, innovation, addressing societal problems and
	entrepreneurship quality development within the students through the Mini Projects, it is
	preferable that a single project of appropriate level and quality to be carried out in two
	semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV.
	Similarly, Mini Project 2 in semesters V and VI.
10	However, based on the individual students or group capability, with the mentor's
	recommendations, if the proposed Mini Project adhering to the qualitative aspects
	mentioned above gets completed in odd semester, then that group can be allowed to work
	on the extension of the Mini Project with suitable improvements/modifications or a
	completely new project idea in even semester. This policy can be adopted on case by case
	basis.

# Term Work

The review/ progress monitoring committee shall be constituted by head of departments of each

institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.

In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

Di	istribution of Term work marks for both semesters shall be as below:	Marks
1	Marks awarded by guide/supervisor based on logbook	10
2	Marks awarded by review committee	10
3	Quality of Project report	05

Review / progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines

# **One-year project:**

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
  - First shall be for finalisation of problem
  - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
  - First review is based on readiness of building working prototype to be conducted.
  - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

# **Half-year project:**

- 1 In this case in one semester students' group shall complete project in all aspects including,
  - Identification of need/problem
  - Proposed final solution
  - Procurement of components/systems
  - Building prototype and testing
- Two reviews will be conducted for continuous assessment,
  - First shall be for finalisation of problem and proposed solution
  - Second shall be for implementation and testing of solution.

# Assessment criteria of Mini Project.

### Mini Project shall be assessed based on following criteria;

- 1 Quality of survey/ need identification
- 2 Clarity of Problem definition based on need.
- 3 Innovativeness in solutions
- 4 Feasibility of proposed problem solutions and selection of best solution
- 5 Cost effectiveness
- 6 Societal impact
- 7 Innovativeness
- 8 Cost effectiveness and Societal impact
- 9 Full functioning of working model as per stated requirements
- 10 Effective use of skill sets
- 11 Effective use of standard engineering norms

12	Contribution of an individual's as member or leader
13	Clarity in written and oral communication
	In <b>one year, project</b> , first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
	In case of <b>half year project</b> all criteria's in generic may be considered for evaluation of performance of students in mini project.
Gui	delines for Assessment of Mini Project Practical/Oral Examination:
1	Report should be prepared as per the guidelines issued by the University of Mumbai.
2	Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
3	Students shall be motivated to publish a paper based on the work in Conferences/students competitions.
	i Project shall be assessed based on following points;
1	Quality of problem and Clarity
2	Innovativeness in solutions  Cost offectiveness and Societal impact
3	Cost effectiveness and Societal impact
4	Full functioning of working model as per stated requirements
5	Effective use of skill sets
6	Effective use of standard engineering norms
7	Contribution of an individual's as member or leader
8	Clarity in written and oral communication

<b>Course Code</b>	Course Name	Credits
CSC401	Engineering Mathematics-IV	4

Mathematics-I, **Pre-requisite:** Engineering Engineering Mathematics-II, Engineering Mathematics-III, Binomial Distribution. **Course Objectives:** The course aims to learn: Matrix algebra to understand engineering problems. Line and Contour integrals and expansion of a complex valued function in a power series. 3 Z-Transforms and Inverse Z-Transforms with its properties. 4 The concepts of probability distributions and sampling theory for small samples. 5 Linear and Non-linear programming problems of optimization. **Course Outcomes:** On successful completion, of course, learner/student will be able to: Apply the concepts of eigenvalues and eigenvectors in engineering problems. Use the concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals. Apply the concept of Z- transformation and inverse in engineering problems. 4 Use the concept of probability distribution and sampling theory to engineering problems. Apply the concept of Linear Programming Problems to optimization. 6 | Solve Non-Linear Programming Problems for optimization of engineering problems.

Module	Deta	ailed Contents	Hours
1	1 Linear Algebra (Theory of Matrices)		6
	1.1	Characteristic Equation, Eigenvalues and Eigenvectors, and properties	
	(without proof)		
	1.2 Cayley-Hamilton Theorem (without proof), verification and reduction		
		of higher degree polynomials	
	1.3	Similarity of matrices, diagonalizable and non-diagonalizable matrices	
	1.4	Self-learning Topics: Derogatory and non-derogatory matrices,	
		Functions of Square Matrix, Linear Transformations, Quadratic forms.	
2		nplex Integration	7
	2.1	Line Integral, Cauchy's Integral theorem for simple connected and	
		multiply connected regions (without proof), Cauchy's Integral formula	
		(without proof).	
	2.2		
	2.3	Definition of Singularity, Zeroes, poles of $f(z)$ , Residues, Cauchy's	
		Residue Theorem (without proof)	
	2.4	<b>Self-learning Topics:</b> Application of Residue Theorem to evaluate real	
2	77 TD	integrations.	~
3		ransform	5
	3.1	Definition and Region of Convergence, Transform of Standard	
		Functions:	
		$\{k^n a^k\}, \{a^{ k }\}, \{k^{+n} C. a^k\}, \{c^k \sin(\alpha k + \beta)\}, \{c^k \sinh \alpha k\}, \{c^k \cosh \alpha k\}.$	
	3.2	Properties of Z Transform: Change of Scale, Shifting Property,	
		Multiplication, and Division by k, Convolution theorem.	
	3.3	Inverse Z transform: Partial Fraction Method, Convolution Method.	
	3.4	Self-learning Topics: Initial value theorem, Final value theorem,	
		Inverse of Z Transform by Binomial Expansion	
4		bability Distribution and Sampling Theory	6
	4.1	Probability Distribution: Poisson and Normal distribution	

	4.2	Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom.		
	4.3 Students' t-distribution (Small sample). Test the significance of mean			
		and Difference between the means of two samples. Chi-Square Test:		
		Test ofgoodness of fit and independence of attributes, Contingency		
		table.		
	4.4	<b>Self-learning Topics:</b> Test significance for Large samples, Estimate		
		parameters of a population, Yate's Correction.		
5	Line	ear Programming Problems	6	
	5.1	Types of solutions, Standard and Canonical of LPP, Basic and Feasible		
	solutions, slack variables, surplus variables, Simplex method.			
	5.2 Artificial variables, Big-M method (Method of penalty)			
	5.3 Duality, Dual of LPP and Dual Simplex Method			
	5.4 <b>Self-learning Topics:</b> SensitivityAnalysis,Two-Phase Simplex Method,			
		Revised Simplex Method.		
6	No	nlinear Programming Problems	6	
	6.1	NLPP with one equality constraint (two or three variables) using the		
		method of Lagrange's multipliers		
	6.2	NLPP with two equality constraints		
	6.3 NLPP with inequality constraint: Kuhn-Tucker conditions			
	6.4	6.4 <b>Self-learning Topics:</b> Problems with two inequality constraints,		
		Unconstrained optimization: One-dimensional search method (Golden		
		Search method, Newton's method). Gradient Search method		

Refe	References:	
1	Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons.	
2	R. K. Jain and S. R. K. Iyengar, "Advanced Engineering Mathematics", Narosa.	
3	Brown and Churchill, "Complex Variables and Applications", McGraw-Hill Education.	
4	T. Veerarajan, "Probability, Statistics and Random Processes", McGraw-Hill Education.	
5	Hamdy A Taha, "Operations Research: An Introduction", Pearson.	
6	S.S. Rao, "Engineering Optimization: Theory and Practice", Wiley-Blackwell.	
7	Hira and Gupta, "Operations Research", S. Chand Publication.	

Teri	Term Work:		
Gen	eral Instructions:		
1	Batch wise tutorialshave to be conducted. The number of students per batch will be as per		
	University pattern for practical.		
2	Students must be encouraged to write at least 6 class tutorials on the entire syllabus.		
3	A group of 4-6 students should be assigned a self-learning topic. Students should prepare a		
	presentation/problem solving of 10-15 minutes. This will be considered as a mini project in		
	Engineering Mathematics. This project will be graded out of 10 marks depending on the		
	performance of the students.		
The	distribution of Term Work marks will be as follows:		
1	Attendance (Theory and Tutorial)	05 marks	
2	Class Tutorials on entire syllabus	10 marks	
3	Mini project	10 marks	

# **Internal Assessment Test:**

The assessment consists of two class tests of 20 marks each. The 1stclass test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The  $2^{nd}$  class test has to be conducted (Internal Assessment II) when an additional 35% syllabus is completed. The duration of each test will be for one hour.

End	End Semester Theory Examination:		
1	The question paper will comprise a total of 6 questions, each carrying 20 marks.		
2	Out of the 6 questions, 4 questions have to be attempted.		
3	Question 1, based on the entire syllabus, will have 4sub-questions of 5 marks each and is		
	compulsory.		
4	Question 2 to Question 6 will have 3 sub-questions, each of 6, 6, and 8 marks, respectively.		
5	Each sub-question in (4) will be from different modules of the syllabus.		
6	Weightage of each module will be proportional to the number of lecture hours, as mentioned		
	in the syllabus.		



Course Code	Course Name	Credit
CSC402	Analysis of Algorithms	3

Pro	Prerequisite: Data structure concepts, Discrete structures		
Co	Course Objectives:		
1	To provide mathematical approaches for Analysis of Algorithms		
2	To understand and solve problems using various algorithmic approaches		
3	3 To analyze algorithms using various methods		
Co	urse Outcomes: At the end of the course learner will be able to		
1	Analyze the running time and space complexity of algorithms.		
2	Describe, apply and analyze the complexity of divide and conquer strategy.		
3	3 Describe, apply and analyze the complexity of greedy strategy.		
4	4 Describe, apply and analyze the complexity of dynamic programming strategy.		
5	Explain and apply backtracking, branch and bound.		
6	Explain and apply string matching techniques.		

Module		<b>Detailed Contents</b>	Hours
1		Introduction	8
	1.1	Performance analysis, space and time complexityGrowth of function,	
		Big- Oh,Omega Theta notationMathematical background for algorithm	
		analysis.	
		Complexity class: Definition of P, NP, NP-Hard, NP-CompleteAnalysis	
		of selection sort, insertion sort.	
	1.2	Recurrences: The substitution method, Recursion tree method, Master	
		method	
2		Divide and Conquer Approach	6
	2.1	General method, Merge sort, Quick sort, Finding minimum and	
		maximum algorithms and their Analysis, Analysis of Binary search.	
3		Greedy Method Approach	6
	3.1	General Method, Single source shortest path: Dijkstra	
		AlgorithmFractional Knapsack problem, Job sequencing with deadlines,	
		Minimum cost spanning trees: Kruskal and Prim's algorithms	
4		Dynamic Programming Approach	9
	4.1	General Method, Multistage graphs, Single source shortest	
		path:Bellman Ford Algorithm	
		All pair shortest path: Floyd Warshall Algorithm, Assembly-line	
		scheduling Problem0/1 knapsack Problem, Travelling Salesperson	
		problem, Longest common subsequence	
5		Backtracking and Branch and bound	6
	5.1	General Method, Backtracking:N-queen problem, Sum of subsets,	
		Graph coloring	
	5.2	Branch and Bound: Travelling Salesperson Problem, 15 Puzzle problem	
6		String Matching Algorithms	4
	6.1	The Naïve string-matching algorithm, The Rabin Karp algorithm, The	
		Knuth-Morris-Pratt algorithm	

Text	Textbooks:			
1	T. H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms", 2 nd			
	Edition, PHI Publication 2005.			
2	Ellis Horowitz, Sartaj Sahni, S. Rajsekaran. "Fundamentals of computer algorithms"			
	University Press.			
Refe	References:			

- Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-Hill Edition.
  - 2 S. K. Basu, "Design Methods and Analysis of Algorithm", PHI

# **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

1	Question paper will comprise of total six questions.
2	All question carries equal marks
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3
	then part (b) will be from any module other than module 3)

- 4 Only Four question need to be solved.
- In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Useful Links		
1	https://nptel.ac.in/courses/106/106/106106131/	
2	https://swayam.gov.in/nd1_noc19_cs47/preview	4 7 7
3	https://www.coursera.org/specializations/algorithms	
4	https://www.mooc-list.com/tags/algorithms	

Course Code:	Course Title	Credit
CSC403	Database Management System	3

Pr	Prerequisite: Data Structures		
Co	Course Objectives:		
1	Develop entity relationship data model and its mapping to relational model		
2	Learn relational algebra and Formulate SQL queries		
3	Apply normalization techniques to normalize the database		
4	4 Understand concept of transaction, concurrency control and recovery techniques.		
Co	urse Outcomes:		
1	Recognize the need of database management system		
2	Design ER and EER diagram for real life applications		
3	3 Construct relational model and write relational algebra queries.		
4	4 Formulate SQL queries		
5	Apply the concept of normalization to relational database design.		
6	Describe the concept of transaction, concurrency and recovery.		

Module		Content	Hrs
1		Introduction Database Concepts	
	1.1	Introduction, Characteristics of databases, File system v/s Databasesystem, Data abstraction and data Independence, DBMS system architecture, Database Administrator	
2		Entity-Relationship Data Model	6
	2.1	The Entity-Relationship (ER) Model: Entity types: Weak and strong entity sets, Entity sets, Types of Attributes, Keys, Relationship constraints: Cardinality and Participation, Extended Entity-Relationship (EER) Model: Generalization, Specialization and Aggregation	
3		Relational Model and relational Algebra	8
	3.1	Introduction to the Relational Model, relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model, Relational Algebra-operators, Relational Algebra Queries.	
4		Structured Query Language (SQL)	6
	4.1	Overview of SQL, Data Definition Commands, Integrity constraints:key constraints, Domain Constraints, Referential integrity, check constraints, Data Manipulation commands, Data Control commands,Set and string operations, aggregate function-group by, having, Views in SQL, joins, Nested and complex queries,Triggers	
5		Relational-Database Design	6
	5.1	Pitfalls in Relational-Database designs, Concept of normalization, Function Dependencies, First Normal Form, 2NF, 3NF, BCNF.	
6		Transactions Management and Concurrency and Recovery	10
	6.1	Transaction concept, Transaction states, ACID properties, Transaction Control Commands, Concurrent Executions, Serializability-Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols, Recovery System: Log based recovery, Deadlock handling	

Te	xtbooks:			
1	Korth, Slberchatz, Sudarshan, Database System Concepts, 6 th Edition, McGraw Hill			
2	Elmasri and Navathe, Fundamentals of Database Systems, 5 th Edition, Pearson Education			
3	Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH			
Re	ferences:			
1	Peter Rob and Carlos Coronel, Database Systems Design, Implementation and			
	Management, Thomson Learning, 5th Edition.			
2	Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.			
3	G. K. Gupta, Database Management Systems, McGraw Hill, 2012			

# **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

Liiu	Semester Theory Examination.
1	Question paper will comprise of total six questions.
2	All question carries equal marks
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3
	then part (b) will be from any module other than module 3)
4	Only Four question need to be solved.
5	In question paper weightage of each module will be proportional to number of respective
	lecture hours as mention in the syllabus.

Use	Useful Links	
1	https://nptel.ac.in/courses/106/105/106105175/	
2	https://swayam.gov.in/nd1_noc19_cs46/preview	
3	https://www.classcentral.com/course/swayam-database-management-system-9914	
4	https://www.mooc-list.com/tags/dbms	

<b>Course Code</b>	Course Name	Credit
CSC404	Operating System	03

Pı	Prerequisites: Data structures and Computer architecture		
C	Course Objectives:		
1	1. To introduce basic concepts and functions of operating systems.		
2	2. To understand the concept of process, thread and resource management.		
3	3. To understand the concepts of process synchronization and deadlock.		
4	4. To understand various Memory, I/O and File management techniques.		
C	ourse Outcome:		
1	Understand the objectives, functions and structure of OS		
2	Analyze the concept of process management and evaluate performance of processscheduling		
	algorithms.		
3	Understand and apply the concepts of synchronization and deadlocks		
4	Evaluate performance of Memory allocation and replacement policies		
5	Understand the concepts of file management.		
	Apply concepts of I/O management and analyze techniques of disk scheduling.		

Module	Deta	ailed Content	Hours	
1	Ope	perating system Overview		
	1.1 Introduction, Objectives, Functions and Evolution of Operating			
	System			
	1.2			
		Linux Kernel, Shell and System Calls		
2	Pro	cess and Process Scheduling	9	
	2.1	Concept of a Process, Process States, Process Description, Process		
		Control Block.		
	2.2	Uniprocessor Scheduling-Types: Preemptive and Non-preemptive		
		scheduling algorithms (FCFS, SJF, SRTN, Priority,RR)		
	2.3	Threads: Definition and Types, Concept ofMultithreading		
3	Pro	cess Synchronization and Deadlocks	9	
	3.1	Concurrency: Principles of Concurrency, Inter-Process		
Communication		Communication, Process Synchronization.		
	3.2	Mutual Exclusion: Requirements, Hardware Support (TSL),		
	Operating System Support (Semaphores), Producer and Consumer			
	problem.			
	3.3	Principles of Deadlock: Conditions and Resource, Allocation Graphs,		
		Deadlock Prevention, Deadlock Avoidance: Banker's Algorithm,		
	L	Deadlock Detection and Recovery, Dining Philosophers Problem.		
4		nory Management	9	
	4.1	Memory Management Requirements, Memory Partitioning: Fixed,		
		Partitioning, Dynamic Partitioning, Memory Allocation Strategies:		
Best-Fit, First Fit, Worst Fit, Paging and Segmentation, TLB				
	4.2 Virtual Memory: Demand Paging, Page Replacement Strategie			
		FIFO, Optimal, LRU, Thrashing		
5	<del> </del>	File Management		
	5.1	5.1 Overview, File Organization and Access, File Directories, File		
	Sharing			
6		I/O management	4	

6.1	I/O devices, Organization of the I/O Function, Disk Organization, I/O	
	Management and Disk Scheduling:FCFS, SSTF, SCAN, CSCAN,	
	LOOK, C-LOOK.	

Tex	Textbooks:				
1	William Stallings, Operating System: Internals and Design Principles, Prentice Hall,				
	8 th Edition, 2014, ISBN-10: 0133805913 • ISBN-13: 9780133805918.				
2	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts,				
	John Wiley &Sons, Inc., 9 th Edition, 2016, ISBN 978-81-265-5427-0				
Ref	References:				
1	Achyut Godbole and Atul Kahate, Operating Systems, McGraw Hill Education, 3 rd Edition				
2	Andrew Tannenbaum, Operating System Design and Implementation, Pearson, 3 rd Edition.				
3	Maurice J. Bach, "Design of UNIX Operating System", PHI				
4	Sumitabha Das, "UNIX: Concepts and Applications", McGraw Hill, 4 th Edition				

# **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

Lilu	End Semester Theory Examination.					
1	Question paper will comprise of 6 questions, each carrying 20 marks.					
2	The students need to solve total 4 questions.					
3	Question No.1 will be compulsory and based on entire syllabus.					
4	Remaining question (Q.2 to Q.6) will be selected from all the modules					

Use	Useful Links		
1	https://swayam.gov.in/nd1_noc19_cs50/preview		
2	https://nptel.ac.in/courses/117/106/117106113/		
3	https://www.classcentral.com/course/swayam-introduction-to-operating-systems-6559		

Course Code	Course Name	Credits
CSC405	Microprocessor	3

Pr	Prerequisites: Digital Logic and Computer Architecture				
Co	Course objectives:				
1	To equip students with the fundamental knowledge and basic technical competence in the field of Microprocessors.				
2	To emphasize on instruction set and logic to build assembly language programs.				
3	3 To prepare students for higher processor architectures and embedded systems				
Co	Course outcomes: On successful completion of course, learner will be able to:				
1	Describe core concepts of 8086 microprocessor.				
2	Interpret the instructions of 8086 and write assembly and Mixed language programs.				
3	Identify the specifications of peripheral chip.				
4	Design 8086 based system using memory and peripheral chips.				
5	Appraise the architecture of advanced processors				
6	Understand hyperthreading technology				

Module	Deta	ailed Contents	Hours	
1	The	Intel Microprocessors 8086 Architecture	8	
	1.1 8086CPU Architecture,			
	1.2 Programmer's Model			
	1.3	Functional Pin Diagram		
	1.4	Memory Segmentation		
		Banking in 8086		
		Demultiplexing of Address/Data bus		
	1.7	Functioning of 8086 in Minimum mode and Maximum mode		
	1.8	Timing diagrams for Read and Write operations in minimum and maximum mode		
	1.9	Interrupt structure and its servicing		
2		ruction Set and Programming	6	
	2.1			
	2.2	Instruction set-Data Transfer Instructions, String Instructions, Logical		
		Instructions, Arithmetic Instructions, Transfer of Control Instructions,		
	Processor Control Instructions			
	2.3	Assembler Directives and Assembly Language Programming, Macros,		
		Procedures		
3	Mer	nory and Peripherals interfacing	8	
	3.1	Memory Interfacing - RAM and ROM Decoding Techniques – Partial and Absolute		
	3.2	8255-PPI-Block diagram, CWR, operating modes, interfacing with		
		8086.		
	<b>3.3</b> 8257-DMAC-Block diagram, DMA operations and transfer modes.			
	3.4 Programmable Interrupt Controller 8259-Block Diagram, Interfacing			
		the 8259 in single and cascaded mode.		
4		l 80386DX Processor	7	
	4.1	Architecture of 80386 microprocessor		
	4.2			
		registers		

	142	D 1 1 D 4 4 1 1 1 4 10006 1	1	
	4.3	Real mode, Protected mode, virtual 8086 mode		
	4.4	80386 memory management in Protected Mode – Descriptors and		
		selectors, descriptor tables, the memory paging mechanism		
5	Pen	tium Processor	6	
	5.1	Pentium Architecture		
	5.2	Superscalar Operation,		
	5.3	Integer &Floating-Point Pipeline Stages,		
	5.4	Branch Prediction Logic,		
	5.5	Cache Organization and		
	5.6	MESI protocol		
6	Pen	tium 4	4	
	6.1	Comparative study of 8086, 80386, Pentium I, Pentium II and Pentium		
	6.2	5.2 Pentium 4: Net burst micro architecture.		
	6.3	Instruction translation look aside buffer and branch prediction		
	6.4	Hyper threading technology and its use in Pentium 4		

Text	Textbooks:					
1	John Uffenbeck, "8086/8088 family: Design Programming and Interfacing", PHI.					
2	Yu-Cheng Liu, Glenn A. Gibson, "Microcomputer System: The 8086/8088					
	Family, Architecture, Programming and Design", Prentice Hall					
3	Walter A.Triebel, "The 80386DX Microprocessor: hardware, Software and Interfacing",					
	Prentice Hall					
4	Tom Shanley and Don Anderson, "Pentium Processor System Architecture", Addison-					
	Wesley.					
5	K. M. Bhurchandani and A. K. Ray, "Advanced Microprocessors and Peripherals",					
	McGraw Hill					
Refe	References:					
1	Barry B. Brey, "Intel Microprocessors", 8th Edition, Pearson Education India					
2	Douglas Hall, "Microprocessor and Interfacing", Tata McGraw Hill.					
3	Intel Manual					
4	Peter Abel, "IBM PC Assembly language and Programming", 5 th Edition, PHI					
5	James Antonakons, "The Pentium Microprocessor", Pearson Education					

### **Internal Assessment Test:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2 The students need to solve total 4 questions.
- 3 Question No.1 will be compulsory and based on entire syllabus.
- 4 Remaining question (Q.2 to Q.6) will be selected from all the modules.

Use	Useful Links			
1	https://swayam.gov.in/nd1 noc20 ee11/preview			
2	https://nptel.ac.in/courses/108/105/108105102/			
3	https://www.classcentral.com/course/swayam-microprocessors-and-microcontrollers-9894			
4	https://www.mooc-list.com/tags/microprocessors			

Course Name	Lab Name	Credit
CSL401	Analysis of Algorithms Lab	1

Pr	Prerequisite: Basic knowledge of programming and data structure		
La	Lab Objectives:		
1	To introduce the methods of designing and analyzing algorithms		
2	Design and implement efficient algorithms for a specified application		
3	Strengthen the ability to identify and apply the suitable algorithm for the given real-world problem.		
4	Analyze worst-case running time of algorithms and understand fundamental algorithmic problems.		
La	<b>Lab Outcomes:</b> At the end of the course, the students will be able to		
1	Implement the algorithms using different approaches.		
2	Analyze the complexities of various algorithms.		
3	Compare the complexity of the algorithms for specific problem.		

Description	
Implementation can be in any language.	
Suggested Practical List:	

Sr No		Suggested Experiment List
1		Introduction
	1.1	Selection sort, Insertion sort
2		Divide and Conquer Approach
	2.1	Finding Minimum and Maximum, Merge sort, Quick sort, Binary search
3		Greedy Method Approach
	3.1	Single source shortest path- Dijkstra
		Fractional Knapsack problem
		Job sequencing with deadlines
		Minimum cost spanning trees-Kruskal and Prim's algorithm
4		Dynamic Programming Approach
	4.1	Single source shortest path- Bellman Ford
		All pair shortest path- Floyd Warshall
		0/1 knapsack
		Travelling salesperson problem
		Longest common subsequence
5		Backtracking and Branch and bound
	5.1	N-queen problem
		Sum of subsets
		Graph coloring
6		String Matching Algorithms
	6.1	The Naïve string-matching Algorithms
		The Rabin Karp algorithm
		The Knuth-Morris-Pratt algorithm

Te	Term Work:		
1	Term work should consist of 10 experiments.		
2	Journal must include at least 2 assignmentson content of theory and practical of "Analysis of		
	Algorithms"		
3	The final certification and acceptance of term work ensures that satisfactory performance of		

	laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,		
	Assignments: 05-marks)		
Oral & Practical exam			
	Based on the entire syllabus of CSC402: Analysis of Algorithms		



Lab Code	Lab Name	Credit
CSL402	Database Management system Lab	1

Pr	Prerequisite: Discrete Structures			
La	Lab Objectives:			
1	To explore design and develop of relational model			
2	To present SQL and procedural interfaces to SQL comprehensively			
3	To introduce the concepts of transactions and transaction processing			
Lab Outcomes: At the end of the course, the students will be able to				
1	Design ER /EER diagram and convert to relational model for the realworld application.			
2	Apply DDL, DML, DCL and TCL commands			
3	Write simple and complex queries			
4	UsePL / SQL Constructs.			
5	Demonstrate the concept of concurrent transactions execution and frontend-backend connectivity			

Sugge	Suggested List of Experiments		
Sr. No.	Title of Experiment		
1	Identify the case study and detail statement of problem. Design an Entity-Relationship (ER) / Extended Entity-Relationship (EER) Model.		
2	Mapping ER/EER to Relational schema model.		
3	Create a database using Data Definition Language (DDL) and apply integrity constraints for the specified System		
4	Apply DML Commands for the specified system		
5	Perform Simple queries, string manipulation operations and aggregate functions.		
6	Implement variousJoin operations.		
7	Perform Nested and Complex queries		
8	Perform DCL and TCL commands		
9	Implement procedure and functions		
10	Implementation of Views and Triggers.		
11	Demonstrate Database connectivity		
12	Implementation and demonstration of Transaction and Concurrency control techniques using locks.		

Te	Term Work:			
1	Term work should consist of 10 experiments.			
2	Journal must include at least 2 assignmentson content of theory and practical of "Database			
	Management System"			
3	The final certification and acceptance of term work ensures that satisfactory performance of			
	laboratory work and minimum passing marks in term work.			
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,			
	Assignments: 05-marks)			
O	Oral & Practical exam			

Based on the entire syllabus of CSC403: Database Management System

Course Code	Course Name	Credit
CSL403	Operating System Lab	01

Pr	Prerequisite: Knowledge on Operating system principles			
Ļ				
L	ab Objectives:			
1	To gain practical experience with designing and implementing concepts of operating			
	systems such as system calls, CPU scheduling, process management, memory management,			
	file systems and deadlock handling using C language in Linux environment.			
2	To familiarize students with the architecture of Linux OS.			
3	To provide necessary skills for developing and debugging programs in Linux environment.			
4	To learn programmatically to implement simple operation system mechanisms			
La	<b>ab Outcomes:</b> At the end of the course, the students will be able to			
1	Demonstrate basic Operating system Commands, Shell scripts, System Calls and API wrt			
	Linux			
2	Implement various process scheduling algorithms and evaluate their performance.			
3	Implement and analyze concepts of synchronization and deadlocks.			
4	Implement various Memory Management techniques and evaluate their performance.			
5	Implement and analyze concepts of virtual memory.			
6	Demonstrate and analyze concepts of file management and I/O management techniques.			

Sugg	ested 1	List of Experiments
Sr. No.		Content
1		Explore Linux Commands
	1.1	Explore usage of basic Linux Commands and system calls for file, directory and process management.  For eg: (mkdir, chdir, cat, ls, chown, chmod, chgrp, ps etc. system calls: open, read, write, close, getpid, setpid, getuid, getgid, getegid, geteuid. sort, grep, awk, etc.)
2		Linux shell script
	2.1	<ul> <li>Write shell scripts to do the following:</li> <li>a. Display OS version, release number, kernel version</li> <li>b. Display top 10 processes in descending order</li> <li>c. Display processes with highest memory usage.</li> <li>d. Display current logged in user and log name.</li> <li>e. Display current shell, home directory, operating system type, current path setting, current working directory.</li> </ul>
3.		Linux- API
	3.1	Implement any one basic commands of linux like ls, cp, mv and others using kernel APIs.
4.		Linux- Process
	4.1	a. Create a child process in Linux using the fork system call. From the child process obtain the process ID of both child and parent by using getpid and

		getppid system call. b. Explore wait and waitpid before termination of process.	
5		Process Management: Scheduling	
	5.1	<ul><li>a. Write a program to demonstrate the concept of non-preemptive scheduling algorithms.</li><li>b. Write a program to demonstrate the concept of preemptive scheduling algorithms</li></ul>	
6		Process Management: Synchronization	
	6.1	Write a C program to implement solution of Producer consumer problem through Semaphore	
7		Process Management: Deadlock	
	7.1	<ul> <li>a. Write a program to demonstrate the concept of deadlock avoidance through Banker's Algorithm</li> <li>b. Write a program demonstrate the concept of Dining Philospher's Problem</li> </ul>	
8.		Memory Management	
	8.1	<ul> <li>a. Write a program to demonstrate the concept of MVT and MFT memory management techniques</li> <li>b. Write a program to demonstrate the concept of dynamic partitioning placement algorithms i.e. Best Fit, First Fit, Worst-Fit etc.</li> </ul>	
9		Memory Management: Virtual Memory	
	9.1	<ul> <li>a. Write a program to demonstrate the concept of demand paging for simulation of Virtual Memory implementation</li> <li>b. Write a program in C demonstrate the concept of page replacement policies for handling page faults eg: FIFO, LRU etc.</li> </ul>	
10		File Management & I/O Management	
	10.1	<ul> <li>a. Write a C program to simulate File allocation strategies typically sequential, indexed and linked files</li> <li>b. Write a C program to simulate file organization of multi-level directory structure.</li> <li>c. Write a program in C to do disk scheduling - FCFS, SCAN, C-SCAN</li> </ul>	

Te	Term Work:			
1	Term work should consist of 10 experiments covering all modules.			
2	Journal must include at least 2 assignments on content of theory and practical of "Database			
	Management System"			
3	The final certification and acceptance of term work ensures that satisfactory performance of			
	laboratory work and minimum passing marks in term work.			
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,			
	Assignments: 05-marks)			
Oral & Practical exam				
	Based on the entire syllabus of CSC405: Operating System.			

Lab Code	Lab Name	Credits
CSL404	Microprocessor Lab	1

Prerequisite: Basic knowledge digital integrated circuits		
La	ab Objectives:	
1	To emphasize on use of Assembly language program.	
2	To prepare students for advanced subjects like embedded system and IOT.	
<b>Lab Outcomes:</b> At the end of the course, the students will be able to		
1	Use appropriate instructions to program microprocessor to perform various task	
2	Develop the program in assembly/ mixed language for Intel 8086 processor	
3	Demonstrate the execution and debugging of assembly/ mixed language program	

Sugge	Suggested List of Experiments:		
Sr.	Title of Experiments		
No.			
1	Use of programming tools (Debug/TASM/MASM/8086kit) to perform basic arithmetic operations on 8-bit/16-bit data		
2	Code conversion (Hex to BCD and BCD to Hex)/ (ASCII to BCD and BCD to ASCII)		
3	Assembly programming for 16-bit addition, subtraction, multiplication and division (menu based)		
4	Assembly program based on string instructions (overlapping/non-overlapping block transfer/ string search/ string length)		
5	Assembly program to display the contents of the flag register.		
6	Any Mixed Language programs.		
7	Assembly program to find the GCD/ LCM of two numbers		
8	Assembly program to sort numbers in ascending/ descending order		
9	Any program using INT 10H		
10	Assembly program to find minimum/ maximum number from a given array.		
11	Assembly Program to display a message in different color with blinking		
12	Assembly program using procedure.		
13	Assembly program using macro.		
14	Program and interfacing using 8255.		
15	Program and interfacing of ADC/ DAC/ Stepper motor.		

Te	Term Work:			
1	Term work should consist of 10 experiments, out of theses at least one experiment on			
	hardware interfacing.			
2	Journal must include at least 2 assignmentson content of theory and practical of			
	"Microprocessor"			
3	The final certification and acceptance of term work ensures that satisfactory performance of			
	laboratory work and minimum passing marks in term work.			
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory& Practical: 05-marks,			
	Assignments: 05-marks)			
O	Oral & Practical exam			
	Based on the entire syllabus of CSL501and CSC501syllabus.			

Lab Code	Lab Name	Credit
CSL405	Skill Base Lab Course: Python Programming	2

Pr	Prerequisite: Knowledge of some programming language like C, Java		
La	b Objectives:		
1	Basics of Python programming		
2	Decision Making, Data structure and Functions in Python		
3	Object Oriented Programming using Python		
4	Web framework for developing		
La	<b>b Outcomes:</b> At the end of the course, the students will be able to		
1	To understand basic concepts in python.		
2	To explore contents of files, directories and text processing with python		
3	To develop program for data structure using built in functions in python.		
4	To explore django web framework for developing python-based web application.		
5	To understand Multithreading concepts using python.		

Module		Detailed Content	Hours
1		Python basics	5
	1.1	Data types in python, Operators in python, Input and Output, Control statement, Arrays in python, String and Character in python, Functions, List and Tuples, Dictionaries Exception, Introduction to OOP, Classes, Objects, Interfaces, Inheritance	
2		Advanced Python	4
	2.1	Files in Python, Directories, Building Modules, Packages, Text Processing, Regular expression in python.	
3		Data Structure in Python	3
	3.1	Link List, Stack, Queues, Dequeues	
4		Python Integration Primer	4
	4.1	Graphical User interface, Networking in Python, Python database connectivity, Introduction to Django	
5		Multithreading	4
	5.1	Thread and Process, Starting a thread, Threading module, Synchronizing threads, Multithreaded Priority Queue	
6		NumPy and Pandas	6
	6.1	Creating NumPy arrays, Indexing and slicing in NumPy, creating multidimensional arrays, NumPy Data types, Array Attribute, Indexing and Slicing, Creating array views copies, Manipulating array shapes I/O Basics of Pandas, Using multilevel series, Series and Data	
	0.2	Frames, Grouping, aggregating, Merge DataFrames	

Tex	Textbooks:				
1	Dr. R. Nageswara Rao, "Core Python Programming", DreamtechPress				
2	Beginning Python: Using Python 2.6 and Python 3.1. James Payne, Wrox Publication				
3	Anurag Gupta,G. P. Biswas, "Python Programming",McGraw-Hill				
4	E Balagurusamy, "Introduction to computing and problem-solving using				
	python",McGrawHill Education				
Ref	References:				
1	Learn Python the Hard Way, 3 rd Edition, Zed Shaw's Hard WaySeries				
2	Laura Cassell, Alan Gauld, "Python Projects", Wrox Publication				

Digi	Digital material:	
1	"The Python Tutorial",http://docs.python.org/release/3.0.1/tutorial/	
2	Beginning Perl, https://www.perl.org/books/beginning-perl/	
3	http://spoken-tutorial.org	
4	https://starcertification.org/Certifications/Certificate/python	

Suggested experiments using Python:		
Sr.	Title of Experiments	
No.		
1	Exploring basics of python like data types (strings,list,array,dictionaries,set,tuples) and control statements.	
2	Creating functions, classes and objects using python. Demonstrate exception handling and inheritance.	
3	Exploring Files and directories	
	a. Python program to append data to existing file and then display the entirefile	
	b. Python program to count number of lines, words and characters in afile.	
	c. Python program to display file available in currentdirectory	
4	Creating GUI with python containing widgets such as labels, textbox,radio,checkboxes and custom dialogboxes.	
5	Menu driven program for data structure using built in function for link list, stack andqueue.	
6	Program to demonstrate CRUD(create, read, update and delete) operations on database (SQLite/ MySQL) usingpython	
7	Creation of simple socket for basic information exchange between server and client.	
8	Creating web application using Django web framework to demonstrate functionality of user login and registration (also validating user detail using regularexpression).	
9	Programs on Threading using python.	
10	Exploring basics of NumPy Methods.	
11	Program to demonstrate use of NumPy:Array objects.	
12	Program to demonstrate Data Series and Data Frames using Pandas.	
13	Program to send email and read content of URL.	

Te	Term Work:								
1	Term work should consist of 12 experiments.								
2	Journal must include at least 2 assignments								
3	Mini Project based on the content of the syllabus(Group of 2-3 students)								
4	The final certification and acceptance of term work ensures that satisfactory performance of								
	laboratory work and minimum passing marks in term work.								
5	Total 50-Marks (Experiments: 10-marks, Assignments: 05-marks, Mini Project: 10-marks)								
Oı	Oral & Practical exam								
Ва	ased on the entire syllabus of CSL 405.								

Course code	Course Name	Credits
CSM401	Mini Project B	02

Ωh	jectives
	To acquaint with the process of identifying the needs and converting it into the problem.
1	
3	To familiarize the process of solving the problem in a group.
3	To acquaint with the process of applying basic engineering fundamentals to attempt
4	solutions to the problems.
4	To inculcate the process of self-learning and research.
Ou	tcome: Learner will be able to
1	Identify problems based on societal /research needs.
2	Apply Knowledge and skill to solve societal problems in a group.
3	Develop interpersonal skills to work as member of a group or leader.
4	Draw the proper inferences from available results through theoretical/
	experimental/simulations.
5	Analyze the impact of solutions in societal and environmental context for sustainable
	development.
6	Use standard norms of engineering practices
7	Excel in written and oral communication.
8	Demonstrate capabilities of self-learning in a group, which leads to lifelong learning.
9	Demonstrate project management principles during project work.
Gu	idelines for Mini Project
1	Students shall form a group of 3 to 4 students, while forming a group shall not be allowed
	less than three or more than four students, as it is a group activity.
2	Students should do survey and identify needs, which shall be converted into problem
	statement for mini project in consultation with faculty supervisor/head of
	department/internal committee of faculties.
3	Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which
4	will cover weekly activity of mini project.
4	A logbook to be prepared by each group, wherein group can record weekly work progress,
_	guide/supervisor can verify and record notes/comments.
5	Faculty supervisor may give inputs to students during mini project activity; however, focus
-	shall be on self-learning.
6	Students in a group shall understand problem effectively, propose multiple solution and
7	select best possible solution in consultation with guide/ supervisor.  Students shall convert the best solution into working model using various components of
/	their domain areas and demonstrate.
8	The solution to be validated with proper justification and report to be compiled in standard
8	format of University of Mumbai.
9	With the focus on the self-learning, innovation, addressing societal problems and
	entrepreneurship quality development within the students through the Mini Projects, it is
	preferable that a single project of appropriate level and quality to be carried out in two
	semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV.
	Similarly, Mini Project 2 in semesters V and VI.
10	However, based on the individual students or group capability, with the mentor's
	recommendations, if the proposed Mini Project adhering to the qualitative aspects
	mentioned above gets completed in odd semester, then that group can be allowed to work
	on the extension of the Mini Project with suitable improvements/modifications or a
	completely new project idea in even semester. This policy can be adopted on case by case
	basis.

#### **Term Work**

The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.

In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

D	istribution of Term work marks for both semesters shall be as below:	Marks
1	Marks awarded by guide/supervisor based on logbook	10
2	Marks awarded by review committee	10
3	Quality of Project report	05

Review / progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines

# **One-year project:**

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
  - First shall be for finalisation of problem
  - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
  - First review is based on readiness of building working prototype to be conducted.
  - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

# Half-year project:

- 1 In this case in one semester students' group shall complete project in all aspects including,
  - Identification of need/problem
  - Proposed final solution
  - Procurement of components/systems
  - Building prototype and testing
- 2 Two reviews will be conducted for continuous assessment,
  - First shall be for finalisation of problem and proposed solution
  - Second shall be for implementation and testing of solution.

# Assessment criteria of Mini Project.

# Mini Project shall be assessed based on following criteria;

- 1 Quality of survey/ need identification
- 2 Clarity of Problem definition based on need.
- 3 Innovativeness in solutions
- 4 Feasibility of proposed problem solutions and selection of best solution
- 5 Cost effectiveness
- 6 Societal impact
- 7 Innovativeness
- 8 Cost effectiveness and Societal impact
- 9 Full functioning of working model as per stated requirements

10	Effective use of skill sets
10	
11	Effective use of standard engineering norms
12	Contribution of an individual's as member or leader
13	Clarity in written and oral communication
	In <b>one year, project</b> , first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
	In case of <b>half year project</b> all criteria's in generic may be considered for evaluation of performance of students in mini project.
Gui	delines for Assessment of Mini Project Practical/Oral Examination:
1	Report should be prepared as per the guidelines issued by the University of Mumbai.
2	Mini Project shall be assessed through a presentation and demonstration of working model
	by the student project group to a panel of Internal and External Examiners preferably from
	industry or research organisations having experience of more than five years approved by head of Institution.
3	Students shall be motivated to publish a paper based on the work in Conferences/students
J	competitions.
Min	i Project shall be assessed based on following points;
1	Quality of problem and Clarity
2	Innovativeness in solutions
3	Cost effectiveness and Societal impact
4	Full functioning of working model as per stated requirements
5	Effective use of skill sets
6	Effective use of standard engineering norms
7	Contribution of an individual's as member or leader
8	Clarity in written and oral communication
	Clarity in written and oral communication

# **UNIVERSITY OF MUMBAI**



Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

# FACULTY OF TECHNOLOGY

# **Computer Engineering**

Second Year with Effect from AY 2017-18
Third Year with Effect from AY 2018-19
Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

### **Co-ordinator**, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development. Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach

senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology,

of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum

and developed curriculum accordingly. In addition to outcome based education, semester based credit and

grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Dean (I/c), Faculty of Science and Technology, Member - Academic Council, University of Mumbai, Mumbai

#### **Chairman's Preamble:**

Engineering education in India is expanding and is set to increase manifold. The major challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Computer Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for Undergraduate Program were finalized in a brain storming session, which was attended by more than 85 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Computer Engineering. The Program Educational Objectives finalized for the undergraduate program in Computer Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals.
- 2. To motivate the Learner in the art of self-learning and to use modern tools for solving real life problems.
- 3. To equip the Learner with broad education necessary to understand the impact of Computer Science and Engineering in a global and social context.
- 4. To encourage, motivate and prepare the Learner's for Lifelong-learning.
- 5. To inculcate professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process.

In addition to Program Educational Objectives, for each course of the program, objectives and expected outcomes from a learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr. Subhash K. Shinde Chairman, Board of Studies in Computer Engineering, University of Mumbai, Mumbai.

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2018-19
T. E. Computer Engineering (Semester-V)

Course	Course	Teaching (Contac	Scheme t Hours)		Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
CSC501	Microprocessor	4	-	-	4	-	-	4	
CSC502	Database Management System	4	-	-	4	-	-	4	
CSC503	Computer Network	4	-	-	4	-	-	4	
CSC504	Theory of Computer Science	3+1@	-	-	4	-	-	4	
CSDLO 501X	Department Level Optional Course -I	4	-	-	4	-	-	4	
CSL501	Microprocessor Lab	-	2	-	-	1		1	
CSL502	Computer Network Lab	-	2	-	-	1	-	1	
CSL503	Database & Info. System Lab	-	2	1	-	1	-	1	
CSL504	Web Design Lab	-	2+2*	ı	-	2	-	2	
CSL505	Business Comm. & Ethics	-	2+2*	-	-	2	-	2	
	Total	20	14	-	20	7	-	27	

^{@ 1} hour to be taken tutorial as class wise.

^{*2} hours shown as Practical's to be taken class wise and other 2 hours to be taken as batch wise

	Course	Examination Scheme								
Course		Theory						Oral		
Code	Name	Inte	rnal As	sessment	End	Exam	TW	Orai &	Total	
		Test 1	Test 2	Avg.	Sem. Exam	Duration ( in Hrs)	1,,	Pract	10441	
CSC501	Microprocessor	20	20	20	80	3	-	-	100	
CSC502	Database Management System	20	20	20	80	3	ı	-	100	
CSC503	Computer Network	20	20	20	80	3	-	-	100	
CSC504	Theory of Computer Science	20	20	20	80	3	-	-	100	
CSDLO 501X	Department Level Optional Course -I	20	20	20	80	3	-	-	100	
CSL501	Microprocessor Lab	-	-	ı	-	-	25	25	50	
CSL502	Computer Network Lab	-	-	-	_	-	25	25	50	
CSL503	Database & Info. System	-	-	-	-	-	25	25	50	
CSL504	Web Design Lab	-	-	-	-	-	25	25	50	
CSL505	Business Comm. & Ethics	-	-		-	_	50	-	50	
	Total	100	100	100	400	-	150	100	750	

# Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2018-19 T. E. Computer Engineering (Semester-VI)

Course	Course	Teaching (Contact			Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
CSC601	Software Engineering	4	-	-	4	-	-	4	
CSC602	System Programming & Complier Construction	4	-	-	4	-	-	4	
CSC603	Data Warehousing & Mining	4	1	1	4	1	-	4	
CSC604	Cryptography & System Security	4	1	1	4	ı	-	4	
CSDLO 601X	Department Level Optional Course -II	4	-	-	4	-	-	4	
CSL601	Software Engineering Lab	-	2	-	-	1	-	1	
CSL602	System software Lab	-	2	-	-	1	-	1	
CSL603	Data Warehousing & Mining Lab	-	2	-	-	1	-	1	
CSL604	System Security Lab	-	2	-	-	1	-	1	
CSP605	Mini-Project	-	4	-	-	2	-	2	
	Total	20	12	-	20	6	-	26	

					Exami	nation Sch	eme			
Course	Course	Theory							Oral	
Code	Name	Internal Assessment			End	Exam	TW	Oral	&	Total
		Test 1	Test 2	Avg.	Sem. Exam	Duration ( in Hrs)			Pract	
CSC601	Software Engineering	20	20	20	80	3	-	-	-	100
CSC602	System Programming & Complier Construction	20	20	20	80	3	=	-	-	100
CSC603	Data Warehousing & Mining	20	20	20	80	3	-	-	-	100
CSC604	Cryptography & System Security	20	20	20	80	3	-	-	-	100
CSDLO 601X	Department Level Optional Course -II	20	20	20	80	3	-	-	-	100
CSL601	Software Engineering Lab	-	-	-	-	-	25	25		50
CSL602	System Software Lab	-	-	-	-	-	25		25	50
CSL603	Data Warehousing & Mining Lab	-	-	-	-	-	25		25	50
CSL604	System Security Lab	_	-	-	-	-	25		25	50
CSP605	Mini-Project	-	-	-	-	-	25		25	50
	Total		100	100	400	-	125	25	100	750

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2019-20 B. E. Computer Engineering (Semester-VII)

Course	Course	Teaching (Contact	Scheme	Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
CSC701	Digital Signal & Image Processing	4	-	ı	4	-	-	4
CSC702	Mobile Communication & Computing	4	-	-	4	-	-	4
CSC703	Artificial Intelligence & Soft Computing	4	-	-	4	-	-	4
CSDLO 701X	Department Level Optional Course -III	4	-	-	4	-	-	4
ILO701X	Institute Level Optional Course-I	3	-	1	3	-	-	3
CSL701	Digital Signal & Image Processing Lab	-	2	ı	-	1	-	1
CSL702	Mobile App. Development. Tech. Lab	-	2	-	-	1	-	1
CSL703	Artificial Intelligence & Soft Computing Lab	-	2	-		1	-	1
CSL704	Computational Lab-I	-	2			1	-	1
CSP705	Major Project-I	-	6			3	-	3
	Total	19	14	-	19	7	-	26

	Course	Examination Scheme								
Course		Theory							0.1	
Code	Name	Internal Assessment			End	Exam	TW	Oral	Oral &	Total
		Test 1	Test 2	Avg.	Sem. Exam	Duration ( in Hrs)			Pract	
CSC701	Digital Signal & Image Processing	20	20	20	80	3	-		-	100
CSC702	Mobile Communication & Computing	20	20	20	80	3	-		-	100
CSC703	Artificial Intelligence & Soft Computing	20	20	20	80	3	-		-	100
CSDLO 701X	Department Level Optional Course -III	20	20	20	80	3	-		-	100
ILO701X	Institute Level Optional Course-I	20	20	20	80	3			-	100
CSL701	Digital Signal & Image Processing Lab	-	-	-	-	-	25			25
CSL702	Mobile App. Development. Tech. Lab	-	-	-	-	-	25		25	50
CSL703	Artificial Intelligence & Soft Computing Lab		-	-	-		25	25		50
CSL704	Computational Lab-I						25		25	50
CSP705	Major Project-I	-	-	-	_	-	50	-	25	75
	Total	100	100	100	400		150	25	75	750

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2019-20 B. E. Computer Engineering (Semester-VIII)

Course	Course	Teaching (Contac	Credits Assigned					
Code	Name	Theory	Pract	Tut	Theory	TW/ Prac <b>t</b>	Tut	Total
CSC801	Human Machine Interaction	4	-	ı	4	-	-	4
CSC802	Distributed Computing	4	-	-	4	-	-	4
CSDLO 801X	Department Level Optional Course -IV	4	-	-	4	-	-	4
ILO801X	Institute Level Optional Course-II	3	-	-	3	-	-	3
CSL801	Human Machine Interaction Lab	-	2	-	-	1		1
CSL802	Distributed Computing Lab		2			1		1
CSL803	Cloud Computing Lab	-	4	-	-	2		2
CSL804	Computational Lab-II	-	2	-		1		1
CSP805	Major Project-II	-	12			6	-	6
	Total	15	22	-	15	11	-	26

		<b>Examination Scheme</b>								
Course	Course	Theory						Oral		
Code	Name	Internal Assessment			End	Exam Duratio	TW	Oral		Total
		Test 1	Test 2	Avg.	Sem. Exam	n ( in			Pract	
CSC801	Human Machine Interaction	20	20	20	80	3	ı	-	ı	100
CSC802	Distributed Computing	20	20	20	80	3	-	-	-	100
CSDLO 801X	Department Level Optional Course -IV	20	20	20	80	3	-	-	- 1	100
ILO801X	Institute Level Optional Course-II	20	20	20	80	3	ı	-	ı	100
CSC801	Human Machine Interaction Lab						25	25	-	50
CSL802	Distributed Computing Lab	-	-	-	-	-	25	25		50
CSL803	Cloud Computing Lab	-	-	-	-	-	50		25	75
CSL804	Computational Lab-II	-	-	-	-	-	50		25	75
CSP805	Major Project-II						50		50	100
Total		80	80	80	320		200	50	100	750

Sem.	Department Level Optional Course (DLOC)	Institute Level Optional Course (ILOC)
v	CSDLO5011: Multimedia System CSDLO5012: Advance Operating System CSDLO5013: Advance Algorithm	
VI	CSDLO6021: Machine Learning CSDLO6022: Advance Database System CSDLO6023: Enterprise Resource Planning CSDLO6024: Advance Computer Network	
VII	CSDLO7031: Advance System Security &  Digital Forensics  CSDLO7032: Big Data & Analytics  CSDLO7033: Robotics	ILO7011. Product Lifecycle Management ILO7012. Reliability Engineering ILO7013. Management Information System ILO7014. Design of Experiments ILO7015. Operation Research ILO7016. Cyber Security and Laws ILO7017. Disaster Management & Mitigation Measures ILO7018. Energy Audit and Management ILO7019. Development Engineering
VIII	DLO8011: High Performance Computing DLO8012: Natural Language Processing DLO8013: Adhoc Wireless Network	ILO8021. Project Management ILO8022. Finance Management ILO8023. Entrepreneurship Development and Management ILO8024. Human Resource Management ILO8025. Professional Ethics and CSR ILO8026. Research Methodology ILO8027. IPR and Patenting ILO8028. Digital Business Management ILO8029. Environmental Management

Course Code	Course Name	Credits
CSC501	Microprocessor	4

#### **Course objectives:**

- 1. To equip students with the fundamental knowledge and basic technical competence in the field of Microprocessors.
- 2. To emphasize on instruction set and logic to build assembly language programs.
- 3. To prepare students for higher processor architectures and Embedded systems

#### **Course outcomes:** On successful completion of course learner will be able to:

- 1. Describe architecture of x86 processors.
- 2. Interpret the instructions of 8086 and write assembly and Mixed language programs.
- 3. Explain the concept of interrupts
- 4. Identify the specifications of peripheral chip
- 5. Design 8086 based system using memory and peripheral chips
- 6. Appraise the architecture of advanced processors

### Prerequisite: Digital Electronics and Logic Design

Module No.	Unit No.	Topics	Hrs.
1.0	110.	The Intel Microprocessors 8086/8088 Architecture	10
	1.1	8086/8088 CPU Architecture, Programmer's Model	
		Functional Pin Diagram	
		Memory Segmentation	
		Banking in 8086	
		<ul> <li>Demultiplexing of Address/Data bus</li> </ul>	
		Study of 8284 Clock Generator	
		Study of 8288 Bus Controller	
		<ul> <li>Functioning of 8086 in Minimum mode and Maximum mode</li> </ul>	
		Timing diagrams for Read and Write operations in minimum and	
		maximum mode	
2.0		Instruction Set and Programming	12
	2.1	Addressing Modes	
		• Instruction set – Data Transfer Instructions, String Instructions,	
		Logical Instructions, Arithmetic Instructions, Transfer of Control	
		Instructions, Processor Control Instructions	
		Assembler Directives and Assembly Language Programming,	
		Macros, Procedures	
		Mixed Language Programming with C Language and Assembly  Language	
		Language.	
		• Programming based on DOS and BIOS Interrupts (INT 21H, INT 10H)	
3.0		8086 Interrupts	6
2.0	3.1	Types of interrupts	-
	0.12	Interrupt Service Routine	
		Interrupt Vector Table	
		Servicing of Interrupts by 8086 microprocessor	
		Programmable Interrupt Controller 8259 – Block Diagram,	
		Interfacing the 8259 in single and cascaded mode, Operating	
		modes, programs for 8259 using ICWs and OCWs	

4.0		Peripherals and their interfacing with 8086	12	
	4.1	Memory Interfacing - RAM and ROM		
		Decoding Techniques – Partial and Absolute		
	4.2	8255-PPI – Block diagram, Functional PIN Diagram, CWR, operating		
		modes, interfacing with 8086.		
	4.3	8253 PIT - Block diagram, Functional PIN Diagram, CWR, operating		
		modes, interfacing with 8086.		
	4.4	8257-DMAC – Block diagram, Functional PIN Diagram, Register		
		organization, DMA operations and transfer modes		
5.0		Intel 80386DX Processor	6	
	5.1	Architecture of 80386 microprocessor		
		• 80386 registers – General purpose Registers, EFLAGS and Control		
		registers		
		Real mode, Protected mode, virtual 8086 mode		
		• 80386 memory management in Protected Mode – Descriptors and		
		selectors, descriptor tables, the memory paging mechanism		
6.0		Pentium Processor	6	
	6.1	Pentium Architecture		
		Superscalar Operation, Integer & Floating Point Pipeline Stages, Branch		
		Prediction Logic, Cache Organisation and MESI Model		
		Total	52	

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

#### **End Semester Theory Examination:**

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 1. The students need to solve total 4 questions.
- 2. Question No.1 will be compulsory and based on entire syllabus.
- 3. Remaining question (Q.2 to Q.6) will be selected from all the modules.

#### **Text Books:**

- 1. 8086/8088 family: Design Programming and Interfacing: John Uffenbeck, PHI.
- 2. Advanced Microprocessors and Peripherals: K M Bhurchandani, A k Ray McGraw Hill
- 3. The 80386DX Microprocessor: hardware, Software and Interfacing, Walter A Triebel, Prentice Hall
- 4. Pentium Processor System Architecture: Tom Shanley & Don Anderson, Addison-Wesley.

#### **Reference Books:**

- 1. Intel Microprocessors: Barry B. Brey, 8th Edition, Pearson Education India
- 2. Microprocessor and Interfacing: Douglas Hall, Tata McGraw Hill.
- 3. Advanced MS DOS Programming Ray Duncan BPB
- 4. Intel 80386 Datasheets
- 5. IBM PC Assembly language and Programming: Peter Abel, 5th edition, PHI
- 6. The Pentium Microprocessor, James Antonakons, Pearson Education

Course Code	Course Name	Credits
CSC502	Database Management System	4

### **Course objectives:**

- 1. Learn and practice data modelling using the entity-relationship and developing database designs.
- 2. Understand the use of Structured Query Language (SQL) and learn SQL syntax.
- 3. Apply normalization techniques to normalize the database
- 4. Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access.

#### **Course outcomes:** On successful completion of course learner will be able to:

- 1. Understand the fundamentals of a database systems
- 2. Design and draw ER and EER diagram for the real life problem.
- 3. Convert conceptual model to relational model and formulate relational algebra queries.
- 4. Design and querying database using SQL.
- 5. Analyze and apply concepts of normalization to relational database design.
- 6. Understand the concept of transaction, concurrency and recovery.

# **Prerequisite:**

Basic knowledge of Data structure.

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Introduction Database Concepts:	4
	1.1	Introduction, Characteristics of databases	
		• File system v/s Database system	
		Users of Database system	
	1.2	Data Independence	
		DBMS system architecture	
		Database Administrator	
2.0		Entity-Relationship Data Model	8
	2.1	The Entity-Relationship (ER) Model: Entity types: Weak and	
		strong entity sets, Entity sets, Types of Attributes, Keys,	
		Relationship constraints: Cardinality and Participation, Extended	
		Entity-Relationship (EER) Model: Generalization, Specialization	
		and Aggregation	
3.0		Relational Model and relational Algebra	8
	3.1	Introduction to the Relational Model, relational schema and	
		concept of keys.	
		Mapping the ER and EER Model to the Relational Model	
	3.2	Relational Algebra – unary and set operations, Relational	
		Algebra Queries.	
4.0		Structured Query Language (SQL)	12
	4.1	Overview of SQL	

	4.2	<ul> <li>Data Definition Commands, Data Manipulation commands, Data Control commands, Transaction Control Commands.</li> <li>Set and string operations, aggregate function - group by, having.</li> <li>Views in SQL, joins, Nested and complex queries, Integrity constraints: - key constraints, Domain Constraints, Referential integrity, check constraints</li> </ul>	
	4.3	• Triggers	1
5.0		Relational-Database Design	8
	5.1	<ul> <li>Pitfalls in Relational-Database designs, Concept of normalization</li> <li>Function Dependencies, First Normal Form, 2nd, 3rd, BCNF, multi valued dependencies, 4NF.</li> </ul>	
6.0		Transactions Management and Concurrency	12
	6.1	<ul> <li>Transaction concept, Transaction states, ACID properties</li> <li>Concurrent Executions, Serializability – Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols.</li> <li>Recovery System: Failure Classification, Log based recovery, ARIES, Checkpoint, Shadow paging.</li> <li>Deadlock handling</li> </ul>	
		Total	52

### **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

#### **Text Books:**

- 1. G. K. Gupta "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, "Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5th Edition, Pearson education.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.

#### **Reference Books:**

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.
- 2. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley Publication.
- 3. Sharaman Shah, "Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH.

Course Code	Course Name	Credits
CSC 503	Computer Network	4

# **Course objective:**

- 1. To introduce concepts and fundamentals of data communication and computer networks.
- 2. To explore the inter-working of various layers of OSI.
- 3. To explore the issues and challenges of protocols design while delving into TCP/IP protocol suite.
- 4. To assess the strengths and weaknesses of various routing algorithms.
- 5. To understand the transport layer and various application layer protocols.

#### **Course Outcomes:**

On successful completion of course learner will be able to:

- 1. Demonstrate the concepts of data communication at physical layer and compare ISO OSI model with TCP/IP model.
- 2. Demonstrate the knowledge of networking protocols at data link layer.
- 3. Design the network using IP addressing and subnetting / supernetting schemes.
- 4. Analyze various routing algorithms and protocols at network layer.
- 5. Analyze transport layer protocols and congestion control algorithms.
- 6. Explore protocols at application layer.

**Prerequisite:** Digital Communication Fundamentals

Module No.	Unit No.	Topics	Hrs.
1	Introduction to Networking		
	1.1	Introduction to computer network, network application, network software and hardware components (Interconnection networking devices), Network topology, protocol hierarchies, design issues for the layers, connection oriented and connectionless services	
	1.2	Reference models: Layer details of OSI, TCP/IP models. Communication between layer.	
2	Physical Layer		
	2.1	Introduction to Communication System, digital Communication, Electromagnetic Spectrum	
	2.2	Guided Transmission Media: Twisted pair, Coaxial, Fiber optics. Unguided media (Wireless Transmission): Radio Waves, Microwave, Bluetooth, Infrared, Circuit and Packet Switching	

	Data Link Layen		
3	Data L	ink Layer	10
	3.1	DLL Design Issues (Services, Framing, Error Control, Flow Control), Error Detection and Correction(Hamming Code, CRC, Checksum), Elementary Data Link protocols, Stop and Wait, Sliding Window(Go Back N, Selective Repeat), HDLC	
	3.2	Medium Access Control sublayer Channel Allocation problem, Multiple access Protocol( Aloha, Carrier Sense Multiple Access (CSMA/CD), Local Area Networks - Ethernet (802.3)	
4	Network layer		14
	4.1	4.1 Network Layer design issues, Communication Primitives: Unicast, Multicast, Broadcast. IPv4 Addressing (classfull and classless), Subnetting, Supernetting design problems ,IPv4 Protocol, Network Address Translation (NAT)	
	4.2	<b>Routing algorithms :</b> Shortest Path (Dijkastra's), Link state routing, Distance Vector Routing	
	4.3	Protocols - ARP,RARP, ICMP, IGMP	
	4.4	Congestion control algorithms: Open loop congestion control, Closed loop congestion control, QoS parameters, Token & Leaky bucket algorithms	
5	Transp	oort Layer	10
	5.1	The Transport Service: Transport service primitives, Berkeley Sockets, Connection management (Handshake), UDP, TCP, TCP state transition, TCP timers	
	5.2	TCP Flow control (sliding Window), TCP Congestion Control: Slow Start	
6	Application Layer		06
	6.1	DNS: Name Space, Resource Record and Types of Name Server. HTTP, SMTP, Telnet, FTP, DHCP	

# **Assessment:**

# **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

### **Textbooks:**

- 1. A.S. Tanenbaum, "Computer Networks", Pearson Education, (4e)
- 2. B.A. Forouzan, "Data Communications and Networking", TMH (5e)
- 3. James F. Kurose, Keith W. Ross, "Computer Networking, A Top-Down Approach Featuring the Internet", Addison Wesley, (6e)

#### **References:**

- 1. S.Keshav: An Engineering Approach To Computer Networking, Pearson
- 2. Natalia Olifer& Victor Olifer, "Computer Networks: Principles, Technologies & Protocols for Network Design", Wiley India, 2011.
- 3. Larry L.Peterson, Bruce S.Davie, Computer Networks: A Systems Approach, Second Edition (The Morgan Kaufmann Series in Networking).

Course Code	Course Name	Credits
CSC504	Theory of Computer Science	4

### **Course Objectives:**

- 1. Acquire conceptual understanding of fundamentals of grammars and languages.
- 2. Build concepts of theoretical design of deterministic and non-deterministic finite automata and push down automata.
- 3. Develop understanding of different types of Turing machines and applications.
- 4. Understand the concept of Undecidability.

### **Course Outcomes:** On successful completion of course learner will be able to:

- 1. Identify the central concepts in theory of computation and differentiate between deterministic and nondeterministic automata, also obtain equivalence of NFA and DFA.
- 2. Infer the equivalence of languages described by finite automata and regular expressions.
- 3. Devise regular, context free grammars while recognizing the strings and tokens.
- 4. Design pushdown automata to recognize the language.
- 5. Develop an understanding of computation through Turing Machine.
- 6. Acquire fundamental understanding of decidability and undecidability.

**Prerequisite:** Discrete Mathematics

Module	Unit	Topics	Theory	Tutorial
No.	No.		Hrs.	Hrs.
1.0		Basic Concepts and Finite Automata	09	03
	1.1	Alphabets, Strings, Languages, Closure properties.		
		Finite Automata (FA) and Finite State machine (FSM).		
	1.2	Deterministic Finite Automata (DFA) and Nondeterministic		
		Finite Automata (NFA): Definitions, transition diagrams and		
		Language recognizers		
		NFA to DFA Conversion		
		• Equivalence between NFA with and without ε- transitions		
		Minimization of DFA		
		FSM with output: Moore and Mealy machines, Equivalence		
		Applications and limitations of FA		
2.0		Regular Expressions and Languages	06	02
	2.1	Regular Expression (RE)		
		<ul> <li>Equivalence of RE and FA, Arden's Theorem</li> </ul>		
		RE Applications		
	2.2	Regular Language (RL)		
		Closure properties of RLs		
		Decision properties of RLs		
		Pumping lemma for RLs		
3.0		Grammars	08	03
	3.1	Grammars and Chomsky hierarchy		
	3.2	Regular Grammar (RG)		

		Equivalence of Left and Right linear grammar		
		Equivalence of RG and FA		
	3.3	Context Free Grammars (CFG)		
		Definition, Sentential forms, Leftmost and Rightmost		
		derivations, Parse tree, Ambiguity.		
		Simplification and Applications.		
		Normal Forms: Chomsky Normal Forms (CNF) and		
		Greibach Normal Forms (GNF).		
		CFLs - Pumping lemma, Closure properties		
4.0		Pushdown Automata(PDA)	04	01
	4.1	Definition, Transitions ,Language of PDA		
		Language acceptance by final state and empty stack		
		PDA as generator, decider and acceptor of CFG.		
		Deterministic PDA , Non-Deterministic PDA		
		Application of PDA.		
5.0		Turing Machine (TM)	09	03
	5.1	Definition, Transitions		
		Design of TM as assessed assistant and assessed		
		Design of TM as generator, decider and acceptor.		
		<ul> <li>Design of TM as generator, decider and acceptor.</li> <li>Variants of TM: Multitrack, Multitape</li> </ul>		
		Variants of TM: Multitrack, Multitape		
		<ul><li>Variants of TM: Multitrack, Multitape</li><li>Universal TM.</li></ul>		
		<ul> <li>Variants of TM: Multitrack, Multitape</li> <li>Universal TM.</li> <li>Equivalence of Single and Multi Tape TMs.</li> </ul>		
6.0		<ul> <li>Variants of TM: Multitrack, Multitape</li> <li>Universal TM.</li> <li>Equivalence of Single and Multi Tape TMs.</li> <li>Applications, Power and Limitations of TMs.</li> </ul>	03	01
6.0	6.1	<ul> <li>Variants of TM: Multitrack, Multitape</li> <li>Universal TM.</li> <li>Equivalence of Single and Multi Tape TMs.</li> <li>Applications, Power and Limitations of TMs.</li> <li>Context Sensitivity and Linear Bound Automata.</li> </ul>	03	01
6.0	6.1	<ul> <li>Variants of TM: Multitrack, Multitape</li> <li>Universal TM.</li> <li>Equivalence of Single and Multi Tape TMs.</li> <li>Applications, Power and Limitations of TMs.</li> <li>Context Sensitivity and Linear Bound Automata.</li> <li>Undecidability</li> </ul>	03	01
6.0	6.1	<ul> <li>Variants of TM: Multitrack, Multitape</li> <li>Universal TM.</li> <li>Equivalence of Single and Multi Tape TMs.</li> <li>Applications, Power and Limitations of TMs.</li> <li>Context Sensitivity and Linear Bound Automata.</li> <li>Undecidability</li> <li>Decidability and Undecidability,</li> </ul>	03	01
6.0	6.1	<ul> <li>Variants of TM: Multitrack, Multitape</li> <li>Universal TM.</li> <li>Equivalence of Single and Multi Tape TMs.</li> <li>Applications, Power and Limitations of TMs.</li> <li>Context Sensitivity and Linear Bound Automata.</li> <li>Undecidability</li> <li>Decidability and Undecidability,</li> <li>Recursive and Recursively Enumerable Languages.</li> </ul>	03	01
6.0	6.1	<ul> <li>Variants of TM: Multitrack, Multitape</li> <li>Universal TM.</li> <li>Equivalence of Single and Multi Tape TMs.</li> <li>Applications, Power and Limitations of TMs.</li> <li>Context Sensitivity and Linear Bound Automata.</li> <li>Undecidability</li> <li>Decidability and Undecidability,</li> <li>Recursive and Recursively Enumerable Languages.</li> <li>Halting Problem,</li> </ul>	03	01

### **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

- 1. John E. Hopcroft, Rajeev Motwani, Jeffery D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. Michael Sipser, "Theory of Computation", Cengage learning.
- 3. Vivek Kulkarni, "Theory of Computation", Oxford University Press, India.

### **Reference Books:**

- 1. J. C. Martin, "Introduction to Languages and the Theory of Computation", Tata McGraw Hill.
- 2. Kavi Mahesh, "Theory of Computation: A Problem Solving Approach", Wiley-India.

Course Code	Course Name	Credits
CSDLO5011	Multimedia System	4

### **Course objectives:**

- 1. To introduce students about basic fundamentals and key aspects of Multimedia system.
- 2. To provide knowledge of compression techniques of different multimedia components
- 3. To help students to understand multimedia communication standards along with technology environment
- 4. To provide an opportunity to gain hands-on experience in building multimedia applications.

### Course outcomes: Learner will be able to

- 1. To identify basics of multimedia and multimedia system architecture.
- 2. To understand different multimedia components.
- 3. To explain file formats for different multimedia components.
- 4. To analyze the different compression algorithms.
- 5. To describe various multimedia communication techniques.
- 6. To apply different security techniques in multimedia environment.

Prerequisite: Computer Fundaments and Graphics.

Module No.	Unit No.	Topics	Hrs.
1	Introduc	Introduction to Multimedia	
	1.1	Overview	
	1.2	Objects and Elements of Multimedia	
	1.3	Applications of Multimedia	
	1.4	Multimedia Systems Architecture – IMA, Workstation, Network	
	1.5	Types of Medium (Perception, Representation)	
	1.6	Interaction Techniques	
	1.7	I/O devices - Salient features (Electronic Pen , Scanner, Digital Camera, Printers, plotters), Storage Media (Jukebox, DVD), Multimedia Databases	
2	Text & l	Digital Image	10
	Text		
	2.1	Visual Representation, Digital Representation.	
	2.2	File Formats: RTF, TIFF.	
	2.3	Compression Techniques: Huffman Coding, RLE, CCITT group 3 1D	

	Digital 1	Image	
	2.4	Digital Image Representation (2D format, resolution) Types of Images (monochrome, gray, color), examples of images (X-Ray, fractal, synthetic, acoustic).	
	2.5	File formats: BMP, JPG	
	2.6	Compression Techniques: fundamentals (coding, interpixel and psychovisual redundancies), Types — lossless and lossy, Lossless Compression Algorithms— Shannon-Fano, CCITT group 4 2D, Lossy Compression Algorithm — JPEG	
3	Digital .	Audio	8
	3.1	Basic Sound Concepts: computer representation of sound,	
	3.2	File Formats – WAV, MPEG Audio	
	3.3	Compression: PCM, DM, DPCM	
4	Digital '	Video	8
	4.1	Digitization of Video, types of video signals ( component, composite and S-video),	
	4.2	File Formats: MPEG Video, H.261	
	4.3	Compression: MPEG	
5	Multim	edia Network Communication and Representation	10
	5.1	Quality of Service	
	5.2	Multimedia over IP ( RTP, RTSP, RTCP,RSVP)	
	5.3	Representation- Authoring systems and user interface	
6	Multim	edia Security	8
	6.1	Requirements and properties	
	6.2	Mechanisms – Digital Signatures, Steganographic methods	
	6.3	Sample applications – unidirectional distributed systems, information systems and conference systems	
		Total	52

- 1. Multimedia System Design, Prabhat K. Andleigh& Kiran Thakrar, PHI.
- 2. Multimedia Communication Systems: Techniques, Standards & Networks, K. R. Rao, Zoran S. Bojkovic&Dragorad A. Milovanovic, TMH.
- 3. Multimedia Systems, K. Buford, PHI.
- 4. Fundamentals of Multimedia, Ze-Nian Li & Mark S. Drew, PHI.

#### **Reference Books:**

- 1. Multimedia Computing Communications & Applications, Ralf Steinmetz & Klara Nahrstedt, Pearson.
- 2. Digital Image processing, Rafael C. Gonzalez, Richard E. Woods, Pearson.
- 3. Multimedia Applications, Ralf Steinmetz & Klara Nahrstedt, Springer International Edition

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

#### **Suggested List of Experiments:**

- 1. Create a new file format to store a multimedia data.
- 2. Implement a compression technique and check the efficiency on different inputs.
- 3. To develop a theme based multimedia presentation
- 4. To add a digital signature onto a document
- 5. To perform steganography of text onto an image and check the efficiency with different inputs.

^{**} Perform laboratory work of this course in 'CSL504: Web Design Lab' as experiments or mini project.

Course Code	Course Name	Credits
CSDLO5012	Advanced Operating Systems	4

### **Course Objectives:**

- 1. To understand design issues of Advanced Operating systems.
- 2. To understand the architecture, kernel and file management of Unix operating system.
- 3. To understand basic concepts and need of Distributed operating systems.
- 4. To understand concepts and working of different advanced Operating systems like Multiprocessor OS, Real time OS, Mobile OS.

### Course Outcomes: On successful completion of the course student should be able to

- 1. Demonstrate understanding of design issues of Advanced operating systems and compare different types of operating systems.
- 2. Analyse design aspects and data structures used for file subsystem, memory subsystem and process subsystem of Unix OS.
- 3. Demonstrate understanding of different architectures used in Multiprocessor OS and analyse the design and data structures used in Multiprocessor operating systems.
- 4. Differentiate between threads and processes and compare different processor scheduling algorithms used in Multiprocessor OS
- 5. Classify Real Time OS and analyse various real time scheduling algorithms.
- 6. Explore architectures and design issues of Mobile OS, Virtual OS, Cloud OS.

### **Prerequisite:** Operating Systems

Module	Unit	Detailed Content	Hrs
1		Introduction	04
		Functions of operating systems, Design approaches: layered,	
		kernel based and virtual machine approach, types of advanced	
		operating systems (NOS, DOS, Multiprocessor OS, Mobile OS,	
		RTOS, Cloud OS)	
2		Unix Kernel and File Management	14
	2.1	System Structure, User Perspective, Architecture of Unix Operating	
		System	
	2.2	Buffer cache: Header, Buffer Pool, Retrieving, Reading and Writing	
		Buffer	
	2.3	File Representation: inodes: Structure of file Directories, Path	
		conversion to inode, superblock, inode assignment, allocation of	
		disk blocks	
3		Unix Process and Memory management	12
	3.1	Detailed design of Process Structure: Kernel Data structures for	
		process, Structure of Uarea and Process table, Process states and	
		Transitions	
	3.2	Context of a Process: Static and Dynamic area of context, Saving	
		the Context Layout of System Memory, Regions, Mapping regions	

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

		with Process, page table and mapping virtual address to physical	
		address.	
4		Distributed Operating system concepts	06
		Goals, Distributed Computing Models, Hardware Concepts,	
		Software Concepts, Architecture of DOS.	
		Design Issues: Transparency, Flexibility, Scalability, Reliability,	
		Performance, fault tolerance	
5		Multiprocessor Operating System	08
	5.1	Introduction, Basic multiprocessor system architectures, design	
		issues, Threads, Process synchronization: the test and set	
		instruction, the swap instruction, implementation of the process	
		wait	
	5.2	Processor scheduling: Issues, Co-scheduling, Smart scheduling,	
		Affinity Based scheduling	
6		Real Time Operating Systems and Mobile OS	08
	6.1	Characteristics of Real Time operating Systems, Classification	
		of Real Time Operating Systems, Scheduling in RTOS: Clock	
		driven: cyclic, Event driven: EDF and rate monotonic scheduling.	
	6.2	Mobile OS: Architecture, Android OS, iOS, Virtual OS,	
		Cloud OS and their design issues	

### **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

#### **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- The students need to solve total 4 questions.
- Question No.1 will be compulsory and based on entire syllabus.
- Remaining question (Q.2 to Q.6) will be selected from all the modules.

### **Text Books:**

- The Design of the UNIX Operating System, PHI, by Maurice J. Bach.
   Distributed Computing 2ndEdition, Mahajan and Seema Shah, OXford.
- 3. Advanced Concepts in Operating Systems, Mukesh Singhal, Niranjan G Shivaratri.
- **4.** Mobile Computing by Rajkamal, 1stedition, Oxford.
- 5. Real Time Operating System, Jane W.S. Liu, Pearson.

#### **Reference Books:**

- 1. Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems: Principles and Paradigms, 2nd edition, Pearson Education.
- 2. "Real-Time Systems: Theory and Practice", Rajib Mall, Pearson Education India, 2006.

Course Code	Course Name	Credit
CSDLO5013	Advanced Algorithm	4

### **Course Objectives:**

- 1. To provide mathematical approach for Analysis of Algorithms.
- 2. To teach advanced data structures.
- 3. To solve complex problems in real life applications.

### Course Outcomes: At the end of the course student will be able to

- 1. Describe analysis techniques for algorithms.
- 2. Identify appropriate data structure and design techniques for different problems
- 3. Identify appropriate algorithm to be applied for the various application like geometric modeling, robotics, networking, etc.
- 4. Appreciate the role of probability and randomization in the analysis of algorithm
- 5. Analyze various algorithms.
- 6. Differentiate polynomial and non deterministic polynomial algorithms.

Prerequisites: Data structures, Discrete mathematics and Analysis of Algorithm

Sr. No.	Module	<b>Detailed Content</b>	
110.			Hours
1	Fundamental of Algorithms	Introduction- Complexity-complexity of recursive algorithms, finding complexity by tree method, master method, proving technique (contradiction, mathematical induction).  Amortized analysis- aggregate analysis, accounting analysis, potential analysis dynamic tables	08
2	Probabilistic Analysis and Randomized Algorithm	The hiring problem Indicator random variables Randomized algorithms Probabilistic analysis and further uses of indicator random variable	08
3	Advanced Data Structure	Introduction to trees and heap Red-Black Trees: properties of red-black trees , Operations on Red-black trees Binomial Heaps: Binomial trees and binomial heaps, Operation on Binomial heaps Analysis of all above operations	12
4	Maximum Flow	Flow networks , the ford Fulkerson method ,max bipartite matching , push Relabel Algorithm , The relabel to front algorithm	08

5	Computational Geometry	Line Segment properties, Determining whether any pair of segment intersects, finding the convex hull, Finding the closest pair of points.	08
6	NP- Completeness And Approximation Algorithms	NP-Completeness: NP-Completeness and reducibility, NP-Completeness proofs, NP-Complete problems-The vertex-cover problem, The travelling salesman problem	08

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", PHI, India Second Edition.
- 2. Horowitz, Sahani and Rajsekaran, "Fundamentals of Computer Algorithms", Galgotia.
- 3. Harsh Bhasin, "Algorithms Design and Analysis", Oxford, 2015.

#### **Reference Books:**

- 1. Rajeev Motwani, Prabhakar Raghavan, "Randomized Algorithm", Cambridge University
- 2. S. K. Basu, "Design Methods and Analysis of Algorithm", PHI
- 3. Vijay V. Vajirani, "Approximation Algorithms", Springer.

### **Internal Assessment:**

Assessment consists of two tests out of which; one (T1) should be compulsory class test (on at least 02 Modules) and the other (T2) is either a class test or assignments on live problems or course project

# **Theory Examination:**

- 1. Question paper will comprise of total six questions.
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Lab Code	Lab Name	Credits
CSL501	Microprocessor Lab	1

### Lab Objective:

- 1. To emphasize on use of Assembly language program.
- 2. To prepare students for advanced subjects like embedded system and IOT.

#### Lab Outcome:

- 1. Use appropriate instructions to program microprocessor to perform various task
- 2. Develop the program in assembly/ mixed language for Intel 8086 processor
- 3. Demonstrate the execution and debugging of assembly/ mixed language program

### **Description:**

A microprocessor is the most important unit within a computer system. It is responsible for processing the unique set of instructions and processes. It is a controlling unit of a computer, capable of performing Arithmetic Logical Unit (ALU) operations and communicating with the other devices connected to it. Typical microprocessor operations include adding, subtracting, comparing two numbers, and fetching numbers from one area to another. These operations are the result of a set of instructions that are part of the microprocessor design. When computer is turned on, the microprocessor gets the first instruction from the basic input/output system that comes with the computer as part of its memory. After that, either the BIOS, or the operating system that BIOS loads into computer memory, or an application program provides instructions to perform.

### **Suggested List of Experiments:**

Sr. No.	Title of Experiments
1	Use of programming tools (Debug/TASM/MASM/8086kit) to perform basic arithmetic operations on 8bit/16 bit data
2	Code conversion (Hex to BCD, BCD to Hex, ASCII to BCD, BCD to ASCII)
3	Assembly programming for 16-bit addition, subtraction, multiplication and division (menu based)
4	Assembly program based on string instructions ( overlapping/ non-overlapping block transfer/ string search/ string length)
5	Assembly program to display the contents of the flag register.
6	Mixed Language program to shift a number for given number of times
7	Assembly program to find the GCD/ LCM of two numbers
8	Assembly program to sort numbers in ascending/ descending order

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

9	Mixed Language program to increment, decrement the size of the cursor and also to disable it.
10	Assembly program to find minimum/ maximum no. from a given array.
11	Program for device driver (printer/mouse/keyboard)
12	Program based on 32 bit architecture (e.g. Switching from real mode to protected mode using DPMI driver, 32bit multiplication)
13	Assembly program to find factorial of number using procedure
14	Program and interfacing using 8255/8253
15	Program and interfacing of ADC/ DAC/ Stepper motor

#### Term Work:

Term should consist of at least 10 experiments.

Journal must include -

- At least one experiment with use of macros/ procedures
- At least five experiments with use of DOS, BIOS interrupts
- At least two assignments

At least one experiment on hardware interfacing is desirable

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum marks in term work.

**Term Work**: 25 marks (Total) = 15 Marks (Experiments) + 5 Marks (Assignments) + 5 Marks (Theory + Practical Attendance)

Oral & Practical exam will be based on the CSL501 and CSC501 syllabus.

Lab Code	Lab Name	Credits
CSL 502	Computer Network Lab	1

# Lab Objective:

To practically explore OSI layers and understand the usage of simulation tools.

### **Lab Outcomes:**

On successful completion of course learner will be able to

- 1. Design and setup networking environment in Linux.
- 2. Use Network tools and simulators such as NS2, Wireshark etc. to explore networking algorithms and protocols.
- 3. Implement programs using core programming APIs for understanding networking concepts.

## **Description**

The experiments are expected to be performed in Linux environment.

### **Suggested List of Experiments**

Sr. No	Title of Experiments
1.	Setup a network and configure IP addressing, subnetting, masking. (Eg. CISCO Packet Tracer, Student Ed.)
2.	Use basic networking commands in Linux (ping, tracert, nslookup, netstat, ARP, RARP, ip, ifconfig, dig, route )
3.	Build a simple network topology and configure it for static routing protocol using packet tracer.
4.	Perform network discovery using discovery tools (eg. mrtg)
5.	Use Wireshark to understand the operation of TCP/IP layers:  • Ethernet Layer: Frame header, Frame size etc.  • Data Link Layer: MAC address, ARP (IP and MAC address binding)  • Network Layer: IP Packet (header, fragmentation), ICMP (Query and Echo)  • Transport Layer: TCP Ports, TCP handshake segments etc.  • Application Layer: DHCP, FTP, HTTP header formats
6.	CRC/ Hamming code implementation.
7.	Stop and wait protocol/ sliding window (selective repeat / Go back N )
8.	Use simulator (Eg. NS2) to understand functioning of ALOHA, CSMA/CD.
9.	<ul><li>a. Set up multiple IP addresses on a single LAN.</li><li>b. Using nestat and route commands of Linux, do the following:</li></ul>

	<ul> <li>View current routing table</li> <li>Add and delete routes</li> <li>Change default gateway</li> <li>Perform packet filtering by enabling IP forwarding using IPtables in Linux.</li> </ul>
10.	Implementation of DVR/ LSR in NS2/(any other simulator)
11.	Socket programming using TCP or UDP
12.	Simulate congestion control ( leaky bucket / token bucket).
13.	Perform File Transfer and Access using FTP
14.	Perform Remote login using Telnet server

# Term Work:

Laboratory work should be based on above syllabus of suggested list having minimum 10 experiments, covering all layers.

Experiments	(15) Marks
Assignments	(05) Marks
Attendance (Theory + Practical)	(05) Marks
Total	<b>(25) Marks</b>

Oral & Practical exam will be based on the above and CSC 503: Computer Network.

Lab Code	Lab Name	Credits
CSL503	Database & Information System Lab	1

**Lab Outcome:** On successful completion of course learner will be able to:

- 1. Design and draw ER and EER diagram for the real life problem with software tool.
- 2. Create and update database and tables with different DDL and DML statements.
- 3. Apply /Add integrity constraints and able to provide security to data.
- 4. Implement and execute Complex queries.
- 5. Apply triggers and procedures for specific module/task
- 6. Handle concurrent transactions and able to access data through front end (using JDBC ODBC connectivity.)

# **Description:**

- The below suggested experiments needs to be performed by a group of 3/4 students.
- Select any database management system and conduct all experiments based on the same topic.

# **Suggested List of Experiments:**

Sr. No.	Title of Experiments
1	Identify the case study and detail statement of problem.
1	Design an Entity-Relationship (ER) / Extended Entity-Relationship (EER) Model.
2	Mapping ER/EER to Relational schema model.
3	Create and populate database using Data Definition Language (DDL) and DML
3	Commands for you're the specified System.
4	Apply Integrity Constraints for the specified system.
5	Perform Simple queries, string manipulation operations.
6	Nested queries and Complex queries
7	Perform Join operations
8	Views and Triggers
9	Functions, cursor and procedure.
10	Transaction and Concurrency control
11	Mini project- Creating a Two-tier client-server database applications using JDBC

**Assignment:** Perform Normalization -1NF, 2NF, 3NF

### Term Work:

Laboratory work will be based on DBMS syllabus with minimum 10 experiments to be incorporated.

Experiments should be completed by students on the given time duration

Experiments ------ (10) Marks
Mini Project----- (10) Marks
Attendance (Theory + Practical) ------ (05) Marks

Total ----- (25) Marks

#### **Practical and Oral:**

Practical and oral Exam should be conducted for the Lab, on Database Management System subject for given list of experiments .

Total	` /	
Oral	-(10) M	<b>I</b> arks
Implementation	-(15) N	<b>Aarks</b>

**Oral & Practical exam will be based on the above and CSC502: 'DBMS' syllabus

### **Text Books:**

- 1. G. K. Gupta: "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5thEdition, PEARSON
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.

### **Reference Books:**

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press
- 2. PaulrajPonniah, "Introduction to Database Management", Wiley publication
- 3. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 4. Debabrata Sahoo "Database Management Systems" Tata McGraw Hill, Schaum's Outline

Course Code	Course Name	Credits
CSL504	Web Design Lab	2

### **Course objectives:**

- 1. To design and create web pages using HTML5 and CSS3.
- 2. To Create web pages and provide client side validation.
- 3. To create dynamic web pages using server side scripting.
- 4. To use MVC framework for web application development.

#### **Course outcomes:** On completion of course learner will be able to:

- 1. Understand the core concepts and features of Web Technology
- 2. Design static web pages using HTML5 and CSS3
- 3. Apply the concept of client side validation and design dynamic web pages using JavaScript and JQuery.
- 4. Evaluate client and server side technologies and create Interactive web pages using PHP, AJAX with database connectivity using MySQL.
- 5. Understand the basics of XML, DTD and XSL and develop web pages using XML / XSLT.
- 6. Analyze end user requirements and Create web application using appropriate web technologies and web development framework

**Prerequisite:** Data Structures, Basics of Programming Languages

Module	Unit	Topics	Hrs.
No.	No.		
		INTRODUCTION TO WWW	
	1.1	Internet Standards - Introduction to WWW - WWW Architecture -	
1.0		SMTP – POP3 – File Transfer Protocol	
	1.2	Overview of HTTP, HTTP request – response — Generation of dynamic	2
		web pages- W3C Validator, How web works - Setting up the	
		environment (LAMP/XAMP/WAMP server)	
		CLIENT SIDE PROGRAMMING	
	2.1	Markup Language (HTML): Introduction to HTML and HTML5 -	
		Formatting and Fonts –Commenting Code – Anchors – Backgrounds –	
		Images – Hyperlinks	
	2.2	Lists – Tables – Frames - HTML Forms and controls.	
2.0	2.3	Cascading Style Sheet (CSS): The need for CSS, Introduction to CSS 3	_
		– Basic syntax and structure ,CSS Properties-Inline Styles – Embedding	6
		Style Sheets	
	2.4	Linking External Style Sheets – Backgrounds –Box Model( Introduction ,	
		Border Properties, Padding Properties, Margin Properties), Manipulating	
		text - Margins and Padding - Positioning using CSS., Creating page	
		Layout and Site Designs	
		INTRODUCTION TO JAVASCRIPT	
	3.1	Introduction - Core features - Data types and Variables - Operators,	6
		Expressions, and Statements, Functions - Objects - Array, Date and Math	
3.0		related Objects	
	3.2	Document Object Model - Event Handling Controlling Windows &	

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

		Frames and Documents Form handling and validations.	
	3.3	Advanced JavaScript - Browser Management and Media Management –	
		Classes – Constructors – Object-Oriented Techniques in JavaScript	
	3.4	Object constructor and Prototyping - Sub classes and Super classes -	
		JSON - jQuery and AJAX., Rich Internet Application with AJAX, JQuery	
		Framework	
		SERVER SIDE PROGRAMMING	
	4.1	Introduction - Programming basics - Print/echo - Variables and constants	
		– Strings and Arrays	
	4.2	Operators, Control structures and looping structures - Functions -	
4.0		Reading Data in Web Pages	
	4.3	Embedding PHP within HTML - Establishing connectivity with MySQL	8
		database, cookies, sessions and Authentication	
	4.4	AJAX with PHP - AJAX with Databases	
		XML	
	5.1	Dynamic page generation (adding interactivity, styles, using HTML,	
		DHTML, XHTML, CSS, Java Script), XML –DTD(Document Type	
<b>5.0</b>		Definition) - XML Schema	
	5.2	XML –DTD(Document Type Definition) - XML Schema - Document	4
		Object Model - Presenting XML - Using XML	
		Parsers: DOM and SAX,XSL-eXtensible Style sheet Language	
6.0		WEB DEVELOPMENT FRAMEWORK	2
	6.1	Introduction to Composer - MVC Architecture	
	6.2	Web Application Development using web development framework	
		:-Introduction to Laravel, Development of Web pages using Laravel.,	
		Example web applications – Interactive websites, web based information	
		systems, blogs, social networking sites etc.	
		Total	28

- 1. Ralph Moseley, M.T. Savliya," Developing Web Applications", Willy India, Second Edition, ISBN: 978-81-265-3867-6
- 2. "Web Technology Black Book", Dremtech Press, First Ediction, 978-7722-997
- 3. Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition, O'REILLY,2014.
  - (http://www.ebooksbucket.com/uploads/itprogramming/javascript/Learning_PHP_MySQL_Javascript CSS_HTML5_Robin_Nixon_3e.pdf)
- 4. Professional Rich Internet Applications: AJAX and Beyond, Dana Moore, Raymond Budd, Edward Benson, Wiley publications.
  - https://ebooks-it.org/0470082801-ebook.htm

### **Reference Books:**

- 1. Harvey & Paul Deitel& Associates, Harvey Deitel and Abbey Deitel, "Internet and World Wide Web How To Program", Fifth Edition, Pearson Education, 2011.
- 2. Achyut S Godbole and AtulKahate, "Web Technologies", Second Edition, Tata McGraw Hill, 2012.
- 3. Thomas A Powell, Fritz Schneider, "JavaScript: The Complete Reference", Third Edition, Tata McGraw Hill, 2013.

- 4. David Flanagan, "JavaScript: The Definitive Guide, Sixth Edition", O'Reilly Media, 2011
- 5. Steven Holzner, "The Complete Reference PHP", Tata McGraw Hill, 2008
- 6. Mike Mcgrath, "PHP & MySQL in easy Steps", Tata McGraw Hill, 2012.

### **Digital Material:**

- 1. www.nptelvideos.in
- 2. www.w3schools.com
- 3. <a href="http://spoken-tutorial.org">http://spoken-tutorial.org</a>

### **Term work Assessment:**

Term work will consist of lab experiments testing all the technologies included in syllabus and a **Mini project** solving an appropriate problem using the above technology.

Module	<b>Detailed Contents</b>	Lab Sessions
1	Installation and Setting of LAMP / WAMP / XAMP	1
2	Create Simple web page using HTML5	1
3	Design and Implement web page using CSS3 and HTML5	1
4	Form Design and Client Side Validation using :  a. Javascript and HTML5  b. Javascript and JQuery	2
5	Develop simple web page using PHP	1
6	Develop interactive web pages using PHP with database connectivity MYSQL	2
7	Develop XML web page using DTD, XSL	1
8	Implement a webpage using Ajax and PHP	1
9	Hosting the website with Domain Registration Process.	1
10	Design a Web application using Laravel Framework	3

^{* *}Setting up /buying the web host management system for hosting of mini project is recommended.

**Term Work:** The distribution of marks for term work shall be as follows:

Lab Assignments: 10 Marks
Mini Project: 10 Marks
Attendance: 05 Marks

### **Practical & Oral Examination:**

Practical & Oral examination is to be conducted by pair of internal and external examiners based on the above syllabus.

Course Code	Course Name	Credits
CSL505	<b>Business Communication &amp; Ethics</b>	02

### **Course Objectives:**

- 1. To inculcate professional and ethical attitude at the work place
- 2. To enhance effective communication and interpersonal skills
- 3. To build multidisciplinary approach towards all life tasks
- 4. To hone analytical and logical skills for problem-solving.

### **Course Outcomes:** Learner will be able to...

- 1. Design a technical document using precise language, suitable vocabulary and apt style.
- 2. Develop the life skills/interpersonal skills to progress professionally by building stronger relationships.
- 3. Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities.
- 4. Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
- 5. Deliver formal presentations effectively implementing the verbal and non-verbal skills

Module	Detailed Contents	Hrs.
01	Report Writing	05
1.1	Objectives of Report Writing	
1.2	Language and Style in a report	
1.3	Types: Informative and Interpretative (Analytical, Survey and Feasibility) and Formats of reports(Memo, Letter, Short and Long Report)	
02	Technical Writing	03
2.1	Technical Paper Writing(IEEE Format)	
2.2	Proposal Writing	
03	Introduction to Interpersonal Skills	09
3.1	Emotional Intelligence	
3.2	Leadership and Motivation	
3.3	Team Building	
3.4	Assertiveness	
3.5	Conflict Resolution and Negotiation Skills	
3.6	Time Management	
3.7	Decision Making	
04	Meetings and Documentation	02
4.1	Strategies for conducting effective meetings	
4.2	Notice, Agenda and Minutes of a meeting	
4.3	Business meeting etiquettes	
05	Introduction to Corporate Ethics	02
5.1	Professional and work ethics (responsible use of social media Facebook, WA, Twitter etc.)	
5.2	Introduction to Intellectual Property Rights	
5.4	Ethical codes of conduct in business and corporate activities (Personal ethics, conflicting values, choosing a moral response and making ethical decisions)	

06	Employment Skills	07
6.1	Group Discussion	
6.2	Resume Writing	
6.3	Interview Skills	
6.4	Presentation Skills	
6.5	Statement of Purpose	
		28

#### **Assessment:**

#### **List of Assignments**

- 1. Report Writing(Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing(Paraphrasing a published IEEE Technical Paper)
- 4. Interpersonal Skills(Group activities and Role plays)
- 5. Interpersonal Skills(Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation(Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics(Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

#### **Term Work**

Term work shall consist of all assignments from the list. The distribution of marks for term work shall be as follows:

Book Report 10 marks
Assignments: 10 marks
Project Report Presentation: 15 marks
Group Discussion: 10 marks
Attendance: 05 marks

#### **References:**

- 1. Fred Luthans," Organizational Behavior", Mc GrawHill,
- 2. Lesiker and Petit," Report Writing for Business ",McGrawHill
- 3. R. Subramaniam," Professional Ethics" Oxford University Press
- 4. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw
- 5. Raman and Sharma, Fundamentals of Technical Communication, Oxford University Press
- 6. Hill Wallace and Masters," Personal Development for Life and Work", Thomson Learning.
- 7. Heta Murphy, "Effective Business Communication", McGraw Hill, edition
- 8. R.C Sharma and Krishna Mohan," Business Correspondence and Report Writing",
- 9. Raman Sharma, "Communication Skills", Oxford University Press
- 10. B N Ghosh," Managing Soft Skills for Personality Development", Tata McGraw Hill
- 11. Dufrene, Sinha, "BCOM", Cengage Learning, 2ndedition
- 12. Bell. Smith, "ManagementCommunication" WileyIndiaEdition, 3rdedition.
- 13. Dr. K. Alex, "Soft Skills", S Chand and Company
- 14. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 15. https://grad.ucla.edu/asis/agep/advsopstem.pdf

Course Code	Course Name	Credits
CSC601	Software Engineering	4

## **Course objectives:**

The main objective of the course is to introduce to the students about the product that is to be engineered and the processes that provides a framework for the engineering methodologies and practices.

- 1. To provide the knowledge of software engineering discipline.
- 2. To apply analysis, design and testing principles to software project development.
- 3. To demonstrate and evaluate real time projects with respect to software engineering principles.

#### **Course outcomes:**

On successful completion of course, learners will be able to:

- 1. Understand and demonstrate basic knowledge in software engineering.
- 2. Identify requirements, analyze and prepare models.
- 3. Plan, schedule and track the progress of the projects.
- 4. Design & develop the software projects.
- 5. Identify risks, manage the change to assure quality in software projects.
- 6. Apply testing principles on software project and understand the maintenance concepts.

### **Prerequisite:**

- 1. Concepts of Object Oriented Programming & Methodology
- 2. Knowledge of developing applications with front end & back end connectivity.

### Course syllabus:

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Introduction To Software Engineering and Process Models	08
	1.1	Nature of Software, Software Engineering, Software Process, Capability	
		Maturity Model (CMM)	
	1.2	Generic Process Model, Prescriptive Process Models: The Waterfall	
		Model, V-model, Incremental Process Models, Evolutionary Process	
		Models, Concurrent Models, Agile process, Agility Principles, Extreme	
		Programming (XP), Scrum, Kanban model	
2.0		Requirements Analysis and Modelling	08
	2.1	Requirement Elicitation, Software requirement specification (SRS),	
		Developing Use Cases (UML)	
	2.2	Requirement Model – Scenario-based model, Class-based model,	
		Behavioural model.	
3.0		Project Scheduling and Tracking	08
	3.1	Management Spectrum, 3Ps (people, product and process)	
	3.2	Process and Project metrics	

	3.3	Software Project Estimation: LOC, FP, Empirical Estimation Models -	
		COCOMO II Model, Specialized Estimation Techniques	
	3.4	<b>Project scheduling:</b> Defining a Task Set for the Software Project,	
		Timeline charts, Tracking the Schedule, Earned Value Analysis	
4.0		Software Design	10
	4.1	Design Principles, Design Concepts, Effective Modular Design – Cohesion	
		and Coupling	
	4.2	Architectural Design	
	4.3	Component-level design	
	4.4	User Interface Design	
5.0		Software Risk, Configuration Management & Quality Assurance	08
	5.1	Risk Identification, Risk Assessment, Risk Projection, RMMM	
	5.2	Software Configuration management, SCM repositories, SCM process	
	5.3	Software Quality Assurance Task and Plan, Metrics, Software Reliability,	
		Formal Technical Review (FTR), Walkthrough	
6.0		Software Testing and Maintenance	10
	6.1	Strategic Approach to Software Testing, Unit testing, Integration testing	
		Verification, Validation Testing, System Testing	
	6.2	Software Testing Fundamentals, White-Box Testing, Basis Path Testing,	
		Control Structure Testing, Black-Box Testing,	
	6.3	Software maintenance and its types, Software Re-engineering, Reverse	
		Engineering	
		Total	52

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- 1. Question paper will comprise of 06 questions, each carrying 20 marks.
- 2. The students need to solve total 04 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

### **Text Books:**

- 1. Roger Pressman, "Software Engineering: A Practitioner's Approach", McGraw-Hill Publications 2. Ian Sommerville, "Software Engineering", Pearson Education (9th edition)
- 3. Ali Behfrooz and Fredeick J.Hudson, "Software Engineering Fundamentals", Oxford University Press

#### **Reference Books:**

- 1. Ugrasen Suman, "Software Engineering Concepts and Practices", Cengage Learning
- 2. Pankaj Jalote, "An integrated approach to Software Engineering", Springer/Narosa
- 3. Jibitesh Mishra and Ashok Mohanty, "Software Engineering", Pearson
- 4. Rajib Mall, "Fundamentals of Software Engineering", Prentice Hall India

Course Code	Course Name	Credits
CSC602	System Programming And Compiler Construction	4

### **Course objectives:**

- 1. To understand the role and functioning of various system programs over application program.
- 2. To understand basic concepts and designing of assembler, Macro processor and role of static and dynamic loaders and linkers.
- 3. To understand the need to follow the syntax in writing an application program and to learn the how the analysis phase of compiler is designed to understand the programmer's requirements without ambiguity.
- 4. To synthesize the analysis phase outcomes to produce the object code that is efficient in terms of space and execution time.

**Course outcomes:** On successful completion of course learner will be able to:

- 1. Identify the relevance of different system programs.
- 2. Describe the various data structures and passes of assembler design.
- 3. Identify the need for different features and designing of macros.
- 4. Distinguish different loaders and linkers and their contribution in developing efficient user applications.
- 5. Construct different parsers for given context free grammars.
- 6. Justify the need synthesis phase to produce object code optimized in terms of high execution speed and less memory usage

**Prerequisite:** Data Structures, Theoretical computer science, Operating system. Computer Organization and Architecture, Microprocessor

Module No.	Unit No.	Topics	Hrs.
1	Introduction to System Software	Concept of System Software, Goals of system softwares, system program and system programming,  Introduction to various system programs such as Assembler, Macro processor, Loader, Linker, Compiler, Interpreter, Device Drivers, Operating system, Editors, Debuggers.	2
2	Assemblers	Elements of Assembly Language programming, Assembly scheme, pass structure of assembler,  Assembler Design: Two pass assembler Design and single pass Assembler Design for Hypothetical / X86 family processor, data structures used.	10
3	Macros and Macro Processor	Introduction, Macro definition and call, Features of Macro facility: Simple, parameterized, conditional and nested. Design of single pass macro processor, data structures used.	8
4	Loaders and Linkers	Introduction, functions of loaders, Relocation and Linking concept, Different loading schemes: Relocating loader, Direct Linking Loader, Dynamic linking and loading.	8

5	Compilers: Analysis Phase	Introduction to compilers, Phases of compilers:  Lexical Analysis- Role of Finite State Automata in Lexical Analysis, Design of Lexical analyser, data structures used.  Syntax Analysis- Role of Context Free Grammar in Syntax analysis, Types of Parsers: Top down parser- LL(1), Bottom up parser- Operator precedence parser, SLR  Semantic Analysis, Syntax directed definitions.	12
6	Compilers: Synthesis phase	Intermediate Code Generation: Types of Intermediate codes: Syntax tree, Postfix notation, Three address codes: Triples and Quadruples.  Code Optimization: Need and sources of optimization, Code optimization techniques: Machine Dependent and Machine Independent.  Code Generation: Issues in the design of code generator, code generation algorithm. Basic block and flow graph.	12

- 1. D. M Dhamdhere: Systems programming, Tata McGraw Hill
- 2. A. V. Aho, R. Shethi, Monica Lam, J.D. Ulman: Compilers Principles, Techniques and Tools, Pearson Education, Second Edition.
- 3. J. J. Donovan: Systems Programming Tata McGraw Hill Publishing Company

#### **Reference Books:**

- 1. Lex &yacc, 2nd Edition by John R. Levine, Tony Mason & Doug Brown O'Reilly
- 2. Compiler construction D,M.Dhamdhere second edition MACMILLAM.
- 3. Compiler construction: principles and practices, Kenneth C.Louden, CENGAGE Learning
- 4. System software: An introduction to system programming, Leland L. Beck, Pearson

### **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSC603	Data Warehousing and Mining	4

### **Course objectives:**

- 1. To identify the scope and essentiality of Data Warehousing and Mining.
- 2. To analyze data, choose relevant models and algorithms for respective applications.
- 3. To study spatial and web data mining.
- 4. To develop research interest towards advances in data mining.

# **Course outcomes:** On successful completion of course learner will be able to:

- 1. Understand Data Warehouse fundamentals, Data Mining Principles
- 2. Design data warehouse with dimensional modelling and apply OLAP operations.
- 3. Identify appropriate data mining algorithms to solve real world problems
- 4. Compare and evaluate different data mining techniques like classification, prediction, clustering and association rule mining
- 5. Describe complex data types with respect to spatial and web mining.
- 6. Benefit the user experiences towards research and innovation.

Prerequisite: Basic database concepts, Concepts of algorithm design and analysis.

Module No.	Topics	Hrs.
1.0	Introduction to Data Warehouse and Dimensional modelling: Introduction to Strategic Information, Need for Strategic Information, Features of Data Warehouse, Data warehouses versus Data Marts, Top-down versus Bottom-up approach. Data warehouse architecture, metadata, E-R modelling versus Dimensional Modelling, Information Package Diagram, STAR schema, STAR schema keys, Snowflake Schema, Fact Constellation Schema, Factless Fact tables, Update to the dimension tables, Aggregate fact tables.	8
2.0	ETL Process and OLAP: Major steps in ETL process, Data extraction: Techniques, Data transformation: Basic tasks, Major transformation types, Data Loading: Applying Data, OLTP Vs OLAP, OLAP definition, Dimensional Analysis, Hypercubes, OLAP operations: Drill down, Roll up, Slice, Dice and Rotation, OLAP models: MOLAP, ROLAP.	8
3.0	Introduction to Data Mining, Data Exploration and Preprocessing: Data Mining Task Primitives, Architecture, Techniques, KDD process, Issues in Data Mining, Applications of Data Mining, Data Exploration: Types of Attributes, Statistical Description of Data, Data Visualization, Data Preprocessing: Cleaning, Integration, Reduction: Attribute subset selection, Histograms, Clustering and Sampling, Data Transformation & Data Discretization: Normalization, Binning, Concept hierarchy generation, Concept Description: Attribute oriented Induction for Data Characterization.	10

	Total	52	
	Web Structure Mining, Web Usage mining, Applications of Web Mining		
6.0	Data Structures, Mining Spatial Association and Co-location Patterns, Spatial Clustering Techniques: CLARANS Extension, Web Mining: Web Content Mining,	6	
	Spatial and Web Mining: Spatial Data, Spatial Vs. Classical Data Mining, Spatial		
	growth, Mining frequent Itemsets using Vertical Data Format, Introduction to Mining Multilevel Association Rules and Multidimensional Association Rules		
5.0	Algorithm, Association Rule Generation, Improving the Efficiency of Apriori, FP	8	
	Mining, Efficient and Scalable Frequent Item set Mining Methods: Apriori		
	Frequent Item sets, Closed Item sets, and Association Rule, Frequent Pattern		
	Mining Frequent Patterns and Association Rules: Market Basket Analysis,		
	Divisive)		
	Random Sampling, Cross Validation, Bootstrap, Clustering: Distance Measures, Partitioning Methods ( <i>k</i> -Means, <i>k</i> -Medoids), Hierarchical Methods(Agglomerative,		
	regression Model Evaluation & Selection: Accuracy and Error measures, Holdout,		
4.0	THEN Rules for classification, Prediction: Simple linear regression, Multiple linear	12	
	Classification: Naive Bayes, Classifier Rule - Based Classification: Using IF-		
	Information Gain, Induction: Attribute Selection Measures, Tree pruning, Bayesian		
	Classification, Prediction and Clustering: Basic Concepts, Decision Tree using		

- 1. PaulrajPonniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India.
- 2. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3rd edition.
- 3. ReemaTheraja "Data warehousing", Oxford University Press.
- 4. M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.

#### **Reference Books:**

- 1. Ian H. Witten, Eibe Frank and Mark A. Hall " Data Mining ", 3rd Edition Morgan kaufmann publisher.
- 2. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining", Person Publisher.
- 3. R. Chattamvelli, "Data Mining Methods" 2nd Edition NarosaPublishing House.

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

#### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSC604	Cryptography and System Security	4

# **Course Objectives:**

- 1. To introduce classical encryption techniques and concepts of modular arithmetic and number theory.
- 2. To explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, and public key algorithms
- 3. To explore the design issues and working principles of various authentication protocols, PKI standards and various secure communication standards including Kerberos, IPsec, and SSL/TLS and email.
- 4. To develop the ability to use existing cryptographic utilities to build programs for secure communication.

#### **Course Outcomes:** At the end of the course learner will able to

- 1. Understand system security goals and concepts, classical encryption techniques and acquire fundamental knowledge on the concepts of modular arithmetic and number theory.
- 2. Understand, compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication
- 3. Apply the knowledge of cryptographic checksums and evaluate the performance of different message digest algorithms for verifying the integrity of varying message sizes.
- 4. Apply different digital signature algorithms to achieve authentication and design secure applications
- 5. Understand network security basics, analyze different attacks on networks and evaluate the performance of firewalls and security protocols like SSL, IPSec, and PGP.
- 6. Analyze and apply system security concept to recognize malicious code.

### **Detailed Syllabus:**

Module No	Unit No	Detailed Content	Hrs
	Introduct	ion & Number Theory	10
1	1.1	Security Goals, Services, Mechanisms and attacks, The OSI security architecture, Network security model, Classical Encryption techniques, Symmetric cipher model, mono-alphabetic and polyalphabetic substitution techniques: Vigenere cipher, playfair cipher, Hill cipher, transposition techniques: keyed and keyless transposition ciphers, steganography.	
	1.2	Modular Arithmetic and Number Theory:- Euclid's algorithm—Prime numbers-Fermat's and Euler's theorem- Testing for primality -The Chinese remainder theorem, Discrete logarithms.	
2	Symmetri	c and Asymmetric key Cryptography and key Management	12

	2.1	Block cipher principles, block cipher modes of operation, DES, Double DES, Triple DES, Advanced Encryption Standard (AES), Stream Ciphers: RC5 algorithm.	
	2.2	Public key cryptography: Principles of public key cryptosystems-The RSA algorithm, The knapsack algorithm, ElGamal Algorithm.	
	2.3	Key management techniques: using symmetric and asymmetric algorithms and trusted third party. Diffie Hellman Key exchange algorithm.	
	Hashes, M	Message Digests and Digital Certificates	06
3	3.1	Cryptographic hash functions, Properties of secure hash function, MD5, SHA-1, MAC, HMAC, CMAC.	
	3.2	Digital Certificate: X.509, PKI	
	Authentic	ation Protocols & Digital signature schemes	08
4	4.1	User Authentication and Entity Authentication, One-way and mutual authentication schemes, Needham Schroeder Authentication protocol, Kerberos Authentication protocol.	
	4.2	Digital Signature Schemes – RSA, EIGamal and Schnorr signature schemes.	
	Network S	Security and Applications	10
	5.1	Network security basics: TCP/IP vulnerabilities (Layer wise), Packet Sniffing, ARP spoofing, port scanning, IP spoofing, TCP syn flood, DNS Spoofing.	
5	5.2	Denial of Service: Classic DOS attacks, Source Address spoofing, ICMP flood, SYN flood, UDP flood, Distributed Denial of Service, Defenses against Denial of Service Attacks.	
	5.3	Internet Security Protocols: SSL, IPSEC, Secure Email: PGP, Firewalls, IDS and types, Honey pots	
	System Se	ecurity	06
6	6.1	Software Vulnerabilities: Buffer Overflow, Format string, cross-site scripting, SQL injection, Malware: Viruses, Worms, Trojans, Logic Bomb, Bots, Rootkits.	

- 1. William Stallings, Cryptography and Network Security, Principles and Practice, 6th Edition, Pearson Education, March 2013
- 2. Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill
- 3. Bernard Menezes, "Cryptography & Network Security", Cengage Learning.
- 4. Network Security Bible, Eric Cole, Second Edition, Wiley.

### **Reference Books:**

- 1. Applied Cryptography, Protocols Algorithms and Source Code in C, Bruce Schneier, Wiley.
- 2. Cryptography and Network Security, Atul Kahate, Tata Mc Graw Hill.

### **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **Theory Examination:**

- 1. Question paper will comprise of total six questions.
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Course Code	Course Name	Credits
CSDLO6021	Machine Learning	04

# **Course Objectives:**

- 1 To introduce students to the basic concepts and techniques of Machine Learning.
- 2 To become familiar with regression methods, classification methods, clustering methods.
- 3 To become familiar with Dimensionality reduction Techniques.

### Course Outcomes: Students will be able to-

- 1. Gain knowledge about basic concepts of Machine Learning
- 2. Identify machine learning techniques suitable for a given problem
- 3. Solve the problems using various machine learning techniques
- **4.** Apply Dimensionality reduction techniques.
- 5. Design application using machine learning techniques

Pre-requisites: Data Structures, Basic Probability and Statistics, Algorithms

Module No.	Unit No.	Topics	Hrs.
1		Introduction to Machine Learning Machine Learning, Types of Machine Learning, Issues in Machine Learning, Application of Machine Learning, Steps in developing a Machine Learning Application.	6
2		Introduction to Neural Network Introduction – Fundamental concept – Evolution of Neural Networks – Biological Neuron, Artificial Neural Networks, NN architecture, Activation functions, McCulloch-Pitts Model.	8
3		Introduction to Optimization Techniques:  Derivative based optimization- Steepest Descent, Newton method.  Derivative free optimization- Random Search, Down Hill Simplex	6
4		Learning with Regression and trees:  Learning with Regression: Linear Regression, Logistic Regression.  Learning with Trees: Decision Trees, Constructing Decision Trees using  Gini Index, Classification and Regression Trees (CART).	10
5	5.1	Learning with Classification and clustering:  Classification: Rule based classification, classification by Bayesian Belief networks, Hidden Markov Models.  Support Vector Machine: Maximum Margin Linear Separators, Quadratic Programming solution to finding maximum margin separators, Kernels for learning non-linear functions.  Clustering: Expectation Maximization Algorithm, Supervised learning	14

	after clustering, Radial Basis functions.	
6	Dimensionality Reduction:  Dimensionality Reduction Techniques, Principal Component Analysis, Independent Component Analysis, Single value decomposition	8
	Total	52

- 1. Peter Harrington "Machine Learning In Action", DreamTech Press
- 2. Ethem Alpaydın, "Introduction to Machine Learning", MIT Press
- 3. Tom M.Mitchell "Machine Learning" McGraw Hill
- 4. Stephen Marsland, "Machine Learning An Algorithmic Perspective" CRC Press
- 5. J.-S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- 6. Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.
- 7. Kevin P. Murphy, Machine Learning "A Probabilistic Perspective"

#### **Reference Books:**

- 1. Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers
- 2. Margaret.H.Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- The students need to solve total 4 questions.
- Question No.1 will be compulsory and based on entire syllabus.
- Remaining question (Q.2 to Q.6) will be selected from all the modules.

### **Suggested Experiment work:**

- 1. To implement Linear Regression.
- 2. To implement Logistic Regression.
- 3. To implement SVM.
- 4. To implement PCA.
- 5. To implement Steepest Descent
- 6. To implement Random search
- 7. To implement Naïve Baysian algorithm.
- 8. To implement Single layer Perceptron Learning algorithm
- 9. To implement Radialbasis functions.
- 10. Case study based on any ML technique

^{**} Laboratory work based on above syllabus is incorporate as mini project in CSM605: Mini-Project.

Course Code	Course Name	Credits
CSDLO6022	Advanced Database Management System	4

## **Course objectives:**

- 1. To provide overview of indexing and hashing techniques
- 2. To impart knowledge of query processing and optimization
- 3. To provide an overview of distributed database systems.
- 4. To introduce the concept of document oriented database.
- 5. To create awareness about potential security threats to a database and mechanisms to handle it.
- 6. Understand the usage of advanced data models for real life application.

### **Course outcomes:** On successful completion of course learner will be able to:

- 1. Build indexing mechanisms for efficient retrieval of information from databases.
- 2. Measure query cost and optimize query execution
- 3. Design distributed database for better resource management
- 4. Demonstrate the understanding of the concepts of document oriented databases.
- 5. Apply appropriate security techniques database systems.
- 6. Implement advanced data models for real life applications.

Prerequisite: Basic knowledge of Database management System.

Module No.	Unit No.	Topics	Hrs.
1.0		Indexing and Hashing Techniques	8
	1.1	<ul> <li>Indexing and Hashing:</li> <li>Operation on Files</li> <li>Hashing Techniques; Static and dynamic</li> <li>Types of Single-Level Ordered Indexes; Multilevel Indexes; Dynamic Multilevel Indexes Using B-Trees and B+-Trees; Indexes on Multiple Keys,</li> </ul>	
2.0		Query processing and Optimization	12
		Query Processing:  Overview  Measures of Query cost Selection operation Join Operations, and other Operations Evaluation of Expression Query Optimization: Translations of SQL Queries into relational algebra Heuristic approach & cost based optimization	

3.0		Distributed Databases	12
	3.1	Types of Distributed Database Systems; Distributed Database Architectures; Data Fragmentation, Replication and Allocation Techniques for Distributed Database Design	
	3.2	<ul> <li>Distributed Query Processing (Semi join)</li> <li>distributed Transaction Management in Distributed Databases</li> <li>distributed Concurrency Control (locking), Recovery in Distributed Databases {2PC/3PC) and deadlock management.</li> </ul>	
4		Document oriented database	
		<ul> <li>Need of object oriented database.</li> <li>Impedance matching problem between OO languages and Relational database, Case study db4O</li> <li>Need of Document Oriented database, difference between Document Oriented Database and Traditional database. Types of encoding XML, JSON, BSON, Representation XML, Json Objects. Case study on doc oriented based such a Mariadb</li> </ul>	8
5		Advanced data models	6
	5.1	<ul> <li>Temporal data models :- Aspects of valid time, Bitemporal time and bi-temporal time with examples of each.</li> <li>Spatial model :- Types of spatial data models - Raster, Vector and Image</li> <li>Mobile databases</li> </ul>	
	5.2	Multimedia databases	
6		Data Security	6
	6.1	<ul> <li>Introduction to Database Security Issues; authorization, Discretionary Access Control Based on Granting and Revoking Privileges</li> <li>Mandatory Access Control and Role-Based</li> </ul>	

6.	2	Access Control for Multilevel Security  • SQL Injection  • Introduction to Statistical Database Security Introduction to Flow Control	
		Total	52

- 1. Elmasri&Navathe" fundamentals of Database Systems" IV edition. PEARSON Education.
- 2. Korth, Silberschatzsudarshan "Database systems, concepts" 5th edition McGraw Hill
- 3. Raghu Ramkrishnan& Johannes Gehrke "Database Management System" Tata McGraw Hill. III edition.
- 4. Ruosell J.T. Dyer, Learning MySQL and Mariadb.

#### **Reference Books:**

- 1. Chhanda Ray, "Distributed Database System", Pearson Education India.
- 2. Hector Garcia-Molina, Jeffery D. Ullman, Jennifer Widom, "Database system Implementation"
- 3. Thomas M.Connolly Carolyn Begg, Database Systems : A practical Approach to Design , Implementation and Management, 4/e.

# Suggested mini. Project / Experiment work:

- 1. Given problem statement 2/3 student to perform
  - a. Design EER model and perform sorting, join operations for the specified problem statement.
  - b. Perform the various fragmentation (Horizontal, Vertical, Derived) and check its correctness criteria.
  - c. Perform two phase commit protocol (2PC)
- 2. Mini Project / Case study on document oriented database such a Mariadb
- 3. Mini Project Case study Development of an application based on any one advance data model (temporal, Spatial Multimedia)

### ** Perform Laboratory (Experiments) work in the in CSM605:Mini-Project

# Assessment:

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

# **End Semester Theory Examination:**

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSDLO6023	Enterprise Resource Planning(ERP)	4

# **Course Objectives:**

- 1. To understand the technical aspects and life cycle of ERP systems.
- 2. To understand the steps and activities in ERP.
- 3. To identify and describe different types of ERP system.
- 4. To understand tools and methodology used for designing ERP for an Enterprise.

# Course Outcomes: After completion of this course, students will be able ..

- 1. To understand the basic structure of ERP.
- 2. To identify implementation strategy used for ERP.
- 3. To apply design principles for various business modules in ERP.
- 4. To apply different emerging technologies for implementation of ERP.
- 5. To analyze security issues in ERP.
- 6. To acquire ERP concepts for real world applications.

Pre-requisites: Web Engineering, Computer Network, Database Systems

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction to Enterprise Resource Planning (ERP) Information System and Its Components, Value Chain Framework, Organizational Functional Units, Evolution of ERP Systems, Role of ERP in Organization, Three-Tier Architecture of ERP system.	8
2.0		ERP and Implementation  ERP implementation and strategy, Implementation Life cycle, Pre- implementation task, requirement definition, implementation Methodology.	8
		ERP Business Modules	
3.0	3.1	Finance, manufacturing, human resources, quality management, material management, marketing, Sales distribution and service.	8
	3.2	Case study on Supply Chain management (SCM), Customer relationship Management (CRM)	
		Introduction to ERP related Technologies	
4.0	4.1	Business Process Re-engineering (BPR) ,Data warehousing ,Data Mining, On- line Analytical Processing(OLAP), Product Life Cycle Management (PLM)	10
	4.2	Geographical Information Management ,RFID, QR Code ,Bar	

		Coding, E-commerce and their application in Enterprise planning	
		Extended ERP and security issues	
	5.1	Enterprise application Integration (EAI), open source ERP, cloud ERP	
5.0	5.2	Managing ERP Securities: Types of ERP security Issues, System Access security, Data Security and related technology for managing data security	8
		Cases of ERP for Enterprises.	
6.0	6.1	Cases of ERP like MySAP for Business suite implementation at ITC, ERP for Nestle GLOBE Project, Oracle ERP Implementation at Maruti Suzuki.	10
	6.2	Need of ERP for Small and Medium size enterprises.(Zaveri)	
		Total	52

- 1. Alexis Leon, ERP Demystified: II Edition, Tata McGraw Hill.
- 2. Rajesh Ray, Enterprise Resource Planning, Text and cases, Tata McGraw Hill.
- 3. Sandeep Desai, Abhishek Srivastava, ERP to E² ERP: A Case study approach, PHI.
- 4. Jyotindra Zaveri, Enterprise Resource Planning, Himalaya Publishing House, 2012.

#### **Reference Books:**

- 1. V.K. Garg & N.K. Venkatakrishnan, Enterprise Resource Planning: concepts & practices, by; PHI.
- 2. Supply Chain Management Theories & Practices: R. P. Mohanty, S. G. Deshmukh, Dreamtech Press.
- 3. Enterprise wide resource planning: Theory & practice: by Rahul Altekar, PHI
- 4. Customer Relationship Management, Concepts and cases, Second Edition.

### Mini Project / Laboratory Work:

- 1. Give case study 2/3 student of any organization. Make a report before-after situation at organization (Domain).
- 2. Make a list of Resource of the Selected Domain.
- 3. Categorized the Resource as per the function level process and Identify module of the domain.
- 4. Explain process of each module of the domain.
- 5. Perform Business process re-engineering (BPR) on selected Module.
- 6. Implement new system based on BPR.
- 7. Perform Impact analysis of the new system as the BPR.
  - a. Prepare study on JD Edward Tool.

- b. Prepare study on Microsoft Dynamics.
- 8. Download any open source ERP Tool and prepare Installation Guideline and information about the Tool.
- 9. Make Data Entry in the Software in all modules & generate report.

# ** Perform Laboratory (Experiments) work in the in CSM605:Mini-Project.

## **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

# **End Semester Theory Examination:**

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- The students need to solve total 4 questions.
- Question No.1 will be compulsory and based on entire syllabus.
- Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSDLO6024	Advanced Computer Network	4

# **Course Objective:**

- 1. To make learners aware about advances in computer networking technologies.
- 2. To give overview of advance internet, QoS based and management protocols.
- 3. To introduce issues related to traffic engineering and capacity planning.

# Course Outcomes: On successful completion of course learner will be able to

- 1. Demonstrate the understanding of advance data communication technologies.
- 2. Demonstrate the understanding of WAN Technology typically ATM.
- 3. Demonstrate the understanding of packet switching protocols such as X.25, X.75.
- 4. Explore the issues of advance internet routing protocols and also QoS based protocols.
- 5. Analyze issues of traffic requirements and perform capacity planning.
- 6. Demonstrate the understanding of protocol used for management of network.

Prerequisite: Computer Networks, ISO OSI Layered Protocols, TCP/IP protocol suite.

Module No.	Unit No.	Topics	Hrs.		
	Data (	Data Communications:			
	1.1	Defining Data Communication needs, Transmission Hierarchy			
1	1.2	Optical Networks: SONET/SDH standard, Architecture, Format, Hardware, Configuration, advantages	-		
	WAN	Technology:	10		
	2.1	Introducing ATM Technology, Need and Benefit, Concept, Faces of ATM			
2	2.2	Why ATM, BISDN Reference Model, ATM Layer, ATM Adaptation Layer, ATM Signaling			
	Protoc	cols and Interfaces:	10		
3	3.1	Introduction to TCP/IP: Issues in IPV4, IPV6 protocol			
	3.2	Mature Packet Switching Protocols: ITU Recommendation X.25, User Connectivity, Theory of Operations, Network Layer Functions, X.75 Internetworking Protocol, Advantages and Drawbacks			

	Adva	nce Routing Protocols:	14
	4.1	Internet Routing Protocols : OSPF, RIP, BGP	
		Multicast Routing: Reverse Path Broadcasting, Internet Group Management Protocol, Reverse Path Multicasting, Discrete Vector Multicasting protocol	
4	4.2	IP forwarding Architectures  Overlay Model: Classical IP over ATM and LANE	-
	4.3	Multiprotocol Label Switching MPLS:  Fundamentals of Labels, Label Stack, VC Merging, Label Distribution Protocol, Explicit routing for Traffic Engineering	_
	4.4	Integrated services, RSVP, Differentiated Services	-
	4.5	MultiMedia Over Internet: RTP, Session Control Protocol H.323	_
	Traffi	ic Engineering :	08
5	5.1	<b>Requirement Definition:</b> User requirement Traffic Sizing , Traffic Characteristics, Protocols, Time and Delay Considerations	
·	5.2	<b>Traffic Engineering and Capacity planning:</b> Throughput calculation, Traffic Engineering basics, Traditional traffic Engineering and Queued data and Packet Switched packet modeling, Queuing Disciplines (M/M/1), Design parameters for Peak: delay or latency, availability and reliability.	
	Netwo	ork management	04
6	6.1	Network Management : SNMP Concept and format, Management Components: SMI, MIB	

- 1. M. A. Gallo and W. M. Hancock, Computer Communications and Networking Technologies, Cengage Learning, (1e).
- 2. Leon-Garcia, Communication Networks, Tata McGraw-Hill.
- 3. Darren L. Spohn, Data Network Design, Tata McGraw-Hill.
- 4. BehrouzForouzan, TCP/IP Protocol Suite ,McGraw-Hill, (5e).
- 5. William Stallings, High-Speed Networks and Internets, Pearson Education, (2e).

### **Reference Books:**

- 1. Andrew Tanenbaum" Computer Networks", Prentice Hall, (5e).
- 2. Cisco Certified Network Analyst study guide, Wiley Publishing House. (7e).
- 3. Douglas E. Comer, Internetworking with TCP/IP Volume One, (6e).
- 4. James F. Kurose, Keith W. Ross, "Computer Networking, A Top-Down Approach Featuring the Internet", Addison Wesley, (5e).

# **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

# **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Lab Code	Lab Name	Credits
CSL601	Software Engineering Lab	1

### **Lab Outcome:**

On successful completion of laboratory sessions, learners will be able to

- 1. Identify requirements and apply process model to selected case study.
- 2. Analyze and design models for the selected case study using UML modeling.
- 3. Use various software engineering tools.

# **Description:**

The Software Engineering Lab has been developed by keeping in mind the following objectives:

- Select case studies to solve real life problems by applying software engineering principles.
- To impart state-of-the-art knowledge on Software Engineering and UML.

# **List of Experiments:**

Laboratory work will be based on course syllabus with minimum 10 experiments to be incorporated. Assign case study to a group of two/three students and each group to perform the following experiments on their case study.

Sr. No.	Title of Experiments
1	Prepare detailed statement of problem for the selected / allotted mini project and identify suitable process model for the same with justification.
2	Develop Software Requirement Specification (SRS) document in IEEE format for the project.
3	Use project management tool to prepare schedule for the project.
4	Prepare RMMM plan for the project.
5	Identify scenarios & develop UML Use case and Class Diagram for the project.
6	Draw DFD (upto 2 levels) and prepare Data Dictionary for the project.
7	Develop Activity / State Transition diagram for the project.
8	Develop Sequence and Collaboration diagram for the project.
9	Change specification and make different versions using any SCM Tool.
10	Develop test cases for the project using white box testing.

# **Digital Material:**

Practical can be conducted using any open source software tools like Dia, Star UML, etc.

# Term Work:

Term work (25 Marks) shall consist of

Laboratory work
 Two assignments
 Attendance (theory and practical)
 15 marks
 05 marks
 05 marks

**Oral exam** will be based on CSC601 and CSL601 syllabus.

Lab Code	Lab Name	Credits
CSL602	System Software Lab	1

Outcome: At the end of the course learner will be able to

- 1. Generate machine code by using various databases generated in pass one of two pass assembler.
- 2. Construct different databases of single pass macro processor.
- 3. Identify and validate different tokens for given high level language code.
- 4. Parse the given input string by constructing Top down /Bottom up parser.
- 5. Implement synthesis phase of compiler with code optimization techniques.
- 6. Explore various tools like LEX and YACC.

**Description:** The current System Software is highly complex with huge built in functionality offered to the programmer to develop complex applications with ease. This laboratory course aims to make a student understand-

- The need for modular design
- The need for well-defined data structures and their storage management
- The increase in the complexity of translators as we move from assembly level to high level programming
- The need to produce an efficient machine code that is optimized for both execution speed and memory requirement
- The efficient programming constructs that make them a good coder

# **Suggested List of Experiments:**

Sr. No.	Title of Experiments
1	Implementations of two pass Assembler.
2	Implementation of single pass Macro Processor.
4	Implementation of Lexical Analyzer.
5	Implementation of Parser (Any one).
6	Implementation of Intermediate code generation phase of compiler.
7	Implementation of code generation phase of compiler.
8	Study and implement experiments on LEX. YACC, Grey Box Probing.

#### **Reference Books:**

- 1. Modern Compiler. Implementation in Java, Second. Edition. Andrew W. Appel Princeton University. Jens Palsberg Purdue University. CAMBRIDGE.
- 2. Crafting a compiler with C, Charles N. Fischer, Ron K. Cytron, Richard J. LeBlanc.

### Term Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

The distribution of marks for term work shall be as follows:

- Laboratory work (experiments/case studies): ......(15) Marks.

TOTAL: ...... (25) Marks.

Oral & Practical exam will be based on the above and CSC602 syllabus.

Lab Code	Lab Name	Credits
CSL603	Data Warehousing and Mining Lab	1

### Lab Outcome:

- 1. Design data warehouse and perform various OLAP operations.
- 2. Implement classification, prediction, clustering and association rule mining algorithms.
- 3. Demonstrate classifications, prediction, clustering and association rule mining algorithms on a given set of data sample using data mining tools.
- 4. Implement spatial and web mining algorithms.

# **Description:**

An operational database undergoes frequent changes on a daily basis on account of the transactions that take place. A data warehouses provides us generalized and consolidated data in multidimensional view. Data mining functions such as classification, prediction, clustering, and association rule mining can be integrated with OLAP operations to enhance the interactive mining of knowledge at multiple level of abstraction. Data mining supports knowledge discovery by finding hidden patterns and associations, constructing analytical models, performing classification and prediction, these mining results can be demonstrated using the data mining tools.

# **Suggested List of Experiments:**

Sr. No.	Title of Experiments
1	Build Data Warehouse/Data Mart for a given problem statement  i) Identifying the source tables and populating sample data  ii) Design dimensional data model i.e. Star schema, Snowflake schema and Fact  Constellation schema (if applicable)
2	To perform various OLAP operations such as slice, dice, drilldown, rollup, pivot
3	Implementation of Classification algorithm( Decision Tree/ Bayesian)
4	Implementation of Linear Regression.
5	Implementation of Clustering algorithm( K-means/ Agglomerative).
6	Implementation of Association Rule Mining algorithm(Apriori).

7	Perform data Pre-processing task and Demonstrate performing Classification, Clustering, Association algorithm on data sets using data mining tool (WEKA,R tool, XL Miner, etc.)
8	Implementation of page rank algorithm.
9	Implementation of HITS algorithm.
10	Implementation of Spatial Clustering Algorithm- CLARANS Extensions

# Term Work:

Laboratory work will be based on above syllabus with minimum 08 experiments to be incorporated.

Total (25) M	orke
(AE) 3.5	
Attendance (Theory + Practical) (05) M	arks
E · · · · · · · · · · · · · · · · · · ·	
Assignment (05) Ma	arks
Experiments (15) Ma	ırks

Oral & Practical exam will be based on the above and CSC603: "Data Warehousing and Mining" syllabus.

Lab Code	Lab Name	Credit
CSL604	System Security Lab	01

#### **Lab Outcome:**

Learner will able to

- 1. To be able to apply the knowledge of symmetric cryptography to implement simple ciphers.
- 2. To be able to analyze and implement public key algorithms like RSA and El Gamal.
- 3. To analyze and evaluate performance of hashing algorithms.
- 4. To explore the different network reconnaissance tools to gather information about networks.
- 5. To explore and use tools like sniffers, port scanners and other related tools for analysing packets in a network.
- 6. To be able to set up firewalls and intrusion detection systems using open source technologies and to explore email security.
- 7. To be able to explore various attacks like buffer-overflow, and web-application attacks.

# **Suggested Experiment List: (Any 10)**

Sr. No	Description
1	Design and Implementation of a product cipher using Substitution and Transposition ciphers
2	Implementation and analysis of RSA cryptosystem and Digital signature scheme using RSA/El Gamal.
3	Implementation of Diffie Hellman Key exchange algorithm
4	For varying message sizes, test integrity of message using MD-5, SHA-1, and analyse the performance of the two protocols. Use crypt APIs
5	Study the use of network reconnaissance tools like WHOIS, dig, traceroute, nslookup to gather information about networks and domain registrars.
6	<ol> <li>Study of packet sniffer tools: wireshark,:</li> <li>Download and install wireshark and capture icmp, tcp, and http packets in promiscuous mode.</li> <li>Explore how the packets can be traced based on different filters.</li> </ol>
7	Download and install nmap. Use it with different options to scan open ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, xmas scan etc.
8	Detect ARP spoofing using nmap and/or open source tool ARPWATCH and wireshark. Use arping tool to generate gratuitous arps and monitor using wireshark
9	Simulate DOS attack using Hping, hping3 and other tools.
10	Simulate buffer overflow attack using Ollydbg, Splint, Cppcheck etc

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

11	11	a. Set up IPSEC under LINUX.
11	b. Set up Snort and study the logs.	
12	2	Setting up personal Firewall using iptables
13	3	Explore the GPG tool of linux to implement email security
14	4	SQL injection attack, Cross-Cite Scripting attack simulation

# **Reference Books:**

- 1. Build your own Security Lab, Michael Gregg, Wiley India
- 2. CCNA Security, Study Guide, TIm Boyles, Sybex.
- 3. Network Security Bible, Eric Cole, Wiley India.
- 4. Web Application Hacker's Handbook, Dafydd Stuttard, Marcus Pinto, Wiley India.

# Term Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Total	(25)	Marks
Attendance (Theory + Practical)		
Assignment	` /	
•	,	
Experiments	(15) N	Morle

**Oral & practical examination** will be based on the above and Cryptography and System Security (CSC604) syllabus.

Lab Code	Lab Name	Credit
CSM605	Mini-Project	2

**Lab Outcome:** After successful completion of this Lab student will be able to

- 1. Acquire practical knowledge within the chosen area of technology for project development.
- 2. Identify, analyze, formulate and handle programming projects with a comprehensive and systematic approach
- 3. Contribute as an individual or in a team in development of technical projects
- 4. Develop effective communication skills for presentation of project related activities

## **Description:**

Mini project may be carried out in one or more form of following:

Product preparations, prototype development model, fabrication of set-ups, laboratory experiment development, process modification/development, simulation, software development, integration of software and hardware, statistical data analysis, creating awareness in society, etc.

#### **Guidelines:**

- A project to be developed based on one or more of the following fields-Advance Database Management System, Enterprise Resource Planning, Advance Operating System, Advance Computer Network, etc.
- Mini project may be carried out a group of 2/3 students. The student is required to submit a report based on the work. The evaluation of the project shall be on continuous basis.

#### Term Work (TW):

Distribution of marks for term work shall be as follows:

Attendance
 Mini project work
 Project Report (Spiral Bound)
 Marks
 Marks

The final certification and acceptance of TW ensures the satisfactory performance on the above three aspects.

**Oral & Practical Examination** should be conducted by internal and external examiners appointed by University of Mumbai. Students have to give presentation and demonstration on the Mini-Project.

Course Code	Course Name	Credits
CSC701	Digital Signal & Image Processing	4

# **Course objectives:**

- 1. To understand the fundamental concepts of digital signal processing and Image processing.
- 2. To explore DFT for 1-D and 2-D signal and FFT for 1-D signal
- 3. To apply processing techniques on 1-D and Image signals.
- 4. To apply digital image processing techniques for edge detection.

# **Course outcomes:** On successful completion of the course learner will be able to:

- 1. Apply the concept of DT Signal and DT Systems.
- 2. Classify and analyze discrete time signals and systems
- 3. Implement Digital Signal Transform techniques DFT and FFT.
- 4. Use the enhancement techniques for digital Image Processing
- 5. Differentiate between the advantages and disadvantages of different edge detection techniques
- 6. Develop small projects of 1-D and 2-D Digital Signal Processing.

# **Prerequisite:** Applied Mathematics

Module	Unit	Topic details	Hrs.
No.	No.		
1.0		Discrete-Time Signal and Discrete-Time System	14
	1.1	Introduction to Digital Signal Processing, Sampling and	
		Reconstruction, Standard DT Signals, Concept of Digital Frequency,	
		Representation of DT signal using Standard DT Signals, Signal	
		Manipulations(shifting, reversal, scaling, addition, multiplication).	
	1.2	Classification of Discrete-Time Signals, Classification of Discrete-	
		Systems	
	1.3	Linear Convolution formulation for 1-D and 2-D signal (without	
		mathematical proof), Circular Convolution (without mathematical	
		proof), Linear convolution using Circular Convolution. Auto and	
		Cross Correlation formula evaluation, LTI system, Concept of	
		Impulse Response and Step Response, Output of DT system using	
		Time Domain Linear Convolution.	
2.0		Discrete Fourier Transform	08
	2.1	Introduction to DTFT, DFT, Relation between DFT and DTFT, IDFT	
	2.2	Properties of DFT without mathematical proof (Scaling and	
		Linearity, Periodicity, Time Shift and Frequency Shift, Time	
		Reversal, Convolution Property and Parsevals' Energy Theorem).	
		DFT computation using DFT properties.	
	2.3	Transfer function of DT System in frequency domain using DFT.	
		Linear and Circular Convolution using DFT, Convolution of long	
		sequences, Introduction to 2-D DFT	
3.0		Fast Fourier Transform	06
	3.1	Need of FFT, Radix-2 DIT-FFT algorithm,	

Module	Unit	Topic details	Hrs.
No.	No.		
	3.2	DIT-FFT Flow graph for N=4 and 8, Inverse FFT algorithm.	
	3.3	Spectral Analysis using FFT	
4.0		Digital Image Fundamentals	08
	4.1	Introduction to Digital Image, Digital Image Processing System, Sampling and Quantization	
	4.2	Representation of Digital Image, Connectivity	
	4.3	Image File Formats: BMP, TIFF and JPEG.	
5.0		Image Enhancement in Spatial domain	10
	5.1	Gray Level Transformations, Zero Memory Point Operations,	
	5.2	Histogram Processing, Histogram equalization.	
	5.3	NeighborhoodProcessing, Spatial Filtering, Smoothing and Sharpening Filters, Median Filter.	
6.0		Image Segmentation	06
	6.1	Segmentation based on Discontinuities (point, Line, Edge),	
	6.2	Image Edge detection using Robert, Sobel, Previtt masks, Image	
		Edge detection using Laplacian Mask.	
		Total	52

- 1. John G. Proakis, Dimitris and G.Manolakis, 'Digital Signal Processing: Principles, Algorithms, and Applications' 4th Edition 2007, Pearson Education.
- 2. A. Anand Kumar, 'Digital Signal Processing', PHI Learning Pvt. Ltd. 2013.
- 3. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, 3rd Edition, 2009,
- 4. S. Sridhar, 'Digital Image Processing', Oxford University Press, Second Edition, 2012.

## **Reference Books:**

- 1. Sanjit Mitra, 'Digital Signal Processing: A Computer Based Approach', TataMcGraw Hill, 3rd Edition.
- 2. S. Salivahanan, A. Vallavaraj, and C. Gnanapriya, 'Digital Signal Processing' Tata McGraw Hill Publication 1st Edition (2010).
- 3. S. Jayaraman, E. Esakkirajan and T. Veerkumar, 'Digital Image Processing' TataMcGraw Hill Education Private Ltd, 2009.
- 4. Anil K. Jain, 'Fundamentals and Digital Image Processing', Prentice Hall of India Private Ltd, 3rd Edition.

# **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 50% syllabus is completed. Duration of each test shall be one hour.

#### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

Course Code	Course Name	Credits
CSC702	Mobile Communication & Computing	4

### **Course objectives:**

- 1. To introduce the basic concepts and principles in mobile computing. This includes major techniques involved, and networks & systems issues for the design and implementation of mobile computing systems and applications.
- 2. To explore both theoretical and practical issues of mobile computing.
- 3. To provide an opportunity for students to understand the key components and technologies involved and to gain hands-on experiences in building mobile applications.

### **Course outcomes:** On successful completion of course learner will be able:

- 1. To identify basic concepts and principles in mobile communication & computing, cellular architecture.
- 2. To describe the components and functioning of mobile networking.
- 3. To classify variety of security techniques in mobile network.
- 4. To apply the concepts of WLAN for local as well as remote applications.
- 5. To describe and apply the concepts of mobility management
- 6. To describe Long Term Evolution (LTE) architecture and its interfaces.

# **Prerequisite: Computer Networks**

Module No.	Unit No.	Topics	Hrs
1.0	1.1	Introduction to Mobile Computing, Telecommunication Generations, Cellular systems,	06
	1.2	Electromagnetic Spectrum, Antenna ,Signal Propagation, Signal Characteristics, , Multiplexing, Spread Spectrum: DSSS & FHSS	
2.0	2.1	GSM Mobile services, System Architecture, Radio interface, Protocols, Localization and Calling, Handover, security (A3,A5 & A8)	10
	2.2	GPRS system and protocol architecture	
	2.2	UTRAN , UMTS core network ; Improvements on Core Network,	
3.0	3.1	<b>Mobile Networking</b> : Medium Access Protocol, Internet Protocol and Transport layer	12
	3.2	Medium Access Control: Motivation for specialized MAC, , Introduction to multiple Access techniques (MACA)	

	3.3	Mobile IP: IP Packet Delivery, Agent Advertisement and Discovery, Registration, Tunneling and Encapsulation, Reverse Tunneling, Routing (DSDV,DSR)	
	3.4	Mobile TCP: Traditional TCP, Classical TCP Improvements like Indirect TCP, Snooping TCP & Mobile TCP, Fast Retransmit/ Fast Recovery, Transmission/Timeout Freezing, Selective Retransmission	
4.0	4.1	Wireless Local Area Networks: Introduction, Infrastructure and ad-hoc network	08
	4.2	<b>IEEE 802.11:</b> System architecture, Protocol architecture, Physical layer, Medium access control layer, MAC management, 802.11a, 802.11b	
	4.3	Wi-Fi security : WEP ,WPA, Wireless LAN Threats , Securing Wireless Networks	
	4.4	HiperLAN 1 & HiperLAN 2	
	4.5	Bluetooth: Introduction, User Scenario, Architecture, protocol stack	
5.0	5.1	Mobility Management : Introduction, IP Mobility, Optimization, IPv6	06
	5.2	Macro Mobility : MIPv6, FMIPv6,	
	5.3	Micro Mobility: CellularIP, HAWAII, HMIPv6,	
6.0	6.1	<b>Long-Term Evolution (LTE) of 3GPP :</b> LTE System Overview, Evolution from UMTS to LTE	10
	6.2	LTE/SAE Requirements, SAE Architecture	
	6.3	EPS: Evolved Packet System, E-UTRAN, Voice over LTE (VoLTE), Introduction to LTE-Advanced,	
	6.4	System Aspects, LTE Higher Protocol Layers, LTE MAC layer, LTE PHY Layer,	
	6.5	Self Organizing Network (SON-LTE),SON for Heterogeneous Networks (HetNet), Introduction to 5G	
		Total	52

# **Assessment:**

# **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

## **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

### **Text Books:**

- 1 Jochen Schiller,"Mobile Communication ", Addision wisely,Pearson Education
- 2 "Wireless Communications & Networks," By William Stallings, Second Edition, Pearson Education
- 3 Raj Kamal, Mobile Computing, 2/e, Oxford University Press-New Delhi

## **Reference Books:**

- 1 LTE Self-Organizing Networks (SON): Network Management Automation for Operational Efficiency, Seppo Hamalainen, Henning Sanneck, Cinzia Sartori, Wiley publications
- 2 Christopher Cox, "An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Communications," Wiley publications
- 3 Mobility Protocols and Handover Optimization: Design, Evaluation and Application By Ashutosh Dutta, Henning Schulzrinne, IEEE Press, Wiley Publication
- 4 Michael Gregg, "Build your own security lab," Wiley India edition
- 5 Emerging Wireless Technologies and the Future Mobile Internet, Dipankar Raychaudhuri, Mario Gerla, Cambridge.
- 6 Andreas F.Molisch, "Wireless Communications," Second Edition, Wiley Publications.

Course Code	Course Name	Credits
CSC703	Artificial Intelligence & Soft Computing	4

# **Course Objectives (CO):**

- 1 To conceptualize the basic ideas and techniques of AI and SC.
- 2 To distinguish various search techniques and to make student understand knowledge representation and planning.
- 3 To become familiar with basics of Neural Networks and Fuzzy Logic.
- 4 To familiarize with Hybrid systems and to build expert system.

#### Course Outcomes: Students should be able to -

- 1 Identify the various characteristics of Artificial Intelligence and Soft Computing techniques.
- 2 Choose an appropriate problem solving method for an agent to find a sequence of actions to reach the goal state.
- **3** Analyse the strength and weakness of AI approaches to knowledge representation, reasoning and planning.
- 4 Construct supervised and unsupervised ANN for real world applications.
- 5 Design fuzzy controller system.
- 6 Apply Hybrid approach for expert system design.

### **Pre-requisites:** Basic Mathematics, Algorithms

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Introduction to Artificial Intelligence(AI) and Soft Computing	4
	1.1	Introduction and Definition of Artificial Intelligence.	
	1.2	Intelligent Agents: Agents and Environments, Rationality, Nature of	
		Environment, Structure of Agent, types of Agent	
	1.3	Soft Computing: Introduction of soft computing, soft computing vs. hard	
		computing, various types of soft computing techniques.	
2.0		Problem Solving	10
	2.1	Problem Solving Agent, Formulating Problems, Example Problems	
	2.2	Uninformed Search Methods: Depth Limited Search, Depth First Iterative	
		Deepening (DFID), Informed Search Method: A* Search	
	2.3	Optimization Problems: Hill climbing Search, Simulated annealing, Genetic	
		algorithm	
3.0		Knowledge, Reasoning and Planning	10
	3.1	Knowledge based agents	
	3.2	First order logic: syntax and Semantic, Knowledge Engineering in FOL	
		Inference in FOL: Unification, Forward Chaining, Backward Chaining and	
		Resolution	
	3.3	Planning Agent, Types of Planning: Partial Order, Hierarchical Order,	
		Conditional Order	
4.0		Fuzzy Logic	12

	4.1	Introduction to Fuzzy Set: Fuzzy set theory, Fuzzy set versus crisp set, Crisp	
		relation & fuzzy relations, membership functions,	
	4.2	Fuzzy Logic: Fuzzy Logic basics, Fuzzy Rules and Fuzzy Reasoning	
	4.3	Fuzzy inference systems: Fuzzification of input variables, defuzzification and	
		fuzzy controllers.	
5.0		Artificial Neural Network	12
	5.1	Introduction - Fundamental concept- Basic Models of Artificial Neural	
		Networks – Important Terminologies of ANNs – McCulloch-Pitts Neuron	
	5.2	Neural Network Architecture: Perceptron, Single layer Feed Forward ANN,	
		Multilayer Feed Forward ANN, Activation functions, Supervised Learning:	
		Delta learning rule, Back Propagation algorithm.	
	5.3	Un-Supervised Learning algorithm: Self Organizing Maps	
6.		Expert System	4
	6.1	Hybrid Approach - Fuzzy Neural Systems	
	6.2	Expert system : Introduction, Characteristics, Architecture, Stages in the	
		development of expert system,	
		Total	52

- 1. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach "Second Edition" Pearson Education.
- 2. Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.
- 3. S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- 4. S.Rajasekaran and G.A.VijayalakshmiPai "Neural Networks, Fuzzy Logic and Genetic Algorithms" PHI Learning.
- 5. N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press.

### **Reference Books:**

- 1. Elaine Rich and Kevin Knight "Artificial Intelligence" Third Edition, Tata McGraw-Hill Education Pvt. Ltd., 2008.
- 2. Satish Kumar "Neural Networks A Classroom Approach" Tata McGrawHill.
- 3. Zimmermann H.S "Fuzzy Set Theory and its Applications" Kluwer Academic Publishers.
- 4. Hagan, Demuth, Beale, "Neural Network Design" CENGAGE Learning, India Edition.
- 5. J.-S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- 6. JacekM.Zurada "Introduction to Artificial Neural Sytems" Jaico Publishing House.

# **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSDLO7031	Advanced System Security and Digital Forensics	4

# **Course Objectives:**

- 1. To understand cyber attacks and defence strategies.
- 2. To understand underlying principles of access control mechanisms.
- 3. To explore software vulnerabilities, attacks and protection mechanisms of wireless networks and protocols, mobile devices and web applications.
- 4. To develop and mitigate security management and policies.
- 5. To understand and explore techniques used in digital forensics.

#### **Course Outcomes:** At the end of the course learner will able to

- 1. Understand cyber attacks and apply access control policies and control mechanisms.
- 2. Identify malicious code and targeted malicious code.
- 3. Detect and counter threats to web applications.
- 4. Understand the vulnerabilities of Wi-Fi networks and explore different measures to secure wireless protocols, WLAN and VPN networks.
- 5. Understand the ethical and legal issues associated with cyber crimes and be able to mitigate impact of crimes with suitable policies.
- 6. Use different forensic tools to acquire and duplicate data from compromised systems and analyse the same.

# **Prerequisite:** Cryptography and System Security

Module No.	Unit No.	Detailed Content	Hrs •
	Introd	luction & Access Control	08
1	1.1	Cyber-attacks, Vulnerabilities, Defence Strategies and Techniques, Authentication Methods and Protocols, Defence in Depth Strategies.	
1	1.2	Access Control Policies: DAC, MAC, Multi-level Security Models: Biba Model, Bell La Padula Model, Single Sign on, Federated Identity Management.	
	Program & OS Security		08
2	2.1	Malicious and Non-Malicious programming errors, Targeted Malicious codes: Salami Attack, Linearization Attack, Covert Channel, Control against Program threats.	
	2.2	Operating System Security: Memory and Address protection, File Protection Mechanism, User Authentication.	
	2.3	Linux and Windows: Vulnerabilities, File System Security.	
3		Web Application Security	12
3		OWASP, Web Security Considerations, User Authentication and Session	

		Management, Cookies, SSL, HTTPS, SSH, Privacy on Web, Web Browser Attacks, Account Harvesting, Web Bugs, Clickjacking, Cross-Site Request Forgery, Session Hijacking and Management, Phishing and Pharming Techniques, Web Service Security, OAuth 2.0	
		Wireless Security	08
4		Wi-Fi Security, WEP, WPA, WPA-2, Mobile Device Security-Security Threats, Device Security, GSM and UMTS Security, IEEE 802.11/802.11i Wireless LAN Security, VPN Security.	
	Legal and Ethical issues		06
_	5.1	Cybercrime and its types, Intellectual property, Privacy, Ethical issues.	
5	5.2	Protecting Programs and Data, Information and the Law, Rights of Employees and Employers, Redress for Software Failures, Computer Crime, Ethical Issues in Computer Security, case studies of ethics.	
	Digital Forensics		10
6		Introduction to Digital Forensics, Acquiring Volatile Data from Windows and Unix systems, Forensic Duplication Techniques, Analysis of forensic images using open source tools like Autopsy and SIFT, Investigating logs from Unix and windows systems, Investigating Windows Registry.	

- 1. Computer Security Principles and Practice, William Stallings, Sixth Edition, Pearson Education
- 2. Security in Computing, Charles P. Pfleeger, Fifth Edition, Pearson Education
- 3. Network Security and Cryptography, Bernard Menezes, Cengage Learning
- 4. Network Security Bible, Eric Cole, Second Edition, Wiley

#### **Reference Books:**

- 1. Computer Security, Dieter Gollman, Third Edition, Wiley
- 2. Digital Forensics by Nilakshi Jain & Kalbande, Wiley.
- 3. Incident Response & Computer Forensics by Kevin Mandia, Chris Prosise, Wiley.
- 4. Cyber Security. Nina Godbole, Sunit Belapure, Wiley.

# **Digital references:**

1. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

### **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

# **Theory Examination:**

- 1. Question paper will comprise of total six question.
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

______

# Laboratory/ Experimental Work

# The Experiments for this course are required to be performed and to be evaluated in CSL704: Computational Lab-1.

#### Lab Outcome:

Learner will able to

- 1. Analyze static code and program vulnerabilities using open source tools.
- 2. Explore and analyze network vulnerabilities using open source tools.
- 3. Explore and analyze different security tools to detect web application and browser vulnerabilities.
- 4. Explore and analyze different tools to secure wireless networks and routers, and mobile devices and perform penetration testing, and analyze its impact.
- 5. Understand and implement AAA using RADIUS and TACACS.
- 6. Explore various forensics tools in Kali Linux and use them to acquire, duplicate and analyze data and recover deleted data.

Sr. No	Description
1	Static code analysis using open source tools like RATS, Flawfinder etc.
3	Vulnerability scanning using Nessus, Nikto (Kali Linux)
4	Explore web-application vulnerabilities using open source tools like Wapiti, browser exploitation framework (BeEf), etc.
5	Detect SQL injection vulnerabilities in a website database using SQLMap
6	Performing a penetration testing using Metasploit (Kali Linux)
7	Exploring Router and VLAN security, setting up access lists using Cisco Packet tracer(student edition)
8	Exploring VPN security using Cisco Packet tracer(student edition)
9	Exploring Authentication and access control using RADIUS, TACACS and TACACS+
10	Install and use a security app on an Android mobile (e.g. Droidcrypt)
11	Explore forensics tools in Kali Linux for acquiring, analyzing and duplicating data: dd, dcfldd, foremost, scalpel, debugfs, wireshark, tcptrace, tcpflow
12	Analysis of forensic images using open source tools like Autopsy, SIFT, FKT Imager
13	Use of steganographic tools like OpenStego, to detect data hiding or unauthorized file copying

14. Use Password cracking using tools like John the Ripper/Cain and Abel/ Ophcrack to detect weak passwords.

# **Reference Books:**

- 1. Build your own Security Lab, Michael Gregg, Wiley India
- 2. CCNA Security, Study Guide, Tim Boyles, Sybex.
- 3. Web Application Hacker's Handbook, Dafydd Stuttard, Marcus Pinto, Wiley India
- 4. Network Infrastructure Security, Randy Waver, Dawn Weaver, Cengage Learning.
  - 5. Incident Response & Computer Forensics by Kevin Mandia, Chris Prosise, Wiley.

# **Digital References:**

http://www.opentechinfo.com/learn-use-kali-linux/

Course Code	Course/Subject Name	Credits
CSDLO7032	Big Data Analytics	4

# **Course Objectives:**

- 1. To provide an overview of an exciting growing field of big data analytics.
- 2. To introduce programming skills to build simple solutions using big data technologies such as MapReduce and scripting for NoSQL, and the ability to write parallel algorithms for multiprocessor execution.
- 3. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems in for decision support.
- 5. To provide an indication of the current research approaches that is likely to provide a basis for tomorrow's solutions.

#### Course Outcomes: Learner will be able to...

- 1. Understand the key issues in big data management and its associated applications for business decisions and strategy.
- 1. Develop problem solving and critical thinking skills in fundamental enabling techniques like Hadoop, Mapreduce and NoSQL in big data analytics.
- 2. Collect, manage, store, query and analyze various forms of Big Data.
- 3. Interpret business models and scientific computing paradigms, and apply software tools for big data analytics.
- 4. Adapt adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.
- 5. Solve Complex real world problems in various applications like recommender systems, social media applications, health and medical systems, etc.

#### **Prerequisite:**

Some prior knowledge about Java programming, Basics of SQL, Data mining and machine learning methods would be beneficial.

Module	<b>Detailed Contents</b>	Hrs.
01	Introduction to Big Data and Hadoop  1.1 Introduction to Big Data,  1.2 Big Data characteristics, types of Big Data,  1.3 Traditional vs. Big Data business approach,  1.4 Case Study of Big Data Solutions.  1.5 Concept of Hadoop  1.6 Core Hadoop Components; Hadoop Ecosystem	06

02	<ul> <li>Hadoop HDFS and MapReduce</li> <li>2.1 Distributed File Systems: Physical Organization of Compute Nodes, Large-Scale File-System Organization.</li> <li>2.2 MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.</li> <li>2.3 Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce</li> <li>2.4 Hadoop Limitations</li> </ul>	10
03	NoSQL 3.1 Introduction to NoSQL, NoSQL Business Drivers, 3.2 NoSQL Data Architecture Patterns: Key-value stores, Graph stores, Column family (Bigtable)stores, Document stores, Variations of NoSQL architectural patterns, NoSQL Case Study 3.3 NoSQL solution for big data, Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; NoSQL systems to handle big data problems.	06
04	<ul> <li>Mining Data Streams:</li> <li>4.1 The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Queries, Issues in Stream Processing.</li> <li>4.2 Sampling Data techniques in a Stream</li> <li>4.3 Filtering Streams: Bloom Filter with Analysis.</li> <li>4.4 Counting Distinct Elements in a Stream, Count-Distinct Problem, Flajolet-Martin Algorithm, Combining Estimates, Space Requirements</li> <li>4.5 Counting Frequent Items in a Stream, Sampling Methods for Streams, Frequent Itemsets in Decaying Windows.</li> <li>4.6 Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.</li> </ul>	12
05	Finding Similar Items and Clustering 5.1 Distance Measures: Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance. 5.2 CURE Algorithm, Stream-Computing, A Stream-Clustering Algorithm, Initializing & Merging Buckets, Answering Queries	08
	Real-Time Big Data Models 6.1 PageRank Overview, Efficient computation of	

	PageRank: PageRank Iteration Using MapReduce, Use of	
06	Combiners to Consolidate the Result Vector.	10
	6.2 A Model for Recommendation Systems, Content-Based	
	Recommendations, Collaborative Filtering.	
	6.3 Social Networks as Graphs, Clustering of Social-Network	
	Graphs, Direct Discovery of Communities in a social graph.	
	06	Combiners to Consolidate the Result Vector. 6.2 A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering. 6.3 Social Networks as Graphs, Clustering of Social-Network

- 1. CreAnand Rajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press,
- 2. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 3. Dan Mcary and Ann Kelly "Making Sense of NoSQL" A guide for managers and the rest of us, Manning Press.

#### **References books:**

- 1. Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics", Wiley
- 2. Chuck Lam, "Hadoop in Action", Dreamtech Press
- 3. Jared Dean, "Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners", Wiley India Private Limited, 2014.
- 4. 4. Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", Morgan Kaufmann Publishers, 3rd ed, 2010.
- 5. Lior Rokach and Oded Maimon, "Data Mining and Knowledge Discovery Handbook", Springer, 2nd edition, 2010.
- 6. Ronen Feldman and James Sanger, "The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data", Cambridge University Press, 2006.
- 7. Vojislav Kecman, "Learning and Soft Computing", MIT Press, 2010.

### Term Work:

Assign a case study for group of 3/4 students and each group to perform the following experiments on their case-study; Each group should perform the exercises on a large datasetcreated by them.

The distribution of marks for term work shall be as follows:

TOTAL:	•••••	(25) Marks.
• Attendance (Theory & Practice)	ctical)	(05) Marks.
• Mini project:		(10) Marks.
<ul> <li>Programming Exercises:</li> </ul>		(10) Marks.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

## **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

#### **Oral examination:**

An oral exam will be held based on the above syllabus.

### **Suggested Practical List:**

- 1. Hadoop HDFS Practical:
  - -HDFS Basics, Hadoop Ecosystem Tools Overview.
  - -Installing Hadoop.
  - -Copying File to Hadoop.
  - -Copy from Hadoop File system and deleting file.
  - -Moving and displaying files in HDFS.
  - -Programming exercises on Hadoop.
  - 2. Use of Sqoop tool to transfer data between Hadoop and relational database servers.
    - a. Sqoop Installation.
    - b. To execute basic commands of Hadoop eco system component Sqoop.
  - 3. To install and configure MongoDB/ Cassandra/ HBase/ Hypertable to execute NoSQL commands.
  - 4. Experiment on Hadoop Map-Reduce / PySpark:
  - 2. -Implementing simple algorithms in Map-Reduce: Matrix multiplication, Aggregates, Joins, Sorting, Searching, etc.
  - 5. Create HIVE Database and Descriptive analytics-basic statistics, visualization using Hive/PIG/R.
  - 6. Write a program to implement word count program using MapReduce.
  - 7. Implementing DGIM algorithm using any Programming Language/ Implement Bloom Filter using any programming language.
  - 8. Implementing any one Clustering algorithm (K-Means/CURE) using Map-Reduce.
  - 9. Streaming data analysis use flume for data capture, HIVE/PYSpark for analysis of twitter data, chat data, weblog analysis etc.
  - 10. Implement PageRank using Map-Reduce.
  - 11. Implement predictive Analytics techniques (regression / time series, etc.) using R/ Scilab/ Tableau/ Rapid miner.
  - 12. **Mini Project:** One real life large data application to be implemented (Use standard Datasets available on the web).

# # The Experiments for this course are required to be performed and to be evaluated

in CSL704: Computational Lab-1.

Course Code	Course Name	Credits
CSDLO7033	Robotics	4

# **Course objectives:**

- 1 To know basics of a typical robot and its characteristics.
- 2 To analyse mathematically kinematic modelling of a typical robot manipulator.
- 3 To identify actuators, sensors and control of a robot for different applications.
- 4 To apply task planning and vision algorithms.

**Course outcomes:** On successful completion of course learner will be able to:

- 1. Describe typical robot and its characteristics.
- 2. Analyse kinematics parameters of robotic manipulator.
- 3. Identify actuators, sensors and control of a robot for different applications.
- 4. Design task plan and motion for a robot.
- 5. Apply Robotics to solve day to day problems using vision algorithms.
- 6. Use robot programming languages and acquire skills to program robots.

Prerequisite: Mathematical concepts of Geometry, Matrices Algebra, knowledge of Basic Electronics.

Module No.	Unit No.	Topics	Hrs.
		Introduction and Fundamentals of Robotics	
1.0	1.1	Types of automation, Introduction, definition of a Robot, Classification of Robots, Robotics, History of Robotics, Advantages and Disadvantages of Robots, Robot Applications	08
	1.2	Tasks involved in Robotics, Robot Components, Robot characteristics and classification, Degrees of Freedom, Robot joints, Robot Coordinates, Robot Reference frames, Programming Modes, Robot Workspace, Work Envelop.	
2.0		Direct and Inverse Kinematics	
	2.1	<b>Direct (Forward) Kinematics:</b> Homogeneous coordinates, Link coordinates, Coordinate frame, coordinate transform, Arm equations, An example – Four Axis SCARA.	08
	2.2	Inverse Kinematics: Inverse kinematics problem, Tool Configuration, An example – Four Axis SCARA.	
		Sensors, Actuators and Drive Systems	08

		Total	52
	6.2	Introduction, Fuzzy set, Fuzzification, Fuzzy Inference Rule Base, Defuzzification, Applications of Fuzzy Logic in Robotics.	
	6.1	Introduction to Expert Systems, Expert system Characteristics, Robot as a Expert System, Robot Languages: Classification of Robot Languages, Computer Control and Robot Software, VAL System, and Language.	
6.0		Expert Systems, Robot Language and Fuzzy Logic	12
	5.3	Perspective Transformations, Structured Illumination, Camera Calibration	
	5.2	Shape Analysis, Iterative Processing	10
	5.1	Image Representation, Template Matching, Polyhedral Objects	
5.0		Robot Vision	
	4.3	Robot Motion Planning: Concept of motion planning, BUG 1, BUG 2 and Tangent Bug Algorithms	
	4.2	Task level programming, Uncertainty, Configuration Space, Gross motion planning, Fine-motion planning, Simulation of Planner motion, Source and goal scene, Task planner Simulation.	10
	4.1	Reactive Paradigms: Overview, Attributes of reactive paradigm	
4.0		Robot Task and Motion Planning	
	3.2	Actuators and Drive System: Characteristics, Hydraulic Actuators, Pneumatic Devices, Electric Motors	
3.0	3.1	<b>Sensors:</b> Characteristics, Utilization, Types - Position, Velocity, Acceleration, Force and Pressure, Torque, Visible Light and Infrared, Touch and Tactile, Proximity, Range Finders sensors.	

- 1. Introduction Robotics Analysis, Control, Applications by Saeed B. Niku, Second Edition, Wiley India.
- 2. Fundamentals of Robotics Analysis and Control by Robert J. Schilling, Pearson
- 3. Introduction to AI robotics by Robin Murphy, PHI. University of Mumbai, B. E. (Computer Engineering), Rev. 2016

- 4. Robotics Technology and Flexible Automation by S. R. Deb, TMH.
- 5. Artificial Intelligence by Rich, Knight and Nair, TMH.
- 6. Introduction to Fuzzy Sets by M Ganesh PHI

#### **Reference Books:**

- 1. Robotics Control, Sensing, Vision, and Intelligence by K. S. Fu, R. C. Gonzalez, C. S. G. Lee, Tata McGraw Hill
- 2. Principles of Robot Motion Theory, Algorithms and Implementation by Howie Choset, Lynch, PHI
- 3. Introduction to Fuzzy Logic using Matlab,By: S.N.Sivanandam,S.N.Deepa,P Sumathi , Springer Publications

### **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

# **End Semester Theory Examination:**

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

#### Term Work:

The distribution of marks for term work shall be as follows:

TOTAL:	•••••	(25) Marks.
• Attendance (Theory & Pra	ctical)	(05) Marks.
• Mini project:		(10) Marks.
<ul> <li>Programming Exercises:</li> </ul>		(10) Marks.

# **Suggested List of Experiments:**

- Representation of Various Robots and there all Specification (Study Experiment)
- 2 Co-ordinate Transform of a Robot
- 3 Fundamental Rotation
- 4 Composite Rotation
- 5 BFS and DFS
- 6 Homogeneous Rotation
- 7 Run Length Encoding
- 8 Shrink and swell Operator
- 9 BUG1 Algorithm

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

- 10 Bug2 Algorithm
- 11 Tangent Bug Algorithm
- 12 Edge detection algorithm
- 13 Case Study of CNC Machine
- 14 Designing a Robot Manipulator for Pre defined Task

Students can perform experiments based on Theory Syllabus or any 12 experiments from above list of experiments or experiments framed by teachers.

# The Experiments for this course are required to be performed and to be evaluated in CSL704: Computational Lab-1.

Course Code	Course Name	Credits
ILO 7011	Product Life Cycle Management	03

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Sr. No.	Detailed Contents	Hrs
01	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications  PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	10
02	<b>Product Design:</b> Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	09
03	<b>Product Data Management (PDM):</b> Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	05
04	<b>Virtual Product Development Tools:</b> For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	05
05	Integration of Environmental Aspects in Product Design: Sustainable Development,	05

	Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life	
	Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies	
	into the Design Process, Life Cycle Environmental Strategies and Considerations for	
	Product Design	
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of	05
	Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and	
06	Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach,	
	General Framework for LCCA, Evolution of Models for Product Life Cycle Cost	
	Analysis	

### **Internal Assessment for 20 marks:**

### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

### **REFERENCES:**

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Course Code	Course Name	Credits
ILO 7012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Sr. No	Detailed Contents	Hrs
	Probability theory: Probability: Standard definitions and concepts; Conditional	
	Probability, Baye's Theorem.	
01	Probability Distributions: Central tendency and Dispersion; Binomial, Normal,	08
VI.	Poisson, Weibull, Exponential, relations between them and their significance.	
	Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard	
	Deviation, Variance, Skewness and Kurtosis.	
	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality	
	Assurance and Reliability, Bath Tub Curve.	
02	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To	08
	Failure (MTTF), MTBF, Reliability Functions.	
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time	
	Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	
03	<b>System Reliability:</b> System Configurations: Series, parallel, mixed configuration, k out	05
	of n structure, Complex systems.	
	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit	0.0
04	redundancy, Standby redundancies. Markov analysis.	08
	System Reliability Analysis – Enumeration method, Cut-set method, Success	
	Path method, Decomposition method.  Maintainability and Availability: System downtime, Design for Maintainability:	
	Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts	
05	standardization and Interchangeability, Modularization and Accessibility, Repair Vs	05
US	Replacement.	
	Availability – qualitative aspects.	
	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis,	
06	severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols,	05
	development of functional reliability block diagram, Fau1t tree analysis and Event tree	03
	Analysis	

### **Internal Assessment for 20 marks:**

## Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **REFERENCES:**

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Course Code	Course Name	Credits
ILO 7013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Sr. No.	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process.  Acquiring Information Systems and Applications: Various System development life cycle models.	8

## **Internal Assessment for 20 marks:**

## Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

### **REFERENCES:**

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO 7014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Sr. No	Detailed Contents	Hrs
	Introduction	
	1.1 Strategy of Experimentation	0.5
01	1.2 Typical Applications of Experimental Design	06
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
	Fitting Regression Models	
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
02	2.3 Hypothesis Testing in Multiple Regression	08
02	2.4 Confidence Intervals in Multiple Regression	
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
	Two-Level Factorial Designs	
	$3.1 \text{ The } 2^2 \text{ Design}$	
	3.2 The 2 ³ Design	
03	3.3 The General2 ^k Design	07
03	3.4 A Single Replicate of the 2 ^k Design	
	3.5 The Addition of Center Points to the 2 ^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs	
	4.1 The One-Half Fraction of the 2 ^k Design	
04	4.2 The One-Quarter Fraction of the 2 ^k Design	07
	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
05	Response Surface Methods and Designs	07
US	5.1 Introduction to Response Surface Methodology	

	5.2 The Method of Steepest Ascent	
	5.3 Analysis of a Second-Order Response Surface	
	5.4 Experimental Designs for Fitting Response Surfaces	
	Taguchi Approach	
06	6.1 Crossed Array Designs and Signal-to-Noise Ratios	04
00	6.2 Analysis Methods	
	6.3 Robust design examples	

### **Internal Assessment for 20 marks:**

## Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

### **REFERENCES:**

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

Course Code	Course Name	Credits
ILO 7015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Sr. No.	Detailed Contents	Hrs
	Introduction to Operations Research: Introduction, , Structure of the Mathematical	
	Model, Limitations of Operations Research	
	Linear Programming: Introduction, Linear Programming Problem, Requirements of	
	LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty	
	Cost Method or Big M-method, Two Phase Method, Revised simplex method,	
	<b>Duality</b> , Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality	
	Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex	
	Method, Sensitivity Analysis	
0.1	Transportation Problem: Formulation, solution, unbalanced Transportation problem.	1.4
01	Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's	14
	approximation method. Optimality test: the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the Problem,	
	Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m	
	Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem,	
	Travelling Salesman Problem	
	Integer Programming Problem: Introduction, Types of Integer Programming	
	Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique.	
	Introduction to Decomposition algorithms.	
	Queuing models: queuing systems and structures, single server and multi-server	
02	models, Poisson input, exponential service, constant rate service, finite and infinite	05
	population	
	Simulation: Introduction, Methodology of Simulation, Basic Concepts, Simulation	
02	Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo	05
03	Simulation, Applications of Simulation, Advantages of Simulation, Limitations of	03
	Simulation	

04	<b>Dynamic programming</b> . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05
05	<b>Game Theory</b> . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
06	<b>Inventory Models</b> : Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	05

### **Internal Assessment for 20 marks:**

## Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

## **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

### **REFERENCES:**

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons

Course Code	Course Name	Credits
ILO 7016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Sr. No.	Detailed Contents	Hrs
01	<b>Introduction to Cybercrime:</b> Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
02	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	9
03	Tools and Methods Used in Cyberline Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
04	The Concept of Cyberspace E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	8
05	Indian IT Act.  Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

### **Internal Assessment for 20 marks:**

### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **REFERENCES:**

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Course Code	Course Name	Credits
ILO 7017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Sr. No.	Detailed Contents	Hrs
01	Introduction 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.	03
02	<ul> <li>Natural Disaster and Manmade disasters:</li> <li>2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion</li> <li>2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.</li> </ul>	09
03	<ul> <li>Disaster Management, Policy and Administration</li> <li>3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management.</li> <li>3.2 Policy and administration: Importance and principles of disaster management policies, command and coordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.</li> </ul>	06
04	Institutional Framework for Disaster Management in India: 4.1 Importance of public awareness, Preparation and execution of emergency management program. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. 4.2 Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
05	Financing Relief Measures:	09

	5.1 Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams.	
	5.2 International relief aid agencies and their role in extreme events.	
06	Preventive and Mitigation Measures: 6.1 Pre-disaster, during disaster and post-disaster measures in some events in general 6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication 6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. 6.4 Do's and don'ts in case of disasters and effective implementation of relief aids.	06

#### **Internal Assessment for 20 marks:**

### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

### **REFERENCES:**

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elsevier Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards' and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILO 7018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Sr. No	Detailed Contents	Hrs
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
02	Energy Audit Principles:  Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis.  Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
03	Energy Management and Energy Conservation in Electrical System:  Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings.  Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers.  Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	10
04	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system.  General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity,	10

	factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	
05	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
06	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

#### **Internal Assessment for 20 marks:**

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

#### **REFERENCES:**

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Course Code	Course Name	Credits
ILO7019	Development Engineering	03

- 1. To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural Development.
- 2. To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
- 3. An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the context of work life and the personal life of modern Indian professionals
- 4. To understand the Nature and Type of Human Values relevant to Planning Institutions

- 1. Apply knowledge for Rural Development.
- 2. Apply knowledge for Management Issues.
- 3. Apply knowledge for Initiatives and Strategies
- 4. Develop acumen for higher education and research.
- 5. Master the art of working in group of different nature.
- 6. Develop confidence to take up rural project activities independently

Sr. No.	Module Contents	Hrs
01	Introduction to Rural Development Meaning, nature and scope of development;	08
	Nature of rural society in India; Hierarchy of settlements; Social, economic and	
	ecological constraints for rural development Roots of Rural Development in	
	India Rural reconstruction and Sarvodaya programme before independence;	
	Impact of voluntary effort and Sarvodaya Movement on rural development;	
	Constitutional direction, directive principles; Panchayati Raj - beginning of	
	planning and community development; National extension services.	
02	Post-Independence rural Development Balwant Rai Mehta Committee - three	04
	tier system of rural local Government; Need and scope for people's	
	participation and Panchayati Raj; Ashok Mehta Committee - linkage between	
	Panchayati Raj, participation and rural development	
03	Rural Development Initiatives in Five Year Plans Five Year Plans and Rural	06
	Development; Planning process at National, State, Regional and District levels;	
	Planning, development, implementing and monitoring organizations and	
	agencies; Urban and rural interface - integrated approach and local plans;	
	Development initiatives and their convergence; Special component plan and	
	sub-plan for the weaker section; Micro-eco zones; Data base for local planning;	
	Need for decentralized planning; Sustainable rural development.	
04	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including -	04
	XI schedule, devolution of powers, functions and finance; Panchayati Raj	
	institutions - organizational linkages; Recent changes in rural local planning;	
	Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource	
	mapping, resource mobilization including social mobilization; Information	
	Technology and rural planning; Need for further amendments.	
05	Values and Science and Technology Material development and its values; the	10
	challenge of science and technology; Values in planning profession, research	
	and education.	

	Types of Values Psychological values — integrated personality; mental health;	
	Societal values — the modern search for a good society; justice, democracy,	
	rule of law, values in the Indian constitution;	
	Aesthetic values — perception and enjoyment of beauty; Moral and ethical	
	values; nature of moral judgment; Spiritual values; different concepts; secular	
	spirituality; Relative and absolute values;	
	Human values— humanism and human values; human rights; human values as	
	freedom, creativity, love and wisdom.	
06	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility;	04
	Work ethics;	
	Professional ethics; Ethics in planning profession, research and education	

### **Internal Assessment for 20 marks:**

### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately

40% but excluding contents covered in Test I)

### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

### **References:**

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V. , Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395  $-\,407$

Lab Code	Lab Name	Credits
CSL701	Digital Signal and Image Processing Lab	1

### Lab Outcome: The learner will be able to

- 1. Sample and reconstruct the signal.
- 2. Implement and apply operations like Convolution, Correlation, DFT and FFT on DT signals
- 3. Implement spatial domain Image enhancement techniques.
- 4. Implement Edge detection techniques using first order derivative filters.

## **Description:**

Implementation of programs can be in C or C++ or any computational software. A List of ten experiments is given below, are needed to be performed covering all syllabus modules. Additional experiments within the scope of the syllabus can be added.

### **Suggested List of Experiments:**

- 1. Sampling and Reconstruction
- 2. To perform Discrete Correlation
- 3. To perform Discrete Convolution
- 4. To perform Discrete Fourier Transform
- 5. To perform Fast Fourier Transform
- 6. Implementation of Image negative, Gray level Slicing and Thresholding
- 7. Implementation of Contrast Stretching Dynamic range compression & Bit plane Slicing
- 8. Implementation of Histogram Processing
- 9. Implementation of Image smoothing/ Image sharpening
- 10. Implementation of Edge detection using Sobel and Previtt masks

### Term Work:

- Laboratory work will be based on above syllabus of CSC701 'Digital Signal and Image Processing' with minimum 10 experiments to be incorporated.
- The distribution of marks for term work shall be as follows:

Lab Performance15 MarksAssignments05 MarksAttendance (Theory & practical)05 Marks

Lab Code	Lab Name	Credits
CSL702	Mobile Application Development Lab	1

### **Lab Outcome:**

- 1. To develop and demonstrate mobile applications using various tools
- 2. Students will articulate the knowledge of GSM, CDMA & Bluetooth technologies and demonstrate it.
- 3. Students will able to carry out simulation of frequency reuse, hidden terminal problem
- 4. To develop security algorithms for mobile communication network
- 5. To demonstrate simulation and compare the performance of Wireless LAN
- 6. To implement and demonstrate mobile node discovery and route maintains.

**Description:** The softwares like Android Studio, J2ME, NS2, NS3 and any other software which is suitable are recommended for performing the practicals.

# **Suggested List of Experiments:**

Sr. No.	Title of Experiments
01	To understand the cellular frequency reuse concept to find the co-channel cells for a particular cell. Design a game based application on the above concept.
02	To understand the cellular frequency reuse concept to find the cell clusters within certain geographic area.  Design a game based application on the above concept.
03	Implementation a Bluetooth network with application as transfer of a file from one device to another.
04	To implement a basic function of Code Division Multiple Access (CDMA) to test the orthogonality and autocorrelation of a code to be used for CDMA operation. Write an application based on the above concept.
05	To implement Mobile node discovery
06	Implementation of GSM security algorithms (A3/A5/A8)
07	Illustration of Hidden Terminal Problem (NS-2) Consider two Wifi base stations (STA) and an access point (AP) located along the x-axis. All the nodes are fixed. The AP is situated at the middle of the two STA, the distance of separation being 150 m. [variable]. Node #0 and node #1 are the hidden terminals. Both are transmitting some data to the AP (almost at same rate) at the same time. The loss across the wireless link between each STA and the AP is fixed at 50 dB irrespective of the distance of separation.
	To study how RTS/CTS helps in wireless networks,  1. No RTS/CTS is being sent.  2. Nodes do exchange RTS/CTS packets.  Compare the no. of packet retransmissions required in both the cases (as obtained in the output) and compare the results.

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

08	To setup & configuration of Wireless Access Point (AP) using NS3. Analyze the Wi-Fi communication range in the presence of the access point (AP) and the base station (BS). Consider BS and AP are static. Find out the maximum distance to which two way communications is possible. Try multiple iterations by adjusting its distance in the code and test it.
09	Develop an application that writes data to the SD card.
10	Develop an application that uses GUI components.
11	Write an application that draws basic graphical primitives on the screen.
12	Develop an application that makes use of database.
13	Develop a native application that uses GPS location information.
14	Implement an application that creates an alert upon receiving a message.
15	Implementation of income tax/loan EMI calculator and deploy the same on real devices.

## **Digital Material (if Any):**

- 1. <a href="http://www.isi.edu/nsnam/ns/">http://www.isi.edu/nsnam/ns/</a> : NS-2 software download
- 2. https://nsnam.isi.edu/nsnam/index.php/NS_manual
- 3. https://www.nsnam.org/: Ns-3 Software Download
- 4. <a href="http://vlssit.iitkgp.ernet.in/ant/ant/">http://vlssit.iitkgp.ernet.in/ant/ant/</a>

### **Text Books:**

- 1. Jochen Schiller,"Mobile Communication ", Addision wisely, Pearson Education
- 2. "Wireless Communications & Networks," By William Stallings, Second Edition, Pearson Education
- 3. Ekram Hossain and Teerawat Issariyakul, "Introduction to Network Simulator NS-2," Springer, Second Edition.
- 4. Michael Burton, "Android Application Development for Dummies, " A wiley brand
- 5. Marko Gargenta & Masumi Nakamura, "Learning Android," O'reilly publications
- 6. James Keogh, "The complete reference J2ME, "Mcgraw-Hill.

#### Term Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Laboratory work (experiments): (15) Marks.

Assignments: (05) Marks.

Attendance (Theory + Practical) (05) Marks

TOTAL: (25) Marks.

**Oral & Practical exam** will be based on the above and CSC702: Mobile Communication & Computing syllabus.

Lab Code	Lab Name	Credits
CSL703	Artificial Intelligence & Soft Computing Lab	1

## Lab Outcomes: Learner will be able to

- 1 To realize the basic techniques to build intelligent systems
- 2 To create knowledge base and apply appropriate search techniques used in problem solving.
- 3 Apply the supervised/unsupervised learning algorithm.
- 4 Designfuzzy controller system.

**Description:** The current applications from almost all domains, like games, robots, expert system, optimization or even the search engines are becoming smarter. We have moved to the era of knowledge processing from data and information processing. Therefore learning these technologies practically is very essential for a student to gain the proficiency. They will also learn and be able to appreciate the use of fusion of basic techniques.

LAB	Topic / Activity	Explanation of Activity
Lab 1	Identify the problem	Select a problem statement relevant to AI
	PEAS Description	
	Problem formulation	
Lab 2	Introduce AI programming Language	Introduce PROLOG programming.
Lab 3	Start Implementation	Use AI programming languages
	Knowledge Representation and Create	Or
	Knowledge Base	C/JAVA
Lab 4	Implement search algorithms to reach goal state	Identify and analyse Algorithm to solve the problem
Lab 5	To implement Mc-Culloch Pitts Model for a problem	Apply to solve AND / OR/ XOR, etc.
Lab 6	To implement Fuzzy Controller system	Design an automobile or washing machine controller, etc. and implement
Lab 7	To implement Basic Supervised / Unsupervised Neural Network learning rules for a problem.	Design a NN using a learning method to generate knowledge for classification.
Lab 8	Case study on Hybrid Systems	Study the designing of Neuro Fuzzy systems
Lab 9	Case study of an Application	Printed Character Recognition, Face Recognition, etc.

## Term Work:

- 1. Labs 1-4 are to design and implement an intelligent system using AI techniques.
- 2. Labs 5-7 are to design and implement an Intelligent System using SC techniques.
- 3. Perform any one from Lab 8 and lab 9.

## The distribution of marks for term work shall be as follows:

Lab Performance (Experiments /case studies):	15
Assignment	05
Attendance (Theory & Practical)	05

Oral examination will be based on the above and CSC703: 'AI and SC' Syllabus.

Lab Code	Lab Name	Credits
CSL703	Computational Lab-I	1

**Lab Outcome:** After successful completion of this course student will be able to:

- 1. Acquire practical knowledge within the chosen area of technology for project development.
- 2. Identify, discuss and justify the technical aspects of the chosen project with a comprehensive and systematic approach.

## **Description:**

Design and implementation of any case study/ applications /experiments / mini project based on departmental level optional courses using modern tools.

#### Term work:

The distribution of marks for **term work** shall be as follows:

Lab/ Experimental Work : 15
Report/ Documentation : 05
Attendance (Theory & Practical) : 05

**Practical & Oral** examination is to be conducted based on respective departmental level optional courses by pair of internal and external examiners appointed by the University of Mumbai.

Course Code	Title	Credit
CSP705	Major Project- I	3

**Objective:** The Project work enables students to develop further skills and knowledge gained during the programme by applying them to the analysis of a specific problem or issue, via a substantial piece of work carried out over an extended period. For students to demonstrate proficiency in the design of a research project, application of appropriate research methods, collection and analysis of data and presentation of results.

### **Guidelines:**

### 1. **Project Topic:**

- To proceed with the project work it is very important to select a right topic. Project can be undertaken on any subject addressing IT programme. Research and development projects on problems of practical and theoretical interest should be encouraged.
- Project work must be carried out by the group of at least two students and maximum three and must be original.
- Students can certainly take ideas from anywhere, but be sure that they should evolve them in the unique way to suit their project requirements.
- The project work can be undertaken in a research institute or organization/company/any business establishment.
- Student must consult internal guide along with external guide (if any) in selection of topic.
- Head of department and senior staff in the department will take decision regarding selection of projects.
- Student has to submit weekly progress report to the internal guide and where as internal guide has to keep track on the progress of the project and also has to maintain attendance report. This progress report can be used for awarding term work marks.
- In case of industry projects, visit by internal guide will be preferred.

### 2. Project Report Format:

At the end of semester a project report should preferably contain at least following details:-

- Abstract
- Introduction
- Literature Survey
  - Survey Existing system
  - Limitation Existing system or research gap
  - o Problem Statement and Objective
  - o Scope
- Proposed System
  - Analysis/Framework/ Algorithm
  - o Details of Hardware & Software
  - Design details
  - Methodology (your approach to solve the problem)

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

109

- Implementation Plan for next semester
- Conclusion
- References

### 3. Term Work:

Distribution of marks for term work shall be as follows:

- **a.** Weekly Attendance on Project Day
- **b.** Project work contribute
- c. Project Report (Spiral Bound)
- **d.** Term End Presentation (Internal)

The final certification and acceptance of TW ensures the satisfactory performance on the above aspects.

## 4. Oral & Practical:

Oral &Practical examination of Project-I should be conducted by Internal and External examiners approved by University of Mumbai. Students have to give presentation and demonstration on the Project-I.

CSC801	Human Machine Interaction	4
Course Code	Course Name	Credits

.Course Objectives: At the end of the course, students will be able to –

- 1. Learn the foundation of human machine interaction.
- 2. Understand the importance of human psychology in designing good interfaces.
- 3. Be aware of mobile interaction design and its usage in day to day activities.
- 4. Understand various design technologies to meet user requirements.
- 5. Encourage to indulge into research in Machine Interaction Design.

Course Outcomes: At the end of the course, the students will be able to -

- 1. Identify User Interface (UI) design principles.
- 2. Analysis of effective user friendly interfaces.
- 3. Apply Interactive Design process in real world applications.
- 4. Evaluate UI design and justify.
- 5. Create application for social and technical task.

**Pre-requisites:** Web Technologies; Software Engineering; Experience in designing interfaces for applications and web sites. Basic knowledge of designing tools and languages like HTML, Java, etc

Module No.	Topics	Hrs.
1.0	FOUNDATIONS OF HMI:  The Human: History of User Interface Designing, I/O channels, Hardware, Software and Operating environments, The Psychopathology of everyday Things, Psychology of everyday actions, Reasoning and problem solving. The computer: Devices, Memory, processing and networks. Interaction: Models, frameworks, Ergonomics, styles, elements, interactivity, Paradigms.	8
2.0	DESIGN & SOFTWARE PROCESS:  Mistakes performed while designing a computer system, Human interaction with computers, importance of human characteristics human consideration, Human interaction speeds .Interactive Design basics, process, scenarios, navigation, Iteration and prototyping. HMI in software process: software life cycle, usability engineering, Prototyping in practice, design rationale. Design rules: principles, standards, guidelines, rules. Recognize the goals, Goal directed design process. Evaluation Techniques: Universal Design.	10
3.0	GRAPHICAL USER INTERFACE:  The graphical User Interface: Popularity of graphics, the concept of direct manipulation, graphical systems, Characteristics. Web user Interface: Interface popularity, characteristics. The merging of graphical Business systems and the Web. Principles of user interface design.	8

	SCREEN DESIGNING:	
4.0	Design goals, Screen planning and purpose, organizing screen elements, ordering of	
	screen data and content, screen navigation and flow, Visually pleasing composition,	10
	amount of information, focus and emphasis, presentation information simply and	10
	meaningfully, information retrieval on web, statistical graphics, Technological	
	consideration in interface design.	
	INTERFACE DESIGN FOR MOBILE DEVICES:	8
5.0	Mobile Ecosystem: Platforms, Application frameworks: Types of Mobile Applications:	
5.0	Widgets, Applications, Games, Mobile Information Architecture, Mobile 2.0, Mobile	0
	Design: Elements of Mobile Design, Tools.	
	INTERACTION STYLES AND COMMUNICATION:	
6.0	Windows: Characteristics, Components, Presentation styles, Types of Windows,	8
6.0	Management, operations. Text messages: Words, Sentences, messages and text words,	0
	Text for web pages. Icons, Multimedia and colors	
	Total	52

#### **Text Books:**

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rdEdition, Pearson Education, 2004.
- 2. Wilbert O. Galitz, "The Essential Guide to User Interface Design", Wiley publication.
- 3. Alan Cooper, Robert Reimann, David Cronin, "About Face3: Essentials of Interaction design", Wiley publication.
- 4. Jeff Johnson, "Designing with the mind in mind", Morgan Kaufmann Publication.
- 5. Donald A. Normann, "Design of everyday things", Basic Books; Reprint edition 2002.
- 6. Brian Fling, "Mobile Design and Development", First Edition, O'Reilly Media Inc., 2009.

### **Reference Books:**

- 1. Rogers Sharp Preece,"Interaction Design:Beyond Human Computer Interaction",,Wiley.
- 2. Guy A. Boy "The Handbook of Human Machine Interaction", Ashgate publishing Ltd.
- 3. Kalbande, Kanade, Iyer, "Galitz's Human Machine Interaction", Wiley Publications.

### **Assessment:**

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

## **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSC802	Distributed Computing	04

## **Course objectives:**

- 1. To provide students with contemporary knowledge in distributed systems
- 2. To equip students with skills to analyze and design distributed applications.
- 3. To provide master skills to measure the performance of distributed synchronization algorithms

### **Course outcomes:** On successful completion of course learner will be able to:

- 1. Demonstrate knowledge of the basic elements and concepts related to distributed system technologies;
- 2. Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object based middleware.
- 3. Analyze the various techniques used for clock synchronization and mutual exclusion
- 4. Demonstrate the concepts of Resource and Process management and synchronization algorithms
- 5. Demonstrate the concepts of Consistency and Replication Management
- 6. Apply the knowledge of Distributed File System to analyze various file systems like NFS, AFS and the experience in building large-scale distributed applications.

### Prerequisite: Java Programming, Operating Systems, Computer Networks

Module	Unit	Topics	Hrs.
No.	No.		
1.0	Introdu	action to Distributed Systems	06
	1.1	Characterization of Distributed Systems: Issues, Goals, and Types of distributed systems, Distributed System Models, Hardware concepts, Software Concept.	
	1.2	Middleware: Models of Middleware, Services offered by middleware, Client Server model.	
2.0	Commi	unication	10
	2.1	Layered Protocols, Interprocess communication (IPC): MPI, Remote Procedure Call (RPC), Remote Object Invocation, Remote Method Invocation (RMI)	
	2.2	Message Oriented Communication, Stream Oriented Communication, Group Communication	
3.0	3.0 Synchronization		10
	3.1	Clock Synchronization, Logical Clocks, Election Algorithms, Mutual Exclusion, Distributed Mutual Exclusion-Classification of mutual Exclusion Algorithm, Requirements of Mutual Exclusion Algorithms, Performance measure.	
	3.2	Non Token based Algorithms: Lamport Algorithm, Ricart–Agrawala's Algorithm, Maekawa's Algorithm	
	3.3	Token Based Algorithms: Suzuki-Kasami's Broardcast Algorithms, Singhal's Heurastic Algorithm, Raymond's Tree based Algorithm, Comparative Performance Analysis.	
4.0	Resour	ce and Process Management	06
	4.1	Desirable Features of global Scheduling algorithm, Task assignment approach, Load balancing approach, load sharing approach	
	4.2	Introduction to process management, process migration, Threads,	

		Virtualization, Clients, Servers, Code Migration	
5.0	Consis	Consistency, Replication and Fault Tolerance	
	5.1	Introduction to replication and consistency, Data-Centric and Client-	
		Centric Consistency Models, Replica Management	
	5.2	Fault Tolerance: Introduction, Process resilience, Reliable client-server and	
		group communication, Recovery	
6.0	Distributed File Systems and Name Services		12
	6.1	Introduction and features of DFS, File models, File Accessing models,	
		File-Caching Schemes, File Replication, Case Study: Distributed File	
		Systems (DSF), Network File System (NFS), Andrew File System (AFS)	
	6.2	Introduction to Name services and Domain Name System, Directory	
		Services, Case Study: The Global Name Service, The X.500 Directory	
		Service	
	6.3	Designing Distributed Systems: Google Case Study	
		Total	52

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

## **End Semester Theory Examination:**

- a. Question paper will comprise of 6 questions, each carrying 20 marks.
- b. The students need to solve total 4 questions.
- c. Question No.1 will be compulsory and based on entire syllabus.
- d. Remaining question (Q.2 to Q.6) will be selected from all the modules.

## **Text Books:**

- 1. Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems: Principles and Paradigms, 2nd edition, Pearson Education.
- 2. George Coulouris, Jean Dollimore, Tim Kindberg, , "Distributed Systems: Concepts and Design", 4th Edition, Pearson Education, 2005.

### **Reference Books:**

- 1. A. S. Tanenbaum and M. V. Steen, "Distributed Systems: Principles and Paradigms", Second Edition, Prentice Hall, 2006.
- 2. M. L. Liu, "Distributed Computing Principles and Applications", Pearson Addison Wesley, 2004.

Course Code	Course Name	Credit
DLO8011	High Performance Computing	04

## **Course Objectives:**

- 1. To learn concepts of parallel processing as it pertains to high-performance computing.
- 2. To design, develop and analyze parallel programs on high performance computing resources using parallel programming paradigms.

### Course Outcomes: Learner will be able to-

- 1. Memorize parallel processing approaches
- 2. Describe different parallel processing platforms involved in achieving High Performance Computing.
- 3. Discuss different design issues in parallel programming
- 4. Develop efficient and high performance parallel programming
- 5. Learn parallel programming using message passing paradigm using open source APIs.

## Prerequisite: Computer Organization

Sr.No.	Module	Detailed Content	Hours
		<b>Introduction to Parallel Computing:</b> Motivating	
		Parallelism, Scope of Parallel Computing, Levels of	
		parallelism (instruction, transaction, task, thread, memory,	
		function)	
		Classification Models: Architectural Schemes (Flynn's,	
1	Introduction	Shore's, Feng's, Handler's) and Memory access (Shared	6
		Memory, Distributed Memory, Hybrid Distributed Shared	
		Memory)	
		Parallel Architectures: Pipeline Architecture, Array	
		Processor, Multiprocessor Architecture, Systolic	
		Architecture, Data Flow Architecture	
	Pipeline Processing	Introduction, Pipeline Performance, Arithmetic Pipelines,	
2		Pipeline instruction processing, Pipeline stage design,	8
		Hazards, Dynamic instruction scheduling	
		Parallel Programming Platforms: Implicit Parallelism:	
	Parallel	Trends in Microprocessor & Architectures, Limitations of	
3	Programming	Memory System Performance, Dichotomy of Parallel	10
	Platforms	Computing Platforms, Physical Organization of Parallel	
		Platforms, Communication Costs in Parallel Machines	
		Principles of Parallel Algorithm Design: Preliminaries,	
	Parallel	Decomposition Techniques, Characteristics of Tasks and	
4	Algorithm	Interactions, Mapping Techniques for Load Balancing,	12
7	Design	Methods for Containing Interaction Overheads, Parallel	
		Algorithm Models	

5	Performance Measures	Performance Measures: Speedup, execution time, efficiency, cost, scalability, Effect of granularity on performance, Scalability of Parallel Systems, Amdahl's Law, Gustavson's Law, Performance Bottlenecks	6
6	HPC Programming	Programming Using the Message-Passing Paradigm: Principles of Message Passing Programming, The Building Blocks: Send and Receive Operations  MPI: the Message Passing Interface, Topology and Embedding, Overlapping Communication with Computation, Collective Communication and Computation Operations, Introduction to OpenMP	10

### **Text Books:**

- 1. AnanthGrama, Anshul Gupta, George Karypis, Vipin Kumar, "Introduction to Parallel Computing", Pearson Education, Second Edition, 2007.
- 2. M. R. Bhujade, "Parallel Computing", 2nd edition, New Age International Publishers, 2009.
- 3. Kai Hwang, Naresh Jotwani, "Advanced Computer Architecture: Parallelism, Scalability, Programmability", McGraw Hill, Second Edition, 2010.
- 4. Georg Hager, Gerhard Wellein, "Introduction to High Performance Computing for Scientists and Engineers", Chapman & Hall / CRC Computational Science series, 2011.

### **Reference Books:**

- 1. Michael J. Quinn, "Parallel Programming in C with MPI and OpenMP", McGraw-Hill International Editions, Computer Science Series, 2008.
- Kai Hwang, Zhiwei Xu, "Scalable Parallel Computing: Technology, Architecture, Programming", McGraw Hill, 1998.
- **3.** Laurence T. Yang, MinyiGuo, "High- Performance Computing: Paradigm and Infrastructure" Wiley, 2006.

<u>Internal Assessment:</u> Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Theory Examination:**

- 1. Question paper will comprise of total six questions.
- 2. All question carry equal marks.
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).
- 4. Only Four question need to be solved.

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

# **Laboratory Work:**

**Description:** The Laboratory Work (Experiments) for this course is required to be performed and to be evaluated in CSL803: Computational Lab-II

# **Suggested Experiment List:**

Sr. No.	Detailed Content		
1	Execution of Simple Hello world program on MPI platform		
2	<ul><li>a. Program to send data and receive data to/from processors using MPI</li><li>b. Program illustrating Broadcast of data using MPI</li></ul>		
3	Implement a parallel program to demonstrate the cube of N number within a set range.		
4	Write a parallel program for area of a circle/triangle		
5	Implement a program to demonstrate balancing of workload on MPI platform		
6	Using directives of MPI/OpenMP implement parallel programming for calculator application (add, sub, multiplication and division)		
	Mini Project		
7	Evaluate performance enhancement of HPC for any of the following:		
	One-Dimensional Matrix-Vector Multiplication/ Single-Source Shortest-Path/ Sample Sort/Two-Dimensional Matrix-Vector Multiplication		

Course Code	Course Name	Credits
DLO8012	Natural Language Processing	4

### **Course objectives:**

- 1. To understand natural language processing and to learn how to apply basic algorithms in this field.
- 2. To get acquainted with the basic concepts and algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics.
- 3. To design and implement applications based on natural language processing
- 4. To implement various language Models.
- 5. To design systems that uses NLP techniques

# Course outcomes: On successful completion of course learner should:

- 1. Have a broad understanding of the field of natural language processing.
- 2. Have a sense of the capabilities and limitations of current natural language technologies,
- 3. Be able to model linguistic phenomena with formal grammars.
- 4. Be able to Design, implement and test algorithms for NLP problems
- 5. Understand the mathematical and linguistic foundations underlying approaches to the various areas in NLP
- 6. Be able to apply NLP techniques to design real world NLP applications such as machine translation, text categorization, text summarization, information extraction...etc.

**Prerequisite:** Data structure & Algorithms, Theory of computer science, Probability Theory.

Module	Unit No.	Topics	Hrs.
No.			
1	Introduction	History of NLP, Generic NLP system, levels of NLP, Knowledge in language processing, Ambiguity in Natural language, stages in NLP, challenges of NLP, Applications of NLP	4
2	Word Level Analysis	Morphology analysis –survey of English Morphology, Inflectional morphology & Derivational morphology, Lemmatization, Regular expression, finite automata, finite state transducers (FST), Morphological parsing with FST, Lexicon free FST Porter stemmer. N –Grams- N-gram language model, N-gram for spelling correction.	10
3	Syntax analysis	Part-Of-Speech tagging (POS)- Tag set for English (Penn Treebank), Rule based POS tagging, Stochastic POS tagging, Issues –Multiple tags & words, Unknown words. Introduction to CFG, Sequence labeling: Hidden Markov Model (HMM), Maximum Entropy, and Conditional Random Field (CRF).	10
4	Semantic Analysis	Lexical Semantics, Attachment for fragment of English- sentences, noun phrases, Verb phrases, prepositional phrases, Relations among lexemes & their senses –Homonymy, Polysemy, Synonymy, Hyponymy, WordNet, Robust Word Sense Disambiguation (WSD), Dictionary based approach	10

5	Pragmatics	Discourse –reference resolution, reference phenomenon , syntactic & semantic constraints on co reference	8
6	Applications ( preferably for Indian regional languages)	Machine translation, Information retrieval, Question answers system, categorization, summarization, sentiment analysis, Named Entity Recognition.	10

### **Text Books:**

- 1. Daniel Jurafsky, James H. Martin "Speech and Language Processing" Second Edition, Prentice Hall, 2008.
- 2. Christopher D.Manning and Hinrich Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999.

### **Reference Books:**

- 1. Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford University Press (2008).
- 2. Daniel M Bikel and Imed Zitouni "Multilingual natural language processing applications" Pearson, 2013
- 3. Alexander Clark (Editor), Chris Fox (Editor), Shalom Lappin (Editor) "The Handbook of Computational Linguistics and Natural Language Processing" ISBN: 978-1-118-
- 4. Steven Bird, Ewan Klein, Natural Language Processing with Python, O'Reilly
- 5. Brian Neil Levine, An Introduction to R Programming
- 6. Niel J le Roux, Sugnet Lubbe, A step by step tutorial : An introduction into R application and programming

### **Assessment:**

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

### **End Semester Theory Examination:**

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

#### **Laboratory Work/Case study/Experiments:**

**Description:** The Laboratory Work (Experiments) for this course is required to be performed and to be evaluated in CSL803: Computational Lab-II

The objective of Natural Language Processing lab is to introduce the students with the basics of NLP which will empower them for developing advanced NLP tools and solving practical problems in this field.

Reference for Experiments: http://cse24-iiith.virtual-labs.ac.in/#

Reference for NPTEL: http://www.cse.iitb.ac.in/~cs626-449

Sample Experiments: possible tools / language: R tool/ Python programming Language

Note: Although it is not mandatory, the experiments can be conducted with reference to any Indian regional language.

- 1. Preprocessing of text (Tokenization, Filtration, Script Validation, Stop Word Removal, Stemming)
- 2. Morphological Analysis
- 3. N-gram model
- 4. POS tagging
- 5. Chunking
- 6. Named Entity Recognition
- 7. Case Study/ Mini Project based on Application mentioned in Module 6.

Course Code	Course Name	Credits
DLO8013	Adhoc Wireless Networks	4

#### **Course objectives:**

- 1. To Identify the major issues associated with ad-hoc networks
- 2. To identify the requirements for protocols for wireless ad-hoc networks as compared to the protocols existing for wired network.
- 3. To explore current ad-hoc technologies by researching key areas such as algorithms, protocols, hardware, and applications.
- 4. To Provide hands-on experience through real-world programming projects
- 5. To provide advanced in–depth networking materials to graduate students in networking research.

#### **Course outcomes:** On successful completion of course learner will be able to:

- 1. Identify the characteristics and features of Adhoc Networks.
- 2. Understand the concepts & be able to design MAC protocols for Ad Hoc networks
- 3. Implement protocols / Carry out simulation of routing protocols of Adhoc Networks
- 4. Interpret the flow control in transport layer of Ad Hoc Networks
- 5. Analyze security principles for routing of Ad Hoc Networks
- 6. Utilize the concepts of Adhoc Networks in VANETs

#### Prerequisite: Computer Network, Wireless Networking

Module	Unit	Topics	Hrs.
No. 1.0	No.	Testing direction	04
1.0	1.1	Introduction Introduction to wireless Networks. Characteristics of Wireless channel,	04
	1.2	Issues in Ad hoc wireless networks, Adhoc Mobility Models:- Indoor and outdoor models,	
	1.3	Introduction to Adhoc networks – definition, characteristics features, applications.	
2.0		MAC protocols for Wireless Ad-Hoc Networks	12
	2.1	Introduction	
	2.2	Issues in designing MAC for Wireless Ad-Hoc Networks	
	2.3	Design Goals and classification of MAC for Wireless Ad-Hoc Networks	
	2.4	Contention based MAC protocols for Wireless Ad-Hoc Networks, with reservation mechanisms, scheduling Mechanisms	
	2.5	MAC protocols using directional antennas, Other MAC Protocols	
	2.6	IEEE standards MAC Protocols: 802.15.1(WPAN based on Bluetooth), 802.15.4 (WSN/Zigbee), 802.15.6 (WBAN).	
3.0		Routing Protocols for Wireless Ad-Hoc Networks	10
	3.1	Introduction, Issues in designing a routing protocol for Wireless Ad-Hoc Networks	
	3.2	Classification of routing protocols, Table driven routing protocols like DSDV, WRP,	

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

		On- demand routing protocols like ABR, DSR, TORA, AODV,	
		etc.	
	3.3	Hybrid Routing Protocols : ZRP, Routing Protocols with	
		efficient flooding mechanism, Hierarchical Routing Protocols,	
		Power aware routing protocols	
4.0		Transport Layer	10
	4.1	Transport layer protocols for Ad hoc wireless Networks:	
		Introduction,	
	4.2	Issues in designing a transport layer protocol for Ad hoc	
		wireless Networks,	
	4.3	Design goals of a transport layer protocol for Ad hoc wireless	
		Networks,	
	4.4	Classification of transport layer solutions: Split Approach ,	
		End-to-End approach :TCP-F,TCP-ELFN, Ad-Hoc TCP, TCP	
		Buffering capability and Sequencing information	
	4.5	End-to-End Quality of Service	
5.0		Security	08
	5.1	Security attacks in wireless Ad hoc wireless Networks,	
		Network security requirements,	
	5.2	Issues & challenges in security provisioning,	
	5.3	Link Layer security attacks: 802.11 MAC, WPA and variations	
	5.4	Network Security Attacks: Routing Protocol Attacks: attacks	
		using falsifying route errors and broadcasting falsifying routes,	
		spoofing attacks, Rushing attacks, Secure routing in Ad hoc	
		wireless Networks	
6.0		Vehicular Ad-Hoc Network (VANET)	08
	6.1	Introduction: Challenges and Requirements, , Layered	
		architecture for VANETs, DSRC /WAVE standard (IEEE	
		802.11p)	
	6.2	IEEE 802.11p protocol Stack (PHY & MAC),	
		A Survey on Proposed MAC Approaches for VANETs like	
		TDMA, SDMA and CDMA based approaches, DSRC MAC &	
		LLC	
	6.3	Georouting: CBF, Flooding with broadcast suppression	
	6.4	Delay Tolerant Network, Introduction to Opportunistic	
		Networking in Delay Tolerant Vehicular Ad Hoc Networks	
		,	
	1	Total	52

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

#### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

#### **Text Books:**

- 1. Siva Ram Murthy and B.S. Manoj, "Ad hoc Wireless Networks Architectures and protocols", 2nd edition, Pearson Education, 2007 (T1)
- 2. C. K. Toh, "Adhoc Mobile Wireless Networks", Pearson Education, 2002 (T2)
- 3. Charles E. Perkins, "Adhoc Networking", Addison Wesley, 2000 (T3)
- 4. Dipankar Raychaudhuri, Mario Gerla, "Emerging Wireless Technologies and the Future Mobile Internet, D, Cambridge. (**T4**)

#### **Reference Books:**

- 1. Subir Kumar Sarkar, "Ad-Hoc Mobile Wireless Networks: principles, protocols and applications" CRC Press (R1)
- 2. Prasant Mohapatra and Sriramamurthy, "Ad Hoc Networks: Technologies and Protocols", Springer International Edition, 2009, (R2)
- 3. Stefano Basangi, Marco Conti, Silvia Giordano, Ivan Stojmenovic, "Mobile Ad-Hoc Networking, "John-Wiley and Sons Publications, 2004, (R3)
- 4. <u>Hannes Hartenstein, Kenneth Laberteaux</u>, "VANET Applications and Interworking Technologies," Wiley Publications (R4)
- 5. <u>Christoph Sommer</u>, <u>Falko Dressler</u>, "Vehicular Networking," Cambridge University Press, 2014 (**R5**)

#### **Laboratory Work**

#### Lab Outcome:

- 1. Explore the knowledge of NS2 and NS3 by installing it and make it ready
- 2. Shall synthesize a simulation and evaluate the performance of WLAN 802.11 and Bluetooth
- 3. Students will able to analyze and implement MAC & Network layer protocols using open source and synthesis as well as evaluate its performance
- 4. Implement Transport layer protocols / Carry out simulation of routing protocols of Adhoc Networks
- 5. Describe and interpret the use security routines and evaluate its performance
- 6. Explore and understand the capability of SUMO and MOVE as well as Nessi by installing it and analyze it by applying on various scenarios

**Description:** It is recommended that Network simulation Softwares like NS-2, NS-3, SUMO (Simulation software for Urban MObility) with MOVE. Software like Nessi is also recommended for the event based security attacks simulation and measure.

The Laboratory Work (Experiments) for this course is required to be performed and to be evaluated in CSL803: Computational Lab-II

#### **Suggested List of Experiments:**

Sr. No.	Title of Experiments	
1	Installation of NS2 & NS3 in Fedora 19 (32 bit) OS Linux.	
2	Simulating IEEE 802.11 wireless LAN in Ad-Hoc Mode using NS2	
3	Implementation a Bluetooth network in NS3 with application as transfer of a file from one device to another	
4	To implement and compare MAC layer protocols, MACAW, MACA-BI and MACA with piggybacked Reservation using NS-3	

5	Develop sample wireless network in which a. implement AODV and AOMDV protocol b. Calculate the time to receive reply from the receiver using NS2. c. Generate graphs which show the transmission time for packet. Implement wireless network. Capture data frame and identify fields using NS2.
6	Communicate between two different networks (NS-3) which has following specifications: a. One network has Class A network with "TORA protocol" b. Second has Class B network "AODV protocol"
7	To calculate and compare average throughput for various TCP variants like TCP-F (Feedback) and Ad-Hoc TCP using NS-3
8	Explore and use security tools like WEP & WPA and evaluate its performance on mobile terminals
9	Simulation of Urban Mobility (SUMO) along with MOVE is software that helps in simulating the VANETs. Install it on Fedora 19 (32 bit) OS Linux
10	Create a simulation for road traffic with 6 junctions. There are various vehicles going on and your own car also. Select a shortest route for your car. Demonstrate with simulation software SUMO and MOVE.
11	A car acts as a malicious node and can be analyzed for the packet loss before and after malicious activity. Using SUMO and MOVE.
12	Create an Ad-hoc Network using nessi Simulation software and include events incorporate dropped packets, infected flows, compromised machines, unavailable services etc, and check its performance

#### Digital Material (if Any):

- 1. <a href="http://www.isi.edu/nsnam/ns/">http://www.isi.edu/nsnam/ns/</a> : NS-2 software download (D1)
- 2. <a href="https://nsnam.isi.edu/nsnam/index.php/NS_manual">https://nsnam.isi.edu/nsnam/index.php/NS_manual</a> (D2)
- 3. <a href="https://www.nsnam.org/">https://www.nsnam.org/</a> : Ns-3 Software Download (D3)
- 4. http://www.nsnam.com/2013/11/vanet-simulator-in-fedora-19-32-bit.html (D4)
- 5. http://www.sumo.dlr.de/userdoc/Tutorials/Quick Start.html (D5)
- 6. http://veins.car2x.org/ (D6)
- 7. http://www.nessi2.de/ (D7)

#### **Text Books:**

- 1. Ekram Hossain and Teerawat Issariyakul, "Introduction to Network Simulator NS-2," Springer, Second Edition. (T1)
- 2. Jack L. Burbank, "Introduction to Network Simulator 3," Wiley Publications(T2)
- 3. Siva Ram Murthy and B.S. Manoj, "Ad hoc Wireless Networks Architectures and protocols", 2nd edition, Pearson Education, 2007 (T3)
- 4. Michael Gregg, "Build your own security lab," Wiley India edition (T4)

Course Code	Course Name	Credits
ILO 8021	Project Management	03

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

#### Outcomes: Learner will be able to...

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
01	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager, Negotiations and resolving conflicts, Project management in various organization structures, PM knowledge areas as per Project Management Institute (PMI)	5
02	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming &performing), team dynamics.	6
03	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart, Introduction to Project Management Information System (PMIS).	8
04	Planning Projects: Crashing project time, Resource loading and levelling, Goldratt's critical chain, Project Stakeholders and Communication plan Risk Management in projects: Risk management planning, Risk identification and risk register, Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	6
05	<ul> <li>5.1 Executing Projects: Planning monitoring and controlling cycle, Information needs and reporting, engaging with all stakeholders of the projects, Team management, communication and project meetings</li> <li>5.2 Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep, Project audit</li> </ul>	8

	5.3 Project Contracting Project procurement management, contracting and outsourcing,	
	6.1 Project Leadership and Ethics:	
06	Introduction to project leadership, ethics in projects, Multicultural and virtual projects  6.2 Closing the Project:  Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.	6

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

#### **REFERENCES:**

- 1. Project Management: A managerial approach, Jack Meredith & Samuel Mantel, 7th Edition, Wiley India
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project Management Institute PA, USA
- 3. Project Management, Gido Clements, Cengage Learning
- 4. Project Management, Gopalan, Wiley India
- 5. Project Management, Dennis Lock, 9th Edition, Gower Publishing England

Course Code	Course Name	Credits
ILO 8022	Finance Management	03

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

#### Outcomes: Learner will be able to...

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	<b>Overview of Indian Financial System:</b> Characteristics, Components and Functions of Financial System.	
	<b>Financial Instruments:</b> Meaning, Characteristics and Classification of Basic Financial	
	Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of	
01	Deposit, and Treasury Bills.	06
	Financial Markets: Meaning, Characteristics and Classification of Financial Markets	
	— Capital Market, Money Market and Foreign Currency Market	
	Financial Institutions: Meaning, Characteristics and Classification of Financial	
	Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and Expected	
	Returns of a Single Security and a Two-security Portfolio; Measurement of Historical	
02	Risk and Expected Risk of a Single Security and a Two-security Portfolio.	06
02	<b>Time Value of Money:</b> Future Value of a Lump Sum, Ordinary Annuity, and Annuity	
	Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous	
	Compounding and Continuous Discounting.	
	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of	
	Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.	
03	Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit	09
	and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis;	
	Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure	
	Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital	
	Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return,	
	Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)	
04	Working Capital Management: Concepts of Meaning Working Capital; Importance of	10
	Working Capital Management: Concepts of Meaning Working Capital, Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs;	
	Estimation of Working Capital Requirements; Management of Inventories;	
	Management of Receivables; and Management of Cash and Marketable Securities.	
05	Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine	05

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

			1
ı		Finance; Sources of Short Term Finance—Trade Credit, Bank Finance, Commercial	
		Paper; Project Finance.	
		Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of	
		Capital Structure Theories and Approaches— Net Income Approach, Net Operating	
		Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation	
		between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	
		Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an	
	06	Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—	03
		Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	
	06	between Capital Structure and Corporate Value; Concept of Optimal Capital Structure <b>Dividend Policy:</b> Meaning and Importance of Dividend Policy; Factors Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—	03

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **REFERENCES:**

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Credits
ILO8023	Entrepreneurship Development and Management	03

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

#### Outcomes: Learner will be able to...

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs
01	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	04
02	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	09
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	08
05	<b>Effective Management of Business:</b> Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	08
06	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **REFERENCES:**

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name	Credits
ILO8024	<b>Human Resource Management</b>	03

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioural skills in an organizational setting required for future stable engineers, leaders and managers

#### **Outcomes:** Learner will be able to...

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioural skills learnt and integrate it with in inter personal and integroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Hrs
01	<ul> <li>Introduction to HR</li> <li>Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions</li> <li>Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues</li> </ul>	5
02	<ul> <li>Organizational Behaviour (OB)</li> <li>Introduction to OB Origin, Nature and Scope of Organizational Behaviour, Relevance to Organizational Effectiveness and Contemporary issues</li> <li>Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness</li> <li>Perception: Attitude and Value, Effect of perception on Individual Decision-making, Attitude and Behaviour</li> <li>Motivation: Theories of Motivation and their Applications for Behavioural Change (Maslow, Herzberg, McGregor);</li> <li>Group Behaviour and Group Dynamics: Work groups formal and informal groups and stages of group development, Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team.</li> <li>Case study</li> </ul>	7
03	<ul> <li>Organizational Structure &amp; Design</li> <li>Structure, size, technology, Environment of organization; Organizational Roles &amp; conflicts: Concept of roles; role dynamics; role conflicts and stress.</li> <li>Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership.</li> <li>Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.</li> </ul>	6

	Human resource Planning	
04	• Recruitment and Selection process, Job-enrichment, Empowerment - Job-Satisfaction, employee morale	5
04	Performance Appraisal Systems: Traditional & modern methods, Performance Counselling, Career Planning	3
	Training & Development: Identification of Training Needs, Training Methods	
	Emerging Trends in HR	
05	<ul> <li>Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development, managing processes &amp; transformation in HR. Organizational Change, Culture, Environment</li> <li>Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation</li> </ul>	6
06	HR & MIS: Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries  Strategic HRM: Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals  Labor Laws & Industrial Relations: Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	10

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **REFERENCES:**

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name	Credits
ILO8025	Professional Ethics and Corporate Social Responsibility (CSR)	03

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

#### Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs
	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in	04
01	Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and	
	Benefits; Rights and Duties of Business	
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition;	
02	Oligopolistic Competition; Oligopolies and Public Policy	08
02	Professional Ethics and the Environment: Dimensions of Pollution and Resource	
	Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer Protection;	
	Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising	
03	Ethics; Consumer Privacy	06
	Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of	
	Discrimination; Reservation of Jobs.	
	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple	
04	bottom line, Human resources, Risk management, Supplier relations; Criticisms and	05
04	concerns—Nature of business; Motives; Misdirection.	
	Trajectory of Corporate Social Responsibility in India	
	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	00
05	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India,	08
	Corporate Social Responsibility and Public-Private Partnership (PPP) in India	
	Corporate Social Responsibility in Globalizing India: Corporate Social	
06	Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs,	08
VO	Government of India, Legal Aspects of Corporate Social Responsibility—Companies	
	Act, 2013.	

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **REFERENCES:**

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Course Code	Course Name	Credits
ILO8026	Research Methodology	03

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

#### Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs
01	<ul> <li>Introduction and Basic Research Concepts</li> <li>1.1 Research – Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle.Research methods vs Methodology</li> <li>1.2 Need of Research in Business and Social Sciences</li> <li>1.3 Objectives of Research</li> <li>1.4 Issues and Problems in Research</li> <li>1.5 Characteristics of Research:Systematic, Valid, Verifiable, Empirical and Critical</li> </ul>	09
02	Types of Research 2.1. Basic Research 2.2. Applied Research 2.3. Descriptive Research 2.4. Analytical Research 2.5. Empirical Research 2.6 Qualitative and Quantitative Approaches	07
03	Research Design and Sample Design 3.1 Research Design – Meaning, Types and Significance 3.2 Sample Design – Meaning and Significance Essentials of a good sampling Stages in Sample Design Sampling methods/techniques Sampling Errors	07
04	Research Methodology 4.1 Meaning of Research Methodology 4.2. Stages in Scientific Research Process: a. Identification and Selection of Research Problem b. Formulation of Research Problem c. Review of Literature d. Formulation of Hypothesis e. Formulation of research Design f. Sample Design g. Data Collection h. Data Analysis i. Hypothesis testing and Interpretation of Data j. Preparation of Research Report	08

05	Formulating Research Problem 5.1 Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of data, Generalization and Interpretation of analysis	04
06	Outcome of Research 6.1 Preparation of the report on conclusion reached 6.2 Validity Testing & Ethical Issues 6.3 Suggestions and Recommendation	04

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

#### **REFERENCES:**

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R.,1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Credits
ILO8027	IPR and Patenting	03

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

#### Outcomes: Learner will be able to...

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hr
	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different	
	category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant	
01	variety protection, Geographical indications, Transfer of technology etc.	05
	Importance of IPR in Modern Global Economic Environment: Theories of IPR,	
	Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development	
	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem,	
	Factors that create and sustain counterfeiting/piracy, International agreements,	
02	International organizations (e.g. WIPO, WTO) active in IPR enforcement	07
02	Indian Scenario of IPR:Introduction, History of IPR in India, Overview of IP laws in	07
	India, Indian IPR, Administrative Machinery, Major international treaties signed by	
	India, Procedure for submitting patent and Enforcement of IPR at national level etc.	
02	Emerging Issues in IPR:Challenges for IP in digital economy, e-commerce, human	05
03	genome, biodiversity and traditional knowledge etc.	
	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and	
	non-patentable inventions, Types of patent applications (e.g. Patent of addition etc),	
04	Process Patent and Product Patent, Precautions while patenting, Patent specification	07
	Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method	
	of getting a patent	
	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario,	
05	Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS	08
	agreement, Paris convention etc.)	
	Procedure for Filing a Patent (National and International): Legislation and Salient	
	Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent,	
06	Patent Litigation, Patent Publication, Time frame and cost, Patent Licensing, Patent	07
	Infringement	
	Patent databases: Important websites, Searching international databases	

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **REFERENCE BOOKS:**

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press.

Course Code	Course Name	Credits
ILO 8028	Digital Business Management	03

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

#### Outcomes: The learner will be able to .....

- 1. Identify drivers of digital business
- 2. Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content	Hours
1	Introduction to Digital Business- Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business,	09
2	Overview of E-Commerce E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC	06
3	<b>Digital Business Support services</b> : ERP as e –business backbone, knowledge Tope Apps, Information and referral system <b>Application Development:</b> Building Digital business Applications and Infrastructure	06
4	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –business Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06
5	E-Business Strategy-E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)	04
6	Materializing e-business: From Idea to Realization-Business plan preparation Case Studies and presentations	08

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **References:**

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective- DoI:10.1787/9789264221796-enOECD Publishing

Course Code	Course Name	Credits
ILO8029	<b>Environmental Management</b>	03

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarise environment related legislations

#### Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs	
01	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities, Environmental	10	
V-	issues relevant to India, Sustainable Development, the Energy scenario		
	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion,	06	
02	Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-	00	
	made disasters, Atomic/Biomedical hazards, etc.		
03	Concepts of Ecology: Ecosystems and interdependence between living organisms,	05	
	habitats, limiting factors, carrying capacity, food chain, etc.		
	Scope of Environment Management, Role and functions of Government as a	10	
04	planning and regulating agency	10	
	Environment Quality Management and Corporate Environmental Responsibility		
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05	
	General overview of major legislations like Environment Protection Act, Air (P &	02	
06	CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act,	03	
	etc.		

#### **Assessment:**

#### **Internal Assessment for 20 marks:**

#### Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

#### **End Semester Examination:**

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3.** Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

#### **REFERENCES:**

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Lab Code	Lab Name	Credits
CSL801	Human Machine Interactions Lab	1

#### Lab Outcome:

- 1: To design user centric interfaces.
- 2: To design innovative and user friendly interfaces.
- 3: To apply HMI in their day-to-day activities.
- 4: To criticize existing interface designs, and improve them.
- 5: To Design application for social Task.
- 6: To Design application for Technical Tasks

#### **Description:**

Human Machine Interaction provides the study of user interface and benefit of good design. The design process gives an idea about how people interact with computer and the problems that they fall, so understanding the human characteristics is important as this lays the base for a good interface. It enables the students to apply his/her design skills to develop an appropriate Mobile App or Website. Students also learn the different types of icon, color and its representation with social and ethical concerns. Students can also learn the different software tools used to assemble and build user interface along with the different types of interaction devices and finally try to measure the usability of the application by learning HMI principles.

#### **Suggested List of Experiments:**

Sr. No.	Title of Experiments
1	Problem representation for Designing User Interface
2	Design a Mobile app/ Website that can teach mathematics to children of 4-5 years age in schools in Rural /Urban Sector
3	Design a Mobile App/Website that can help people to sell their handmade products in metro cities
4	ATM machine/KIOSK screen design for rural people.
5	Design a Mobile App/Website to get an experience for passengers whose flight /train is delayed.
6	Design an UI application for Institute event management.
7	Design of User interface for the system using various interaction styles.
8	Statistical Graphics and its use in visualization
9	Design appropriate icons pertaining to a given domain .(Eg. Greeting cards)

10	Design a personal website for an Artisan
11	Design a interface for Home appliances
12	Design an interactive data access using Graphics (QR, BAR Code, Image etc) and generating a print form
13	Redesign of a user interface (Suggest and implement changes in Existing User Interface
14	Design a navigator for a student new in your Institute.
15	Design a navigator for a person new in tourist city/ village
16	Design UI for Motor paralysis for disabled people.
17	KIOSK design for hospital/school/educational campus/National Institute.
18	To calculate screen complexity of existing Graphical User Interface and redesign the interface to minimize the screen complexity.

#### **Guidelines:**

- 1. Students are expected to use advanced tools and Technologies towards execution of lab work.
- 2. Students can work individually or only 2-3 Students can form a team if they wish to work in Group.
- 3. Case Study and assignments may be linked with CSC801 Syllabus.

#### Term Work:

Laboratory work will be based on above syllabus with minimum 10(Ten) experiments in line with the above Lab outcomes to be incorporated with 13(Thirteen) lab session of 2 (two) hours each. The problem statement can be decided by the instructor in line with the above list of experiments

#### The distribution of 25 marks for term work shall be as follows:

Lab Performance	15
Mini Project	05
Attendance (Theory & Practical)	05

Oral exam will be based on the above and CSC801: 'HMI Theory' Syllabus.

Lab Code	Lab Name	Credits
CSL802	Distributed Computing Lab	01

#### **Lab Outcome:**

- 1. Develop, test and debug RPC/RMI based client-server programs.
- 2. Implement the main underlying components of distributed systems (such as IPC, name resolution, file systems etc.)
- 3. Implement various techniques of synchronization.
- 4. Design and implement application programs on distributed systems.

#### **Suggested List of Experiments:**

Sr. No.	Title of Experiments
1	Client/server using RPC/RMI.
2	Implementation of multi tread application
3	Inter-process communication
4	Group Communication
5	Load Balancing Algorithm.
6	Name Resolution protocol.
7	Election Algorithm.
8	Clock Synchronization algorithms.
9	Mutual Exclusion Algorithm.
10	Deadlock management in Distributed systems
11	Distributed File System
12	CORBA

#### Term Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

TOTAL:	. (25) Marks.
Attendance (Theory + Practical)	(05) Marks
Assignments:	(05) Marks.
Laboratory work (experiments):	(15) Marks.

**Oral exam** will be based on the above and CSC802 syllabus.

Lab Code	Course Name	Credits
CSL803	Cloud Computing Lab	2

#### Lab Objectives: The course will help the learners to get familiar with

- 1. Key concepts of virtualization.
- 2. Various deployment models such as private, public, hybrid and community.
- 3. Various service models such as IaaS and PaaS.
- 4. Security and Privacy issues in cloud.

#### **Lab Outcomes:** On completion of the course learners will be able to

- 1. Adapt different types of virtualization and increase resource utilization.
- 2. Build a private cloud using open source technologies.
- 3. Analyze security issues on cloud.
- 4. Develop real world web applications and deploy on commercial cloud.
- 5. Demonstrate various service models.

Module	Detailed Contents	Hours
01	Title: Study of NIST model of cloud computing.	2
	<b>Objective:</b> Understand deployment models, service models, advantages of	
	cloud computing.	
02	Title: Virtualization.	
	<b>Objective</b> : Understand different types of virtualizations, Host and bare	2
	metal hypervisors and implement horizontal scalability.	
	Technology: XEN/ Vmwares EXSi	
03	Title: Infrastructure as a Service.	2
	Objective: Implement IaaS using your resources.	
	Technology: Open Stack / Eucalyptus	
04	Title: Identity Management in Cloud	2
	Concept: Simulate identity management in your private cloud.	
	Technology: Open Stack	
05	Title: Storage as a Service	2
	<b>Objective:</b> Explore Storage as a Service for remote file access using web	
	interface.	
	Technology: ownCloud	
06	Title: Cloud Security	2
	<b>Objective:</b> Understand security of web server and data directory.	
	Technology: ownCloud	
07	Title: Platform as a Service	2
	<b>Objective:</b> Deploy web applications on commercial cloud.	
	Technology: Google appEngine/ Windows Azure	
08	Title: Amazon Web Service	2
	<b>Objective:</b> To create and access VM instances and demonstrate various	

	components such as EC2, S3, Simple DB, DynamoDB.			
	Technology: AWS			
09	Title: Software as a Service			
	<b>Objective:</b> Understand on demand application delivery and Virtual desktop			
	infrastructure.			
	Technology: Ulteo			
10	Title: Case Study on Fog Computing	2		
	<b>Objective</b> : To have a basic understanding of implementation/applications of			
	fog computing.			
11	Title: Mini Project	6		
	<b>Objective:</b> Using the concepts studied throughout the semester students			
	shall be able to			
	1. Create their private cloud for the institute using the available			
	resources.			
	2. Apply security concepts to secure a private cloud.			
	3. Implement efficient load balancing.			
	4. Compare various virtualization technologies with given resource.			
	5. Create cloud applications such as messenger, photo editing website,			
	your own social media etc.			
	<b>Note:</b> Evaluators must check if students have used appropriate cloud			
	computing tools for their projects.			

#### **Digital Material**

www.openstack.org

#### **Text Books:**

- 1. Enterprise Cloud Computing by Gautam Shroff, Cambridge, 2010
- 2. Cloud Security by Ronald Krutz and Russell Dean Vines, Wiley India, 2010,
- 3. Getting Started with OwnCloud by Aditya Patawar, Packt Publishing Ltd, 2013

#### Term Work:

- Term work should consist of at least 6 experiments and a mini project.
- Journal must include at least 2 assignments.
- The final certification and acceptance of term work indicates that performance in laboratory work is satisfactory and minimum passing marks may be given in term work.
- The distribution of marks for term work shall be as follows:
- Laboratory work (experiments): ......(15) Marks.

- Attendance ......(05) Marks
- TOTAL: .....(50) Marks.

Practical and Oral examination will be based on Laboratory work, mini project and above syllabus.

University of Mumbai, B. E. (Computer Engineering), Rev. 2016

Lab Code	Course Name	Credits
CSL804	Computational Lab II	1

Lab Outcome: After successful completion of this course student will be able to:

- 1. Acquire practical knowledge within the chosen area of technology for project development.
- 2. Identify, discuss and justify the technical aspects of the chosen project with a comprehensive and systematic approach.

#### **Description:**

Design and implementation of any case study/ applications /experiments / mini project based on departmental level optional courses using modern tools.

#### Term work:

The distribution of marks for **term work** shall be as follows:

Lab Experimental Work & mini project : 25
Report/ Documentation/Presentation : 20
Attendance (Theory & Practical) : 05

**Practical & Oral** examination is to be conducted based on departmental level optional courses by pair of internal and external examiners appointed by the University of Mumbai.

Course Code	Title	Credit
CSP805	Major Project- II	6

**Objective:** The primary objective is to meet the milestone s formed in the overall project plan decided in Project - I. The idea presented in Project -I should be implemented in Project -II with results, conclusion and future work. The project will culminate in the production of a thesis by each individual student.

#### **Guidelines:**

#### **Project Report Format:**

At the end of semester a student need to prepare a project report should be prepared as per the guidelines issued by the University of Mumbai. Along with project report a CD containing: project documentation, Implementation code, required utilities, Software's and user Manuals need to be attached.

#### Term Work:

Student has to submit weekly progress report to the internal guide and where as internal guide has to keep track on the progress of the project and also has to maintain attendance report. This progress report can be used for awarding term work marks. In case of industry projects, visit by internal guide will be preferred to get the status of project.

Distribution of marks for term work shall be as follows:

- a) Weekly Attendance on Project Day
- b) Project work contributions as per objective
- c) Project Report (Hard Bound)
- **d)** Term End Presentation (Internal)

The final certification and acceptance of TW ensures the satisfactory performance on the above aspects.

#### Oral & Practical:

Oral & Practical examination of Project- II should be conducted by Internal and External examiners approved by University of Mumbai. Students have to give presentation and demonstration on the Project-II.



## THADOMAL SHAHANI ENGINEERING COLLEGE

#### Electronics and Telecommunication

Sr. No.	Subject Code	Subject Name	
1	ELL301	Electronics Devices and Circuits - I Lab	1
2	ELL302	Digital Logic Circuits Lab	1
3	ELL303	Electronic Instruments and Measurements Lab	1
4	ELC304	Electrical Networks Analysis and Synthesis	1
5	ELL304	Skill base Lab OOPM: (C++ and Java)	1
6	ELM301	Mini Project – 1A	1
7	ELL401	Electronics Devices and Circuits - II Lab	1
8	ELL402	Microcontroller Applications Lab	1
9	ELL403	Analog Communication Lab	1
10	ELL404	Skill Base Lab : Python Programming	1
11	ELM401	Mini Project - 1B	1
12	ELXL501	Microcontrollers and Applications Lab	1
13	ELXL502	Digital Communication Lab.	1
14	ELXL503	Design with Linear Integrated Circuits Lab	1
15	ELX 503	Engineering Electromagnetics	1
16	ELX DLOI50X	Department Level optional course-I Lab	1
17	ELXL601	Embedded System and RTOS Lab.	1
18	ELXL602	Computer Communication Network Lab. 1	
19	ELXL603	VLSI Design Lab.	1
20	ELX 604	Signals and systems 1	
21	ELXLDLO601X	Department Level Optional courses-II Lab.	1
22	ELXL701	Instrumentation System Design Lab.	1
23	ELXL702	Power Electronics Lab. 1	
24	ELXL703	Digital signal processing Lab.	1
25	ELXLDLO703X	Department Level Optional course- III Lab.	
26	ELXL704	Project-I	1
27	ELXL801	Internet of Things Lab.	
28	ELXL802	Analog and Mixed VLSI Design Lab.	
29	ELXLDLO804X	Department Level Optional Courses-IV Lab 1	
30	ELXL803	Project-II	1
		Total	30

### UNIVERSITY OF MUMBAI



### **Bachelor of Engineering**

in

# Electronics and Telecommunication Engineering

Second Year with Effect from AY 2020-21

Third Year with Effect from AY 2021-22

Final Year with Effect from AY 2022-23

(REV- 2019 'C' Scheme) from Academic Year 2019 - 20

Under

### **FACULTY OF SCIENCE & TECHNOLOGY**

(As per AICTE guidelines with effect from the academic year 2019–2020)

Item No. 145

AC - 23/07/2020

### **UNIVERSITY OF MUMBAI**



### **Syllabus for Approval**

Sr. No.	Heading	Particulars
1	Title of the Course	Second Year B.E. Electronics and Telecommunication Engineering
2	Eligibility for Admission	After Passing First Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	Ordinances / Regulations ( if any)	Ordinance 0.6242
5	No. of Years / Semesters	8 semesters
6	Level	P.G. / U.G./ Diploma / Certificate (Strike out which is not applicable)
7	Pattern	Yearly / Semester (Strike out which is not applicable )
8	Status	New / Revised (Strike out which is not applicable)
9	To be implemented from Academic Year	With effect from Academic Year: 2020-2021

Date 02-07-2020

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

#### **Preamble**

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 171, wherein focus is not only on providing knowledge but also on building skills, attitude and self learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

# Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self learning to learner. Learners are now getting sufficient time for self learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

### **Preface By BoS**

Technological developments in the field of electronics and telecommunication engineering have revolutionized the way people see the world today. Hence, there is a need for continuously enriching the quality of education by a regular revision in the curriculum, which will help our students achieve better employability, start-ups, and other avenues of higher studies. The current revision in the Bachelor of Engineering program (REV- 2019 'C' Scheme) aims at providing a strong foundation with required analytical concepts in the field of electronics and telecommunication engineering.

Some of the salient features of this revised curriculum are as below and they fall in line with the features in AICTE Model Curriculum.

- 1. The curriculum is designed in such a way that it encourages innovation and research as the total number of credits has been reduced from around 200 credits in an earlier curriculum to 171 credits in the current revision.
- 2. In the second and third-year curriculum, skill-based laboratories and mini-projects are introduced.
- 3. It will result in the students developing a problem-solving approach and will be able to meet the challenges of the future.
- 4. The University of Mumbai and BoS Electronics and Telecommunication Engineering will ensure the revision of the curriculum on regular basis in the future as well and this update will certainly help students to achieve better employability; start-ups and other avenues for higher studies.

The BoS would like to thank all the subject experts, industry representatives, alumni, and various other stakeholders for their sincere efforts and valuable time in the preparation of course contents, reviewing the contents, giving valuable suggestions, and critically analyzing the contents.

#### **Board of Studies in Electronics and Telecommunication Engineering**

#### Dr. Faruk Kazi: Chairman

Dr. V. N. Pawar: Member

Dr. Ravindra Duche: Member

Dr. Milind Shah: Member

Dr. R. K. Kulkarni: Member

Dr. Baban U. Rindhe: Member

Dr. Mrs. Nair: Member

Dr. Nalbarwar: Member

Dr. Sudhakar Mande: Member

Dr. S. D. Deshmukh: Member

# Program Structure for Second Year Engineering Semester III & IV

# UNIVERSITY OF MUMBAI

(With Effect from 2020-2021) Semester III

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
0040		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ECC301	Engineering Mathematics- III	3		1*	3		1	4	
ECC302	Electronic Devices & Circuits	3			3			3	
ECC303	Digital System Design	3			3			3	
ECC304	Network Theory	3		1	3		1	4	
ECC305	Electronic Instrumentation & Control Systems	3			3			3	
ECL301	Electronic Devices & Circuits Lab		2			1		1	
ECL302	Digital System Design Lab		2			1		1	
ECL303	Electronic Instrumentation & Control Systems Lab		2			1		1	
ECL304	Skill Lab: C++ and Java Programming		4			2		2	
ECM301	Mini Project 1A		4\$			2		2	
	Total	15	14	2	15	07	2	24	

^{*} Should be conducted batch wise.

\$ Indicates work load of a learner (Not Faculty) for Mini Project 1A. Faculty Load: 1 hour per week per four groups.

					Examin	ation Scher	ne		
				Theory					
Course Code	Course Name	Interr	nal Assessi	ment	End	Exam.	Term	Pract.	Total
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)	Work	& oral	Total
ECC301	Engineering Mathematics-III	20	20	20	80	3	25		125
ECC302	Electronic Devices & Circuits	20	20	20	80	3			100
ECC303	Digital System Design	20	20	20	80	3			100
ECC304	Network Theory	20	20	20	80	3	25		125
ECC305	Electronic Instrumentation & Control Systems	20	20	20	80	3			100
ECL301	Electronic Devices & Circuits Lab						25	25	50
ECL302	Digital System Design Lab						25		25
ECL303	Electronic						25		25
ECL304	Skill Lab: C++ and Java Programming						25	25	50
ECM301	Mini Project 1A						25	25	50
	Total			100	400		175	75	750

# Semester IV

Course Code	Course Name		Teaching Scheme (Contact Hours)			Credits Assigned				
Couc		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
ECC401	Engineering Mathematics-IV	3		1*	3		1	4		
ECC402	Microcontrollers	3			3			3		
ECC403	Linear Integrated Circuits	3			3			3		
ECC404	Signals & Systems	3		1	3		1	4		
ECC405	Principles of Communication Engineering	3			3			3		
ECL401	Microcontrollers Lab		2			1		1		
ECL402	Linear Integrated Circuits Lab		2			1		1		
ECL403	Principles of Communication Engineering Lab		2			1		1		
ECL404	Skill Lab: Python Programming		4			2		2		
ECM401	Mini Project 1B		4\$			2		2		
	Total	15	14	2	15	7	2	24		

^{*} Should be conducted batch wise.

\$ Indicates work load of a learner (Not Faculty) for Mini Project 1B. Faculty Load: 1 hour per week per four groups.

					Examina	ation Schem	ie		
				Theory					
Course Code	Course Name	Intern	ıal Assessı	nent	End	Exam.	Term	Pract.	Total
		Test 1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	& oral	Total
ECC401	Engineering Mathematics-IV	20	20	20	80	3	25		125
ECC402	Microcontrollers	20	20	20	80	3			100
ECC403	Linear Integrated Circuits	20	20	20	80	3			100
ECC404	Signals & Systems	20	20	20	80	3	25		125
ECC405	Principles of Communication Engineering	20	20	20	80	3			100
ECL401	Microcontrollers Lab						25		25
ECL402	Linear Integrated Circuits Lab						25	25	50
ECL403	Principles of Communication Engineering Lab						25	25	50
ECL404	Skill Lab: Python Programming						25	25	50
ECM401 Mini Project 1B							25	25	50
	Total			100	400		175	100	775

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
	Engineering Mathematics-III	03	-	01*	03	-	01	04	

Course Code	Course Name	Examination Scheme									
		Internal	Theor Assessm	End Dura-		Term Work		Total			
		Internal	7.0000011	10111	Sem	tion	WO IK	Oral			
		Test1	Test2	Avg of Test 1 & 2			o.u.				
	Engineering Mathematics-III	20	20	20	80	03	25	-	125		

^{*} Should be conducted batch wise.

#### **Pre-requisite:**

- 1. FEC101-Engineering Mathematics-I
- 2. FEC201-Engineering Mathematics-II
- 3. Scalar and Vector Product: Scalar and vector product of three and four vectors

#### Course Objectives: The course is aimed

- 1. To learn the Laplace Transform, Inverse Laplace Transform of various functions and its applications.
- 2. To understand the concept of Fourier Series, its complex form and enhance the problem solving skill.
- 3. To understand the concept of complex variables, C-R equations, harmonic functions and its conjugate and mapping in complex plane.
- 4. To understand the basics of Linear Algebra.
- 5. To use concepts of vector calculus to analyze and model engineering problems.

# Course Outcomes: After successful completion of course student will be able to:

- 1. Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.
- 2. Understand the concept of inverse Laplace transform of various functions and its applications in engineering problems.
- 3. Expand the periodic function by using Fourier series for real life problems and complex engineering problems.
- 4. Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic function.
- 5. Use matrix algebra to solve the engineering problems.
- 6. Apply the concepts of vector calculus in real life problems.

Module		Hrs.
01	<b>Module: Laplace Transform</b> Definition of Laplace transform, Condition of Existence of Laplace transform. Laplace Transform (L) of Standard Functions like $e^{at}$ , $sin(at)$ , $cos(at)$ , $sinh(at)$ , $cosh(at)$ and $t^n$ , $n \ge 0$ .  Properties of Laplace Transform: Linearity, First Shifting theorem, Second Shifting Theorem, change of scale Property, multiplication by $t$ , Division by $t$ , Laplace Transform of derivatives and integrals (Properties without proof). Evaluation of integrals by using Laplace Transformation. <b>Self-learning Topics:</b> Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.	7
02	<ul> <li>Module: Inverse Laplace Transform</li> <li>2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace transform using derivatives.</li> <li>2.2 Partial fractions method to find inverse Laplace transform.</li> <li>2.3 Inverse Laplace transform using Convolution theorem (without proof).</li> <li>Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.</li> </ul>	6
	<ul> <li>Module: Fourier Series:</li> <li>3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).</li> <li>3.2 Fourier series of periodic function with period 2π and 2l.</li> <li>3.3 Fourier series of even and odd functions.</li> <li>3.4 Half range Sine and Cosine Series.</li> <li>Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.</li> </ul>	7
	<ul> <li>Module: Complex Variables:</li> <li>4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).</li> <li>4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).</li> <li>4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.</li> <li>4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories</li> <li>Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.</li> </ul>	7
05	Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices. Functions of square matrix  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.	6
06	Module: Vector Differentiation and Integral 6.1 Vector differentiation: Basics of Gradient, Divergence and Curl (Without Proof). 6.2 Properties of vector field: Solenoidal and irrotational (conservative) vector	6

6.3 Vector integral: Line Integral, Green's theorem in a plane (Without Proof), Stokes' theorem (Without Proof) only evaluation. Self-learning Topics: Gauss' divergence Theorem and applications of Vector calculus.	
Stokes' theorem (Without Proof) only evaluation.  Self-learning Topics: Gauss' divergence Theorem and applications of Vector	
Stokes' theorem (Without Proof) only evaluation.	
C.O. Mantan intermedial in a later and Consens the sense in a release (Mitheaut Donat)	
fields.	

#### References:

- 1. Advanced engineering mathematics, H.K. Das, S. Chand, Publications
- 2. Higher Engineering Mathematics, B. V. Ramana, Tata Mc-Graw Hill Publication
- 3. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication
- 4. Advanced Engineering Mathematics, Wylie and Barret, Tata Mc-Graw Hill.
- 5. Theory and Problems of Fourier Analysis with applications to BVP, Murray Spiegel, Schaum's Outline Series
- 6. Vector Analysis Murry R. Spiegel, Schaum's outline series, Mc-Graw Hill Publication
- 7. Beginning Linear Algebra, Seymour Lipschutz, Schaum's outline series, Mc-Graw Hill Publication
- 8. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication

#### **Term Work:**

General Instructions:

- 1. Batch wise tutorials are to be conducted. The number of students per batch should be as per University pattern for practicals.
- 2. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 3. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows –

_	.Attendance (Theory and Tutorial)	05 marks
2	2. Class Tutorials on entire syllabus	10 marks
3	3. Mini project	10 marks

#### **Internal Assessment Test (20-Marks):**

Assessment consists of two class tests of 20 marks each. The first-class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) will be based on remaining contents (approximately 40% syllabus but excluding contents covered in Test I). Duration of each test shall be one hour.

### **End Semester Theory Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 subquestions will be asked.
- 3. Remaining guestions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Subject Code	Subject Name	Те	aching Scho (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC302	Electronic Devices & Circuits	3	-		3			3	

Subject	Subject				Examination Scheme						
Code	Name	Theory Marks				Exam	Term	Practical	Total		
	Internal asse		sessment	sessment End Sem. Exam		Work	& Oral				
		Test 1	Test 2	Avg. of Test 1 and Test 2							
ECC302	Electronic	20	20	20	80	03			100		
LCC302	Devices & Circuits	20	20	20	60	03			100		

### Course pre-requisite:

FEC: 102 - Engineering Physics-I FEC: 201 - Engineering Physics-II FEC:105 - Basic Electrical Engineering

# **Course Objectives:**

- 1. To explain functionality different electronic devices.
- 2. To perform DC and AC analysis of small signal amplifier circuits.
- 3. To analyze frequency response of small signal amplifiers.
- 4. To compare small signal and large signal amplifiers.
- 5. To explain working of differential amplifiers and it's applications in Operational Amplifiers

#### **Course Outcomes:**

- 1. Know functionality and applications of various electronic devices.
- 2. Explain working of various electronics devices with the help of V-I characteristics.
- 3. Derive expressions for performance parameters of BJT and MOSFET circuits.
- 4. Evaluate performance of Electronic circuits (BJT and MOSFET based).
- 5. Select appropriate circuit for given application.
- 6. Design electronic circuit (BJT, MOSFET based) circuits for given specifications.

Module	Unit	Topics	Hrs.
No. 1.0	No.	Introduction of Electronic Devices	05
1.0	1.1	Study of pn junction diode characteristics & diode current equation. Application of zener diode as a voltage regulator.	03
	1.2	Construction, working and characteristics of BJT, JFET, and E-MOSFET	
2.0		Biasing Circuits of BJTs and MOSFETs	06
	2.1	Concept of DC load line, Q point and regions of operations, Analysis and design of biasing circuits for BJT (Fixed bias & Voltage divider Bias)	
	2.2	DC load line and region of operation for MOSFETs. Analysis and design of biasing circuits for JFET (self bias and voltage divider bias), E-MOSFET (Drain to Gate bias & voltage divider bias).	
3.0		Small Signal Amplifiers	06
	3.1	Concept of AC load line and Amplification, Small signal analysis (Zi, Zo, Av and Ai) of CE amplifier using hybrid pi model.	-
	3.2	Small signal analysis (Zi, Zo, Av) of CS (for EMOSFET) amplifiers.	
1.0	3.3	Introduction to multistage amplifiers.(Concept, advantages & disadvantages)	
4.0		Frequency response of Small signal Amplifiers:	08
	4.1	Effects of coupling, bypass capacitors and parasitic capacitors on	
		frequency response of single stage amplifier, Miller effect and	
		Miller capacitance.	
	4.2	High and low frequency analysis of CE amplifier.	
	4.3	High and low frequency analysis of CS (E-MOSFET) amplifier.	
5.0		Large Signal Amplifiers:	06
	5.1	Difference between small signal & large signal amplifiers. Classification and working of Power amplifier	
	5.2	Analysis of Class A power amplifier (Series fed and transformer coupled).	
	5.3	Transformer less Amplifier: Class B power amplifier. Class AB output stage with diode biasing	
	5.4	Thermal considerations and heat sinks.	
6.0		Introduction to Differential Amplifiers	08
	6.1	E-MOSFET Differential Amplifier, DC transfer characteristics, operation with common mode signal and differential mode signal	
	6.2	Differential and common mode gain, CMRR, differential and common mode Input impedance.	
	6.3	Two transistor (E-MOSFET) constant current source	
		Total	39

#### Text books:

- 1. D. A. Neamen, "Electronic Circuit Analysis and Design," Tata McGraw Hill, 2ndEdition.
- A. S. Sedra, K. C. Smith, and A. N. Chandorkar, "Microelectronic Circuits Theory and Applications," International Version, OXFORD International Students, 6thEdition
- 3. Franco, Sergio. Design with operational amplifiers and analog integrated circuits. Vol. 1988. New York: McGraw-Hill, 2002.

#### References:

- 1. Boylestad and Nashelesky, "Electronic Devices and Circuits Theory," Pearson Education, 11th Edition.
- 2. A. K. Maini, "Electronic Devices and Circuits," Wiley.
- 3. T. L. Floyd, "Electronic Devices," Prentice Hall, 9th Edition, 2012.
- 4. S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", Tata Mc-Graw Hill, 3rd Edition
- 5. Bell, David A. Electronic devices and circuits. Prentice-Hall of India, 1999.

## NPTEL/ Swayam Course:

1. Course: Analog Electronic Circuit By Prof. Shouribrata chatterjee (IIT Delhi); https://swayam.gov.in/nd1_noc20_ee89/preview

# Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

#### **End Semester Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. **Total 04 questions** need to be solved.

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC303	Digital								
	System	03			03			03	
	Design								

Course	Course				Examination Scheme						
Code	Name		The	ory Mar	ks	Exam	Term	Practical	Total		
		Interna	al Asses	sment	End Sem.	Duration	Work	and Oral			
		Test1	Test2	Avg.	Exam.	(Hrs.)					
ECC303	Digital										
	System	20	20	20	80	03			100		
	Design										

# **Course Pre-requisite:**

FEC105 – Basic Electrical Engineering

## **Course Objectives:**

- 1. To understand number system representations and their inter-conversions used in digital electronic circuits.
- 2. To analyze digital logic processes and to implement logical operations using various combinational logic circuits.
- 3. To analyze, design and implement logical operations using various sequential logic circuits.
- 4. To study the characteristics of memory and their classification.
- 5. To learn basic concepts in VHDL and implement combinational and sequential circuits using VHDL.

#### **Course Outcomes:**

- 1. Understand types of digital logic, digital circuits and logic families.
- 2. Analyze, design and implement combinational logic circuits.
- 3. Analyze, design and implement sequential logic circuits.
- 4. Develop a digital logic and apply it to solve real life problems.
- 5. Classify different types of memories and PLDs.
- 6. Simulate and implement basic combinational and sequential circuits using VHDL/Verilog.

Module No.	Unit No.	Topics	Hrs.
1.0		Number Systems and Codes	04
	1.1	Review of Binary, Octal and Hexadecimal Number Systems, their inter-conversion, Binary code, Gray code and BCD code, Binary Arithmetic, Addition, Subtraction using 1's and 2's Complement	04
2.0		Logic Family and Logic Gates	05
	2.1	Difference between Analog and Digital signals, Logic levels, TTL and CMOS Logic families and their characteristics	03
	2.2	Digital logic gates, Universal gates, Realization using NAND and NOR gates, Boolean Algebra, De Morgan's Theorem	02
3.0		Combinational Logic Circuits	12
	3.1	SOP and POS representation, K-Map up to four variables and Quine-McClusky method for minimization of logic expressions	04
	3.2	Arithmetic Circuits: Half adder, Full adder, Half Subtractor, Full Subtractor, Carry Look ahead adder and BCD adder, Magnitude Comparator	04
	3.3	Multiplexer and De-Multiplexer: Multiplexer operations, cascading of Multiplexer, Boolean function implementation using MUX, DEMUX and basic gates, Encoder and Decoder	04
4.0		Sequential Logic Circuits	12
	4.1	Flip flops: RS, JK, Master slave flip flops; T & D flip flops with various triggering methods, Conversion of flip flops, Registers: SISO, SIPO, PISO, PIPO, Universal Shift Register	04
	4.2	Counters: Asynchronous and Synchronous counters with State transition diagram, Up/Down, MOD N, BCD Counter	04
	4.3	Applications of Sequential Circuits: Frequency division, Ring counter, Johnson counter, Introduction to design of Moore and Mealy circuits	04
5.0		Different Types of Memories and Programmable Logic Devices	04
	5.1	Classification and Characteristics of memory, SRAM, DRAM, ROM, PROM, EPROM and Flash memories	02
	5.2	Introduction: Programmable Logic Devices (PLD), Programmable Logic Array (PLA), Programmable Array Logic (PAL)	02
6.0		Introduction to VHDL	02
	6.1	Basics of VHDL/Verilog Programming, Design and implementation of adder, subtractor, multiplexer and flip flop using VHDL/Verilog	02
		Total	39

#### **Text Books:**

- 1. John F. Warkerly, "Digital Design Principles and Practices", Pearson Education, Fifth Edition (2018).
- 2. Morris Mano, Michael D. Ciletti, "Digital Design", Pearson Education, Fifth Edition (2013).
- 3. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Forth Edition (2010).
- 4. A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, Fourth Edition (2016).
- 5. Volnei A. Pedroni, "Digital Electronics and Design with VHDL" Morgan Kaufmann Publisher, First Edition (2008).
- 6. Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", Third Edition, MGH (2014).

#### **Reference Books:**

- 1. Thomas L. Floyd, "Digital Fundamentals", Pearson Prentice Hall, Eleventh Global Edition (2015).
- 2. Mandal, "Digital Electronics Principles and Applications", McGraw Hill Education, First Edition (2010).
- 3. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss "Digital Systems Principles and Applications", Ninth Edition, PHI (2009).
- 4. Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications", The McGraw Hill, Eight Edition (2015).
- 5. Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL", Second Edition, TMH (2009).
- 6. J. Bhasker, "A Verilog HDL Primer", Star Galaxy Press, Third Edition (1997).

#### **NPTEL / Swayam Course:**

1. Course: Digital Circuits By Prof. Santanu Chattopadhyay (IIT Kharagpur); https://swayam.gov.in/nd1_noc20_ee70/preview

### **Internal Assessment (20-Marks):**

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

# End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Course Code	Course Name	Te	aching Scho (Hrs.)	eme	Credits Assigned				
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total	
ECC304	Network Theory	03		01	03		01	04	

Course	Course		Examination Scheme									
Code	Name		Theo	ry Marks		Exam.	Term	Practical	Total			
		Inter	rnal ass	essment	End	Duration	Work	and Oral				
		Test 1	Test2	Avg. of	Sem.	(in Hrs)						
				Test 1 and	Exam							
				Test 2								
ECC304	Network	20	20	20	80	03	25		125			
	Theory											

# **Course Pre-requisite:**

- 1. FEC105 Basic Electrical Engineering
- 2. FEC201 Engineerring Mathematics II

### **Course Objectives:**

- 1. To evaluate the Circuits using network theorems.
- 2. To analyze the Circuits in time and frequency domain.
- 3. To study network Topology, network Functions and two port networks.
- 4. To synthesize passive network by various methods.

#### **Course Outcomes:**

- 1. Apply their knowledge in analyzing Circuits by using network theorems.
- 2. Apply the time and frequency method of analysis.
- 3. Evaluate circuit using graph theory.
- 4. Find the various parameters of two port network.
- 5. Apply network topology for analyzing the circuit.
- 6. Synthesize the network using passive elements.

Module	Unit	Topics	Hrs.						
No.	No.	•							
1.0		Electrical circuit analysis	08						
	1.1	Circuit Analysis: Analysis of Circuits with and without dependent sources using generalized loop and node analysis, super mesh and super node analysis technique Circuit Theorems: Superposition, Thevenin's, Norton's and Maximum Power Transfer Theorems (Use only DC source).							
	1.2	Magnetic circuits: Concept of Self and mutual inductances, coefficient of coupling, dot convention, equivalent circuit, solution using mesh analysis (for Two Loops only).							
2.0		Graph Theory	06						
	2.1	Objectives of graph theory, Linear Oriented Graphs, graph terminologies Matrix representation of a graph: Incidence matrix, Circuit matrix, Cut-set matrix, reduced Incident matrix, Tieset matrix, f-cutset matrix.  Relationship between sub matrices A, B & Q.							
		KVL & KCL using matrix.							
3.0		Time and frequency domain analysis	07						
3.0	3.1	Time domain analysis of R-L and R-C Circuits: Forced and natural response, initial and final values. Solution using first order and second order differential equation with step signals.							
	3.2	Frequency domain analysis of R-L-C Circuits: Forced and natural response, effect of damping factor. Solution using second order equation for step signal.							
4.0		Network functions	06						
	4.1	Network functions for the one port and two port networks, driving point and transfer functions, Poles and Zeros of Network functions, necessary condition for driving point functions, necessary condition for transfer functions, calculation of residues by graphical methods, testing for Hurwitz polynomial.  Analysis of ladder & symmetrical lattice network (Up to two							
	7.2	nodes or loops)							
5.0		Two port Networks	05						
	5.1	Parameters: Open Circuits, short Circuit, Transmission and Hybrid parameters, relationship among parameters, conditions for reciprocity and symmetry.							
0.0	5.2	Interconnections of Two-Port networks T & π representation.							
6.0	C 4	Synthesis of RLC circuits  Desitive Real Functions: Concent of positive real function	07						
	6.1	Positive Real Functions: Concept of positive real function, necessary and sufficient conditions for Positive real Functions.							
	6.2	Synthesis of LC, RC & RL Circuits: properties of LC, RC & RL driving point functions, LC, RC & RL network Synthesis in Cauer-I & Cauer-II, Foster-I & Foster-II forms (Up to Two Loops only).							
		Total	39						

#### Textbooks:

- 1. Franklin F Kuo, "Network Analysis and Synthesis", Wiley Toppan, 2nd ed. ,1966.
- 2. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 26th Indian Reprint, 2000.

#### Reference Books:

- 1. A. Chakrabarti, "Circuit Theory", Dhanpat Rai & Co., Delhi, 6th Edition.
- 2. A. Sudhakar, Shyammohan S. Palli "Circuits and Networks", Tata McGraw-Hill education.
- 3. Smarajit Ghosh "Network Theory Analysis & Synthesis", PHI learning.
- 4. K.S. Suresh Kumar, "Electric Circuit Analysis" Pearson, 2013.
- 5. D. Roy Choudhury, "Networks and Systems", New Age International, 1998.

## NPTEL / Swayam Course:

1. Course: Basic Electrical Circuits By Prof. Nagendra Krishnapura (IIT Madras); <a href="https://swayam.gov.in/nd1">https://swayam.gov.in/nd1</a> noc20 ee64/preview

## Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

# **End Semester Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. **Total 04 questions** need to be solved.

#### Term Work (25-Marks):

At least 10 assignments covering entire syllabus must be given during the "Class Wise Tutorial". The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades will be converted to marks as per "Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code			ching Sch	eme	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC305	Electronic Instrumentation & Control Systems	03			03			03	

Subject	Subject				Examinati	on Scheme			
Code	Name		Theory Marks			Exam		Practical	Total
		Inte	Internal assessment			Duration	Term	And Oral	
		Test1				(in Hrs.)	Work		
				Test 1	Exam				
				and Test 2					
ECC305	Electronic Instrumen- tation & Control Systems	20	20	20	80	03			100

### Course pre-requisites:

1. FEC105 – Basic Electrical Engineering

## **Course Objectives:**

- 1. To provide basic knowledge about the various sensors and transducers
- 2. To provide fundamental concepts of control system such as mathematical modeling, time response and Frequency response.
- 3. To develop concepts of stability and its assessment criteria.

#### **Course Outcomes:**

- 1. Identify various sensors, transducers and their brief performance specification.
- 2. Understand the principle of working of various transducer used to measure temperature, displacement, level, pressure and their application in industry
- 3. Determine the models of physical systems in forms suitable for use in the analysis and design of control systems.
- 4. Obtain the transfer functions for a given Control system.
- 5. Understand the analysis of systems in time domain and frequency domain.
- 6. Predict stability of given system using appropriate criteria.

Module No.	Unit No.	Topics	Hrs.
1		Principle of Measurement, Testing and Measuring instruments	04
	1.1	Introduction to Basic instruments: Components of generalized measurement system Concept of accuracy, precision, linearity, sensitivity, resolution, hysteresis, calibration.	
	1.2	Measurement of Resistance: Kelvin's double bridge, Wheatstone bridge and Mega ohm bridge Measurement of Inductance: Maxwell bridge and Hey bridge Measurement of Capacitance: Schering bridge	
2		Sensors and Transducers	06
	2.1	Basics of sensors and Transducers-Active and passive transducers, characteristics and selection criteria of transducers	
	2.2	Displacement and pressure- Potentiometers, pressure gauges, linear Variable differential transformers (LVDT) for measurement of pressure and displacement strain gauges	
	2.3	Temperature Transducers- Resistance temperature detectors (RTD). Thermistors and thermocouples, their ranges and applications	
3		Introduction to control system Analysis	80
	3.1	Introduction: Open and closed loop systems, example of control systems	
	3.2	Modelling: Modelling, Transfer function model	
	3.3	Block diagram reduction techniques and Signal flow graph	
4		Response of control system	04
	4.1	Dynamic Response: Standard test signals, transient and steady state behavior of first and second order systems, steady state errors in feedback control systems and their types	
	4.2	Concept of lag and lead compensator.	
5		Stability Analysis in Time Domain	08
	5.1	Concept of stability: Routh and Hurwitz stability criterion	
	5.2	Root locus Analysis: Root locus concept, general rules for constructing root-locus, root locus analysis of control system	
6		Stability Analysis in frequency domain	09
	6.1	Introduction: Frequency domain specification, Relationship between time and frequency domain specification of system, stability margins	
	6.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode plot, Stability margins and analysis using bode plot. Frequency response analysis of RC, RL, RLC circuits	
	6.3	Nyquist Criterion: Concept of Polar plot and Nyquist plot, Nyquist stability criterion, gain and phase margin	
		Total	39

#### **Textbooks:**

- **1.** A.K. Sawhney, "Electrical & Electronic Measurement & Instrumentation" DRS .India
- **2.** B.C Nakra, K.K. Cahudhary, Instrumentation Measurement and Analysis, Tata
  - Mc Graw Hill.
- 3. W.D. Cooper, "Electronic Instrumentation And Measuring Techniques" PHI
- **4.** Nagrath, M.Gopal, "Control System Engineering", Tata McGrawHill.
- **5.** Rangan C. S., Sarma G. R. and Mani V. S. V., "*Instrumentation Devices And Systems*", Tata McGraw-Hill, 2nd Ed.,2004.
- **6.** K.Ogata, "Modern Control Engineering, Pearson Education", IIIrd edition.

#### **Reference Books:**

- 1. Helfrick&Copper, "Modern Electronic Instrumentation & Measuring Techniques" –PHI
- M.M.S. Anand, "Electronic Instruments and instrumentationTechnology".
- 3. Gopal M., "Control Systems Principles and Design", Tata McGraw Hill Publishing Co. Ltd.New Delhi, 1998.
- 4. Benjamin C.Kuo, "Automatic Control Systems, Eearson education", VIIthedition
- 5. Doeblin E.D., Measurement system, Tata Mc Graw Hill., 4th ed, 2003.Madan Gopal, "Control Systems *Principles and Design"*, Tata McGraw hill, 7th edition,1997.
- 6. Normon, "Control System Engineering", John Wiley & sons, 3rdedition.

### **NPTEL/ Swayam Course:**

 Course: Control Systems By Prof. C. S. Shankar Ram (IIT Madras); https://swayam.gov.in/nd1_noc20_ee90/preview

### **Internal Assessment (20-Marks):**

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

#### **End Semester Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Subject Code	Subject Name	Те	aching Scho (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total	
ECL301	Electronic Devices & Circuits Lab		2			1		1	

Subject Code	Subject Name	Exam	Examination Scheme									
			Theory Marks Term Practical Total									
		Int	ernal a	ssessment	End Sem.	Work	and Oral					
		Test	Test	Avg. Of Test	Exam							
		1	2	1 and Test 2								
ECL301	Electronic					25	25	50				
ECLSUI	Devices											
	& Circuits											
	Lab											

## **Course Objectives:**

- 1. To make students familiar with equipments and measuring instruments used to perform Electronics Devices and Circuits laboratory work.
- 2. To provide hands on experience to develop laboratory setup for performing given experimental using various equipments, electronic devices and measuring instruments.
- 3. To develop an ability among students to gather appropriate data and analyse the same to relate theory with practical.
- 4. To develop trouble shooting abilities among students.

## **Course Outcomes:**

- 1. Know various equipments, electronics devices and components, and measuring instruments used to perform laboratory work.
- 2. Students will be able to explain functionality of various equipments, electronics devices and components and neasu6 instruments used to perform laboratory work.
- 3. Students will be able connect various equipments, devices, components and measuring devices using bread board as per the circuit diagram for experiment to be performed.
- 4. Students will able to perform experiment to gather appropriate data.
- 5. Students will able to analyze data obtained from experiment to relate theory with experiment results.
- 6. Students will able to prepare laboratory report (Journal) to summarise the outcome each experiment.

## Laboratory plan:

Maximum of 10 practicals including minimum 2 to 3 simulations should be conducted. Suggested list of experiments:

- 1. To study of pn junction diode characteristics.
- 2. To study zener as a voltage regulator.
- 3. To study characteristics of CE configuration.
- 4. To study BJT biasing circuits.
- 5. To study BJT as CE amplifier.
- 6. To study frequency response of CE amplifier.
- 7. To study EMOSFET biasing circuits.
- 8. Simulation experiment on study of CS amplifier.
- 9. Simulation experiment on study frequency response of CS amplifier.
- 10. Simulation experiment on study of differential amplifier.
- 11. Simulation experiment on multistage amplifier.

**Term Work:** At least 10 Experiments including not more than 03 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment and assignments are graded from time to time. The grades will be converted to marks as per "**Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done. The practical and oral examination will be based on entire syllabus.

Course Code	Course Name		aching School		Credits Assigned				
Code	INAITIE	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECL302	Digital System Design Lab		02			01		01	

Course Code	Course Name	Examination Scheme								
		Theory Marks				Term	Practical	Total		
		Interna	l assess	sment	End Sem.	Work				
		Test 1	Test 2	Avg.	Exam.					
ECL302	Digital System Design Lab					25		25		

# Course objectives:

- 1. To get familiarise with basic building blocks of Digital System Design and verify the operation of various digital ICs.
- 2. To train students to design and implementation of combinational circuits.
- 3. To instruct students on how to design and implement sequential circuits.
- 4. To introduce simulation software like VHDL/Verilog to design basic digital circuits.

#### Course outcomes:

Learners will be able to ...

- 1. Identify various Digital ICs and basic building blocks of digital system design
- 2. Design and implement combinational circuits like adder, subtractor, multiplexer, code converters etc.
- 3. Identify and understand working of various types of flip flops and their inter conversions.
- 4. Design and implement basic sequential circuits such as counters, registers etc.
- 5. Acquire basic knowledge of VHDL/Verilog basic programming.

### Suggested list of experiments:

- 1. Simplification of Boolean functions.
- 2. Design AND, OR, NOT, EXOR, EXNOR gates using Universal gates: NAND and NOR.
- 3. Implement digital circuits to perform Binary to Gray and Gray to Binary operations.
- 4. Implement Half adder, Full adder, Half subtractor and Full subtractor circuits.
- 5. Design and implement BCD adder using 4-bit Binary Adder IC-7483.
- 6. Implement logic equations using Multiplexer.
- 7. Verify encoder and decoder operations.

- 8. Design and implement Magnitude Comparator.
- 9. Verify truth table of different types of flip flops.
- 10. Flip flop conversions JK to D, JK to T and D to TFF.
- 11. Design asynchronous/synchronous MOD N counter using IC7490.
- 12. Verify different counter operations.
- 13. Write VHDL/Verilog simulation code for different logic gates.
- 14. Write VHDL/Verilog simulation code for combinational and sequential circuits.
- 15. Write VHDL/Verilog simulation code for 4:1 Multiplexer, 2 to 4 line binary decoder.

#### **Term Work:**

At least 08 experiments covering the entire syllabus must be given "Batch Wise". Out of these, 06 hardware experiments, to be done strictly on breadboard and at least 02 software experiments using VHDL/Verilog. Teacher should refer the suggested list of experiments and can design additional experiments to acquire practical design skills. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment and assignments are graded from time to time. The grades will be converted to marks as per "Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Те	aching Sch	eme		Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Pract.	Tut.	Total	
ECL303	Electronic Instrumentation & Control Systems Lab.		2	1		1		1	

Subject	Subject Name	Examination Scheme								
Code			Т	heory N	Term Work	Practical & Oral	Total			
		Interna	l asses	sment	End Sem. Exam	Work	& Orai			
ECL303	Electronic Instrumentation & Control Systems Lab.					25		25		

# **Course Objectives:**

- 1. To experimentally verify the principle and characteristics of various transducers and measurement of resistance and inductance.
- 2. To make students understand the construction and the working principle of various transducers used for Displacement measurement, Temperature measurement and Level measurement.
- 3. To examine steady-state and frequency response of the Type 0, 1, and 2 systems.
- 4. To examine steady-state and frequency response of first and second order electrical systems.
- 5. To inspect stability analysis of system using Root locus, Bode plot, polar plot and Nyquist plot.

#### **Course Outcomes:**

- 1. Plot and validate the performance characteristics of transducers.
- 2. Validate the characteristics of various temperature, pressure and level transducers.
- 3. Plot frequency response of first-order electrical system.
- 4. Plot time response of second-order electrical system and calculate the steady-state error.
- Validate the effect of damping factor on the response of second order system.
- 6. Inspect the frequency response specifications of systems by using bode-plot, Polar plot, Nyquist-plot techniques, and comment on the stability of system

## **List of experiments:**

- 1. Designing DC bridge for Resistance Measurement (Quarter, Half and Full bridge)
- 2. Designing AC bridge Circuit for capacitance measurement.
- 3. Study and characteristics of Resistive Temperature Detector (RTD).
- 4. Study of Linear Variable Differential Transformer (LVDT)
- 5. To plot the effect of time constant on first-order systems response.
- 6. To plot the frequency response of first-order System
- 7. To plot the time response of second-order systems
- 8. To plot the frequency response of second-order System
- 9. To Examine Steady State Error for Type 0, 1, 2 System
- 10. To study the performance of Lead and Lag Compensator
- 11. To inspect the relative stability of systems by Root-Locus using Simulation Software.
- 12. To determine the frequency specification from Polar plot of system
- 13. To inspect the stability of system by Nyquist plot using Simulation software.
- 14. To inspect the stability of system by Bode plot using Simulation software.
- 15. Any other experiment based on syllabus which will help students to understand topic/concept.

#### Term Work:

At least 08 Experiments covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment and assignments are graded from time to time. The grades will be converted to marks as per "Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Course Code	Course Name	Te	aching Scho (Hrs.)	eme		Credits As	signed	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL304	Skill Lab: C++ and Java Programming		04			02		02

Course	Course	Examination Scheme									
Code	Name		T	heory Marks							
			ernal a	ssessment	End	Term	Practical				
		Test 1	Test 2	Avg. Of Test 1 and	Sem. Exam	Work	And Oral	Total			
				Test 2							
ECL304	Skill Lab: C++ and Java Programming					25	25	50			

<u>Note:</u> Before performing practical 'Necessary Theory' will be taught by concern faculty

# **Course Pre-requisites:**

1. FEL204 - C-Programming

# **Course Objectives:**

- 1. Describe the principles of Object Oriented Programming (OOP).
- 2. To understand object-oriented concepts such as data abstraction, encapsulation, inheritance and polymorphism.
- 3. Utilize the object-oriented paradigm in program design.
- 4. To lay a foundation for advanced programming.
- 5. Develop programming insight using OOP constructs.

#### **Course Outcomes:**

- 1. Describe the basic principles of OOP.
- 2. Design and apply OOP principles for effective programming.
- 3. Develop programming applications using OOP language.
- 4. Implement different programming applications using packaging.
- 5. Analyze the strength of OOP.
- 6. Percept the Utility and applicability of OOP.

Module	Unit	Topics	Hrs.						
No.	No.								
1.0	4.4	C++ Overview	08						
	1.1	Need of Object-Oriented Programming (OOP), Object Oriented Programming Paradigm, Basic Concepts of Object-Oriented Programming, Benefits of OOP and C++ as object oriented programming language.							
	1.2	C++ programming Basics, Data Types, Structures, Enumerations, control structures, Arrays and Strings, Class, Object, class and data abstraction, class scope and accessing class members, separating interface from implementation, controlling access to members.							
2.0		C++ Control Structures	80						
	2.1	Branching - If statement, If-else Statement, Decision.  Looping - while, do-while, for loop  Nested control structure- Switch statement, Continue statement, Break statement.  Array- Concepts, Declaration, Definition, Accessing array element,							
		imensional and Multidimensional array.							
3.0		Object-Oriented Programming using C++	12						
	3.1	Operator Overloading- concept of overloading, operator overloading, Overloading Unary Operators, Overloading Binary Operators, Data Conversion, Type casting (implicit and explicit), Pitfalls of Operator Overloading and Conversion, Keywords explicit and mutable.  Function- Function prototype, accessing function and utility function, Constructors and destructors, Copy Constructor, Objects and Memory requirements, Static Class members, data abstraction and information hiding, inline function.  Constructor- Definition, Types of Constructor, Constructor Overloading, Destructor.  Inheritance- Introduction, Types of Inheritance, Inheritance, Public and Private Inheritance, Multiple Inheritance, Ambiguity in Multiple Inheritance, Visibility Modes Public, Private, Protected and Friend, Aggregation, Classes Within Classes. Deriving a class from Base Class, Constructor and destructor in Derived Class, Overriding Member Functions, Class Hierarchies,  Polymorphism- concept, relationship among objects in inheritance hierarchy, Runtime & Compile Time Polymorphism, abstract classes, Virtual Base Class.							
4.0		Introduction to Java	06						
	4.1	Programming paradigms- Introduction to programming paradigms, Introduction to four main Programming paradigms like procedural, object oriented, functional, and logic & rule based.  Difference between C++ and Java.  Java History, Java Features, Java Virtual Machine, Data Types and Size (Signed vs. Unsigned, User Defined vs. Primitive Data Types, Explicit Pointer type), Programming							
		Language JDK Environment and Tools.							
5.0		Inheritance, Polymorphism, Encapsulation using Java	10						

	5.2	Classes and Methods: class fundamentals, declaring objects, assigning object reference variables, adding methods to a class, returning a value, constructors, this keyword, garbage collection, finalize() method, overloading methods, argument passing, object as parameter, returning objects, access control, static, final, nested and inner classes, command line arguments, variable-length Arguments.  String: String Class and Methods in Java.  Inheritances: Member access and inheritance, super class references, Using super, multilevel hierarchy, constructor call sequence, method overriding, dynamic method dispatch, abstract classes, Object class.  Packages and Interfaces: defining a package, finding packages and CLASSPATH, access protection, importing packages, interfaces (defining, implementation, nesting, applying), variables in interfaces, extending interfaces, instance of operator.	
6.0		Exception Handling and Applets in Java	08
	6.2	Exception Handling: fundamental, exception types, uncaught exceptions, try, catch, throw, throws, finally, multiple catch clauses, nested try statements, built-in exceptions, custom exceptions (creating your own exception sub classes).  Managing I/O: Streams, Byte Streams and Character Streams, Predefined Streams, Reading console Input, Writing Console Output, and Print Writer class.  Threading: Introduction, thread life cycle, Thread States: new, runnable, Running, Blocked and terminated, Thread naming, thread join method, Daemon thread  Applet: Applet Fundamental, Applet Architecture, Applet Life Cycle, Applet Skeleton, Requesting Repainting, status window, HTML Applet tag, passing parameters to Applets, Applet and Application Program.	
		Total	52

# **Suggested list of Experiments:**

Note: Before performing practical necessary Theory will be taught by concern faculty

Sr.No	Write C++ Program to
1	Add Two Numbers
2	Print Number Entered by User
3	Swap Two Numbers
4	Check Whether Number is Even or Odd
5	Find Largest Number Among Three Numbers
6	Create a simple class and object.
7	Create an object of a class and access class attributes
8	Create class methods
9	Create a class to read and add two distance
10	Create a class for student to get and print details of a student.
11	Demonstrate example of friend function with class
12	Implement inheritance.

Sr. No.	Write JAVA Program to
1	Display addition of number
2	Accept marks from user, if Marks greater than 40,declare the student as "Pass" else "Fail""
3	Accept 3 numbers from user. Compare them and declare the largest number (Using if-else statement).
4	Display sum of first 10 even numbers using do-while loop.
5	Display Multiplication table of 15 using while loop.
6	Display basic calculator using Switch Statement.
7	Display the sum of elements of arrays.
8	Accept and display the string entered and execute at least 5 different string
	functions on it.
9	Read and display the numbers as command line Arguments and display the addition of them
10	
10	Define a class, describe its constructor, overload the Constructors and instantiate its object.
11	Illustrate method of overloading
12	Demonstrate Parameterized Constructor
13	Implement Multiple Inheritance using interface
14	Create thread by implementing 'runnable' interface or creating 'Thread
	Class.
15	Demonstrate Hello World Applet Example

#### Textbooks:

- 1. Bjarne Stroustrup, "The C++ Programming language", Third edition, Pearson Education.
- 2. Yashwant Kanitkar, "Let Us Java", 2nd Edition, BPB Publications.
- 3. D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press, Edition: 2015
- 4. Deitel, "C++ How to Program", 4th Edition, Pearson Education.

#### **Reference Books:**

- 1. Herbert Schidt, "The Complete Reference", Tata McGraw-Hill Publishing Company Limited, Ninth Edition.
- 2. Java: How to Program, 8/e, Dietal, PHI.
- 3. Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Languageser Guide", Pearson Education.
- 4. Sachin Malhotra, Saurabh Chaudhary "Programming in Java", Oxford University Press, 2010.

#### Skill-Enhancement:

- 1. The students should be trained to code in Eclipse (an industry accepted software tool). Also, for a given problem statement, there is need to include external library files (other than JDK files). Moreover, the students need to be trained on Maven (a build tool).
- 2. Real-life mini-problem statements from software companies (coming in for placement) to be delegated to groups of 3-4 students each and each group to work on the solution for 8-12 hours (last 2 lab sessions).

### **Software Tools:**

- 1. Raptor-Flowchart Simulation:http://raptor.martincarlisle.com/
- 2. Eclipse: https://eclipse.org/
- 3. Netbeans:https://netbeans.org/downloads/
- 4. CodeBlock:http://www.codeblocks.org/
- 5. J-Edit/J-Editor/Blue J

# Online Repository:

- 1. Google Drive
- 2. GitHub
- 3. Code Guru

#### Term Work:

At least 12 experiments (06 experiments each on C++ and JAVA) covering entire syllabus should be set to have well predefined inference and conclusion. Teacher should refer the suggested experiments and can design additional experiment to maintain better understanding and quality.

The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every Experiments are graded from time to time.

The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus. Students are encouraged to share their experiments codes on online repository. Practical exam should cover all **12** experiments for examination.

Course Code	Course Name	Те	aching Scho (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECM301	Mini Project 1A		04\$			2		2	

Course Code	Course Name	Examination Scheme								
			The	ory Marks		Term	Practical	Total		
		Inte	rnal ass	essment	End	- Work	And Oral			
		Test1	Test2	Avg. Of Test1 and Test2	Sem. Exam					
ECM301	Mini Project 1A					25	25	50		

\$ Indicates work load of a learner (Not Faculty) for Mini Project 1A. Faculty Load: 1 hour per week per four groups.

# **Objectives**

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Outcome: At the end of the course learners will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

## **Guidelines for Mini Project**

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

### **Guidelines for Assessment of Mini Project:**

# **Term Work**

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;
  - Marks awarded by guide/supervisor based on log book : 10
  - Marks awarded by review committee : 10
  - Quality of Project report : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

### One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
  - First shall be for finalisation of problem
  - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
  - First review is based on readiness of building working prototype to be conducted.
  - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

## Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
  - Identification of need/problem
  - Proposed final solution
  - Procurement of components/systems
  - Building prototype and testing
  - Two reviews will be conducted for continuous assessment,
    - First shall be for finalisation of problem and proposed solution
    - Second shall be for implementation and testing of solution.

### **Assessment criteria of Mini Project.**

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

# **Guidelines for Assessment of Mini Project Practical/Oral Examination:**

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

## Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

NOTE: For Electronics & Telecommunication Engineering we recommend following syllabus for Mini-Project 1A, in case it is half-year project.

Course Code	Course Name	Teaching Scheme (Hrs.)				Credits Assigned			
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
ECM301	Mini Project 1A:		04\$			2		2	
	Analog & Digital								
	Circuit Design								
	based Projects								

Course	Course Name	Examination Scheme						
Code		Theory Marks				Term	Practical	Total
		Internal assessment			End	Work	And Oral	
		Test1	Test2	Avg. Of Test1 and Test2	Sem. Exam			
ECM301	Mini Project 1A: Analog & Digital Circuit Design based Projects			-		25	25	50

\$ Indicates work load of a learner (Not Faculty) for Mini Project 1A. Faculty Load: 1 hour per week per four groups.

## **Course Pre-requisite:**

1. FEC105 - BEE

# **Course Objectives:**

- 1. To make students familiar with the basics of electronic devices and circuits, electrical circuits and digital systems
- 2. To familiarize the students with the designing and making of Printed circuit boards(PCB)
- 3. To improve the knowledge of electronics hardware among students

#### Course outcomes:

- 1. Create the electronics circuit for particular application/experiment.
- 2. Design and simulate the circuits by putting together the analog and digital components
- 3. Learn the technique of soldering and circuit implementation on general purpose printed circuit board (GPP).
- 4. Realize the PCB design process and gain up-to-date knowledge of PCB design software.
- 5. Utilize the basic electronic tools and equipment's (like DMM, CRO, DSO etc.)
- 6. Analysis of hardware fault (Fault detection and correction)

Module		Topics	Hrs.					
No.	No.							
1.0		Identification and Designing of Circuit	80					
	1.1	Identification of particular application with understanding of its detail operation.						
		Study of necessary components and devices required to implement the						
		application.						
		Designing the circuit for particular application (either analog, digital, electrical,						
		analog and digital, etc )	12					
2.0		Software simulation and Implementation on GPP						
		Simulation of circuit for particular application using software's to verify the						
		expected results						
	2.2	Implementation of verified circuit on general purpose printed circuit board (GPP).						
		Now Verify the hardware results by using electronic tools and equipment's like millimeter, CRO, DSO etc.						
3.0		PCB design and optimization	08					
	3.1	Design the circuit by placing components using PCB design software's.						
	3.2	Reduce the size of PCB by varying the position of components or devices for						
		optimize use of copper clad material						
4.0		Implementation of PCB	08					
		Transfer the designed PCB on Copper clad either by using dark room or taking printout on glossy paper, etc (use available suitable method).						
		Perform Etching and then Soldering.						
5.0		Detection of Hardware faults and Result verification	08					
	5.1	Identify the hardware faults in designed circuit and subsequently rectify it						
		Now again verify the hardware results by using electronic tools and equipment's like millimeter, CRO, DSO etc.						
6.0		Understanding the Troubleshooting	08					
	6.1	Understand the trouble shooting by removing some wired connection.						
		Understand the trouble shooting of track. Troubleshoot the faculty components or devices						
		Total	52					

NOTE: During 1st week or within 1-month of the beginning of the semester, following topics related to ADC and DAC should be covered as theoretical concepts.

- a. Performance specifications of ADC, single ramp ADC, ADC using DAC, dual slope ADC, successive approximation ADC.
- b. Performance specifications of DAC, binary weighted resistor DAC, R/2R ladder DAC, inverted R/2R ladder DAC.

#### Reference books:

- 1. Schultz Mitchel E., "Grob's Basic Electronics", McGraw-Hill Education; 10th edition, 25 October, 2006.
- 2. Charles Platt, "Make Electronics: Learning by discovery", O'Reilly; 2nd edition, 18 September, 2015.
- 3. Forrest M Mims III, "Getting started in Electronics", Book Renter, Inc.; 3rd edition, 1 January 2000.

- 4. R S Khandpur, "*Printed circuit board*", McGraw-Hill Education; 1st edition, 24 February , 2005.
- 5. Kraig Mitzner, "Complete PCB Design Using OrCAD Capture and PCB Editor", Academic Press; 2nd edition, 20 June 2019.

# **Suggested Software tools:**

- 1. LTspice: <a href="https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html#">https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html#</a>
- 2. Eagle: <a href="https://www.autodesk.in/products/eagle/overview">https://www.autodesk.in/products/eagle/overview</a>
- 3. OrCAD: https://www.orcad.com/
- 4. Multisim: <a href="https://www.multisim.com/">https://www.multisim.com/</a>
- 5. Webbench: <a href="http://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html">http://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html</a>
- 6. Tinkercad: <a href="https://www.tinkercad.com/">https://www.tinkercad.com/</a>

# **Online Repository:**

- 1. https://www.electronicsforu.com
- 2. https://circuitdigest.com
- 3. https://www.electronicshub.org

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Pract	Tut.	Theory	TW/Pract	Tut.	Total	
ECC401	Engineering Mathematics-IV	03	-	01*	03	-	01	04	

Course Code	Course Name	Examination Scheme								
	Theory Internal Assessment			End Sem	Exam Dura- tion		Pract & Oral	Total		
		Test1	Test2	Avg. of Test 1 & 2	exam	(in Hrs.)				
ECC401	Engineering Mathematics-IV	20	20	20	80	03	25	-	125	

^{*} Should be conducted batch wise.

#### Pre-requisite:

- 1. FEC101-Engineering Mathematics-I
- 2. FEC201-Engineering Mathematics-II
- 3. ECC301-Engineering Mathematics-III & Binomial Distribution.

### **Course Objectives:** The course is aimed:

- 1. To understand line and contour integrals and expansion of complex valued function in a power series.
- 2. To understand the basic techniques of statistics for data analysis, Machine learning and
- 3. To understand probability distributions and expectations.
- 4. To understand the concepts of vector spaces used in the field of machine learning and engineering problems.
- 5. To understand the concepts of Quadratic forms and Singular value decomposition.
- 6. To understand the concepts of Calculus of Variations.

#### **Course Outcomes:**

On successful completion of course learner/student will be able to:

- 1. Use the concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals.
- 2. Apply the concept of Correlation and Regression to the engineering problems in data science, machine learning and AI.
- 3. Apply the concepts of probability and expectation for getting the spread of the data and distribution of probabilities.
- 4. Apply the concept of vector spaces and orthogonalization process in Engineering Problems.
- 5. Use the concept of Quadratic forms and Singular value decomposition which are very useful tools in various Engineering applications.
- 6. Find the extremals of the functional using the concept of Calculus of variation.

Module	Detailed Contents	Hrs.						
	Module: Complex Integration							
	1.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof).							
01	<ul><li>1.2 Taylor's and Laurent's series (without proof).</li><li>1.3 Definition of Singularity, Zeroes, poles of f(z), Residues, Cauchy's Residue Theorem (without proof).</li></ul>							
	<b>Self-learning Topics:</b> Application of Residue Theorem to evaluate real integrations ,Z- Transform.							
	Module: Statistical Techniques							
02	<ul><li>2.1 Karl Pearson's Coefficient of correlation (r).</li><li>2.2 Spearman's Rank correlation coefficient (R) (repeated and non-repeated ranks)</li></ul>	6						
	<ul><li>2.3 Lines of regression.</li><li>2.4 Fitting of first and second degree curves.</li></ul>							
	Self-learning Topics: Covariance, fitting of exponential curve.							
	Module: Probability Distributions 1.1 Baye's Theorem, Random variable: Probability distribution for discrete and							
	continuous random variables, Density function and distribution function.							
00	3.2 Expectation, mean and variance.							
03	3.3 Probability distribution: Poisson & normal distribution.	7						
	<b>Self-learning Topics:</b> Moments, Moment Generating Function, Applications of Probability Distributions in Engineering.							
	Module: Linear Algebra: Vector Spaces:-							
	4.1 Vectors in n-dimensional vector space, norm, dot product, The							
	CauchySchwarz inequality (with proof), Unit vector.							
04	4.2 Orthogonal projection, Orthonormal basis, Gram-Schmidt process for	6						
04	vectors.							
	4.3 Vector spaces over real field, subspaces.							
	<b>Self-Learning Topics</b> :- Linear combinations, linear Dependence and Independence, QR decomposition.							
	Module: Linear Algebra: Quadratic Forms							
	5.1 Quadratic forms over real field, Linear Transformation of Quadratic form, Reduction of Quadratic form to diagonal form using congruent transformation.							
	5.2 Rank, Index and Signature of quadratic form, Sylvester's law of inertia,  Value-	7						
05	class of a quadratic form-Definite, Semidefinite and Indefinite.							
	5.3 Reduction of Quadratic form to a canonical form using congruent transformations.							
	5.4 Singular Value Decomposition.							
	<b>Self-learning Topics:</b> Orthogonal Transformations, Applications of Quadratic forms and SVD in Engineering.							

06	<ul> <li>Module: Calculus of Variations:</li> <li>6.1 Euler- Lagrange equation (Without Proof), When F does not contain y, When F does not contain x, When F contains x, y, y'.</li> <li>6.2 Isoperimetric problems- Lagrange Method.</li> <li>6.3 Functions involving higher order derivatives: Rayleigh-Ritz Method.</li> <li>Self-Learning Topics:- Brachistochrone Problem, Variational Problem, Hamilton</li> </ul>	6
	Principle, Principle of Least action , Several dependent variables.	
	Total	39

#### References:

- 1. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 2. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 3. Advanced engineering mathematics H.K. Das, S. Chand, Publications.
- 4. Higher Engineering Mathematics B. V. Ramana, Tata Mc-Graw Hill Publication
- 5 Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication
- 6. Advanced Engineering Mathematics Wylie and Barret, Tata Mc-Graw Hill.
- 7. Beginning Linear Algebra Seymour Lipschutz Schaum's outline series, Mc-Graw Hill Publication
- 8. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication

# Term Work (25-Marks):

#### General Instructions:

- 1. Batch wise tutorials are to be conducted. The number of students per batch should be as per University pattern for practicals.
- 2. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 3. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows –

	Attendance (Theory and	
1.	Tutorial)	05 marks
	Class Tutorials on entire	
2.	syllabus	10 marks
3.	Mini project	10 marks

## **Internal Assessment Test (25-Marks):**

Assessment consists of two class tests of 20 marks each. The first-class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) will be based on remaining contents (approximately 40% syllabus but excluding contents covered in Test I). Duration of each test shall be one hour.

## **End Semester Theory Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 subquestions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

Course Code	Course Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total	
ECC402	Micro- controllers	3	-		3	-		3	

Code	Course	Examination Scheme									
Code	Name		Theor	ry Marks		Exam	Term	Practical	Total		
			Internal assessment			Duration (in Hrs.)	Work	And Oral			
		Test1	Test2	Avg. of Test 1 and Test 2	Sem. Exam						
ECC402	Micro- controllers	20	20	20	80	03	-	-	100		

# **Course Pre-requisites:**

1. ECC303 - Digital System Design

# **Course objectives:**

- 1. To develop background knowledge of Computer and its memory System.
- 2. To understand architecture of 8051 and ARM7 core.
- 3. To write programs for 8051 microcontrollers.
- 4. To understand design of Microcontroller Applications.

## Course outcomes:

- 1. Understand Computer and its memory System,
- 2. Understand the detailed architecture of 8051 and ARM7 Core.
- 3. Write programs for 8051 microcontrollers.
- 4. Design an applications using microcontroller.

Module No.	Unit No.	Topics	Hrs
1		Overview of Microprocessor based System	5
	1.1	Overview of microcomputer systems and their building blocks, Memory Interfacing, Steps taken by the microprocessor to fetch and executes an instruction from the memory	
	1.2	Concepts of Program counter register, Reset, Stack and stack pointer, Subroutine, Interrupts and Direct Memory Access	
	1.3	Concept of RISC & CISC Architecture	
	1.4	Harvard & Von Neumann Architecture	
2		The Memory Systems	4
	2.1	Classification of Memory : Primary and Secondary	
	2.2	Types of Semiconductor memories	
	2.3	Cache Memory	
	2.4	Virtual Memory Concept with Memory Management Unit with Segmentation and Paging (Address Translation Mechanism)	
3		8051 Microcontroller	8
	3.1	Comparison between Microprocessor and Microcontroller	
	3.2	Features, architecture and pin configuration	
	3.3	CPU timing and machine cycle	
	3.4	Input / Output ports	
	3.5	Memory organization	
	3.6	Counters and timers	
	3.7	Interrupts	
	3.8	Serial data input and output	
4		8051 Assembly Language Programming and Interfacing	9
	4.1	Addressing modes	
	4.2	Instruction set	
	4.3	Need of Assembler & Cross Assemble, Assembler Directives	
	4.4	Programs related to: arithmetic, logical, delay subroutine, input, output, timer, counters, port, serial communication, and interrupts	
	4.5	Interfacing with LEDs, Relay and Keys	
5		ARM7	8
	5.1	Introduction & Features of ARM 7	
	5.2	Concept of Cortex-A, Cortex-R and Cortex-M	
	5.3	Architectural inheritance, Pipelining	
	5.4	Programmer's model	
	5.5	Brief introduction to exceptions and interrupts handling	
	5.6	Instruction set: Data processing, Data Transfer, Control flow	
6		Study 8 bit microcontroller Applications	5
	6.1	Understanding features of NXP 89v51RD2, Atmega 328P and PIC16F886	
	6.2	Selecting a microcontroller for an application	
	6.3	Study of 89v51 based Clock Using I2C RTC and Seven Segment Display	
	6.4	PIC16F886 Speed Control of DC Motor.	
	6.5	Atmega 328P based remote temperature monitoring with LCD display	
		Total	39

#### **Text Books:**

- 1. Douglas V Hall, SSSP Rao "Microprocessors & Interfacing", McGraw Hill
- Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw-Hill
- 3. Shibu K. V "Introduction to embedded systems" McGraw Hill.
- 4. M. A. Mazidi, J. G. Mazidi and R. D. Mckinlay, "The 8051 Microcontroller & Embedded systems", Pearson Publications, Second Edition 2006.
- 5. C. Kenneth J. Ayala and D. V. Gadre, "The 8051 Microcontroller & Embedded system using assembly & 'C' ", Cengage Learning, Edition 2010.
- 6. Steve Furber, "ARM System on chip Architecture", Pearson,2nd edition.

#### Reference books:

- 1. "MCS@51 Microcontroller, Family User's Manual" Intel
- 2. "PIC16F882/883/884/886/887 Data Sheet", Microchip.
- 3. ATmega328P 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash datasheet, Atmel
- 4. P89V51RB2/RC2/RD2 8-bit 80C51 5 V low power 16/32/64 kB flash microcontroller, Data Sheet NXP founded by Philips
- 5. James A. Langbridge, "Professional Embedded Arm Development", Wrox, John Wiley Brand& Sons Inc., Edition 2014

## **NPTEL/ Swayam Course:**

 Course: Microprocessors and Microcontrollers By Prof. Santanu Chattopadhyay (IIT Kharagpur); https://swayam.gov.in/nd1_noc20_ee42/preview

#### Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

## **End Semester Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. **Total 04 questions** need to be solved.

Course Code	Course Name	Tea	ching Scher (Hrs.)	ne		Credits As	signed	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC403	Linear Integrated Circuits	03			03			03

Course	Course			Ex	camination	Scheme				
Code	Name		Th	neory Marks		Exam	Term	Prac.	Total	
		Int	ernal as	sessment	End	Duration	Work	and		
		Test1	Test2	Avg. of Test	Sem.	(in Hrs)		Oral		
				1 and Test 2	Exam.					
					(ESE)					
ECC403	Linear	20	20	20	80	03			100	
	Integrated Circuits									

# **Course Pre-requisite:**

- 1. FEC105-Basic Electrical Engineering
- 2. ECC302-Electronic Devices & Circuits

# **Course Objectives:**

- 1. To understand the concepts, working principles and key applications of linear integrated circuits.
- 2. To perform analysis of circuits based on linear integrated circuits.
- 3. To design circuits and systems for particular applications using linear integrated circuits.

#### **Course Outcome:**

- 1. Outline and classify all types of integrated circuits.
- 2. Understand the fundamentals and areas of applications for the integrated circuits.
- 3. Develop the ability to design practical circuits that perform the desired operations.
- 4. Understand the differences between theoretical & practical results in integrated circuits.
- 5. Identify the appropriate integrated circuit modules for designing engineering application.

Module	Unit	Topics	Hrs.
No.	No.		
1.0	4.4	Introduction to Operational Amplifier	07
	1.1	Block diagram of Op-Amp.	
		Ideal and practical characteristics of op-amp.	
	1.2	Configurations of Op-Amp: Open loop and closed loop configurations	
		of Op-amp, Inverting and Non-inverting configuration of Op-amp	
		and buffer.	
	1.3	Summing amplifier, difference amplifiers and Instrumentation	
		amplifier using Op-amp.	
2.0		Linear Applications of Operational Amplifier	80
	2.1	Voltage to current and current to voltage converter.	
	2.2	Integrator & differentiator (ideal & practical), Active Filters: First and	1
		Second order active low pass, high pass, band pass, band reject and	
		Notch filters.	
	2.3	Positive feedback, Barkhausen's criteria, Sine Wave Oscillators: RC	1
		phase shift oscillator, Wien bridge oscillator.	
3.0		Non-Linear Applications of Operational Amplifier	07
3.0	3.1	Comparators: Inverting comparator, non-inverting comparator, zero	
		crossing detectors, window detector.	
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt	
		trigger.	
	3.3	Waveform Generators: Square wave generator and triangular wave	
		generator.	
		Basics of Precision Rectifiers: Half wave and full wave precision	
		rectifiers. Peak detector.	
4.0		Timer IC 555 and it's applications	07
7.0	4.1	Functional block diagram and working of IC 555	01
	4.1	Functional block diagram and working of IC 555	
	4.2	Design of Astable and Monostable multivibrator using IC 555	
	4.3	Applications of Astable and Monostable multivibrator as Pulse width	1
		modulator and Pulse Position Modulator.	
5.0		Voltage Regulators.	06
	5.1	Functional block diagram, working and design of three terminal fixed	
		voltage regulators (78XX, 79XX series).	
	5.2	Functional block diagram, working and design of general purpose IC	
		723 (HVLC and HVHC).	
	5.3	Introduction and block diagram of switching regulator, Introduction of	
		LM 317.	
6.0	0.4	Special Purpose Integrated Circuits	04
	6.1	Functional block diagram and working of VCO IC 566 and	
	6.0	application as frequency modulator.	
	6.2	Functional block diagram and working of PLL IC 565 and application as FSK Demodulator.	
		Total	39
		i otai	

#### Textbooks:

- 1. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- 2. D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.

#### **Reference Books:**

- 1. K. R. Botkar, "Integrated Circuits", Khanna Publishers (2004)
- Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, 3rd Edition.
- **3.** David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.
- **4.** R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- **5.** J. Millman, Christos CHalkias, and Satyabratatajit, Millman's, "Electronic Devices and Circuits," McGrawHill, 3rdEdition.

# **NPTEL/ Swayam Course:**

1. Course: ICs MOSFETs Op-Amps & Their Applications By Prof. Hardik Jeetendra Pandya (IISc Bangalore);

https://swayam.gov.in/nd1_noc20_ee13/preview

#### Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

#### **End Semester Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. **Total 04 questions** need to be solved.

Subject Code	Subject Name	Те	aching Scho (Hrs.)	eme		Credits As	signed	
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total
ECC404	Signals and	03		01	03		01	04
	Systems							

Subject	Subject		Examination Scheme									
Code	Name		The	ory Marks		Exam	Term	Practical	Total			
		Internal assessment			End Sem. Exam	Duration (in Hrs.)	Work	& Oral				
		Test 1	Test 2	Avg. of Test 1 & Test 2								
ECC404	Signals and Systems	20	20	20	80	03	25		125			

# **Course pre-requisite:**

1. ECC301 – Engineering Mathematics III

# Course objectives:

- 1. To introduce students to the idea of signal and system analysis and characterization in time and frequency domain.
- 2. To provide foundation of signal and system concepts to areas like communication, control and comprehend applications of signal processing in communication systems.

#### **Course outcomes:**

- 1. Classify and Analyze different types of signals and systems
- 2. Analyze continuous time LTI signals and systems in transform domain
- 3. Analyze and realize discrete time LTI signals and systems in transform domain
- 4. Represent signals using Fourier Series and Analyze the systems using the Fourier Transform.
- 5. Demonstrate the concepts learnt in Signals and systems Course using the modern engineering tools.

Module	Unit	Topics	Hrs.
No.	No.	Торгос	
1.0		Introduction to signals and systems	07
	1.1	Introduction to Signals: Definition, Basic Elementary signals -	
		exponential, sine, step, impulse, ramp, rectangular, triangular.	
		Operations on signals.	
		Classification of Signals: analog and discrete time signals,	
		even and odd signals, periodic and non-periodic signals,	
		deterministic and non-deterministic signals, energy and power	
		signals.	
	1.2	Systems and Classification of systems: System	
		Representation, continuous time and discrete systems, system	
		with and without memory, causal and non-causal system, linear	
		and nonlinear system, time invariant and time variant system,	
		stable system.	
2.0		Time domain analysis of Continuous Time and Discrete	07
		Time systems	
	2.1	Linear Time Invariant (LTI) systems: Representation of	
		systems using differential /difference equation, Impulse, step and	
		exponential response, System Stability and Causality.	
	2.2	Use of convolution integral and convolution sum for analysis of	
		LTI systems, properties of convolution integral/sum, impulse	
		response of interconnected systems.	
	2.3	Correlation and spectral Density: auto-correlation, cross	
		correlation, analogy between correlation and convolution,	
		energy spectral density, power spectral density, relation of ESD	
2.0		and PSD with auto-correlation.	07
3.0		Fourier Analysis of Continuous and Discrete Time Signals	07
	2.4	and Systems	
	3.1	Fourier transform of periodic and non-periodic functions,	
		Properties of Fourier Transform, Inverse Fourier Transform, Frequency Response: computation of Magnitude and Phase	
		Response, Limitations of Fourier Transform.	
4.0		Laplace Transform and Continuous time LTI systems	06
4.0	4.1	Need of Laplace Transform, Concept of Region of Convergence,	00
	4.1	Properties of Laplace Transform, Relation between continuous	
		time Fourier Transform and Laplace Transform, unilateral	
		Laplace Transform, inverse Laplace Transform.	
	4.2	Analysis of continuous time LTI systems using Laplace	
	7.2	<b>Transform:</b> Causality and stability of systems in s-domain, Total	
		response of a system.	
5.0		z-Transform and Discrete time LTI systems	08
3.0	5.1	Need of <i>z</i> -Transform, <i>z</i> -Transform of finite and infinite duration	00
	J. 1	sequences, Concept of Region of Convergence, z-Transform	
		Josepholos, Comocpt of Neglott of Convergence, 2-114115101111	

	5.2	properties, Standard z-transform pairs, relation between z-transform and discrete time Fourier Transform, one sided z-Transform. Inverse z-Transform: Partial Fraction method only.  Analysis of discrete time LTI systems using z-Transform: Systems characterized by Linear constant coefficient difference equation, Transfer Function, plotting Poles and Zeros of a transfer function, causality and stability of systems, Total response of a system.	
6.0		FIR and IIR systems	04
	6.1	Concept of finite impulse response systems and infinite impulse	
		response systems, Linear Phase FIR systems.	
	6.2	Realization structures of LTI system: Direct form –I and direct	
		form II, Linear Phase FIR structures.	
	•	Total	39

#### Text books:

- 1. Nagoor Kani, Signals and Systems, Tata McGraw Hill, Third Edition, 2011.
- 2. Rodger E Ziemer, William H. Tranter and D. Ronald Fannin, Signals and Systems, Pearson Education, Fourth Edition 2009.
- 3. Alan V. Oppenhiem, Alan S. Willsky and S. Hamid Nawab, Signals and Systems, Prentice-Hall of India, Second Edition, 2002.
- 4. Simon Haykin and Barry Van Veen, Signals and Systems, John Wiley and Sons, Second Edition, 2004.

#### Reference books:

- 1) Hwei. P Hsu, Signals and Systems, Tata McGraw Hill, Third edition, 2010
- 2) Simon Haykin and Barry Van Veen, Signals and Systems, John Wiley and Sons, Second Edition, 2004.
- 3) V. Krishnaveni and A. Rajeshwari, Signals and Systems, Wiley-India, First Edition 2012.
- 4) Michael J Roberts, Fundamentals of Signals and systems, Tata McGraw Hill, special Indian Economy edition, 2009.
- 5) Luis F. Chaparro, Signals and Systems Using MATLAB, Academic Press
- 6) Rangaraj M. Rangayyan, "Biomedical Signal Analysis- A Case Study Approach", Wiley 2002.
- 7) Signals and Systems Laboratory: Virtual Laboratory <a href="http://ssl-iitg.vlabs.ac.in/">http://ssl-iitg.vlabs.ac.in/</a>

## **NPTEL/ Swayam Course:**

1. Course: Principles of Signals & Systems By Prof. Aditya K. Jagannatham (IIT Kanpur); https://swayam.gov.in/nd1_noc20_ee15/preview Teachers and students are encouraged to use *Signals and Systems Laboratory: Virtual Laboratory* (Reference number 8) for demonstration of concepts such as systems and their properties, Fourier analysis etc.

## Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

## **End Semester Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 subquestions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.

## Term Work (25-Marks):

At least 06 Tutorials covering entire syllabus and 01 course project must be given during the "Class Wise Tutorial".

Students can form team of maximum 4 members and work on course project using any software viz. C, Python, Scilab, Matlab, Octave, etc. The course project should be appropriately selected in order to demonstrate any concept learnt in this course.

03-hours (out of the total 12-hours allotted for the tutorials) can be utilized for the course project completion.

Term work assessment must be based on the overall performance of the student with every tutorial and a course project graded from time to time. The grades will be converted to marks as per "Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Tea	ching Sche (Hrs.)	me	Credits Assigned			
		Theory	Theory Practical Tutori			Practic	Tutorial	Total
				al		al		
ECC405	Principles of	03			03			03
	Communication							
	Engineering							

Subject	Subject Name				Examina	ation Schem	ne		
Code			Theo	ry Marks		Exam	Term	Prac.	Total
			Intern	al	End	Duration	Work	&	
		as	ssessn	nent	Sem.	(in Hrs.)		Oral	
		Test	Test	Avg.	Exam				
		1	2	of					
				Test 1					
				and					
				Test 2					
ECC405	Principles of	20	20	20	80	03			100
	Communicatio								
	n Engineering								

## **Course Pre-requisite:**

- 1. ECC301 Engineering Mathematics- III
- 2. ECC302 Electronic Devices and Circuits

# **Course Objectives:**

- 1. To illustrate the fundamentals of basic communication system.
- 2. To understand various analog modulation and demodulation techniques.
- 3. To focus on applications of analog modulation and demodulation techniques.
- 4. To explain the key concepts of analog and digital pulse modulation and demodulation techniques.

#### **Course Outcomes:**

- 1. Understand the basic components and types of noises in communication system.
- 2. Analyze the concepts of amplitude modulation and demodulation.
- 3. Analyze the concepts of angle modulation and demodulation.
- 4. Compare the performance of AM and FM receivers.
- 5. Describe analog and digital pulse modulation techniques.
- 6. Illustrate the principles of multiplexing and demultiplexing techniques.

Module No.	Unit No.	Topics	Hours
1		Basics of Communication System	05
	1.1	Block diagram, electromagnetic spectrum, signal bandwidth and power, types of communication channels, Introduction to time and frequency domain. Basic concepts of wave propagation.	03
	1.2	Types of noise, signal to noise ratio, noise figure, noise temperature and Friss formula.	02
2		Amplitude Modulation and Demodulation	12
	2.1	Basic concepts, need for modulation, waveforms (time domain and frequency domain), modulation index, bandwidth, voltage distribution and power calculations.	04
	2.2	DSBFC: Principles, low-level and high-level transmitters, DSB suppressed carrier, Balanced modulators with diode (Ring modulator and FET) and SSB systems.	04
	<b>2</b> .3	Amplitude demodulation: Diode detector, practical diode detector, Comparison of different AM techniques, Applications of AM and use of VSB in broadcast television.	04
3		Angle Modulation and Demodulation	10
	3.1	Frequency and Phase modulation (FM and PM): Basic concepts, mathematical analysis, FM wave (time and frequency domain), sensitivity, phase and frequency deviation, modulation index, deviation ratio, bandwidth requirement of angle modulated waves, narrowband FM and wideband FM.	04
	3.2	Varactor diode modulator, FET reactance modulator, stabilized AFC, Direct FM transmitter, indirect FM Transmitter, noise triangle, pre- emphasis and de-emphasis	03
	3.3	FM demodulation: Balanced slope detector, Foster-Seely discriminator, Ratio detector, FM demodulator using Phase lock loop, amplitude limiting and thresholding, Applications of FM and PM.	03
4		Radio Receivers	04
	4.1	Characteristics of radio receivers, TRF, Super - heterodyne receiver block diagram, tracking and choice of IF, AGC and its types and Communication receiver.	03
	<b>4</b> .2	FM receiver block diagram, comparison with AM receiver.	01
5		Analog and Digital Pulse Modulation & Demodulation	06
	<b>5</b> .1	Sampling theorem for low pass signal, proof with spectrum, Nyquist criteria, Sampling techniques, aliasing error and aperture effect.	03
	<b>5</b> .2	PAM, PWM, PPM generation, detection and applications. Basics of PCM system and differential PCM system. Concepts of Delta modulation (DM) and Adaptive Delta Modulation (ADM).	03
6		Multiplexing & De-multiplexing	02
	<b>6</b> .1	Frequency Division Multiplexing transmitter & receiver block diagram and applications. Time Division Multiplexing transmitter &	02
		receiver block diagram and applications.	

#### Textbooks:

- 1. Kennedy and Davis, "Electronics Communication System", Tata McGraw Hill, Fourth edition.
- 2. B.P. Lathi, Zhi Ding "Modern Digital and Analog Communication system", Oxford University Press, Fourth edition.
- 3. Wayne Tomasi, "Electronics Communication Systems", Pearson education, Fifth edition.

#### **Reference Books:**

- Taub, Schilling and Saha, "Taub's Principles of Communication systems", Tata McGraw Hill, Third edition.
- 2. P. Sing and S.D. Sapre, "Communication Systems: Analog and Digital", Tata McGraw Hill, Third edition.
- 3. Simon Haykin, Michel Moher, "Introduction to Analog and Digital Communication", Wiley, Second edition.
- 4. Dennis Roddy and John Coolen, Electronic Communication, Pearson, 4/e, 2011.
- 5. Louis Frenzel, "Communication Electronics", Tata McGraw Hill, Third Edition.

# **NPTEL/ Swayam Course:**

1. Course: Analog Communication By Prof. Goutam Das (IIT Kharagpur); https://swayam.gov.in/nd1_noc20_ee69/preview

## Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

# **End Semester Examination (80-Marks):**

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. **Question No: 01** will be **compulsory** and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. **Total 04 questions** need to be solved.

Course Code	Course Name	Te	eaching Sch (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECL401	Micro- controllers Lab	-	2	-	-	1	-	1	

Course	Course	Examination Scheme									
Code	Name			Theory Ma	arks		Term	Practical	Total		
		Internal assessment			End	Exam.	Work	And Oral			
		Test 1	Test 2	Avg. of Test 1 and Test 2	Sem. Exam	Duration (in Hrs)					
ECL401	Micro- controllers Lab	-	-	-	-	-	25		25		

# **Course Objectives:**

- 1. To understand development tools of microcontroller based systems.
- 2. To learn programming for different microcontroller operation & interface to I/O devices.
- 3. To develop microcontroller based applications.

#### **Course Outcomes:**

- 1. Understand different development tools required to develop microcontroller based systems.
- 2. Write assembly language programs for arithmetic and logical operations, code conversion & data transfer operations.
- 3. Write assembly language programs for general purpose I/O, Timers & Interrupts.
- 4. Interface & write programs for Input and Output devices
- 5. Develop microcontroller based Applications.

#### **Suggested Experiment List:**

- 1. Perform Arithmetic and Logical Operations (Using Immediate, Direct and Indirect addressing)
- 2. Code Conversion
- 3. Transfer of data bytes between Internal and External Memory
- 4. Experiments based on General Purpose Input-Output, Timers, Interrupts, Delay, etc.
- 5. Interfacing of Matrix Key board, LED, 7 Segment display, LCD, Stepper Motor, UART

At Least 10 experiment Minimum two from each category of above list must be given during the **Laboratory session batch wise**. Computation/simulation based experiments are also encouraged.

Before starting the experiments there should be one session on Study of development tools like Editor, Assembler-cross Assembler, Compiler-Cross compiler, Linker, Simulator, emulator etc.

**Mini project based on** 8051 derivatives, PIC, AVR & other 8 bit microcontrollers using Assembly and/or C language. (Readymade of Arduino & raspberry pi are **not recommended here**)

Note: Mini Project can be considered as a part of term-work.

#### Term Work (25-Marks):

The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Course Code	Course Name	Tea	aching Sche (Hrs.)	me	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL402	Linear Integrated Circuits Lab.		02			01		01

Course	Course	Examination Scheme									
Code	Name		The	eory Marks		Exam.	Term Work	Practical And Oral	Total		
		Inte	rnal as	ssessment	End	Duration					
		Test	Test	Avg. Of	Sem.	(in Hrs)					
		1			Exam						
				Test 2							
ECL402	Linear						25	25	50		
	Integrated										
	Circuits										
	Lab.										

## **Course Outcomes:**

- 1. Understand the differences between theoretical, practical and simulated results in integrated circuits.
- 2. Apply the knowledge to do simple mathematical operations.
- 3. Apply knowledge of op-amp, timer and voltage regulator ICs to design simple applications.

#### **Laboratory Plan:**

Minimum 8 hardware practical (compulsorily based on IC 741, IC 555, IC 723 and remaining on VCO 566 or PLL 565) and 2 simulations should be conducted. At least one experiment from each Module of syllabus.

## Suggested list of experiments:

- 1. Design inverting, non-inverting amplifier and buffer using IC 741.
- 2. Design summing and difference amplifier using op-amp.
- 3. Design voltage to current converter with grounded load.
- 4. Design and analyze Integrator
- 5. Design and analyze Differentiator
- 6. Design Schmitt trigger using Op-amp.
- 7. Design Wein bridge and RC phase shift Oscillator.
- 8. Design and analyze second order High pass and Low pass filter
- 9. Design and analyze Band pass and Band reject filter.
- 10. Design Astable multivibrator using IC 555 for fixed frequency and variable duty cycle.
- 11. Design Monostable Multivibrator using IC 555.
- 12. Design Low voltage Low current voltage regulator using IC 723.
- 13. Design High voltage High current voltage regulator using IC 723.
- 14. Design Frequency Modulator using IC 566
- 15. Design FSK Demodulator using IC 565
- 16. Design Instrumentation amplifier using 3 Op-Amp.
- 17. Design Precision rectifier
- 18. Design Square & Triangular wave generator

#### Term Work (25-Marks):

At least 10 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects are graded from time to time.

The practical and oral examination will be based on entire syllabus.

Course Code	Course Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECL403	Principles of Communication Engineering Lab.		02			01		01	

Course	Course	Examination Scheme									
Code	Name			Theory M	arks						
		Internal assessment			End	Exam.	T	Dusstinal			
		Test 1	Test 2	Avg. of Test 1 and Test 2	Sem. Exam	Duration (in Hrs)	Term Work	Practical & Oral	Total		
ECL403	Principles of Communication Engineering Lab.						25	25	50		

# **Course Pre-requisites:**

- 1. Usage of basic Electronic instruments and components.
- 2. Fundamentals of Electronic Devices and circuits

# **Course Objectives:**

- 1. To give an understanding of Time and Frequency domain representation of signals.
- 2. To demonstrate continuous wave modulation and demodulation.
- 3. To demonstrate analog and digital pulse communication.
- 4. Able to use simulation software to build communication circuits.

#### **Course Outcomes:**

After successful performance of the practicals student will be able to:

- 1. Analyze analog modulation techniques.
- 2. Analyze the waveforms of Radio receivers.
- 3. Implement analog pulse modulation and demodulation circuits.
- 4. Demonstrate digital pulse modulation and demodulation techniques.
- 5. Verify the concepts of TDM and FDM.

#### **Suggested list of Experiments:**

Sr. No	Title
1	Generation of AM modulation and demodulation.
2	Analyze waveforms at various stages of SSB system.
3	Generation of FM modulation and demodulation.
4	Analyze the output waveforms of each block of AM transmitter /receiver
5	Analyze the output waveforms of each block of FM transmitter /receiver
6	Design and implement Pre-emphasis and De-emphasis circuit.
7	Verification of sampling theorem.
8	Generation of PAM modulation and demodulation.
9	Generation of PWM and PPM modulation and demodulation.
10	Demonstrate Digital pulse transmission technique (PCM)
11	Demonstrate Digital pulse transmission technique (DM,ADM)
12	Observation of TDM multiplexing and de-multiplexing signals.
13	Observation of FDM multiplexing and de-multiplexing signals.

# Term Work (25-Marks):

At least 10 experiments (07 hardware experiments and at least 03 software experiments) covering entire syllabus should be set to have well predefined inference and conclusion. Teacher should refer the suggested experiments and can design additional experiment to maintain better understanding and quality.

The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and application oriented. Signal should be analyzed in time and frequency domain.

Term work assessment must be based on the overall performance of the student with every Experiments are graded from time to time.

The grades will be converted to marks as per "Credit and Grading System" manual and should be added and averaged. Based on the above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus. Students are encouraged to share their experiments codes on online repository. Practical exam slip should cover all 10 experiments for examination.

Subject Code	Subject Name	Te	aching Sche (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECL404	Skill Lab:	-	04			02		02	
	Python								
	Programming								

Subject	Subject			Examin	ation Schem	е		
Code	Name	Theory Marks				Term	Practical	Total
		Internal assessment			End Sem.	Work	and Oral	
		Test 1	Test 2	Avg. of Test	Exam			
				1 and Test 2				
ECL404	Skill Lab:	-	-	-	-	25	25	50
	Python							
	Programming							

**NOTE**: Necessary theory part should be taught by the teacher at the beginning of the laboratory session.

## Course pre-requisite:

1. ECL304 – Skill Lab: C++ and Java Programming.

# **Course Objectives:**

- 1. Describe the core syntax and semantics of Python programming language.
- 2. Explore file handling in Python
- 3. Infer the Object-oriented Programming concepts in Python
- 4. Formulate GUI Programming and Databases operations in Python
- 5. Develop applications using variety of libraries and functions

## **Course Outcomes:**

- 1. Describe syntax and semantics in Python
- 2. Illustrate different file handling operations
- 3. Interpret object oriented programming in Python
- 4. Design GUI Applications in Python
- 5. Express proficiency in the handling Python libraries for data science
- 6. Develop machine learning applications using Python

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction to Python	6
	1.1	Introduction to Python, Installation and resources, Identifiers and Keywords, Comments, Indentation and Multi-lining, Variables (Local and Global), data types, Arithmetic, Comparative, Logical and Identity Operators, Bitwise Operators, Expressions, Print statement and Formats, Input Statements in	
	1.2	python Strings, Lists, Tuples, Dictionaries, Sets, Accessing Elements, Properties, Operations and methods on these data structures.	
	1.3	Decision Flow Control Statement: if and else statement, Nested If statement, Loop Statement: While Loop, do and while loop, for loop statement, Continue, Break and pass Statement, Conditional Statements	
2.0		Functions and File I/O Handling	8
	2.1	Functions: Built-in-functions, library functions, Defining and calling the functions, Return statements, Passing the arguments, Lambda Functions, Recursive functions, Modules and importing packages in python code.	
	2.2	File Input/Output: Files I/O operations, Read / Write Operations, File Opening Modes, <i>with</i> keywords, Moving within a file, Manipulating files and directories, OS and SYS modules.	
3.0		Object Oriented Programming	9
	3.1	Classes and Objects, Public and Private Members, Class Declaration and Object Creation, Object Initialization, Class Variables and methods, Accessing Object and Class Attributes.	-
	3.2	Intricacies of Classes and Objects, Inheritance, Constructor in Inheritance, Exception Handling, Link list, Stack, Queues.	
4.0		Graphical User Interface and Image processing	9
	4.1	Graphical User Interface using Tkinter Library module, creating simple GUI; Buttons, Labels, entry fields, widget attributes.	
	4.2	Database: Sqilite database connection, Create, Append, update, delete records from database using GUI.	
	4.3	Basic Image Processing using OpenCV library, simple image manipulation using image module.	
5.0		Numpy, Pandas, Matplotlib, Seaborn, Scipy	10
	5.1	Introduction to Numpy, Creating and Printing Ndarray, Class and Attributes of Ndarray, Basic operation, Copy and view, Mathematical Functions of Numpy.	
	5.2	Introduction to Pandas, Understanding Dataframe, View and Select Data, Missing Values, Data Operations, File read and write operation.	
	5.3	Introduction to Matplotlib library, Line properties, Plots and subplots, Types of Plots, Introduction to Seaborn.	
	5.4	Introduction to Scipy, Scipy Sub packages – Integration and Optimization, Eigen values and Eigen Vectors, Statistic, Weave and IO.	
6.0		Python Applications	10
	6.1	GUI based applications	
	6.2	Applications in Image Processing, Networking	
	6.3	Machine Learning, Linear Regression, Logistic Regression	
	6.4	Classification using K nearest neighbor,	
	6.5	Support Vector Machines	
		Total	52

#### **Text Books:**

- 1. Yashavant Kanetkar, "Let us Python: Python is Future, Embrace it fast", BPB Publications; 1 edition (8 July 2019).
- 2. Dusty Phillips, "Python 3 object-oriented Programming", Second Edition PACKT Publisher August 2015.
- 3. John Grayson, "Python and Tkinter Programming", Manning Publications (1 March 1999).
- 4. Core Python Programming, Dr. R. Nageswara Rao, Dreamtech Press
- 5. Beginning Python: Using Python 2.6 and Python 3.1. James Payne, Wrox publication
- 6. Introduction to computing and problem solving using python, E Balagurusamy, McGraw Hill Education.
- 7. Zed A. Shaw, "Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code", Addison Wesley; 3 edition (1 October 2013).

#### **Reference Books:**

- 1. Eric Matthes, "Python Crash Course A hands-on, Project Based Introduction to programming" No Starch Press; 1 edition (8 December 2015).
- 2. Paul Barry, "Head First Python" O'Reilly; 2 edition (16 December 2016)
- 3. Andreas C. Mueller, "Introduction to Machine Learning with Python", O'Reilly; 1 edition (7 October 2016)
- 4. David Beazley, Brian K. Jones, "Python Cookbook: Recipes for Mastering Python 3", O'Reilly Media; 3 edition (10 May 2013).
- Bhaskar Chaudhary, "Tkinter GUI Application Development Blueprints: Master GUI programming in Tkinter as you design, implement, and deliver 10 real world application", Packt Publishing (November 30, 2015)

## **Software Tools:**

- 1. Python IDE: <a href="https://www.python.org/downloads/">https://www.python.org/downloads/</a>
- 2. Anaconda Environment: <a href="https://www.anaconda.com/distribution/">https://www.anaconda.com/distribution/</a>

## **Online Repository:**

- 1. Github
- 2. Python 3 Documentation: <a href="https://docs.python.org/3/">https://docs.python.org/3/</a>
- 3. "The Python Tutorial", <a href="http://docs.python.org/release/3.0.1/tutorial/">http://docs.python.org/release/3.0.1/tutorial/</a>
- 4. http://spoken-tutorial.org
- 5. Python 3 Tkinter library Documentation: https://docs.python.org/3/library/tk.html
- 6. Numpy Documentation: https://numpy.org/doc/
- 7. Pandas Documentation: https://pandas.pydata.org/docs/
- 8. Matplotlib Documentation: https://matplotlib.org/3.2.1/contents.html
- 9. Scipy Documentation: https://www.scipy.org/docs.html
- 10. Machine Learning Algorithm Documentation: https://scikit-learn.org/stable/
- 11. https://nptel.ac.in/courses/106/106/106106182/

The following list of experiments and course project is for illustration purpose. Faculty members are required to introduce their own innovative list of experiments based on above curriculum.

Sr. No.	Problem Statement	Module No.
1.	<ol> <li>Write python programs to understand expressions, variables, quotes, basic math operations, list, tuples, dictionaries, arrays etc.</li> <li>Write Python program to implement byte array, range, set and different STRING Functions (len, count, lower, sorted etc)</li> <li>Write Python program to implement control structures.</li> </ol>	Module 1

	4. Assume a suitable value for distance between two cities (in km).	
	Write a program to convert and print this distance in meters, feet,	
	inches and centimetre.	
	5. Write a program to carry out the following operations on the given	
	set	
	s = {10, 2, -3, 4, 5, 88}	
	<ul><li>a. Number of items in sets s</li><li>b. Maximum element in sets s</li></ul>	
	c. Minimum element in sets s	
	d. Sum of all elements in sets s	
	e. Obtain a new sorted set from s, set s remaining unchanged	
	f. Report whether 100 is an element of sets s	
	g. Report whether -3 is not an element of sets s.	
2.	Write python program to understand different File handling	Module 2
۷.	operations	Woddie 2
	2. Create 3 lists – a list of names, a list of ages and a list of salaries.	
	Generate and print a list of tuples containing name, age and salary	
	from the 3lists. From this list generate 3 tuples – one containing all	
	names, another containing all ages and third containing all salaries.	
3.	Write Python program to implement classes, object, Static method	Module 3
	and inner class	
	2. If any integer is given as in input through the keyboard, write a	
	program to find whether it is odd or even number.	
	3. If ages of Ram, Shyam, and Ajay are given as an input through the	
	keyboard, write a program to determine the youngest of the three.	
	4. Write a program that prints square root and cube root of numbers	
	from 1 to 10, up to 4 decimal places. Ensure that the output is displayed	
	in separate lines, with number center-justified and square and cube	
	roots right-justified.	
	5. Write a program to find the factorial value of any number entered	
	through the keyboard.	
	6. Write a program that defines a function count_lower_upper() that	
	accepts a string and calculates the number of uppercase and lowercase	
	alphabets in it. It should return these values as a dictionary. Call this	
	function for some sample strings.	
	7. A 5-digit positive integer is entered through the keyboard, write a	
4	recursive function to calculate sum of digits of 5-digit number.	Modulo 4
4.	1. Write Python program to create, append, update, delete records from	Module 4
	database using GUI.  2. Write Python program to obtain histogram of any image	
	3. Write Python Program to split color image in R,G,B and obtain	
	individual histograms.	
	4.Write Python program for histogram equalization	
	5 Write Python Program for edge detection	
	6. Write Python Program for image segmentation	
	7. Write Python program to implement GUI Canvas application using	
	Tkinter	
	8. Write Python program to implement GUI Frame application using	
	Tkinter	
5.	1. Write Python program to study define, edit arrays and perform	Module 5
	arithmetic operations.	
	2. Write python program to study selection, indexing, merging, joining,	
	concatenation in data frames	
	3. Evaluate the dataset containing the GDPs of different countries to:	
	a. Find and print the name of the country with the highest GDP	
	b. Find and print the name of the country with the lowest GDP	
	c. Print text and input values iteratively	

	d. Print the entire list of the countries with their GDPs e. Print the highest GDP value, lowest GDP value, mean GDP value, standardized GDP value, and the sum of all the GDPs	
	4. Analyze the Federal Aviation Authority (FAA) dataset using Pandas	
	to do the following:	
	a. a. View: aircraft make name, state name, aircraft model name, text information, flight phase, event description type,	
	b. fatal flag	
	<ul><li>c. b. Clean the dataset and replace the fatal flag NaN with "No".</li><li>d. c. Find the aircraft types and their occurrences in the dataset</li></ul>	
	e. d. Remove all the observations where aircraft names are not	
	available	
	f. Display the observations where fatal flag is "Yes"	
	5. Analyze the "auto mpg data" and draw a pair plot using seaborn	
	library for mpg, weight, and origin.	
	(a) Origin: This dataset was taken from the StatLib library maintained	
	at Carnegie Mellon University.	
	Number of Instances: 398	
	Number of Attributes: 9 including the class attribute	
	Attribute Information:	
	mpg: continuous	
	cylinders: multi-valued discrete	
	displacement: continuous	
	horsepower: continuous	
	weight: continuous	
	acceleration: continuous	
	<ul> <li>model year: multi-valued discrete</li> </ul>	
	origin: multi-valued discrete	
	<ul> <li>car name: string (unique for each instance)</li> </ul>	
	5. Write python program to use SciPy to solve a linear algebra problem.	
	6. There is a test with 30 questions worth 150 marks. The test has two	
	types of questions: 1. True or false – carries 4 marks each	
	2. Multiple-choice – carries 9 marks each. Find the number of true	
	or false and multiple-choice questions.	
6.	1. Write python program to study linear regression	Module 6
	2. Write python program to study multiple linear regression	
	3. Write python program to study logistic regression	
	<ul><li>4. Write python program to study Support Vector Machine</li><li>5. Write python program to study decision tree algorithm</li></ul>	
	6. Write python program to study two-way communication between	
	client and server.	
	7. Write Python Program to study image morphological operations.	
L	1. Tritio : Julion : Togiam to clady image merphological operations.	

# Suggested list of course projects:

- Speed typing Test using Python
- Music player in Python
- Calculator app using tkinter
- Train announcement system using python
- Dice rolling simulator
- Expense tracker
- Contact book using python
- Develop classification model using freely available datasets
- Develop python application for sentiment analysis

#### Note:

- 1. Use of free cloud service such as Google Colab to run python scripts is encouraged.
- 2. Necessary theory part should be taught by the teacher at the beginning of the laboratory session.

## Term Work (25-Marks):

At least 12 experiments and 01 course project should be performed. Term work assessment must be based on the overall performance of the student with every experiment and project graded from time-to-time. The grades will be converted to marks as per "Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Course Code	Course Name	Те	Teaching Scheme (Hrs.)			Credits As	signed	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECM401	Mini Project 1B		04\$			2		2

Course	Course Name			Exami	nation Sc	heme		
Code			The	ory Marks		Term	Practical	Total
		Inte	rnal ass	essment	End	Work	And Oral	
		Test1	Test2	Avg. Of Test1 and Test2	Sem. Exam			
ECM401	Mini Project 1B					25	25	50

\$ Indicates work load of a learner (Not Faculty) for Mini Project 1A. Faculty Load: 1 hour per week per four groups.

# **Objectives**

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Outcome: At the end of the course learners will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

## **Guidelines for Mini Project**

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

## **Guidelines for Assessment of Mini Project:**

# **Term Work**

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;
  - Marks awarded by guide/supervisor based on log book : 10
  - Marks awarded by review committee : 10
  - Quality of Project report : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

## One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
  - First shall be for finalisation of problem
  - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
  - First review is based on readiness of building working prototype to be conducted.
  - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

## Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
  - Identification of need/problem
  - Proposed final solution
  - Procurement of components/systems
  - Building prototype and testing
  - Two reviews will be conducted for continuous assessment,
    - First shall be for finalisation of problem and proposed solution
    - Second shall be for implementation and testing of solution.

## **Assessment criteria of Mini Project.**

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

## **Guidelines for Assessment of Mini Project Practical/Oral Examination:**

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

## Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

NOTE: For Electronics & Telecommunication Engineering we recommend following syllabus for Mini-Project 1B, in case it is half-year project.

Subject Code	Subject Name	Те	Teaching Scheme (Hrs.)			Credits Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECM401	Mini-Project 1B: Arduino & Raspberry Pi based Projects	-	04\$			02		02

Subject	Subject			Examir	nation Sch	eme		
Code	Name		The	ory Marks		Term	Practical	Total
		Inte	rnal ass	essment	End	Work	and Oral	
		Test 1	Test 2	Avg. Of	Sem.			
				Test 1 and	Exam			
				Test 2				
ECM401	Mini-Project	-	-	-	-	25	25	50
	1B: Arduino							
	& Raspberry							
	Pi based							
	Projects							

^{\$} indicates work load of Learner (Not Faculty), for Mini Project 1B. Faculty Load: 1 hour per week per four groups.

## Course pre-requisite:

- 1. ECM301 Mini-Project 1A
- 2. ECL304 C++ and Java Programming
- 3. ECC302 Electronic Devices and Circuit

## **Course Objectives:**

- 1. To make students familiar with the basics of Electronics, Microcontroller, Arduino board, Raspberry Pi, Arduino IDE (Integrated Development Environment) and Python programming.
- 2. To familiarize the students with the programming and interfacing of different devices with Arduino and Raspberry Pi Board.
- 3. To increase students critical thinking ability and provide solutions to some real time problems.

## **Course Outcomes:**

- 1. Write basic codes for the Arduino board using the IDE for utilizing the onboard resources.
- 2. Apply the knowledge of interfacing different devices to the Arduino board to accomplish a given task.
- 3. Design Arduino based projects for a given problem.
- 4. Write code using python language using IDE for utilizing the onboard resources.
- Apply the knowledge of interfacing different devices to raspberry Pi board to accomplish a given task.
- 6. Design Raspberry Pi based projects for a given problem.

Experiment No.	Unit No.	Section A: Arduino Board	Hrs.
EX.1.0	140.	Introduction to Arduino Board	02
2/1110	1.1	Introduction to Arduino Uno board and integrated development environment (IDE	02
	1	Write the code for blinking the on board led with a specified delay Apparatus Requirement: Hardware: Arduino Board LED, Software: Arduino IDE Software.	
EX.2.0		GPIO (along with Analog pin) Programming	04
	2.1	Introduction to programming GPIO, Analog and PWM PINS.	
	1	Interface any Digital Sensors to the Arduino board and display sensor values on serial Monitor.	
	2	Interface any Analog sensor to the Arduino board and display sensor values on serial Monitor.	
	3.	Generate varying duty cycle PWM using Arduino.	
EX.3.0		Controlling output devices/Displaying	04
	3.1	Introduction to different sensor (Analog and Digital), Relays, Motors and display.	
	1	Interface an Analog Sensors to the Arduino board and display sensor values on LCD/TFT/Seven segment Display.	
	2	Interface a temperature sensor to Arduino and switch on a relay to operate a fan if temperature exceeds given threshold. Also display the temperature on any of the display device	
EX.4.0		Interfacing Communication Devices and Cloud Networking	04
	4.1	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.	
	1	Interface Wi-Fi /Bluetooth/GSM/Zigbee/RF module to Arduino and program it to transfer sensor data wirelessly between two devices. Any two techniques from the above-mentioned modules needs to be interfaced.	
5.0		Sample Projects	10
	1.	Waste Management System	
	2.	Smart City Solutions	
	3.	Energy Monitoring Systems	
	4.	Smart Classrooms and learning Solutions	
	5.	Home security systems	
	6.	Smart Agriculture solutions	
	7.	Healthcare solutions.	
	8.	Industrial Applications	
	9.	IoT Applications	
	10.	Robotics	
		Section 'A' Total Hrs.	24

Experiment No.	Unit No.	Section B: Raspberry Pi	Hrs.
EX.1.0		Introduction to Raspberry PI	02
	1.1	What is Raspberry PI? Downloading and Installation of NOOBS, First Power- Up & Having a Look around, Introduction to the Shell and Staying updated.	
	1	Familiarization with Raspberry PI and perform necessary software installation.  Apparatus Requirement: Hardware: Raspberry PI Board, Memory of 16GB, Power	
		adapter, Memory Writer. Software: NOOBS, Raspbian OS, Win32 disk Imager, SD-Formatter software.	

EX.2.0		Interfacing with Input / Output Devices using Python	04
	2.1	Introduction to Python, Connecting to the outside World with GPIO.	
	1	To Interface LED/Buzzer with Raspberry PI and write a program to turn ON LED for 1 sec after every 2 sec.	
	2	Apparatus Requirement: Raspberry PI with inbuilt Python Package, LED, Buzzer.  To interface Push Button / Digital Sensor (IR/LDR) with Raspberry PI and write a program to turn ON LED when Push button is pressed or at sensor detection.	
		Apparatus Requirement: Raspberry PI with inbuilt Python Package, Push Button Switch, Digital Sensor (IR/LDR).	
	3.	To interface analog sensor using MCP 3008 analog to digital converter chip. Apparatus Requirement: Raspberry PI with inbuilt Python Package, analog sensor, MCP 3008 chip.	
EX.3.0		Interfacing Temperature Sensor, Motors, Display Devices.	04
	3.1	Introduction to Temperature sensor (Analog and Digital), Relays, Motors (DC, Stepper) and Driver circuits.	
	1	To interface DHT11 sensor with Raspberry PI and write a program to print temperature and humidity readings.  Apparatus Requirement: Raspberry PI with inbuilt Python Package, DTH11 Sensor.	
	2	To interface motor using relay with Raspberry PI and write a program to turn ON motor when push button is pressed.  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Relays, Motor	
	3	Driver, Motors.  To interface OLED with Raspberry PI and write a program to print temperature and humidity readings on it.  Apparatus Requirement: Raspberry PI with inbuilt Python Package, OLED display device.	
EX.4.0		Interfacing Communication Devices and Cloud Networking	04
		interracing communication bevices and cloud retworking	04
	4.1	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and	04
_/	4.1	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing)  Apparatus Requirement: Raspberry PI with inbuilt Python Package,	04
_/0		Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing)	04
_/0	1	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing)  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI.  Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry PI  Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud.  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud networks such as thingspeak (open source), AWS, Azure, etc. anyone can be used	<u></u>
EX.5.0	2	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing)  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI.  Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry PI  Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud.  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud	04
	2	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing)  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI.  Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry PI  Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud.  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud networks such as thingspeak (open source), AWS, Azure, etc. anyone can be used for understanding purpose and building projects.	
	2	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing)  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI.  Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry PI  Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud.  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud networks such as thingspeak (open source), AWS, Azure, etc. anyone can be used for understanding purpose and building projects.  Understanding of Communication Protocols	
	1 2 3 5.1 1	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing)  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI.  Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry PI  Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud.  Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud networks such as thingspeak (open source), AWS, Azure, etc. anyone can be used for understanding purpose and building projects.  Understanding of Communication Protocols  Introduction to MQTT, IFTTT protocols and configuration steps.  Write a program on Raspberry PI to publish temperature data to MQTT broker  Write a program on Raspberry PI to subscribe to MQTT broker for temperature data and print it.	
EX.5.0	1 2 3 5.1 1	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing) Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI.  Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry PI  Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud. Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud networks such as thingspeak (open source), AWS, Azure, etc. anyone can be used for understanding purpose and building projects.  Understanding of Communication Protocols Introduction to MQTT, IFTTT protocols and configuration steps.  Write a program on Raspberry PI to publish temperature data to MQTT broker  Write a program on Raspberry PI to subscribe to MQTT broker for temperature data and print it.  Configuration of Webserver using Raspberry PI.	04
	1 2 3 5.1 1	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing) Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI.  Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry PI  Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud. Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud networks such as thingspeak (open source), AWS, Azure, etc. anyone can be used for understanding purpose and building projects.  Understanding of Communication Protocols Introduction to MQTT, IFTTT protocols and configuration steps.  Write a program on Raspberry PI to publish temperature data to MQTT broker  Write a program on Raspberry PI to subscribe to MQTT broker for temperature data and print it.  Configuration of Webserver using Raspberry PI.  Sample Projects  MQTT Based Raspberry PI Home Automation: Controlling Raspberry Pi	
EX.5.0	1 2 3 5.1 1 2	Introduction to Bluetooth, Zigbee, RFID and WIFI, specifications and interfacing methods.  To interface Bluetooth/Zigbee/RFID/WiFI with Raspberry PI and write a program to send sensor data to smartphone using Bluetooth/Zigbee/RFID/WIFI. (Any one can be used for performing) Apparatus Requirement: Raspberry PI with inbuilt Python Package, Bluetooth/Zigbee/RFID/WIFI.  Introduction to Cloud computing, different types cloud networks and interconnection using Raspberry PI  Write a program on Raspberry PI to upload temperature and humidity data from thingspeak cloud. Apparatus Requirement: Raspberry PI with inbuilt Python Package, Cloud networks such as thingspeak (open source), AWS, Azure, etc. anyone can be used for understanding purpose and building projects.  Understanding of Communication Protocols Introduction to MQTT, IFTTT protocols and configuration steps.  Write a program on Raspberry PI to publish temperature data to MQTT broker  Write a program on Raspberry Pi to subscribe to MQTT broker for temperature data and print it.  Configuration of Webserver using Raspberry PI.  Sample Projects	04

	5.	Remote Controlled Car Using Raspberry Pi and Bluetooth	
	6.	Fingerprint Sensor based door locking system using Raspberry Pi	
	7.	Raspberry Pi Ball Tracking Robot using Processing	
	8.	Web Controlled Home Automation using Raspberry Pi	
	9.	Line Follower Robot using Raspberry Pi	
	10.	Raspberry Pi based Smart Phone Controlled Home Automation	
	11.	Web Controlled Raspberry Pi Surveillance Robotic Car	
	12.	Raspberry Pi Based Weight Sensing Automatic Gate	
	13.	Raspberry Pi Emergency Light with Darkness and AC Power Line Off	
		Detector	
	14.	Detecting Colors using Raspberry Pi and Color Sensor TCS3200	
	15.	Measure Distance using Raspberry Pi and HCSR04 Ultrasonic Sensor	
	16.	Call and Text using Raspberry Pi and GSM Module	
	17.	Raspberry Pi Home Security System with Email Alert	
	18.	Raspberry Pi Based Obstacle Avoiding Robot using Ultrasonic Sensor	
	19.	Web Controlled Notice Board using Raspberry Pi	
	20.	RF Remote Controlled LEDs Using Raspberry Pi	
	21.	RFID and Raspberry Pi Based Attendance System	
	22.	Raspberry Pi Interactive Led-Mirror	
	23.	Garage Door monitor using Raspberry Pi	
	24.	Raspberry Pi Digital Code Lock on Breadboard	
	25.	Electronic Voting Machine using Raspberry Pi	
		Section 'B' Total Hrs.	28
		Total A + B	52

#### **Reference Books:**

- 1. Simon Monk, "Hacking Electronic: Learning Arduino and Raspberry Pi", McGraw-Hill Education TAB; 2 edition (September 28, 2017)
- 2. Simon Monk, "Raspberry PI Cookbook Software and Hardware Problems and Solutions" O'Reilly 2nd Edition
- 3. Simon Monk, Programming the Raspberry Pi, 2nd Edition: Getting Started with Python" The McGraw Hill
- 4. "DK Workbooks: Raspberry Pi Project Workbook", DK Children; Workbook edition (March 7, 2017)
- 5. Donald Norris, "Raspberry Pi Electronic Projects for Evil Genius", McGraw-Hill Education TAB; 1 edition (May 20, 2016)

#### **Software Tools:**

- 1. Raspbian OS: <a href="https://www.raspberrypi.org/downloads/">https://www.raspberrypi.org/downloads/</a>
- 2. Win32 Disk Imager: https://sourceforge.net/projects/win32diskimager/
- 3. SD Card Formatter: https://www.sdcard.org/downloads/formatter/
- 4. Arduino IDE: <a href="https://www.arduino.cc/en/main/software">https://www.arduino.cc/en/main/software</a>

# **Online Repository:**

- 1. GitHub
- 2. NPTEL Videos on Raspberry Pi and Arduino Programming
- 3. https://www.electronicsforu.com/raspberry-pi-projects
- 4. https://circuitdigest.com/simple-raspberry-pi-projects-for-beginners
- 5. https://www.electronicshub.org/raspberry-pi-projects/

- 6. Spoken Tutorial Project-IIT Bombay: https://spoken-tutorial.org/tutorial-search/?search_foss=Arduino&search_language=English
- 7. Teachers are recommended to use a free online simulation platform "Tinkercad" for the simulation of Arduino based circuits before the students implement it in the hardware: <a href="https://www.tinkercad.com/">https://www.tinkercad.com/</a>

# UNIVERSITY OF MUMBAI No. UG/42 of 2018-19

# CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/239 of 2010, dated 12th August, 2010 relating to syllabus of the Bachelor of Engineering (B.E.) degree course.

They are hereby informed that the recommendations made by the Ad-hoc Board of Studies in Electronics & Telecommunication Engineering at its meeting held on 9th April, 2018 have been accepted by the Academic Council at its meeting held on 5th May, 2018 vide item No. 4.53 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.E. & B.E. in Electronics & Telecommunication Engineering (Sem - V to VIII) has been brought into force with effect from the academic year 2018-19 and 2019-2020, accordingly. (The same is available on the University's website www.mu.ac.in).

MIJMBAI - 400 032 25th June, 2018

To

(Dr. Dinesh Kamble) I/c REGISTRAR

Mulante

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

# A.C/4.53/05/05/2018

No. UG/42 -A of 2018

******

MUMBAI-400 032 25th June. 2018

Copy forwarded with Compliments for information to:-

1) The I/c Dean, Faculty of Science & Technology,

2) The Chairman, Ad-hoc Board of Studies in Electronics & Telecommunication Engineering,

3) The Director, Board of Examinations and Evaluation,

4) The Director, Board of Students Development,

5) The Co-Ordinator, University Computerization Centre,

(Dr. Dinesh Kamble) I/c REGISTRAR

1 lell acute

AC-		
Item	No.	

# **UNIVERSITY OF MUMBAI**



Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

# FACULTY OF TECHNOLOGY

# **Electronics and Telecommunication Engineering**

Third Year with Effect from AY 2018-19
Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

#### **Co-ordinator, Faculty of Technology's Preamble:**

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

#### Chairman's Preamble:

The curriculum in higher education is a living entity. It evolves with time; it reflects the ever changing needs of the society and keeps pace with the growing talent of the students and the faculty. The engineering education in India is expanding in manifolds and the main challenge is the quality of education. All stakeholders are very much concerned about it. The curriculum of Electronics & Telecommunication in Mumbai University is no exception. In keeping with the demands of the changing times, it contains innovative features. The exposure to the latest technology and tools used all over the world is given by properly selecting the subjects. It is designed in such a way to incorporate the requirements of various industries. The major emphasis of this process is to measure the outcomes of the program. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of post-graduation. So the curriculum must be refined and updated to ensure that the defined objectives and outcomes are achieved.

I, as Chairman Ad-hoc Board of Studies in Electronics and Telecommunication Engineering, University of Mumbai, happy to state here that, the heads of the department and senior faculty from various institutes took timely and valuable initiative to frame the Program Educational objectives as listed below.

#### Objectives:

- 1. To produce Electronics & Telecommunication engineers, having strong theoretical foundation, good design experience and exposure to research and development.
- 2. To produce researcher who have clear thinking, articulation and interest to carry out theoretical and/or applied research resulting in significant advancement in the field of specialization.
- 3. To develop an ability to identify, formulate and solve electronics and telecommunication engineering problems in the latest technology.
- 4. To develop the ability among students to synthesize data and technical concepts from applications to product design.

These are the suggested and expected main objectives, individual affiliated institutes may add further in the list. I believe that the small step taken in the right direction will definitely help in providing quality education to the stake holders.

This book of curricula is the culmination of large number of faculty members and supporting staff. It also reflects the creative contribution of hundreds of teachers – both serving and retired. I sincerely hope that the faculty and students of Electronics and Telecommunication in Mumbai University will take full advantage of dynamic features of curriculum and make teaching-learning process a truly sublime experience for all.

At the end I must extend my gratitude to all experts and colleagues who contributed to make curriculum competent at par with latest technological development in the field of Electronics & Telecommunication Engineering.

#### Dr. Uttam D. Kolekar

Chairman, Ad-hoc Board of Studies in Electronics and Telecommunication Engineering

#### **Program Structure for**

# B.E. Electronics & Telecommunication Engineering (Rev. 2016) University of Mumbai (With Effect from 2017-2018)

#### Semester V

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total	
ECC501	Microprocessor & Peripherals Interfacing	4	-	-	4	-	4	
ECC502	Digital Communication	4	-	-	4	-	4	
ECC503	Electromagnetic Engineering	4	-	1@	4	1	5	
ECC504	Discrete Time Signal Processing	4	-	-	4	-	4	
ECCDLO 501X	Department Level Optional Course I	4	-	-	4	-	4	
ECL501	Microprocessor & Peripherals Interfacing Lab	-	2	-	-	1	1	
ECL502	Digital Communication Lab	-	2	-	-	1	1	
ECL503	Business Communication & Ethics Lab	-	2+2*	-	-	2	2	
ECL504	Open Source Technology for Communication Lab	-	2	-	-	1	1	
ECLDLO 501X	Department Level Optional Lab I	-	-	2#	-	1	1	
	Total	20	10	3	20	7	27	

^{@ 1} hour to be taken as tutorial classwise

^{*2} hours to be taken as tutorial batchwise

				F	Examinati	on Scheme			
			Theory						
Course Code	Course Name	<b>Internal Assessment</b>			End Sem	Duration		Oral/ Prac	Total
		Test1	Test 2	Avg	Exam	(Hrs)			
ECC501	Microprocessor & Peripherals Interfacing	20	20	20	80	03			100
ECC502	Digital Communication	20	20	20	80	03			100
ECC503	Electromagnetic Engineering	20	20	20	80	03	25		125
ECC504	Discrete Time Signal Processing	20	20	20	80	03			100
ECCDLO 501X	Department Level Optional Course I	20	20	20	80	03			100
ECL501	Microprocessor & Peripherals Interfacing Lab						25	25	50
ECL502	Digital Communication Lab						25	25	50
ECL503	Business Communication & Ethics Lab						50		50
ECL504	Open Source Technology for Communication Lab						25	25	50
ECLDLO 501X	Department Level Optional Lab I						25		25
	Total			100	400		175	75	750

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

^{#2} hours to be taken as either lab or tutorial based on subject requirement

Course Code	Department Level Optional Course I
ECCDLO 5011	Microelectronics
ECCDLO 5012	TV & Video Engineering
ECCDLO 5013	Finite Automata Theory
ECCDLO 5014	Data Compression and Encryption

# Semester VI

Course	Course Name		ching Scho ntact Hou		Credits Assigned			
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total	
ECC601	Microcontrollers & Applications	4	-		4		4	
ECC602	Computer Communication Networks	4	-	-	4	-	4	
ECC603	Antenna & Radio Wave Propagation	4	-	-	4	-	4	
ECC604	Image Processing and Machine Vision	4	-		4		4	
ECCDLO 602X	Department Level Optional Course II	4	-	-	4	-	4	
ECL601	Microcontroller & Applications Lab	-	2	-	-	1	1	
ECL602	Computer Communication Network Lab	-	2	-	-	1	1	
ECL603	Antenna & Radio Wave Propagation Lab	-	2	-	-	1	1	
ECL604	Image Processing and Machine Vision Lab	-	2	-	-	1	1	
ECLDLO 602X	Department Level Optional Lab II	-	2	-	-	1	1	
	Total	20	10	-	20	5	25	

		Examination Scheme								
Course		Theory								
Code	Course Name	Interna	al Assess	ment	End	Exam	TW	Oral &	Total	
		Test1	Test 2	Avg	Sem Exam	Duration (Hrs)	- ''	Prac		
ECC601	Microcontroller& Applications	20	20	20	80	03			100	
ECC602	Computer Communication Network	20	20	20	80	03			100	
ECC603	Antenna & Radio Wave Propagation	20	20	20	80	03			100	
ECC604	Image Processing and Machine Vision Lab	20	20	20	80	03			100	
	Department Level Optional Course II	20	20	20	80	03			100	
ECL601	Microcontroller & Applications Lab						25	25	50	
ECL602	Computer Communication Network Lab						25	25	50	
ECL603	Antenna & Radio Wave Propagation Lab						25	25	50	
ECL604	Image Processing and Machine Vision Lab						25	25	50	
	Department Level Optional Lab II						25		25	
	Total			100	400		125	100	725	

Course Code	Department Level Optional Course II
ECCDLO 6021	Digital VLSI Design
ECCDLO 6022	Radar Engineering
ECCDLO 6023	Database Management System
ECCDLO 6024	Audio Processing

# Semester VII

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total	
ECC701	Microwave Engineering	4	-	-	4	-	4	
ECC702	Mobile Communication System	4	-	-	4	-	4	
ECC703	Optical Communication	4	-		4	-	4	
ECCDLO 703X	Department Level Optional Course III	4	-	-	4	-	4	
ILO701X	Institute Level Optional Course I	3	-	-	3	-	3	
ECL701	Microwave Engineering Lab	-	2	-	-	1	1	
ECL702	Mobile Communication System Lab	-	2	-	-	1	1	
ECL703	Optical Communication Lab	-	2	-	-	1	1	
ECLDLO 703X	Department Level Optional Lab III	-	2	-	-	1	1	
ECL704	Project-I	-	6	-	-	3	3	
Total		19	14	-	19	7	26	

		Examination Scheme								
Course		Theory								
Code	Course Name	Interna	al Assess	sment	End	Exam	TW	Oral & Prac	Total	
Couc		Test1	Test 2	Avg	Sem Exam	Duration (Hrs)	1 **			
ECC701	Microwave Engineering	20	20	20	80	03			100	
ECC702	Mobile Communication System	20	20	20	80	03			100	
ECC703	Optical Communication	20	20	20	80	03			100	
	Department Level Optional Course III	20	20	20	80	03			100	
ILO701X	Institute Level Optional Course I	20	20	20	80	03			100	
ECL701	Microwave Engineering Lab						25	25	50	
ECL702	Mobile Communication System Lab	1					25	25	50	
ECL703	Optical Communication Lab	1					25	25	50	
	Department Level Optional Lab III	1					25	25	50	
ECL704	Project-I						50	50	100	
	Total			100	400		150	150	800	

Course Code	Department Level Optional Course III	Course Code	Institute Level Optional Course I#
ECCDLO7031	Neural Networks and Fuzzy Logic	ILO7011	Product Lifecycle Management
ECCDLO7032	Big Data Analytics	ILO7012	Reliability Engineering
ECCDLO7033	Internet Communication Engineering	ILO7013	Management Information System
ECCDLO7034	CMOS Mixed Signal VLSI	ILO7014	Design of Experiments
ECCDLO7035	Embedded System	ILO7015	Operation Research
		ILO7016	Cyber Security and Laws
		ILO7017	Disaster Management and Mitigation Measures
		ILO7018	Energy Audit and Management
_		ILO7019	Development Engineering

[#] Common with all branches

# **Semester VIII**

Course Code	Course Name		hing Sch ntact Hou		Credits Assigned			
Code	Code		Pracs	Tut	Theory	TW/ Pracs	Total	
ECC801	RF Design	4	-		4		4	
ECC802	Wireless Networks	4	-	-	4	-	4	
ECCDLO	Department Level Optional	4			4	-	4	
804X	Course IV	4	-	_			4	
ILO802X	Institute Level Optional	3			3	-	3	
ILU602A	Course II	3	-	-	3		3	
ECL801	RF Design Lab	-	2	-	-	1	1	
ECL802	Wireless Networks Lab	-	2	-	-	1	1	
ECLDLO	Department Level Optional		2			1	1	
804X	Lab IV	-	\ \( \alpha \)	-	-	1	1	
ECL803	Project-II	-	12	-	-	6	6	
	Total	15	18	-	15	9	24	

		Examination Scheme								
Course				The						
Code	Course Name	Interna	al Assess	sment	End	Exam	TW	Oral &	Total	
Couc					Sem	Duration	1 **	Prac	Total	
		Test1	Test 2	Avg	Exam	(Hrs)				
ECC801	RF Design	20	20	20	80	03	-		100	
ECC802	Wireless Networks	20	20	20	80	03	1		100	
	Department Level Optional	20	20	20	80	03	-		100	
	Course IV									
ILO802X	Institute Level Optional Course	20	20	20	80	03			100	
ECL801	RF Design Lab						25	25	50	
ECL802	Wireless Networks Lab						25	25	50	
ECLDLO	Department Level Optional Lab						25	25	50	
804X	IV						23	23	50	
ECL803	Project-II						100	50	150	
	Total			80	320		175	125	700	

Course Code	Department Level Elective Course IV	Course Code	Institute Level Elective Course II#
ECCDLO8041	Optical Networks	ILO8021	Project Management
ECCDLO8042	Advanced Digital Signal Processing	ILO8022	Finance Management
ECCDLO8043	Satellite Communication	ILO8023	Entrepreneurship Development and Management
ECCDLO8044	Network management in Telecommunication	ILO8024	Human Resource Management
		ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
		ILO8027	IPR and Patenting
		ILO8028	Digital Business Management
		ILO8029	Environmental Management

# # Common with all branches

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC501	Microproces	04			04			04
	sors &							
	Peripherals							

		Examination Scheme							
Subject	Subject	Theory Marks							
Code	Subject Name	Internal assessment				Term	Practical	Oral	Total
Code				Avg. Of Test	End Sem.	Work	& Oral	Orai	Total
		Test 1	Test2		Exam				
ECC501	Microproces	20	20	20	80				100
	sors &								
	Peripherals								

#### **Course prerequisite:**

• Digital System Design

#### **Course objectives:**

- To understand the basic concepts of microcomputer systems.
- To develop background knowledge and core expertise in 8086 microprocessor and co-processor 8087.
- To write assembly language programs for 8086 microprocessor
- To understand peripheral devices and their interfacing to 8086 and to study the design aspects of basic microprocessor based system.

#### **Course outcomes:**

- Understand the basic concepts of microcomputer systems.
- Understand the architecture and software aspects of microprocessor 8086.
- Write Assembly language program in 8086.
- Know the Co-processor configurations.
- Interface peripherals for 8086.
- Design elementary aspect of microprocessor based system.

Module No.	Unit No.	Topics	Hrs.
1.0	1101	Introduction to Microcomputer System	06
	1.1	Block diagram of microprocessor based system: CPU, I/O Devices, Clock, Memory, Concept of Address, Data and Control Bus and Tristate logic.	
	1.2	Need of Assembly Language and its Comparison with higher level languages	
	1.3	Need of Assembler and Compiler and their comparison.	
2.0		Architecture of 8086 Microprocessor	06
	2.2	8086 Architecture and organization, pin configuration.	
	2.3	Minimum and Maximum modes of 8086.	
	2.4	Read and Write bus cycle of 8086.	
3.0		Instruction set and programming of 8086	10
	3.1	8086 Addressing modes.	
	3.2	8086 Instruction encoding formats and instruction set.	
	3.3	Assembler directives.	
	3.4	8086 programming and debugging of assembly language program.	
		Programs related to: arithmetic, logical, delay, string manipulation,	
,	2.5	stack and subroutines, input, output, timer/counters.	
4.0	3.5	Elementary DOS Programming: Introduction to int-21h services.	4.0
4.0	4 1	Peripherals interfacing with 8086 and applications.	10
	4.1	8086-Interrupt structure.	
	4.2	Programmable peripheral Interface 8255.	
	4.3	Programmable interval Timer 8254.	
	4.4	Elementary features of 8259A and 8257 and interface.	
<b>=</b> 0	4.5	Interfacing 8255, 8254 with 8086 and their applications	0.0
5.0	F 1	ADC, DAC interfacing with 8086 and its application	08
	5.1	Analog to Digital Converter (ADC) 0809	
	5.2	Digital to Analog Converter (DAC) 0808	
	5.3	Interfacing ADC 0809, DAC 0808 with 8086 and their	
	5.4	applications. 8086 based data Acquisition system.	
6.0	3.4	8086 Microprocessor interfacing	08
0.0	6.1	8087 Math co-processor, its data types and interfacing with	UO
		8086.	
	()	Memory interfacing with 8086 microprocessor	
	6.2	Memory interracing with 8080 interoprocessor	

- 1. John Uffenbeck: "8086/8088 family: "Design, Programming and Interfacing", Prentice Hall, 2nd Edition
- 2. B. B. Brey: "The Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium and Pentium Pro Processor", Pearson Pub, 8th Edition
- 3. Hall D.V: "Microprocessor and Interfacing Programming and Hardware", Tata McGraw Hill,  $2^{\text{nd}}$  Edition.
- 4. Yu-Cheng Liu/Glenn A. Gibson: "Microcomputer Systems: The 8086/8088 Family Architecture, Programming and Design", Phi Learning.

#### **Reference Books:**

- 1. Peter Abel: "IBM PC ASSEMBLY LANGUAGE & PROGRAMMING", Phi Learning.
- 2. A. K. Ray and K. M. Burchandi: "Advanced Microprocessor and Peripherals, Architecture Programming and Interfacing", Tata McGrawHill, 3rd Edition
- 3. Don Anderson, Tom Shanley: "Pentium Processor System Architecture", MindShare Inc., 2nd Edition
- 4. National Semiconductor: Data Acquisition Linear Devices Data Book
- 5. Intel Peripheral Devices: Data Book.
- 6. The Intel 8086 family user manual.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC502	Digital	04			04			04
	Communicat							
	ion							

		Examination Scheme							
Subject	Subject	Theory Marks							
Code	Subject Name	Internal assessment				Term	<b>Practical</b>	Oral	Total
Code	1 (41110			Avg. Of Test	End Sem.	Work	& Oral	Orai	Total
		Test 1	Test2		Exam				
<b>ECC502</b>	Digital	20	20	20	80				100
	Communica								
	tion								

# **Prerequisites:**

Analog Communication

# **Course objectives:**

- To identify the signals and functions of its different components,
- To learn about theoretical aspects of digital communication system and Draw signal space diagrams, compute spectra of modulated signals,
- To learn about error detection and correction to produce optimum receiver.

#### **Course outcomes:**

- Understand random variables and random processes of signal,
- Apply the concepts of Information Theory in source coding,
- Evaluate different methods to eliminate Inter-symbol interference,
- Compare different band-pass modulation techniques,
- Evaluate performance of different error control codes.

Module No.	Unit No.	T op	Hrs.
1.0		Probability Theory & Random Variables and	08
	1.1	Information, Probability, Conditional Probability of independent events, Relation between probability and probability Density, Raleigh Probability Density, CDF, PDF.	
	1.2	Random Variables, Variance of a Random Variable, correlation between Random Variables, Statistical Averages(Means), Mean and Variance of sum of Random variables, Linear mean square Estimation, Central limit theorem, Error function and Complementary error function Discrete and Continuous Variable, Gaussian PDF, Threshold Detection, Statistical Average, Chebyshev In-Equality, Autocorrection.	
	1.3	Random Processes	
2.0		Information Theory and Source Coding	06
	2.1	Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and it's properties	
	2.2	Mini Source Coding, Shannon's Source Coding Theorem, Shannon-Fano Source Coding, Huffman Source Coding	
	2.3	Differential Entropy, joint and conditional entropy, mutual information and channel capacity, channel coding theorem, channel capacity theorem	
3.0		Error Control Systems	12
	3.1	Types of error control, error control codes, linear block codes, systematic linear block codes, generator matrix, parity check matrix, syndrome testing error correction, and decoder implementation	
	3.2	Systematic and Non-systematic Cyclic codes: encoding with shift register and error detection and correction	
	3.3	Convolution Codes: Time domain and transform domain approach, graphical representation, code tree, trellis, state diagram, decoding methods.	
4.0		Bandpass Modulation & Demodulation	10
	4.1	Band-pass digital transmitter and receiver model, digital modulation schemes	
	4.2	Generation, detection, signal space diagram, spectrum, bandwidth efficiency, and probability of error analysis of: Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary Phase Shift Keying (BPSK) Modulation, Quaternary Phase Shift Keying QPSK), M- ary PSK Modulations, Quadrature Amplitude Modulation (QAM), Minimum Shift Keying (MSK)	

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

5.0		Baseband Modulation & Transmission	04						
	5.1	Discrete PAM signals and it's power spectra							
	5.2	Inter-symbol interference, Nyquist criterion for zero ISI,							
		nusoidal roll-off filtering, correlative coding, equalizers, and							
		eye pattern							
6.0		Optimum Reception of Digital Signal	08						
	6.1	Baseband receiver							
	6.2	Probability of Error							
	6.3	Optimum Receiver and Filter							
	6.4	Matched Filter and its probability of error							
	6.5	Coherent Reception							
		Total	48						

- 1. H. Taub, D. Schlling, and G. Saha, "Principles of Communication Systems," Tata Mc- Graw Hill, New Delhi, Third Edition, 2012.
- 2. Lathi B P, and Ding Z., "Modern Digital and Analog Communication Systems," Oxford University Press, Fourth Edition, 2009.
- 3. Haykin Simon, "Digital Communication Systems," John Wiley and Sons, New Delhi, Fourth Edition, 2014.

#### **Reference Books:**

- 1. Sklar B, and Ray P. K., "Digital Communication: Fundamentals and applications," Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 2. T L Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 3. P Ramakrishna Rao, "Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 4. M F Mesiya, "Contempory Communication systems", Mc-Graw Hill, Singapore, First Edition, 2013.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	Practical	Tutorial	Total	
ECC503	Electromagn	04		@1	04		01	05	
	etic								
	Engineering								

		Examination Scheme							
Subject Code	Subject		Theory Marks						
	Subject Name	Internal assessment				Term	<b>Practical</b>	Orol	Total
					End Sem.	Work	& Oral	Orai	Total
		Test 1	Test2	1 and Test 2	Exam				
<b>ECC503</b>	Electromagn	20	20	20	80	25			125
	etic								
	Engineering								

^{@ 1} hour to be taken as tutorial class wise

#### **Course prerequisite:**

- Vector Algebra and vector Calculus
- Various Co-ordinate system
- Two port network

#### **Course objectives:**

- To learn electromagnetics, including static and dynamic electromagnetic fields and waves within and at the boundaries of media.
- To learn mathematical skills, including Vectors and phasors and Partial differential equations.
- To learn Electromagnetic radiation and propagation in space and within transmission lines

#### **Course outcomes:**

After successful completion of the course student will be able to explain and evaluate EM fields and key physical parameters for:

- Fields and energies in simple planar, cylindrical, and spherical geometries, Fields within conducting and anisotropic media
- Electric and magnetic forces on charges, wires, and media Sinusoids and transients on TEM lines with mismatched impedances and tuning

Module No.	Unit No.	Topics	Hrs.
1.0	1100	Electrostatics	07
	1.1	Coulomb's Law & Electric Field Intensity, Electric Field due to point charge, line charge and surface charge distributions	
	1.2	Electric Flux Density, Gauss's Law and its Application to differential volume element, divergence, divergence theorem.	
	1.3	Electric potential, Relationship between Electric field & potential, Potential Gradient., electric dipole	
2.0		Electric Fields in Material Space	06
	2.1	Energy density in electrostatic field, Current and current Density, continuity equation, Polarization in dielectrics	
	2.2	Capacitance, capacitance of parallel plate; spherical; cylindrical capacitors with multiple di-electrics, Boundary conditions	
	2.3	Poisson's and Laplace's equation, General procedures for solving Poisson's and Laplace's equations.	
3.0		Steady Magnetic Field	07
	3.1	Biot-Savart's Law, Ampere's Circuital Law and its Applications, magnetic flux density, Magnetic Scalar and vectors potentials, Derivations of Biot-Savart's law and Ampere's law based on Magnetic Potential	
	3.2	Forces due to magnetic field, magnetic dipole, Classification of Magnetic Materials, Magnetic boundary conditions.	
4.0		Maxwell's Equation and Electromagnetic Wave Propagation	12
	4.1	Faraday's law, Displacement current, Maxwell's equations in point form and integral form, Boundary conditions for time varying field, magnetic vector potential, Time harmonic field, Introduction to the concept of Uniform Plane Wave and Helmholtz equation.	
	4.2	Wave Propagation in Free Space, Lossy and Lossless Dielectrics and in Good Conductors. Reflection of Plane Wave, Poynting Vector, Wave Power, Skin Effect, Wave Polarization and Standing Wave Ratio	
5.0		Transmission Lines	10
	5.1	Transmission line parameters, Transmission line equations, Input impedance, Standing wave ratio, Power, Transients on transmission lines.	
	5.2	Smith Chart, Applications of Smith Chart in finding VSWR, and reflection coefficient, admittance calculations, impedance calculations over length of line.	

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

6.0		<b>Applications of Electromagnetics</b>	06
	6.1	Electrostatic discharge, Materials with high dielectric constant, Graphene, Inkjet printer, RF mems, Multidielectric systems, magnetic levitation, Memristor, Optical nanocircuits, Metamaterials, Microstrip lines and characterization of Data cables, RFID	
		Total	48

- 1. Engineering Electromagnetics, William H Hayt and John A Buck Tata McGraw-Hill Publishing Company Limited, Seventh Edition
- 2. Principles of Electromagnetics, Matthew N. O.Sadiku ,S.V.Kulkarni- Oxford university press, Sixth edition

#### **Reference Books:**

- 1. Electromagnetics with applications by J.D.Krauss and Daniel Fleisch fifth edition
- 2. Electromagnetic Field Theory Fundamentals, Bhag Singh Guru, Hüseyin R. Hiziroglu Cambridge University Press, Second Edition.
- 3. Electromagnetics, Joseph Edminister, , Mahmood Nahvi, Schaum Outline Series, Fourth edition.
- 4. R. K. Shevgaonkar, "Electromagnetic Waves" Tata McGraw Hil

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Te	eaching Sche (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC504	Discrete Time	04			04			04	
	Signal								
	Processing								

		Examination Scheme								
Cubicat	Subject		The	ory Marks						
Subject Code	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total	
Couc				Avg. Of Test	Eliu Selli.	Work	& Oral	Orai	Total	
		Test 1	Test2	1 and Test 2	Exam					
ECC504	Discrete Time	20	20	20	80				100	
	Signal									
	Processing									

# **Course prerequisite:**

• Signals & Systems

## **Course objectives:**

- To develop a thorough understanding of DFT and FFT and their applications.
- To teach the design techniques and performance analysis of digital filters
- To introduce the students to digital signal processors and its applications.

#### **Course outcomes:**

- Understand the concepts of discrete-time Fourier transform and fast Fourier transform.
- Apply the knowledge of design of IIR digital filters to meet arbitrary specifications.
- Apply the knowledge of design of FIR digital filters to meet arbitrary specifications.
- Analyze the effect of hardware limitations on performance of digital filters.
- Apply the knowledge of DSP processors for various applications.

Module No.	Unit No.	Topics	Hrs.				
1.0		Discrete Fourier Transform & Fast Fourier Transform	10				
	1.1	Definition and Properties of DFT, IDFT, Circular convolution of sequences using DFT and IDFT. Filtering of long data sequences: Overlap-Save and Overlap-Add Method for computation of DFT					
	1.2	Fast Fourier Transforms (FFT), Radix-2 decimation in time and decimation in frequency FFT algorithms, inverse FFT, and introduction to composite FFT.					
2.0		IIR Digital Filters	10				
	2.1	Types of IIR Filters (Low Pass, High Pass, Band Pass, Band Stop and All Pass), Analog filter approximations: Butterworth, Chebyshev I, Elliptic.					
	2.2	Mapping of S-plane to Z-plane, impulse invariance method, bilinear transformation method, Design of IIR digital filters (Butterworth and Chebyshev-I) from Analog filters with examples.					
	2.3	Analog and digital frequency transformations with design examples.					
3.0		FIR Digital Filters	10				
	3.1	Characteristics of FIR digital filters, Minimum Phase, Maximum Phase, Mixed Phase and Linear Phase Filters.  Frequency response, location of the zeros of linear phase FIR filters.					
	3.2	Design of FIR filters using Window techniques (Rectangular, Hamming, Hanning, Blackmann, Kaiser), Design of FIR filters using Frequency Sampling technique, Comparison of IIR and FIR filters.					
4.0		Finite Word Length effects in Digital Filters	06				
	4.1	Quantization, truncation and rounding, Effects due to truncation and rounding, Input quantization error, Product quantization error, Coefficient quantization error, Zero-input limit cycle oscillations, Overflow limit cycle oscillations, Scaling.					
	4.2	Quantization in Floating Point realization of IIR digital filters, Finite word length effects in FIR digital filters.					
5.0							
	5.1	Introduction to General Purpose and Special Purpose DSP processors, fixed point and floating point DSP processor, Computer architecture for signal processing, Harvard Architecture, Pipelining, multiplier and accumulator (MAC), Special Instructions, Replication, On-chip memory, Extended Parallelism.					

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

	5.2	General purpose digital signal processors, Selecting digital signal processors, Special purpose DSP hardware, Architecture of TMS320CX fixed and floating DSP processors.	
6.0		Applications of Digital Signal Processing	06
	6.1	Application of DSP for ECG signals analysis.	
	6.2	Application of DSP for Dual Tone Multi Frequency signal detection.	
	6.3	Application of DSP for Radar Signal Processing.	
		Total	48

- 1. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing", A Practical Approach by, Pearson Education
- 2. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015

#### **Reference Books:**

- 1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education.
- 2. Sanjit K. Mitra, Digital Signal Processing A Computer Based Approach 4th Edition McGraw Hill Education (India) Private Limited.
- 3. Oppenheim A., Schafer R., Buck J., "Discrete Time Signal Processing", 2nd Edition, Pearson Education.
- 4. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, 2004.
- 5. L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, 2006.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
1 5011	Microelectron ics	04	1	-1	04	-1		04	

Subject Code		Examination Scheme								
	Subject		The	ory Marks						
	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total	
				Avg. Of Test		Work	& Oral	oran	Total	
		Test 1	Test2	1 and Test 2	Exam					
<b>ECCDLO</b>	Microelectron	20	20	20	80				100	
5011	ics									

# **Course prerequisite:**

- Electronics Devices and Circuits- I
- Electronics Devices and Circuits- II

## **Course objectives:**

- To understand integrated circuit biasing using MOSFET.
- To analyze single stage active load MOS amplifier.
- To analyze active load differential amplifier
- To understand implementation of passive components in ICs.

#### **Course outcomes:**

- Analyze various constant current source circuit using MOS
- Design and implement active load MOS amplifier.
- Design and implement active load differential amplifier

Module	Unit	Topics	Hrs.
No. 1.0	No.	Basics of MOSFETs	08
	1.1	Introduction to various fabrication process(in brief) Fabrication of NMOS and PMOS transistors along with mask layout diagram, Multi finger transistor, Scaling of MOSFET, Various Short channel effects in MOSFET, Second order effects in MOSFET, MOS as controlled resistor, MOS device capacitances	
2.0		Integrated Circuit Biasing & Active Loads using MOSFET	08
	2.1	Current Mirror, cascade current source, Wilson current source, bias independent current source using MOSFET,DC analysis and small signal analysis of MOS active load, DC analysis and small signal analysis of MOS advanced active load	
3.0		Single Stage MOS Active Load amplifiers	08
	3.1	CS amplifier with current source load, CS amplifier with diode connected load, CS amplifier with current source load, Common gate circuit, Cascode amplifier, Double Cascoding, Folded Cascode.	
4.0		Active Load MOSFET Differential Amplifier	10
	4.1	Basic MOS Differential Amplifier, DC transfer characteristics, small signal equivalent analysis, MOS differential amplifier with active load, MOS differential amplifier with cascode active load,	
5.0		Passive Device Fabrication in IC	07
	5.1	Fabrication of inductors, fabrication of transformers, fabrication of varactors, and fixed value capacitors.	
6.0		Power Amplifiers	07
	6.1	Class A, class B, Class C, Class D, Class E, Class F using MOSFET	
		Total	48

- 1. A. Sedra, K. Smith, adapted by A. Chanorkar "Microelectronic Circuits-Theory and Application *Advanced engineering mathematics*", Oxford Higher Education, 7th Edition
- 2. D. Neamen, "Electronic Circuits Analysis and Design", McGraw Hill Education, 3rd Edition
- 3. B. Razavi, "Design of Analog Integrated Circuits", McGraw Hill Education, Indian Edition

#### **Reference Books:**

1. B. Razavi,"R F Microelectronics", Pearson Publication, 2nd Edition

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 3. Question paper will comprise of 6 questions, each carrying 20 marks.
- 4. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECCDLO	TV & Video	04			04			04	
5012	Engineering								

Subject Code		Examination Scheme								
	Subject		The	ory Marks						
	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Oran	Total	
	TV & Video Engineering	20	20	20	80				100	

# **Course objectives:**

- To understand basic concepts of TV system.
- To understand compression techniques
- To introduce to advanced systems and dvb standards

#### **Course outcomes:**

- Understand overview of TV system.
- Understand details of compression technique.
- Know about different dvb standards.
- Understand advanced digital systems

Module	Unit	Topics	Hrs.
No.	No.	T 1 4 1 670¥7 4	10
1.0		Fundamentals of TV system	10
	1.1	Interlaced scanning, Composite video signal, VSB(Vestigial	
		sideband transmission), Channel bandwidth, Study of transmitter	
		and receiver block diagram of monochrome	
		Television	
	1.2	Camera Tubes: Vidicon, Image Orthicon	
2.0		Colour Television	10
	2.1	Colour Fundamentals, Chromaticity diagram, Frequency interleaving, compatibility considerations	
	2.2	NTSC system characteristics, Encoder and Decoder block diagram,	
		PAL system characteristics, Encoder and Decoder block diagram,	
		Comparison of NTSC and PAL systems	
3.0		Digital Video	08
	3.1	Basics of digital video	
	3.2	Chroma subsampling:4:4:4,4:2:2,4:2:0,4:1:1 digital video formats	
	3.3	Video compression standards:MPEG2:DCT coding, codec	
		structure. Introduction to H.264/MPEG-4 AVC, Introduction to	
		H.265	
	3.4	Set-Top Box	
4.0		Digital Video Broadcasting	06
	4.1	Introduction to DVB-T,DVB-T2,DVB-H,DVB-S,DVB-C	
	4.2	Satellite Television	
5.0		Advanced Digital TV Systems	10
	5.1	MAC MACd2	
	5.2	HDTV,SUHDTV	
	5.3	Smart TV and its functions	
	5.4	Introduction to IPTV	
	5.5	Application of TV system as CCTV	
6.0		Displays & Streaming Media Device	04
	6.1	LCD,LED	
	6.2	Chromcast	
		Total	48

- 1. Monochrome and colour Television by R.R.Gulathi
- 2. Television and video engineering by A.M. Dhake

#### **Reference Books:**

1. Digital Television (Practical guide for Engineers) by Fischer

#### Websites:

- 1. https://www.dvb.org/resources/public/factsheets
- 2. https://en.wikipedia.org/wiki/Digital_Video_broadcasting

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Te	eaching Sche (Hrs.)	me	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
5013	Finite Automata Theory	04			04			04	

Subject Code		Examination Scheme								
	Subject		The	ory Marks						
	Subject Name	Int	ernal ass	essment		Term	Practical & Oral	Oral	Total	
		FD 44	T 10	Avg. Of Test	End Sem.	Work		Orai	Total	
		Test 1	Test2	1 and Test 2	Exam					
<b>ECCDLO</b>	Finite	20	20	20	80				100	
5013	Automata									
	Theory									

# **Course prerequisite:**

• Digital System Design

#### **Course objectives:**

This course provides in-depth knowledge of switching theory and the design techniques of digital circuits, which is the basis for design of any digital circuit. The main objectives are:

- To understand learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To design combinational logic circuits and its optimization and fault detection.
- To study Mealy and Moore synchronous and asynchronous sequential circuits design and their applications.

#### **Course outcomes:**

- Manipulate simple Boolean expressions using the theorems and postulates of Boolean algebra and to minimize combinational functions.
- Design and analyze small combinational circuits and to use standard combinational functions/building blocks to build larger more complex circuits.
- Design and analyze small sequential circuits and devices and to use standard sequential functions/building blocks to build larger more complex circuits.
- Design finite state machine understand the fundamentals and areas of applications for the integrated circuits.
- Perform symmetric and cascade threshold function and element

Module No.	Unit No.	Topics					
1.0		Combinational Logic					
	1.1	Notations of sets, Relations and Lattices, Venn diagram					
	1.2	Switching Algebra and functions, Boolean algebras and functions, Minimization of Boolean functions using map method and Tabulation Method, Prime implicant chart, Reduction of the chart, Branching method					
	1.3	Design of combinational Logic circuits, Contact networks, Functional decomposition and symmetric functions. Identification of symmetric functions					
2.0		Threshold Logic & Synthesis of Threshold Networks	06				
	2.1	Threshold Logic, Threshold elements, Capabilities and limitations of threshold logic, elementary properties, Linear separability, Unate functions, Synthesis of threshold functions, Cascading of threshold elements.					
3.0		<b>Testing of Combinational Circuits</b>	09				
	3.1	Reliable Design and fault Diagnosis, Fault Detection in combinational circuits, Fault location experiments, Fault Detection by Boolean Differences and path sensitization, Synthesis for testability, Multiple fault detection using map method, failure-Tolerant Design.					
4.0		Sequential Circuits	12				
	4.1	Synchronous sequential circuits and iterative networks: Memory elements and their excitation functions; Synthesis of synchronous sequential circuits, Capabilities and limitations, State equivalence and Minimization, Minimization of completely specified and Incompletely specified sequential machines, Partition technique, Merger methods					
	4.2	Asynchronous sequential circuits: Hazards, Synthesis, State assignment and minimization					
	4.3	Finite state Machines – Mealy and Moore synchronous and asynchronous sequential circuits Design,					
5.0		Structure and testing of Sequential Circuits	08				
	5.1	Structure of sequential Machines, Lattice of closed partitions, State Assignment using partitions, Reduction of output dependency, Input Independence and Autonomous clock.					
	5.2	Homing sequence, synchronizing sequence, Distinguishing sequence, Checking experiments, Machine identification, Recent Trends/Developments					

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

6.0		Algorithmic State Machine	04
	6.1	Introduction and components of ASM charts, Representation of	
		sequential circuits using ASM charts, Example using ASM chart: 2	
		bit counter, binary multiplier, Weighing machine etc.	
		Total	48

- 1. Zvi Kohavi and Niraj K. Jha. "Switching and Finite Automata Theory", 3 Editions, Cambridge University Press.
- 2. Zvi Kohavi, "Switching Theory and Finite Automata", 2nd edition, Tata McGraw Hill
- 3. R. P. Jain, "Switching Theory and Logic Design", Tata McGraw Hill Education, 2003.
- 4. Lee Samuel C.," Modern Switching Theory and Digital Design", Prentice Hall PTR

#### **Reference Books:**

- 1. Morris Mano, "Digital Logic and Computer Design", Pearson Education
- 2. Samuel Lee, "Digital Circuits and Logic design", Prentice Hall.
- 3. William I. Fletcher, "An Engineering Approach to Digital Design", Prentice Hall.
- 4. John F. Wakerly, "Digital Design Principles and Practices", Pearson Education
- 5. A. Anand Kumar, "Switching Theory and Logic Design", PHI Learning private limited, 2014

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
5014	Data Compression & Encryption	04			04			04	

	Subject Name	Examination Scheme									
Subject Code		Theory Marks									
		Int	ernal ass	essment		Term Work	Practical & Oral	Oral	Total		
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem.						
ECCDLO	Data	20	20	20	80				100		
	Compression	20	20	20	80				100		
2014	& Encryption										

# **Course objectives:**

To teach the students

- Lossless and Lossy compression techniques for different types of data.
- Data Encryption Techniques.
- Network and Web Security.

#### **Course outcomes:**

- Implement text, audio and video compression techniques.
- Understand Symmetric and Asymmetric Key Cryptography schemes.
- Understand network security.

Module No.							
1.0	110.	Introduction to Data Compression	12				
	1.1	Data Compression : Modelling and Coding, Statstical Modelling, Dictionary Schemes, LZ, Lossy Compression					
	1.2	Shannon – Fano Algorithm, Huffman Algorithm, Adaptive Huffman Coding					
	1.3	Difficulties in Huffman Coding, Arithmetic Coding – Decoding, Dictionary Based Compression, Sliding Window Compression: LZ-77, LZ-78, LZW					
2.0		Image Compression	06				
	2.1	DCT, JPEG, JPEG – LS, Differential Lossless Compression, DPCM, JPEG – 2000 Standards					
3.0		Video and Audio Compression	08				
	3.1	Analog Video, Digital Video, MPEG – 2, H – 261 Encoder and Decoder					
	3.2	Sound, Digital Audio, μ-Law and A-Law Companding, MPEG – 1 Audio Layer (MP3 Audio Format)					
4.0		Data Security	06				
	4.1	Security Goals, Cryptographic Attacks, Techniques					
	4.2	Symmetric Key: Substitution Cipher, Transposition Cipher, Stream and Block Cipher					
	4.3	DES, AES					
5.0		Number Theory and Asymmetric Key Cryptography	08				
	5.1	Prime Numbers, Fermat's and Euler's Theorem, Chinese Remainder Theorem, Discreet Logarithms					
	5.2	Principles of Public Key Crypto System, RSA					
	5.3	Key Management, Deffie-Hellman Key Exchange					
	5.4	Message Integrity, Message Authentication and Hash Functions, SHA, H MAC, Digital Signature Standards					
6.0		Network Security	08				
	6.1	Email, PGP, S/MIME, Intrusion Detection System					
	6.2	Web Security Considerations, SSL Architecture, SSL Message Formats, TLS, Secure Electronic Transactions					
	6.3	Kerberos, X.509 Authentication Service, Public Key Infrastructure					
		Total	48				

- 1. Mark Nelson, Jean-Loup Gailly,"The Data Compression Book", 2nd edition, BPB Publications
- 2. Khalid Sayood, "Introduction to Data Compression", 2nd Edition Morgan Kaufmann.
- 3. William Stallings, "Cryptography and Network Security Principles and Practices 5th Edition", Pearson Education.
- 4. Behrouz A. Forouzan, "Cryptography and Network Security", Tata McGraw-Hill.

### **Reference Books:**

- 1. David Salomon, "Data Compression: The Complete Reference", Springer.
- 2. Matt Bishop, "Computer Security Art and Science", Addison-Wesley.

## **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECL501	Microproces sors & Peripherals Interfacing Laboratory	1	02		-1	1		1

				Examir	nation Sch	eme			
Subject	Subject		Theory Marks						
Code	Subject Name	Internal assessment En		End Sem.	Term	Practical & Oral	Oral	Total	
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral		Total
ECL501	Microproces sors & Peripherals Interfacing Laboratory					25	25		50

### **Suggested Experiment List**

Experiments can be conducted on Assembler, Emulator or Hardware kits, in Assembly language.

- To write an assembly language program to perform 8-bit addition using multiple addressing modes, viz., direct, indirect, register, etc. addressing mode.
- To write an assembly language program to perform 16-bit Logical operations, viz., AND, OR, EOX, NAND, etc.
- To write an assembly language program to perform 32-bit Subtraction
- To write an assembly language program to generate 10 msec delay using software (register) and 8254
- To write an assembly language program to move 10 memory locations using String Instruction
- To write an assembly language subroutine (program) that takes a number as input and returns the square of it
- To write an assembly language program for interfaced 7 segment display or keypad or both, through 8255
- To write an assembly language program to read and save value from ADC
- To write an assembly language program to generate square / triangular / ramp waveforms using DAC
- To write an assembly language program for performing floating point division using 8087
- To write an assembly language program to use INT 21h DOS Functions, viz. read character, write character, get system date, etc

Note: Mini Project can be considered as a part of termwork (Topic based on syllabus)

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)				Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL502	Digital Communicat ion Laboratory		02		1	1	1	1	

				Examir	nation Sch	cheme				
Subject	Subject		Theory Marks						 	
Code	Name	Inte	Internal assessment		End Sem.	Term	Practical & Oral	Oral	Total	
Code	- //	Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Oran	lotai	
ECL502	Digital Communicat ion Laboratory					25	25		50	

Experiments should be performed on Bread-board or on experimentation kits.

## **Suggested Experiment List**

- To understand sampling theorem and reconstruction
- To understand Various line codes
- To observe the performance of Return to Zero (RZ) types of line code
- To observe the performance of Non- Return to Zero (NRZ) types of line code
- Modulation and Demodulation of Binary Amplitude Shift Keying
- Modulation and Demodulation of Binary Frequency Shift Keying
- Modulation and Demodulation of Binary Phase Shift Keying
- Modulation and Demodulation of Quadrature Phase Shift Keying
- To observe the effect of signal Distortion using EYE-Diagram
- To Study and perform Linear Block codes
- To Study and perform cyclic codes

Note: Mini Project can be considered as a part of termwork (Topic based on syllabus)

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every

experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL503	Business Communicat ion & Ethics Laboratory	2 (classwise)	2 (batch wise)			2		2	

				Examir	nation Sch	neme				
Subject	Subject		Theory Marks							
Code	Name	Inte	Internal assessment		End Sem.	Term	Practical	Oral	Total	
Couc		Test 1	Test2	Avg. Of Test 1 and Test 2	Exam Exam	Work	& Oral		Total	
ECL503	Business Communicat ion & Ethics Laboratory					50			50	

## **Course objectives:**

To teach the students

- To inculcate professional and ethical attitude.
- To enhance effective communication and interpersonal skills.
- To build multidisciplinary approach towards all life tasks.

### **Course outcomes:**

- Design a technical document using precise language, suitable vocabulary and apt style.
- Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships.
- Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities.
- Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
- Deliver formal presentations effectively implementing the verbal and non-verbal skills.

Module	Unit	Topics	Hrs.
No. 1.0	No.	Report Writing	05
1.0	1.1	-	US
	1.1	Objectives of Report Writing	
	1.2	Language and Style in a report	
	1.3	Types: Informative and Interpretative (Analytical, Survey and Feasibility) and Formats of reports (Memo, Letter, Short and Long Report)	
2.0		Technical Writing	03
	2.1	Technical Paper Writing (IEEE Format)	
	2.2	Proposal Writing	
3.0		Introduction to Interpersonal Skills	09
	3.1	Emotional Intelligence	
	3.2	Leadership and Motivation	
	3.3	Team Building	
	3.4	Assertiveness	
	3.5	Conflict Resolution and Negotiation Skills	
	3.6	Time Management	
	3.7	Decision Making	0.5
4.0		Meetings & Documentations	02
	4.1	Strategies for conducting effective meetings	
	4.2	Notice, Agenda and Minutes of a meeting	
	4.3	Business meeting etiquettes	
5.0		Introduction to Corporate Ethics	02
	5.1	Professional and work ethics (responsible use of social media - Facebook, WA, Twitter etc.)	
	5.2	Introduction to Intellectual Property Rights	
	5.3	Ethical codes of conduct in business and corporate activities	
		(Personal ethics, conflicting values, choosing a moral response and	
		making ethical decisions)	
6.0		Employment Skills	07
	6.1	Group Discussion	
	6.2	Resume Writing	
	6.3	Interview Skills	
	6.4	Presentation Skills	
	6.5	Statement of Purpose	
		Total	28

#### References

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education
- 7. Ghosh, B. N., "Managing Soft Skills for Personality Development", Tata McGraw Hill.
- 8. Lehman, Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 9. Bell, Smith, "Management Communication" Wiley India Edition, 3rd edition.
- 10. Dr. Alex, K., "Soft Skills", S Chand and Company
- 11. Subramaniam, R., "Professional Ethics" Oxford University Press.
- 12. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 13. https://grad.ucla.edu/asis/agep/advsopstem.pdf

### **List of Assignments:**

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper )
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

#### Term Work:

Term work will consist of all assignments from the list. The distribution of marks for term

Work will be as follows:

TOTAL:(50) Marks
Attendance
Group Discussion
Project Report Presentation(15) Marks
Assignments
Book Report(10) Marks

Subject Code	Subject Name	Teaching Scheme (Hrs.)				Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL504	Open Source		2			1		1	
	technology								
	for								
	Communicat								
	ion Lab								

			<b>Examination Scheme</b>								
Subject	Subject		Theory Marks Internal assessment			Term Work	Practical & Oral				
Code	Subject Name	Inte			End Sem.			Oral	Total		
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	st End Sem.	Work	& Oral	Oran	1 Otal		
ECL504	Open Source					25	25		50		
	technology										
	for										
	Communicati										
	on Lab										

## **Prerequisites:**

- Principals of Communication Engineering
- Digital System Design
- Signals and Systems
- Electronics Circuits and Devices

## **Course objectives:**

- Introduction to open source tools for communication lab.
- To simulate and analyze the various parameters of communication systems.
- To understand and implement the communication system/sub system.

### **Course outcomes:**

- Learn open source programming tools for communication technology.
- Simulate and analyze the performance of communication system.
- Implement the communication system/subsystem.

# **Sample List of Experiments:**

Note: These are few examples of experiments; teachers may prepare their own list.

Sr. No	Title	Resource
1	Installation of	See the E-resource Links
	a. Python, NumPy and commPy or	
	b. Octave	
	or	
	c. Scilab	
	or	
	d. Xilinx using HDL	
	Or e. LT SPICE	
	Or	
	f. SEQUEL	
	Note: Any one tool or a combination of tools.	
2	Write a program to represent analog signal to digital signal (A to D conversion)	http://www.scilab.in/file s/textbooks/ProfSenthik
		umar/DC.pdf
3	Write a program to generate basic functions	See the E-resource Links
	a. Unit Impulse Signal	
	b. Unit Step Signal	
	c. Generate Ramp Signal	
	d. Exponential Sequence	
	e. Generate Sine Sequence	
	f. Cos Sequence	
4	Write a program to perform convolution and correlation	See the E-resource Links
	on the given signal.	
5	Plot the ASK, FSK and PSk Waveforms using	See the E-resource Links
	scilab/python	
6	Write a program to apply Low/High Pass Filter on the	See the E-resource Links
	given signal.	
7	Write a program to read a speech signal and plot it and	See the E-resource Links
	play it.	
Universi	ty of Mumbai, B. E. (Electronics & Telecommunication En	gineering), Rev 2016 44

8	Write a program to apply Low/High Pass Filter on the given signal.	See the E-resource Links
9	Write a code to design Butterworth/Chebyshev filter using Scilab/Octave/Python.	See the E-resource Links
10	Write a program to calculate Hamming distance using Scilab/python.	See the E-resource Links
11	Encoding and decoding of convolutional codes	1.https://github.com/vee resht/CommPy/blob/mas ter/commpy/examples/c onv_encode_decode.py 2.https://media.readthed ocs.org/pdf/commpy/late st/commpy.pdf
12	Design and programming of of 1-bit Full adder and testing using Testbench.	See the E-resource Links
13	Design and programming of 4-bit adder using Full adder and testing using Testbench	See the E-resource Links
14	Design and programming of 8:1 Mux and testing using Testbench	See the E-resource Links
15	Design and programming of 3:8 Decoder and testing using Testbench	See the E-resource Links
16	Design and programming of D Latch and D Flip Flop and testing using Testbench	See the E-resource Links
17	Design and programming of T FF and testing using Testbench	See the E-resource Links
18	Design and programming of Counter and testing using Testbench	See the E-resource Links
19	Design and programming of RAM and testing using Testbench	See the E-resource Links
20	Design and Programming of FSM and testing using	See the E-resource Links

	Testbench	
21	Design and Simulation of Basic diode Circuits like Clipper, Clapper, Voltage Doubler using Sequel or LT Spice	See the E-resource Links
22	Design and simulation of single stage and Multistage BJT amplifier using Sequel or LT SPICE	See the E-resource Links
23	Design and simulation of Differential amplifier and current mirror circuit using Sequel or LT SPICE	See the E-resource Links
24	Design and Simulation of Basic Op-circuits like Inverting amplifier, Non-Inverting amplifier, Difference amplifier, I to V convertor, V to I Convertor etc using Sequel ot LT SPICE.	See the E-resource Links
25	Design and Simulation of oscillators and Filters using Op-amp using LT SPICE or Sequel.	See the E-resource Links
26	Simulation of non-linear applications of Op-amp like Schmitt Trigger, Window Detector, Precision Rectifier, Square Wave Generator etc using LT SPICE or Sequel.	See the E-resource Links

# **List of Mini projects:**

Note: These are few examples of mini projects; teachers may prepare their own list.

- 1. Implementing liner block code of (7,4).
- 2. Implementing FSK TX and RX.
- 3. Implementing Nyquist criteria with noisy environment.

Suggested List of Mini Projects on Xilinx using HDL Programming

- 4. 16 bit Multiplier
- 5. 32 Bit CLA adder
- 6. Shift and Add Multiplier
- 7. GCD Calculator
- 8. 3-bit FIR Filter design
- 9. 4 Bit ALU
- 10. 4-bit Comparator
- 11. 2's Complement adder

Suggested List of Mini Projects using LT SPICE or SEQUEI

- 12. Audio Equalizer using Op-amp.
- 13. Strain Guage amplifier Circuit.
- 14. Synchronous DC-DC Buck Convertor.
- 15. RTD based 4 to 20mA transmitter circuit.

## **Online Repository Sites:**

- 1. Google Drive
- 2. GitHub
- 3. Code Guru

#### E-Resources:

- 1. Spoken Tutorial : <a href="http://spoken-tutorial.org/">http://spoken-tutorial.org/</a>
- 2. Scilab: <a href="http://www.scilab.org/">http://www.scilab.org/</a>
- 3. Octave: https://www.gnu.org/software/octave/
- 4. Python: https://www.python.org/
- 5. Xilinx using HDL: <a href="https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html">https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html</a>
- 6. LT SPICE: <a href="http://www.linear.com/designtools/software/">http://www.linear.com/designtools/software/</a>
- 7. SEQUEL: https://www.ee.iitb.ac.in/~sequel/

Note: Mini Project can be considered as a part of termwork (Topic based on syllabus)

#### Term Work:

At least 08 Experiments covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Tea	Teaching Scheme (Hrs.)			Credits Ass	igned	
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECLDLO 5011	Microelectro nics Laboratory			02		1		1

Subject Code		Examination Scheme									
Subject	Subject Theory Marks		Theory Marks								
Code	Subject Name	Inte	Internal assessment		End Sem.	Term Work	Practical & Oral	Oral	Total		
Code	1 (02220	Test 1	Avg Of Tost		Exam			Orai	Total		
ECLDLO	Microelectro					25			25		
5011	nics										
	Laboratory										

## Term Work:

At least 08 tutorials covering entire syllabus must be given during the "Tutorial session batch wise"

Term work assessment must be based on the overall performance of the student with every tutorial graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Teaching Scheme Credits Assigned (Hrs.)							
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECLDLO 5012	TV & Video Laboratory			02		1		1

Subject Code		Examination Scheme									
Subject	Subject		Theory Marks Internal assessment								
Code	Subject Name	Inte	Internal assessment Fnd Sam		Term	Practical & Oral	Oral	Total			
Couc	- 100220	Test 1	A via ( )t Tact		Exam	Work	& Oral	Orun	Total		
ECLDLO 5012	TV & Video Laboratory					25			25		

## **Suggested List of Experiments**

- To study CVS
- Measurement of horizontal and vertical scanning frequency
- To study sound section of TV receiver
- To study receiver sections by using fault simulation switches
- To study DTH receiver
- To study HDTV
- To study set top box trainer
- To study LCD display
- To study LED display

#### Term Work:

At least 8 Practicals/ Tutorials covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Tea	aching Scher (Hrs.)	me		Credits Ass	igned	
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECLDLO 5013	Finite Automata Theory			02		1		1

Subject Code Subject Name  ECLDLO Finite Automata		Examination Scheme									
Subject	Subject		Theory Marks								
	Name	Inte	ernal ass	essment	End Sem.	Term	Practical & Oral	Oral	Total		
Code	1 (dille	Test 1	Avg Of Toet		Exam	Work	& Oral	Orai	Total		
<b>ECLDLO</b>	Finite					25			25		
5013	Automata										
	Theory										

## **List of Mini Projects:**

- 1. Combinational circuits
- 2. Synchronous sequential circuits (Finite state machine)
- 3. Asynchronous sequential circuits (Finite state machine)
- 4. Algorithmic state machine

## Note: Mini Project can be considered as a part of term-work.

## Term Work:

At least 8 Tutorials covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Tea	aching Sche (Hrs.)	me		igned		
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECLDLO 5014	Data Compression & Encryption		02			1		1

			Internal ass	eme					
Subject	Subject		Theory Marks						
Code	Subject Name	Inte	ernal ass	essment	End Sem.	Term Work	Practical & Oral	Oral	Total
Code	2 (02220			Avg. Of Test 1 and Test 2	Exam	Work	& Oral	Oran	Total
ECLDLO	Data					25			25
5014	Compression								
	& Encryption								

## **Suggested Practical List:**

- Huffman Code.
- Adaptive Huffman Code.
- Arithmetic Code.
- LZW Compression and Decompression.
- Companding Implementation.
- Implementation of DCT.
- RSA and MD5 Algorithm.
- Packet Analyzer.
- PGP (Pretty Good Privacy).
- Vulnerability Scanner.
- Intrusion Detection System.
- Firewall.
- SSL

Note: Mini Project can be considered as a part of term-work.

## Term Work:

At least 08 Experiments covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful,

interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	To	eaching Scho (Hrs.)	eme		Credits A	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC601	Microcontroll	04			04			04
	ers &							
	Applications							

		Examination Scheme										
Subject	Subject		The	ory Marks								
	Subject Name	Inte	ernal ass			Term	Practical & Oral	Oral	Total			
Couc	1 (002220			Avg. Of Test	Ena Sem.	Work	& Oral	Orai	Total			
		Test 1	Test2	1 and Test 2	Exam							
ECC601	Microcontrol	20	20	20	80				100			
	lers &											
	Applications											

## **Course objectives:**

- To develop background knowledge and core expertise in microcontrollers.
- To understand peripheral devices and their interfacing to microcontrollers.
- To write programs for microcontrollers and their applications in Assembly and Embedded C Language.

#### **Course outcomes:**

- Understand the detailed architecture of 8051 and ARM7 microcontroller.
- Study the in-depth working of the microcontrollers and their Instruction set.
- Interface various peripheral devices to the microcontrollers.
- Write Assembly language and Embedded C program for microcontrollers.

Unit No.	Topics	Hrs.
	8051 Microcontroller	12
1.1	Comparison between Microprocessor and Microcontroller	
1.2	Features, architecture and pin configurations	
1.3	CPU timing and machine cycle	
1.4	Input / Output ports	
1.5	Memory organization	
1.6	Counters and timers	
1.7	Interrupts	
1.8	Serial data input and output	
	8051 Programming	08
2.1		
		1
	C	1
		1
	<u> </u>	06
3 1		00
		1
		1
3.3		08
41		00
		1
		1
		1
	•	1
		1
	1 / 1	1
4./	• •	08
5 1	<u> </u>	UO
		1
		1
<u> </u>	Single-Register Load-Store Instructions	1
		1
		1
2.0		06
6.1		00
6.2	Timer Mode	1
	THE THE INDUCE	1
6.3	Pulse –Width Modulator Configuration	
	No.  1.1 1.2 1.3 1.4 1.5 1.6	No.  8051 Microcontroller  1.1 Comparison between Microprocessor and Microcontroller  1.2 Features, architecture and pin configurations  1.3 CPU timing and machine cycle  1.4 Input / Output ports  1.5 Memory organization  1.6 Counters and timers  1.7 Interrupts  1.8 Serial data input and output  8051 Programming  2.1 Instruction set  2.2 Addressing mode  2.3 Assembler Directives  2.4 Programs related to: arithmetic, logical, delay, input, output, timer, counters, port, serial communication, and interrupts  8051 Interfacing and Applications  3.1 Interfacing of Display: LED, LCD and Seven Segment display  3.2 Stepper Motor and Relay  3.3 UART  ARM7: A 32 bit Microcontroller  4.1 The RISC and the CISC design philosophy  4.2 Concept of Cortex-A, the Cortex-R and the Cortex-M  4.3 Features of ARM Microcontroller  4.4 Pipeline Architecture  4.5 Registers  4.6 Exceptions, Interrupt and Vector Table  4.7 Memory Management  ARM7 Programming  5.1 Data Processing Instructions  5.2 Conditional and Branching Instructions  5.3 ARM-THUMB Interworking  5.4 Single-Register Load-Store Instructions  5.5 Stack Instructions  5.6 Software Interrupt Instructions  ARM Programming with Embedded C

- 1. M. A. Mazidi, J. G. Mazidi and R. D. Mckinlay, "The 8051 Microcontroller & Embedded systems", Pearson Publications, Second Edition 2006.
- 2. C. Kenneth J. Ayala and D. V. Gadre, "The 8051 Microcontroller & Embedded system using assembly & 'C'", Cengage Learning, Edition 2010.
- 3. Satish Shah, "The 8051 Microcontrollers", Oxford publication first edition 2010.
- 4. Andrew Sloss, Dominic Symes, and Chris Wright, "ARM System Developer's Guide" Morgan Kaufmann Publishers, First Edition 2004.
- 5. Lyla Das, "Embedded Systems: An Integrated Approach", Pearson Publication, First Edition 2013
- 6. James A. Langbridge, "Professional Embedded Arm Development", Wrox, John Wiley Brand& Sons Inc., Edition 2014

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	To	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
ECC602	Computer	04			04			04	
	Communicati								
	on Networks								

	Subject Name	Examination Scheme								
Subject Code		Theory Marks								
		Internal assessment				Term	Practical & Oral	Oral	Total	
Code					Ella Selli.	Work	ork & Oral	Orai	Total	
		Test 1	Test2	1 and Test 2	Exam					
ECC602	Computer	20	20	20	80	-			100	
	Communicati									
	on Networks									

## **Course Pre requisite:**

• Analog Communication

## **Course objectives:**

- To introduce analysis and design of computer and communication networks.
- To design and configure a network for an organization. To implement client-server socket programs.
- To analyse the traffic flow and the contents of protocol frames.

#### Course outcomes:

- Design a small or medium sized computer network including media types, end devices, and interconnecting devices that meets a customer's specific needs.
- Perform basic configurations on routers and Ethernet switches.
- Demonstrate knowledge of programming for network communications.
- Learn to simulate computer networks and analyse the simulation results.
- Troubleshoot connectivity problems in a host occurring at multiple layers of the OSI model.
- Develop knowledge and skills necessary to gain employment as computer network engineer and network administrator.

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction	06
	1.1	Network Applications	
	1.2	Network Hardware	
	1.3	Network Software	
	1.4	Reference Models, overview of TCP/IP, layer Functions, services, sockets and ports, Encapsulation.	
2.0		Introduction to Physical layer Services and System	08
	2.1	Introduction to physical media, Coax, RJ 45, fiber, twisted pair, DSL, HFC, WiMax, cellular, satellite, and telephone networks, bit transmission, frequency division multiplexing. time division multiplexing.	
3.0		The Data Link Layer	08
	3.1	Data link Layer Design Issues	
	3.2	Error Detection and Correction	
		Elementary Data Link Protocols, Sliding Window Protocols	
		Example Data Link Protocols: HDLC: High-Level Data Link Control, The Data Link Layer in The Internet.	
4.0		The Medium Access Sub- Layer	06
	4.1	Channel Allocation Problem.	
	4.2	Multiple Access Protocols.	
5.0		The Network Layer	10
	5.1	Network Layer Design Issues.	
	5.2	Routing Algorithms.	
	5.3	Congestion Control Algorithms, Quality of Service.	
	5.4	Internetworking.	
	5.5	The Network Layer In The Internet: The IP Protocol, IPv4 header, IP Addressesing, Subnetting.	
	5.6	Internet Control Protocols, The Interior Gateway Routing Protocol:	
		OSPF, The Exterior Gateway Routing Protocol: BGP.	
6.0		The Transport Layer	10
	6.1	The Transport Service.	
	6.2	Elements of Transport Protocols.	
	6.3	The Internet Transport Protocol: UDP	
	6.4	The Internet Transport Protocol: TCP:-Introduction to TCP, The TCP Service Model. The TCP Protocol.	
	6.5	The TCP Segment Header.	
	6.6	TCP Connection Establishment, TCP Connection Release.	
	6.7	Modeling TCP Connection Management.	
	6.8	TCP Transmission Policy.	
	6.9	TCP Congestion Control.	
	6.10	TCP Timer Management, Transactional TCP.	

	Total	48

- 1. A. S. Tanenbaum,"Computer Networks", 4th edition, Prentice Hall
- 2. B. F. Ferouzan,"Data and Computer Communication", Tata McGraw Hill.

### **Reference Books:**

- 1. Peterson & Davie, "Computer Networks", 2nd Edition, Morgan Kaufmann.
- 2. Kurose, Ross, "Computer Networking", Addison Wesley
- 3. S. Keshav, "An Engg, Approach To Computer Networking", Addison Wesley.
- 4. W. Richard Stevens, "TCP/IP Volume1, 2, 3", Addison Wesley.
- 5. D. E. Comer, "Computer Networks And Internets", Prentice Hall.
- 6. B. F. Ferouzan, "TCP/IP Protocol Suite", Tata McGraw Hill.

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	To	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
ECC603	Antenna &	04			04			04	
	Radio Wave								
	Propagation								

	Subject Name	Examination Scheme								
Subject		Theory Marks								
Subject Code		Internal assessment				Term	Practical & Oral	Oral	Total	
Code	1 (0.2220			Avg. Of Test	Ena Sem.	Work	& Oral	Orai	Total	
		Test 1	Test2	1 and Test 2	Exam					
ECC603	Antenna &	20	20	20	80				100	
	Radio Wave									
	Propagation									

## **Prerequisites:**

- Electromagnetic Field
- Two port network
- Transmission Line

## **Course objectives:**

- To learn fundamental parameters of Antenna
- To learn about linear wire antenna elements and Antenna arrays
- To learn about Special types of Antennas
- To learn about Antenna measurements and radio wave propagation

### **Course outcomes:**

- Define Basic antenna parameters like radiation pattern, directivity and gain.
- Derive the field equations for the basic radiating elements like linear wire antenna and loop antenna.
- Design of uniform linear and planar antenna arrays using isotropic and directional Sources.
- Implement special types of Antennas like microstrip antennas and reflectors.

Module No.	Unit No.	Topics	Hrs.
1.0	- \ \ \	Antenna Fundamentals	08
	1.1	Introduction, Radiation Mechanism, basic antenna parameters, Radiation pattern, radiation power density, radiation intensity, Beamwidth, directivity, Antenna efficiency, Gain, beam efficiency, bandwidth, polarization, input impedance, antenna vector effective length and equivalent areas, Antenna radiation efficiency, FRIIS transmission equation	
	1.2	Basic concepts of Maxwell's equation, vector potential, wave equation, near field and far field radiation, dual equations for electric and magnetic current sources.	
2.0		Wire Elements: Dipoles, Monopoles, Loops and Helical	12
	2.1	Infinitesimal dipole, radiation fields, radiation resistance, radiation sphere, near field, far field directivity, small dipole, finite length dipole, half wave length dipole, linear elements near or on infinite perfect conductors, Monopole antenna, Folded dipole. Design of dipole and monopole antenna	
	2.2	Loop Antenna: Small circular loop, comparison of small loop with short dipole, Ferrite loop, radiation patterns its parameters and their application.	
	2.3	Helical Antennas: Input impedance matching, Axial mode and normal mode propagation, Circular polarization using Helical Antenna	
3.0		Arrays	12
	3.1	Linear arrays, Array of two isotropic point sources, linear arrays of N elements, principle of pattern multiplication applicable to non-isotropic sources, Phase scanning arrays, broadside and End-fire Array, Increased Directivity end fire array, Calculations of Directivity, Beam width, Maxima and null directions for N-element Array.	
	3.2	Introduction to planner and circular arrays	
4.0	3.3	Design of Yagi antenna and Log Periodic antenna	06
4.0	4.1	Aperture Antennas  Horn Antennas :E-Plane Sectoral Horn, H-Plane Sectoral Horn, Pyramidal Horn, Conical Horn	00
	4.2	Reflector Antennas: Introduction, Plane Reflector, Corner Reflector, Parabolic Reflector, Design considerations	
5.0		Patch Antenna	04
	5.1	Microstrip antenna (MSA): Introduction, Feeding Techniques, Regular Shape MSAs (Rectangular, Circular, Equilateral Triangular), Design of Regular shape MSAs	
6.0		Antenna Measurements & Wave Propagation	06

	Antenna Measurements: Measurement of Antenna parameters: Input Impedance, Radiation Pattern, Gain (Two and Three antenna	
	method), Polarization.	
	<b>Ground Wave Propagation:</b> Ground waves, effect of Earth's Curvature on Ground wave propagation, impact of imperfect earth	
	Sky Wave Propagation Ionosphere and Earth magnetic field effect, Critical frequency, Angle of incidence, Maximum usable frequency, Skip distance, Virtual height, Variations in ionosphere and Attenuation and fading of waves in ionosphere	
6.4	Space Wave Propagation	
	Total	48

- 1. C. A. Balanis, Antenna Theory: Analysis and Design (3rd eds.), John Wiley & Sons, Hoboken, NJ, 2005.
- 2. J. D. Kraus, R. J. Marhefka, A.S. Khan "Antennas & Wave Propagation", McGraw Hill Publications, 4th Edition, 2011
- 3. G. Kumar, K. P. Ray, Broadband Microstrip Antenna, Artech House, 2002.

### **Reference Books:**

- 1. Stutzman, Theile, "Antenna Theory and Design", John Wiley and Sons, 3rd Edition
- 2. R. E. Collin, "Antennas and Radio Wave Propagation", International Student Edition, McGraw Hill.

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total
ECC604	Image	04			04			04
	Processing &							
	Machine							
	Vision							

	Subject Name	Examination Scheme								
Subject		Theory Marks								
Code		Internal assessment					<b>Practical</b>	Oral	Total	
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral		Iotai	
ECC604	Image Processing & Machine Vision	20	20	20	80				100	

## **Prerequisites:**

- Signals and Systems
- Discrete Time Signal Processing

## **Course objectives:**

- To cover the fundamentals and mathematical models in digital image processing and Machine Vision
- To develop time and frequency domain techniques for image enhancement.
- To expose the students to classification techniques in Machine Vision
- To develop Applications using image processing and Machine Vision

### **Course outcomes:**

- Understand theory and models in image processing.
- Interpret and analyze 2D signals in Spatial and frequency domain through image transforms.
- Apply quantitative models of image processing for segmentation and restoration for various applications.
- Find shape using various representation techniques and classify the object using different classification methods.

Module No.	Unit No.	Topics	Hrs.
1.0		Digital Image Fundamentals	04
	1.1	Introduction – Origin – Steps in Digital Image Processing, Components, Elements of Visual Perception – Image Sensing and Acquisition, Image Sampling and Quantization – Relationships between pixels, Transformation: Orthogonal, Euclidean, Affine	
	1.2	Color Image Processing: Color Fundamentals Color models.	
2.0		Image Transforms	06
	2.1	1-D DFT, 2-D Discrete Fourier Transform and Its Inverse, Some Properties of 2D DFT ,Walsh -Hadamard, Discrete Cosine Transform, Haar Transform	
3.0		Image Enhancement	08
	3.1	Image Negative, Log Transform, Power Law transform, Histogram equalization and Histogram Specification	
	3.2	<b>Spatial Domain</b> : Basics of Spatial Filtering, The Mechanics of Spatial Filtering, Generating Spatial Filter Masks—Smoothing and Sharpening Spatial Filtering	
	3.3	<b>Frequency Domain</b> :, The Basics of Filtering in the Frequency Domain, Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Laplacian, Unsharp Masking and Homomorphic filters	
4.0		Morphological & Image Restoration	06
	4.1	Morphology: Erosion and Dilation, Opening and Closing, The Hitor-Miss Transformation.  Restoration: Noise models – Mean Filters – Order Statistics – Adaptive filters – Pand rose Filters – Notab	
		Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters	
5.0		Patch Antenna	12
	5.1	Point, Line, and Edge Detection: Detection of Isolated Points, Line detection, edge models, basic and advance edge detection, Edge linking and boundary detection, Canny's edge detection algorithm	
	5.2	<b>Thresholding</b> : Foundation, Role of illumination, Basic Global thresholding	
	5.3	Region Based segmentation: Region Growing, Region Splitting and merging	
	5.4	<b>Region Identification</b> , chain code, simple geometric border representation, Fourier Transform of boundaries, Boundary description using segment sequences, B-spline representation	
6.0		Boundary Description & Object Recognition	12

6.1	<b>Texture:</b> Statistical Texture Description Methods- Methods based on spatial frequencies, co-occurrence matrices, edge frequency, primitive length, Law's texture energy measures	
6.2	Object Recognition  Knowledge representation, Classification Principles, Classifier setting, Classifier Learning, Support vector machine, cluster analysis	
	Total	48

- 1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision" Cengage Engineering, 3rd Edition, 2013
- 2. Gonzales and Woods, "Digital Image Processing", Pearson Education, India, Third Edition,

## **Reference books:**

- 1. Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First Edition, 1989.
- 2. W Pratt, "Digital Image Processing", Wiley Publication, 3rd Edition, 2002

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
ECCDLO 6021	Digital VLSI Design	04			04			04	

Subject Code	Subject Name	Examination Scheme									
		Theory Marks									
		Internal assessment			Ter	Term	Practical & Oral	Oral	Total		
		Test 1	Test2	Avg. Of Test 1 and Test 2	Ena Sem.	Work	& Oral	Oran	Total		
ECCDLO 6021	Digital VLSI Design	20	20	20	80				100		

## **Prerequisites:**

- Digital System Design
- Microelectronics

## **Course objectives:**

- To highlight the circuit design issues in the context of Digital VLSI technology
- A profound understanding of Digital VLSI design circuits using different design styles.
- To provides an exposure to RTL design and programming

#### **Course outcomes:**

- Understand the semiconductor technology, scaling and performance.
- Realize logic circuits with different design styles.
- To understand operation of memory, storage circuits and data path elements.
- Simulate and synthesize digital circuits using HDL language.
- Demonstrate an understanding of system level design issues such as protection, clocking, and routing.
- Learn the RTL design techniques and methodologies

Module	Unit	Topics	Hrs.
No. 1.0	No.	MOS Circuit Design Styles	10
1.0	1.1	Static CMOS, Dynamic CMOS, Pseudo NMOS, Domino, C ² MOS,	10
	1.1	NORA logic, NP Domino logic	
	1.2	Realization of Multiplexer (upto 4:1 Mux), Encoder, Decoder, SR Latch, JK FF, D FF, 1 Bit Shift Register with different design styles and their layouts	
2.0		Memory and Storage circuits	08
	2.1	ROM array, SRAM (operation, design strategy, leakage currents, read/write circuits), layout of SRAM	
	2.2	DRAM (Operation of 1T, 3T, operation modes, leakage currents, refresh operation, Input-Output circuits), layout of DRAM	
	2.3	Flash memory: NAND and NOR flash memory	
3.0		Data path design	08
	3.1	Full adder, Ripple carry adder, CLA adder, Carry Skip Adder, Carry Save Adder and carry select adder	
	3.2	Array Multiplier	
	3.3	Barrel shifter	
4.0		VLSI Clocking, Protection and Interconnect	06
	4.1	CMOS clocking styles, pipelined systems, Clock generation, stabilization and distribution	
	4.2	ESD protection, Input circuits, Output circuits, power distribution scheme	
	4.3	Interconnect delay model, interconnect scaling and crosstalk	
5.0		Design methods	08
	5.1	Semicustom, Full custom design, ASIC	
	5.2	PLA, PLD, PAL, FPGA	
	5.3	System based and Data path design using HDL	
6.0		RTL Design	08
	6.1	High Level state machines, RTL design process	
	6.2	Soda dispenser machine, laser based distance measure, Sum of absolute	
	6.3	FIR filter design	
		Total	48
		10001	10

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition, 2012.
- 2. P. Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons.
- 3. Frank Vahid, "Digital Design with RTL design, VHDL and VERILOG", John Wiley and Sons Publisher 2011.

- 4. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.
- 5. Samir Palnitkar,"Verilog HDL: A Guide to Digital Design and Synthesis", PHI, Second Edition
- 6. Douglas L. Perry "VHDL: Programming by Example", McGrawHill, 4th Edition

#### **Reference Books:**

- 1. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2nd Edition..
- 2. Volnei A. Pedroni, "Circuit Design and Simulation with VHDL", MIT Press, 2nd Edition

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
(022	Radar Engineering	04	1		04	1		04	

Subject Code	Subject Name	Examination Scheme									
		Theory Marks									
		Internal assessment			End	Term	Practical & Oral	Oral	Total		
		Test 1	Test2	Avg. Of Test 1 and Test 2	Sem. Exam	Work	& Oral	Oran	Total		
ECCDLO 6022	Radar Engineering	20	20	20	80				100		

## **Prerequisties:**

- Communication Fundamentals
- Electromagnetic field
- Transmission Lines and Antenna

## **Course objectives:**

- To interpret Radar equations
- To explain different types of radar
- To design RADAR transmitters and receivers for given conditions

## **Course outcomes:**

- Explain generalized concept of RADAR.
- Solve problems using radar equations.
- Describe different types of radar for specific application.
- Explain concept of tracking radar.
- Evaluate the design constraints for transmitter.
- Evaluate the design constraints for receiver.

Module No.	Unit No.	Topics	Hrs.
1.0	1100	Introduction to Radar	04
	1.1	Basics Radar, Radar equation	
	1.2	Block Diagram, Radar Frequencies	
	1.3	Applications of Radar	
2.0		Radar Equation	08
	2.1	Detection of signal in noise	
	2.2	Receiver Noise and Signal-to-noise Ratio	
	2.3	Probability of detection and false alarm: Simple, complex Targets	
	2.4	Pulse Repetition Frequency	
3.0		MTI and Pulse Doppler Radar	12
	3.1	Introduction to Doppler and MTI radar, Doppler frequency shift	
	3.2	Simple CW Doppler radar, MTI radar block diagram	
	3.3	Delay line canceler	
	3.4	Moving-target-detection	
	3.5	Pulse Doppler radar	
4.0		Tracking Radar	08
	4.1	Monopulse tracking	
	4.2	Conical scan and sequential lobbing	
	4.3	Limitation of tracking accuracy	
	4.4	Low angle tracking	
5.0		Radar Transmitters	10
	5.1	Radar RF power sources: Klystron, Travelling wave tube	
	5.2	Solid state RF power source: low power transmitter, high power	
		transmitter, Advantages of solid state RF power source	
	5.3	Magnetron: coaxial magnetron	
	5.4	Crossed field amplifiers: CFA operation, modulating a CFA, system	
		implementation	
6.0		Radar Receivers	06
	6.1	Receiver noise figure	
	6.2	Superheterodyne Receiver	
	6.3	Radar Display: Types of displays	
		Total	48

- 1. Merill Skolnik, -Introduction to RADAR Systems, Tata McGraw Hill, Third Edition
- 2. Merill Skolnik, -Radar Handbook, TataMcgraw Hill, Second Edition

### **Reference books:**

- 1. Mark A. Richards, James A. Scheer, William A. Holm, "Principles of Modern Radar Basic Principals", Scitech Publishing.
- 2. Simon Kingsley, Shaun Quegon, "Understanding Radar Systems", Scientech Publishing Inc.
- 3. G. S. N. Raju, "Radar Engineering and Fundamentals of Navigational Aids", I. K. International publishing House Pvt. Ltd.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	T	eaching Scho (Hrs.)	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Database	04			04			04
6023	Management							
	System							

	Subject		Examination Scheme								
Subject		Theory Marks									
Code	Name	Into	ernal ass	essment		Term	Practical & Oral	Oral	Total		
Couc	1 (MIII)			Avg. Of Test	Ena Sem.	Work			Total		
		Test 1	Test2	1 and Test 2	Exam						
<b>ECCDLO</b>	Database	20	20	20	80				100		
6023	Management										
	System										

• Basic knowledge of programming

# **Course objectives:**

- Learn and practice data modeling using the entity-relationship and developing database designs.
- Understand the use of Structured Query Language (SQL) and learn SQL syntax.
- Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access

### **Course outcomes:**

- Understand the different issues involved in the design and implementation of a database system.
- Transform an information model into a relational database schema and to use a data definition language and/or utility to implement the schema using a DBMS.
- Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database.
- Understand the concepts of constraints, views, concurrency control, deadlock

Module No.	Unit No.	Topics	Hrs.
1.0	110.	Introduction to Databases and Transactions	02
	1.1	Introduction to databases, History of database system, Benefits of Database system over file system, relational databases, database architecture, transaction management	
2.0		Data Models	06
	2.1	The importance of data models, Basic building blocks, Business rules, Evolution of data models (hierarchical, Network, Relational, Entity relationship and object model), Degrees of data abstraction.	
3.0		Database Design, ER-Diagram and Unified Modeling Language	10
	3.1	Database design and ER Model: overview, ER-Model, Constraints, ER-Diagrams, ERD Issues, weak entity sets, Codd's rules, Relational Schemas, Introduction to UML Relational database model: Logical view of data, keys, integrity rules. Relational Database design: features of good relational database design, atomic domain and Normalization (1NF, 2NF, 3NF, BCNF).	
4.0		Relational Algebra and Calculus	10
	4.1	Relational algebra: introduction, Selection and projection, set operations, renaming, Joins, Division, syntax, semantics. Operators, grouping and ungrouping, relational comparison. Calculus: Tuple relational calculus, Domain relational Calculus, calculus vs algebra, computational capabilities.	
5.0		Constraints, Views and SQL	10
	5.1	What is constraints, types of constraints, Integrity constraints, Views: Introduction to views, data independence, security, updates on views, comparison between tables and views SQL: data definition, aggregate function, Null Values, nested sub queries, Joined relations. Triggers.	
6.0		Transaction management and Concurrency control	10
	6.1	Transaction management: ACID properties, serializability and concurrency control, Lock based concurrency control (2PL, Deadlocks), Time stamping methods, optimistic methods, database recovery management.	
		Total	48

- 1. A Silberschatz, H Korth, S Sudarshan, "Database System and Concepts", Fifth Edition McGraw-Hill
- 2. Rob, Coronel, "Database Systems", Seventh Edition, Cengage Learning.
- 3. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database System", Seventh Edition, Person.
- 4. G. K. Gupta: "Database Management Systems", McGraw Hill.

#### **Reference Books:**

- 1. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.
- 2. P.S. Deshpande, "SQL and PL/SQL for Oracle 11g, Black Book", Dreamtech Press
- 3. Mark L. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 5. Debabrata Sahoo "Database Management Systems" Tata McGraw Hill, Schaum's Outline

#### **E-Resources:**

- 1. https://www.tutorialspoint.com/dbms/index.htm
- 2. <a href="https://www.studytonight.com/dbms/">https://www.studytonight.com/dbms/</a>
- 3. https://beginnersbook.com/2015/04/dbms-tutorial/
- 4. https://www.w3schools.in/dbms/
- 5. https://www.tutorialcup.com/dbms

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)  Theory Practical Tutorial			Credits Assigned			
					Theory	Practical	Tutorial	Total
	Audio	04			04			04
6024	Processing							1

			Examination Scheme								
Subject	Subject	Theory Marks									
Subject Subject Name		Internal assessment				Term	Practical & Oral	Oral	Total		
Code	1 (6222			Avg. Of Test	End Sem. Work		& Oral	Orai	Total		
		Test 1	Test2	1 and Test 2	Exam						
<b>ECCDLO</b>	Audio	20	20	20	80				100		
6024	Processing										

Signal System

# **Course objectives:**

- To understand basic concepts and methodologies for the analysis and modeling of speech signal.
- To characterize the speech signal as generated by a speech production model.
- To understand the mechanism of speech and audio perception.
- To understand the digital representation of the speech waveform.
- To perform the analysis of speech signal using STFT.
- To extract the information of the speech or audio signals.
- To provide a foundation for developing application in this field.

#### **Course outcomes:**

- Demonstrate advanced Knowledge in Digital model representation of speech signal.
- Design and implement algorithms for processing speech and audio signals considering the properties of acoustic signals and human hearing.
- Analyze speech signal to extract the characteristic of vocal tract (formants) and vocal cords (pitch).
- Formulate and design a system for speech recognition and speaker recognition.
- Acquired knowledge about audio and speech signal estimation and detection.

Module	Unit	Topics	Hrs.
No. 1.0	No.	Introduction	06
100	1.1	Review of digital signal and systems, Transforms representations of signal and systems, Sampling Theorem, Goertzel algorithm, Chirp algorithm.	
2.0		Digital Models for Speech signals	06
	2.1	Speech production and acoustic tube modeling, acoustic phonetics, anatomy, and physiology of the vocal tract and ear, hearing and perception.	
3.0		Digital Representations of the Speech Waveform	08
	3.1	Sampling speech signals, Instantaneous quantization, Adaptive quantization, Differential quantization, Delta Modulation, Differential PCM, Comparison of systems, Direct digital code conversion.	
4.0		Time Domain Models for Speech Processing	12
	4.1	Time dependent processing of speech, Short time energy and average magnitude, Short time average zero crossing rate, Speech V/S silence discrimination using energy & Zero crossings, Pitch period estimation, Short time autocorrelation function, Short time average magnitude difference function, Pitch period estimation using autocorrelation function, Median smoothing.	
5.0		Short time Fourier Transform	10
	5.1	Introduction- Definition and Properties, Fourier Transform Interpretation ,Linear Filtering Interpretation ,Sampling rates of $X_n$ ( $e^{jw}$ ) in Time and Frequency ,Filter Bank Summation Method of Short -Time Synthesis ,Overlap Addition Method for Short -Time Synthesis.	
6.0		Speech and Audio Processing	06
	6.1	Vocoder- Voice excited channel vocoder, Voice excited and error signal excited LPC vocoders. Adaptive predictive coding of speech, Auditory Modeling. Audio signal processing for Music applications. Speech recognition pattern comparison techniques, Artificial Neural Network.	
		Total	48

- 1. L R Rabiner and S W Schafer, "Digital processing of speech signals", Pearson Education, 2009.
- 2. L R Rabiner, B H Juang, B Yegnanarayana, "Fundamentals of speech Recognition", Pearson Education, 1993.

#### Reference Books

- 1. Thomas F Quateri, "Discrete Time Speech Signal Processing "Pearson Edition, 2006.
- 2. Ben Gold and Nelson Morgan, "Speech & Audio Signal Processing", wiley, 2007.
- 3. Douglas O Shaughnessy, "Speech Communications", 2nd Edition, Oxford university press, 2000.

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Tea	aching Sche (Hrs.)	hing Scheme (Hrs.)		Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL601	Microcontrol ler & Applications Laboratory		02			1		1	

			Examination Scheme								
Subject	Subject	Theory Marks									
Code	Name	Inte	Internal assessment End		End Sem.	Term	Practical & Oral	Oral	Total		
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Oran	Total		
ECL601	Microcontrol ler & Applications Laboratory					25	25		50		

- 1. Perform Arithmetic and Logical Operations
- 2. Transfer of data bytes between Internal and External Memory
- 3. Experiments based on General Purpose Input-Output, Timers, Interrupts, Delay, etc
- 4. Interfacing of LED,LCD, Stepper Motor, UART

Mini project based on any application related to 8051 or ARM7 can be implemented.

Note: Mini Project can be considered as a part of term-work.

## Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Te	aching Sche (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL602	Computer		02			1		1	
	Communicati								
	on Network								
	Laboratory								

				Examin	ation Sch	eme			
Subject	Cubicat	Theory Marks					Practical & Oral	Oral	
-	Subject Subject Name		Internal assessment			Term			Total
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Orai	1 Otal
				1 and 1 est 2	Exam				
ECL602	Computer					25	25		50
	Communicatio								
	n Network								
	Laboratory								

- 1. Create a Virtual Network using NETKIT emulator and use networking commands like route, arp, netstat, traceroute, ping on created topology.
- 2. To study installation and configuration of NS 2.35 simulator.
- 3. Design a connectionless and connection oriented network topology for static routing and dynamic routing with the help of NS2 simulator.
- 4. To study three way handshaking process as well as working process for connection oriented Protocols like FTP, TELNET and analysing packets generated by using packet capturing tool like tcpdump
- 5. To implement stream socket that can serve multiple clients at the same time.
- 6. To study requirements and scope of Subnetting and Network Translation by using Netkit Emulator.
- 7. Case Study: To study installation of linux operating system by using DHCP, TFTP and any repository server like HTTP, FTP or NFS.

Note: Small Project can be considered as a part of term-work.

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Tea	aching Sche (Hrs.)	ching Scheme (Hrs.)		Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL603	Antenna & Radio Wave		02			1		1	
	Propagation Laboratory								

			Examination Scheme								
Subject	Subject	Theory Marks									
Code	Name	Inte	Internal assessment		End Sem.	Term	Practical & Oral	Oral	Total		
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	Exam Work	Total					
ECL603	Antenna & Radio Wave Propagation Laboratory					25	25		50		

- Introduction to different Antenna parameters and its importance
- Introduction to Different Antenna Types
- Study of Radiation pattern of dipole, folded dipole and Monopole antenna
- Study of Antenna Arrays N element array for given angle, Parametric study for various arrays parameters
- Study of Yagi-Uda Antenna
- Study of Aperture Antennas Horn / Reflector Antennas
- Design, implementation and Pattern measurement of Regular shape MSA
- Case Study of Recent reported variations of Antenna types (Paper from reputed journal is to be referred and thoroughly study and present the report, maximum four students per group)

Note: Small Project can be considered as a part of term-work.

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total		
ECL604	Image Processing and Machine Vision Laboratory	-	02			1		1		

				Examir	nation Sch	eme			
Subject	Subject		The	ory Marks					
Code	Name	Inte	Internal assessment		End Sem.	Term Work	Practical & Oral	Oral	Total
Code		Test 1 Test2		Avg. Of Test 1 and Test 2	End Sem. Exam				Total
ECL604	Image					25	25		50
	Processing								
	and Machine								
	Vision								
	Laboratory								

• At least 8 programs written in C/MATLAB software

Note: Small Project can be considered as a part of term-work.

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Tea	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory Practical Tutorial			Theory	TW/Pracs	Tutorial	Total		
ECLDLO 6021	Digital VLSI Design Laboratory		02			1		1		

			Examination Scheme										
Subject	Subject		The	ory Marks									
Code	Subject Name	Inte	Internal assessment End			Term Work	Practical & Oral	Oral	Total				
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Orun	Total				
ECLDLO	Digital VLSI					25			25				
6021	Design												
	Laboratory												

- 1. At least **08** experiments covering entire syllabus of Digital VLSI should be set to have well predefined inference and conclusion.
- 2. The first 05 experiments as described below can be conducted by using Free or Professional tools
  - 01 experiments on Layouts of NAND and NOR gates to understand design rules
  - 01 experiment on Layout design of logical expression
  - 01 experiments on NAND/NOR gate implementation using at least 03 design styles
  - 02 experiment on Multiplexer/Decoder/Flip flop/Memory etc design
- 3. Last **03** experiments on HDL

# Note: Small Project can be considered as a part of term-work. Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Tes	aching Sche (Hrs.)	me	Credits Assigned				
		Theory Practical Tutorial			Theory	TW/Pracs	Tutorial	Total	
ECLDLO 6022	Radar Engineering Laboratory		02			1		1	

			Examination Scheme										
Subject	Subject		Theory Marks										
Code	Subject Name	Internal assessment			End Sem.	Term	Practical & Oral	Oral	Total				
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral		Total				
ECLDLO	Radar					25			25				
6022	Engineering												
	Laboratory												

Note: Small Project can be considered as a part of term-work.

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total		
ECLDLO 6023	Database Management System Laboratory		02			1		1		

				Examir	nation Sch	eme			
Subject	Subject		The	ory Marks					
Code	Name	Internal assessment			End Sem.	Term Work	Practical	Oral	Total
Coue	- 100	Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Oran	Total
ECLDLO	Database					25			25
6023	Management System								
	Laboratory								

- Design a Database and create required tables. For e.g. Bank, College Database
- Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- Write a sql statement for implementing ALTER, UPDATE and DELETE
- Write the queries to implement the joins
- Write the query for implementing the following functions: MAX (), MIN (), AVG (), COUNT ()
- Write the query to implement the concept of Integrity constrains
- Write the query to create the views
- Perform the queries for triggers
- Perform the following operation for demonstrating the insertion, updation and deletion using the referential integrity constraints
- Write the query for creating the users and their role

## List of Mini projects:

Note: These are few examples of mini projects; teachers may prepare their own list.

- 1. Library Management System
- 2. Hospital Management System
- 3. Pharmacy Management System
- 4. Human Resource Database Management System in Java
- 5. Student Database Management System
- 6. Employee Management System
- 7. Inventory Control Management Database

- 8. Pay Roll Management System
- 9. Railway System Database
- 10. Airline Reservation System
- 11. Blood Donation System
- 12. School Management System

### **Online Repository Sites:**

- 1. Google Drive
- 2. GitHub
- 3. Code Guru

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)  Theory Practical Tutorial			Credits Assigned					
					Theory	TW/Pracs	Tutorial	Total		
ECLDLO 6024	Audio Processing Laboratory		02			1		1		

	Subject		<b>Examination Scheme</b>										
Subject			Theory Marks										
Subject Subject Name		Internal assessment End Sem.				Term	Practical & Oral	Oral	Total				
Couc	- 101	Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Oran	Total				
<b>ECLDLO</b>	Audio					25			25				
6024	Processing												
	Laboratory												

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

Subject Code	Subject Name	Teaching Scheme (Hrs.)  Theory   Practical   Tutorial			Credits Assigned				
					Theory	Practical	Tutorial	Total	
ECC701	Microwave	04			04			04	
	Engineering								

			Examination Scheme										
Subject	Subject		Theory Marks										
Code	Name	Internal assessment				Term	Practical & Oral	Oral	Total				
				Avg. Of Test	End Sem. Work		& Oral	Orai	Total				
		Test 1	Test2	1 and Test 2	Exam								
ECC701		20	20	20	80				100				
	Microwave												
	Engineering												

- Electromagnetic Engineering
- Antenna and Radio Wave Propagation
- Communication Engineering

# **Course objectives:**

- To learn fundamentals of microwave systems.
- To learn to make system level design decisions.
- To learn passive and active device characteristics

### **Course outcomes:**

- Characterize devices at higher frequencies.
- Design and analyze microwave circuits.
- Design and analyze amplifiers and oscillators at microwave frequencies.
- Demonstrate skills of planning, design and deployment of microwave networks.

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction to Microwaves	08
	1.1	Microwave Frequency Bands in Radio Spectrum, Characteristics, Advantages and Applications of Microwaves.	
	1.2	Scattering parameters: Characteristics and Properties.	
	1.3	Strip lines, Microstrip lines and coupled lines: Analysis and design.	
	1.4	Design of Impedance matching network using lumped and distributed parameters.	
2.0		Waveguides and Passive Devices	08
	2.1	Rectangular and circular waveguides: Construction, Working and Mode analysis.	
	2.2	Resonators, Re-entrant cavities, Tees, Hybrid ring, Directional couplers, Phase shifters, Terminations, Attenuators and Ferrite devices such as Isolators, Gyrators, and Circulators.	
3.0		Microwave Tubes	10
	3.1	Two Cavity Klystron, Multi-Cavity Klystron and Reflex Klystron.	
	3.2	Helix Travelling Wave Tube and Cross Field Amplifier.	
	3.3	Backward Wave Oscillator, Cylindrical Magnetron and Gyrotron.	
4.0		Microwave Semiconductor Devices	10
	4.1	Diodes: Varactor, PIN, Tunnel, Point Contact, Schottky Barrier, Gunn, IMPATT, TRAPATT, and BARITT.	
	4.2	Transistors: BJT, Hetro junction BJT, MESFET, and HEMT	
	4.3	Parametric Amplifiers and Applications.	
5.0		Microwave Measurements	06
	5.1	VSWR, Frequency, Power, Noise, Q-Factor, Impedance, Attenuation,	
		Dielectric Constant, Antenna Gain.	2.5
6.0		Microwave Integrated Circuits (MIC)	06
	6.1	MIC Materials.	
	6.2	Types of MIC: Hybrid and Monolithic MIC.	
	6.3	Chip Mathematics.	40
		Total	48

- 1. Samuel Liao, "Microwave Devices and Circuits", Prentice Hall
- 2. David Pozar, "Microwave Engineering", Wiley Publication, Fourth Edition
- 3. Matthew M. Radmanesh, "Radio Frequency and Microwave Electronics", Pearson Education.
- 4. Annapurna Das and S. K Das, "Microwave Engineering", McGraw Hill Education, Third Edition.

#### **References:**

- 1. Colin, Foundations of Microwave Engineering, Second Edition, Wiley Interscience, 2nd Edition.
- 2. Devendra Misra, "Radio Frequency and Microwave Communication Circuits- Analysis and Design", John Wiley & Sons, 2nd Edition

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC702	Mobile	04			04			04
	Communicati							
	on System							

	Cubicat	Examination Scheme								
Subject		Theory Marks								
Code	Subject Name	Internal assessment				Term Work		Oral	Total	
Couc	Coue				Ena Sem.	Work	& Oral	Orai	Total	
		Test 1	Test2	1 and Test 2	Exam					
ECC702	Mobile	20	20	20	80	-			100	
	Communicati									
	on System									

- Analog Communication
- Digital Communication
- Computer Communication and Networks

## **Course objectives:**

- To understand the cellular fundamentals and different types of radio propagation models.
- To study the system architecture of 2G, 2.5 G and 3G.
- To develop the concepts of emerging technologies for 4 G standards and beyond.

#### **Course outcomes:**

- Explain the cellular fundamentals and estimate the coverage and capacity of cellular systems.
- Classify different types of propagation models and analyze the link budget.
- Illustrate the fundamentals and system architecture of GSM, 2.5G and IS-95.
- Apply the concepts of 3G technologies of UMTS and CDMA 2000.
- Elaborate the principles of 3GPP LTE.
- Identify the emerging technologies for upcoming mobile communication systems.

Module No.	Unit No.	Topics	Hrs.
1.0		Fundamentals of Mobile Communication	08
	1.1	<b>Introduction to wire1ess communication:</b> Mobile radio telephony, Examples of Wireless Communication Systems, Related design problems.	
	1.2	The Cellular Concept System Design Fundamentals: Frequency Reuse, Channel Assignment Strategies, Interference and System Capacity, Trunking and Grade of Service, Improving Coverage and Capacity in Cellular Systems	
2.0		Mobile Radio Propagation	08
	2.1	Large scale fading: Free space propagation model, the three basic propagation mechanisms, reflection, ground reflection (two-ray) model, diffraction, scattering, practical Link budget design using path loss models	
	2.2	<b>Small scale fading:</b> Small scale multipath propagation, parameters of mobile multipath channels, types of small-scale fading, Rayleigh and Ricean distributions.	
	2.3	Features of all conventional multiple access techniques: Frequency division multiple access(FDMA), time division multiple access(TDMA), space spectrum multiple access (SSMA), space division multiple access (SDMA), OFDM-PAPR, OFDMA	
3.0		2G Technologies	10
	3.1	<b>GSM:</b> GSM Network architecture, GSM signalling protocol architecture, identifiers used in GSM system, GSM channels, frame structure for GSM, GSM speech coding, authentication and security in GSM, GSM call procedures, GSM hand-off procedures, GSM services and features	
	3.2	<b>GSM evolution:</b> GPRS And EDGE- architecture, radio specifications, channels.	
	3.3	<b>IS-95:</b> Architecture of CDMA system, CDMA air interface, power control in CDMA system, power control, handoff, rake receiver	
4.0		3G Technology	06
	4.1	<b>UMTS:</b> Objectives, standardisation and releases, network architecture, air interface specifications, channels, security procedure, W-CDMA air interface, attributes of W-CDMA system, W-CDMA channels	
_	4.2	<b>Cdma2000 cellular technologies:</b> Forward And Reverse Channels, Handoff And Power Control.	
5.0		3GPP LTE	08

	5.1	<b>Introduction, system overview</b> : Frequency bands and spectrum flexibility, network structure, protocol structure						
	5.2	<b>Physical layer</b> : Frames, slots, and symbols, modulation, coding, multiple-antenna techniques						
	5.3	<b>Logical and Physical Channels:</b> Mapping of data onto (logical) sub-channels.						
	5.4	<b>Physical layer procedures:</b> Establishing a connection, retransmissions and reliability, scheduling, power control, handover.						
6.0		Advanced techniques for 4G deployment	08					
	6.1	Multi-antenna Techniques: Smart antennas, multiple input multiple output systems						
	6.2	Cognitive radio: Architecture, spectrum sensing						
	6.3	Relaying multi-hop and cooperative communications: Principles						
		of relaying, fundamentals of relaying						
		Total	48					

- 1. Theodore S. Rappaport "wireless communications principles and practice", PEARSON, Second edition.
- 2. T L Singal "wireless communications", Mc Graw Hill Education.
- 3. Andreas F. Molisch "wireless communications" WILEY INDIA PVT LTD, Second edition.

#### **References:**

- 1. Upena Dalal "Wireless and Mobile Communications", Oxford university Press.
- 2. Vijay K.Garg "Wireless Communications and Networking", Morgan–Kaufmann series in Networking-Elsevier

#### **E-Resources:**

- 1. MIT Open Course ware: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-452-principles-of-wireless-communications-spring-2006/
- 2. NPTL: http://nptel.ac.in/courses/117104099/
- 3. Virtual Lab: http://vlab.co.in/

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC703	Optical	04			04			04	
	Communicati								
	on								

	Subject	Examination Scheme									
Subject			The		Practical & Oral						
Code	Subject Name	Internal assessment					Term	Oral	Total		
Couc				Avg. Of Test		Work	& Oral	Orai	Total		
		Test 1	Test2	1 and Test 2	Exam						
ECC703	Optical Communicati	20	20	20	80				100		
	Communicati										
	on										

- Physics
- Electromagnetic wave propagation
- Electronics devices and circuits
- Principles of communication

## **Course objectives:**

- List, write and explain fundamentals and transmission characteristics of optical fiber communication
- List, write and explain principles and characteristics of various sources ,detectors and various fiber optic components
- Calculate parameters for optical link budgeting and analyze the link

### **Course outcomes:**

- List, write and explain fundamentals and transmission characteristics of optical fiber Communication.
- List, write and explain principles and characteristics of various sources ,detectors and various fiber optic components
- Calculate parameters for optical link budgeting and analyze the link

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Optical Fiber and their properties	10
	1.1	Historical development, general system, advantages, disadvantages, and applications of optical fiber communication, optical fiber waveguides, Ray theory, cylindrical fiber (no derivations), single mode fiber, cutoff wave length, and mode filed diameter.  Wave guiding principles, Theory of optical wave propagation, Types and classification of optical fibers, loss and bandwidth	
2.0		Transmission Characteristics of Optical Fiber	12
	2.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal dispersion, waveguide dispersion, dispersion and pulse broadening, dispersion shifted and dispersion flattened fibers. General Overview of nonlinearties, Stimulated Raman Scattering, Stimulated Brillouin Scattering, Self Phase modulation, Cross—Phase modulation, Four wave mixing and its mitigation, Solitons. Measurements of attenuation, dispersion and OTDR	
3.0		Optical Sources	06
	3.1	Working principle and characteristics of sources (LED, LASER), Tunable lasers Quantum well lasers, Charge capture in Quantum well lasers, Multi Quantum well Laser diodes, Surface Emitting Lasers: Vertical cavity Surface Emitting Lasers	
4.0		Optical Detectors	06
	4.1	Working principle and characteristics of detectors (PIN, APD), Material requirement for RCEPD ,Resonant cavity enhancement (RCE) Photo Detector ,Noise analysis in detectors, coherent and non-coherent detection, receiver structure, bit error rate of optical receivers, and receiver performance	
5.0		Fiber Optic Components	08
	5.1	Fiber fabrication (VAD,MCVD), fiber joints, fiber connectors, splices Couplers, multiplexers, filters, fiber gratings, Fabry Perot filters, switches and wavelength converters, Optical amplifiers, basic applications and types, semiconductor optical amplifiers, EDFA.	
6.0		Optical Link	06
	6.1	Introduction, Point to point links, system considerations, link power budget, and rise time budget. RF over fiber, key link parameters, Radio over fiber links, microwave photonics.	
		Total	48

- 1. Optical Fiber Communication Gerd Keiser, 4th Ed., MGH, 2008.
- 2. Optical Fiber Communications— John M. Senior, Pearson Education. 3rd Impression, 2007.

### **References:**

- 1. Fiber optics communications-Harold Kolimbiris
- 2. Introduction to optical fibers, Cheri, McGraw Hill.
- 3. An introduction to fiber optics, A. Ghatak and K. Thyagrajan, Cambridge Univ, press 10
- 4. Optical fiber communication and sensors-M. Arumugam Agencies, 20002 optic sensors.
- 5. Fiber optic communication—Joseph C Palais: 4th Edition, Pearson Education.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	<b>Practical</b>	Tutorial	Theory	Practical	Tutorial	Total
	Neural networks & Fuzzy Logic	04			04			04

	Subject Name	Examination Scheme									
Subject			The	ı	Practical & Oral						
Code		Internal assessment					Term	Oral	Total		
Couc	1 (0.2220			Avg. Of Test	Ena Sem.	Work	& Oral	Orai	Total		
		Test 1	Test2	1 and Test 2	Exam						
<b>ECCDLO</b>	Neural	20	20	20	80				100		
7031	networks &										
	Fuzzy Logic										

- Numerical Methods
- Optimization Techniques

# **Course objectives:**

- To introduce the concepts and understanding of artificial neural networks
- To provide adequate knowledge about supervised and unsupervised neural networks
- To introduce neural network design concepts
- To expose neural networks based methods to solve real world complex problems
- To teach about the concept of fuzziness involved in various systems and provide adequate knowledge about fuzzy set theory, and fuzzy logic
- To provide knowledge of fuzzy logic to design the real world fuzzy systems

#### **Course outcomes:**

- Comprehend the concepts of biological neurons and artificial neurons
- Analyze the feed-forward and feedback neural networks and their learning algorithms.
- Calculate Comprehend the neural network training and design concepts
- Analyze the application of neural networks to non linear real world problem
- Comprehend the concept of fuzziness involved in various systems, fuzzy set theory and fuzzy logic
- Apply fuzzy logic to real world problems.

Module	Unit	Topics	Hrs.
No. 1.0	No.	Introduction to Neural Networks and their basic concepts:	07
	1.1	Biological neurons and Artificial neuron, McCulloch-Pitts models of neuron, Types of activation functions and Neural Network architectures, Pre-requisites for training of neural networks. Linearly separable and linearly non-separable systems with examples, Features and advantages of Neural Networks over statistical techniques, Knowledge representation, Terminologies related to artificial neural networks, Concepts of Supervised learning, Unsupervised learning, Reinforcement	
2.0		Supervised Learning Neural Networks:	08
	2.1	Perceptron - Single Layer, Multilayer and their architecture, Error back propagation algorithm, Generalized delta rule, Concept of Training, Testing and Cross-validation data sets for design and validation of networks. Over-fitting. Stopping criterion for training.	
3.0		Unsupervised Learning Neural Networks:	09
	3.1	Competitive Learning Networks – Maxnet, Mexican Hat Net, Kohonen Self-Organizing Networks – architecture, training algorithm, K-means and LMS algorithms, Radial Basis Function (RBF) neural network – architecture and algorithm, and Discrete Hopfield networks. Introduction to the concept of Support Vector Machine based classifier.	
4.0		Applications of Neural Networks:	06
	4.1	Applications of Neural networks in pattern classification, Character Recognition, Face recognition, Image compression and Decompression	
5.0		Fuzzy logic:	12
	5.1	Introduction to fuzzy logic, Basic Fuzzy logic theory, Fuzzy sets properties & operations, Fuzzy relation - Operations on fuzzy relations, Fuzzy Membership functions, Fuzzy Rules and Fuzzy Reasoning, Fuzzification and Defuzzification methods, Fuzzy Inference Systems, Mamdani Fuzzy Models, Fuzzy knowledge based controllers.	
6.0		Applications of Fuzzy Logic and Fuzzy Systems:	06
	6.1	Fuzzy pattern recognition, fuzzy image processing, Simple applications of Fuzzy knowledge based controllers like washing machines, home heating system, and train break control.	
		Total	48

- 1. S. N. Sivanandam and S. N. Deepa Introduction to Soft computing, Wiley India Publications
- 2. Thimothy J. Ross, Fuzzy Logic with Engineering Applications, Wiley India Publications
- 3. John Yen and Reza Langari, Fuzzy Logic- Intelligence, Control and Information, Pearson Publications.
- 4. S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms, PHI
- 5. Satish Kumar, Neural Networks: A classroom Approach, Tata McGraw-Hill.
- 6. Meherotra Kishan, Mohan C. K., Ranka Sanjay, *Elements of artificial neural networks*, Penram Publications

#### **References:**

- 1. Hagan, Demuth, and Beale, *Neural Network Design*, Thomson Learning
- 2. Simon Haykin, Neural Network- A Comprehensive Foundation, Pearson Education
- 3. Christopher M Bishop, Neural Networks For Pattern Recognition, Oxford University Press
- 4. William W Hsieh, Machine Learning Methods in the Environmental Sciences Neural Network and Kernels, Cambridge Publications
- 5. S. N. Sivanandam, S. Sumathi, and S. N. Deepa, *Introduction to Neural Network Using Matlab* Tata McGraw-Hill Publications
- 6. Bart Kosko, Neural networks and Fuzzy Systems, Pearson Education
- 7. J. S. R. Jang, C.T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, PHI
- 8. J. M. Zurada, Introduction to Artificial Neural Systems, Jaico publishers

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	<b>Practical</b>	Tutorial	Theory	Practical	Tutorial	Total
ECCDLO 7032	Big Data Analytics	04		-1	04	1		04

Subject Code	Subject Name	Examination Scheme								
		Theory Marks								
		Internal assessment				Term	Practical & Oral	Oral	Total	
				Avg. Of Test	Ena Sem.	Work	& Oral	Orai	Total	
		Test 1	Test2	1 and Test 2	Exam					
<b>ECCDLO</b>		20	20	20	80				100	
7032	Big Data Analytics									
	Analytics									

• Data Base Management System

# **Course objectives:**

- To Provide an Overview of an exciting growing field of Big Data Analytics.
- To introduce the tools required to manage and analyze big data like Hadoop, NoSql, Map Reduce.
- To teach the fundamental techniques in achieving big data analytics with scalability and streaming capability.

### **Course outcomes:**

- Understand the key issues in big data management.
- Acquire fundamental enabling techniques using tools in big data analytics.
- Achieve adequate perspectives of big data analytics in various applications like sensor, recommender systems, social media applications etc.

Module No.	Unit No.	Topics		
1.0		Introduction to Big Data Analytics	06	
	1.1	Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach.		
	1.2	Technologies Available for Big Data, Infrastructure for Big Data, Big Data Challenges, Case Study of Big Data Solutions.		
2.0		Hadoop	06	
	2.1	Introduction to Hadoop. Core Hadoop Components, Hadoop Ecosystem, Physical Architecture, Hadoop limitations.		
3.0		NoSQL	08	
	3.1	Introduction to NoSQ, NoSQL business drivers, NoSQL case studies.		
	3.2	NoSQL data architecture patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns.		
	3.3	Using NoSQL to manage big data: What is a big data NoSQL solution? Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; Four ways that NoSQL systems handle big data problems		
4.0		MapReduce	08	
4.0	4.1	MapReduce and The New Software Stack: Distributed File Systems, Physical Organization of Compute Nodes, Large Scale File-System Organization.		
		MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.		
		Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations by MapReduce, Matrix Operations, Matrix Multiplication by MapReduce.		
5.0		Techniques in Big Data Analytics	12	
	5.1	Finding Similar Item: Nearest Neighbor Search, Similarity of Documents		
	5.2	Mining Data Streams: Data Stream Management Systems, Data Stream Model, Examples of Data Stream Applications: Sensor Networks, Network Traffic Analysis		
	5.3	Link Analysis: PageRank Definition, Structure of the web, dead ends, Using Page rank in a search engine, Efficient computation of Page Rank: Page Rank Implementation Using MapReduce		
	5.4	Frequent Itemset Mining: Market-Basket Model, Apriori Algorithm, Algorithm of Park-Chen-Yu		
6.0		Big Data Analytics Applications	08	

6.1	Recommendation Systems: Introduction, A Model for	
	Recommendation Systems, Collaborative-Filtering System: Nearest-	
	Neighbor Technique, Example.	
6.2	Mining Social-Network Graphs: Social Networks as Graphs, Types	
	of Social-Network. Clustering of Social Graphs: Applying Standard	
	Clustering Techniques, Counting triangles using MapReduce.	
	Total	48

- 1. Radha Shankarmani and M Vijayalakshmi "Big Data Analytics", Wiley
- 2. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 3. Dan McCreary and Ann Kelly "Making Sense of NoSQL" A guide for managers and the rest of us, Manning Press.

#### **References:**

- 1. Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics", Wiley
- 2. Chuck Lam, "Hadoop in Action", Dreamtech Press

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECCDLO 7033	Internet Communicati	04			04			04
7 000	on							
	Engineering							

Subject Code	Subject Name	Examination Scheme							
		Theory Marks					Practical	Oral	Total
		Internal assessment							
				Avg. Of Test	End Sem.	Work	& Oral	Orai	Total
		Test 1	Test2	1 and Test 2	Exam				
<b>ECCDLO</b>	Internet	20	20	20	80				100
7033	Communicati								
	on								
	Engineering								

- Analog communication
- Digital Communication
- Computer Communication and Networks

# **Course objectives:**

- To focus on Internet protocol, standards, services and administration.
- To discuss the Internet security protocol and security services
- To discuss multimedia communication standards and compression techniques
- To discuss the Multimedia communication across the networks

#### **Course outcomes:**

After successful completion of the course student will be able to

- Explain the operation of the components of a router including, DHCP, NAT/PAT, Routing function, Switching function.
- Describe how DNS works in the global Internet including caching and root servers.
- Understand the current state-of-the-art developments in Internet technologies for multimedia communications.
- Understand the security protocol and services In the Internet
- Appreciate the principles used in designing multimedia protocols, and so understand why standard protocols are designed the way that they are.
- Understand the system design principles of multimedia communications systems.
- Solve problems and design simple networked multimedia systems.

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction to Internet	06
	1.1	What is the Internet, Evolution of the Internet, Brief History and Growth of Internet, service description, Network protocol, the network edge	
	1.2	Overview of TCP/IP, layer functions,	
	1.3	Application Layer- Host configuration, DHCP Domain Name System (DNS), Multicast DNS	
	1.4	Remote Login, TELNET and SSH, HTTPs, electronic mail	
2.0		Transport Layer	10
	2.1	Properties of reliable stream delivery, Overview of TCP segment, TCP connection	
	2.2	Flow control, error control, congestion control	
	2.3	User datagram protocol(UDP) header, pseudo header	
	2.4	SCTP, introduction, Packet format,	
	2.5	Flow control, error control, congestion control	
3.0		Internetworking layer	08
	3.1	Overview of Internet protocol (IP) datagram, IP address classes, subnets and supernets	
	3.2	Private IP addresses, classless inter domain routing (CIDR), CIDR subnet addressing, variable length in CIDR subnet addressing, ICMP	
	3.3	Internet Protocol version 6 (IPv6), Packet format, Transition from IPv4 to IPv6, ICMPv6	
4.0		Internet Security	06
	4.1	Network layer security(AH, ESP, IPsec),	
	4.2	Transport layer security(SSL), Application layer security(secure E mail-PGP, S/MIME),	
	4.3	VPN Firewall, Intrusion Detection System.	
5.0		Multimedia Communications	10
	5.1	Information Representation- text, images, audio and video, Text and image compression, Audio and video compression, video	
	5.2	compression standards: H.261, H.263, P1.323, MPEG 1, MPEG 2, Other coding formats for text, speech, image and video	
	5.3	Multimedia Communication Across Networks- Layered video coding, error resilient video coding techniques,	

	multimedia transport across IP networks and relevant protocols such as RSVP, RTP, RTCP, DVMRP, Signalling Protocols: Real-Time Streaming Protocol (RTSP) ,Multimedia across wireless- (Mobiles Networks — Broadcasting Networks — Digital Television infrastructure for interactive multimedia services)	
6.0	Quality of Services (QoS)	08
	Integrated services (intserv): Architecture and Service Model, Resource Reservation Protocol (RSVP), Packet Scheduling Disciplines in the Internet	
	Differentiated Services (diffserv): Framework and Concept, Assured and Expedited Services, Packet Classification, Routers Internals and Packet Dropping Techniques	
	Total	48

- 1. B. Forouzan, —TCP/IP Protocol Suite, 4th Edition, McGraw-Hill Publication
- 2. K. R. Rao, Zaron S. Bojkovic, Dragorad A. Milocanovic, Multimedia Communication Systems, Prentice Hall India, 2002. ISBN: 81-203-2145-6.

#### **References:**

- 1. Steve Heath, Multimedia and Communication Technology, Second Edition, Focal Press, 2003.
- 2. ISBN: 81-8147-145-8. Ted Wallingford, —Switching to VoIPI, Oreilly Publication
- 3. Fred Halsall, "Multimedia Communications", Pearson education, 2001
- 4. K. R. Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic, "Multimedia Communication Systems", Pearson education, 2004
- 5. Raif steinmetz, Klara Nahrstedt, "Multimedia: Computing, Communications and Applications", Pearson education, 2002
- 6. Tay Vaughan, "Multimedia: Making it Work", 6th edition, Tata McGraw Hill, 2004
- 7. Pallapa Venkataram, "Multimedia information systems", Pearson education (InPress),2005.
- 8. Multimedia Communication Techniques and Standards

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

#### **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	<b>Practical</b>	Tutorial	Total	
<b>F</b> 0.2.4	CMOS Mixed Signal VLSI	04		1	04			04	

Subject Code		Examination Scheme									
	Subject		The	ory Marks							
	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total		
				Avg. Of Test	Ella Selli.	Work	& Oral	Orai	Total		
		Test 1	Test2	1 and Test 2	Exam						
ECCDLO	CMOS	20	20	20	80				100		
7034	Mixed Signal										
	VLSI										

## **Prerequisites:**

- Electronic Devices and Circuits I
- Electronic Devices and Circuits II
- Linear Integrated Circuits
- Microelectronics
- Digital VLSI

## **Course objectives:**

- Importance of CMOS and Mixed Signal VLSI design in the field of Electronics and Telecommunication.
- Underlying methodologies for analysis and design of fundamental CMOS Mixed signal Circuits like Data Converters.
- The issues associated with high performance Mixed Signal VLSI Circuits

## Course outcomes:

- Analyze and design single stage MOS Amplifiers.
- Analyze and design Operational Amplifiers.
- Analyze and design data converter circuits.
- Identify design requirements of analog and mixed signal circuits
- Analyze and design CMOS based switched capacitor circuits
- Understand Oscillators and Phase Locked Loops.

Module No.	Unit No.	Topics	Hrs.
1.0		Fundamentals of MOS Amplifiers	10
	1.1	MOS Single-stage Amplifiers: Basic concepts of common source stage, source follower, common gate stage, Differential Amplifiers:	
	1.2	Current mirrors: Basic current mirror, cascode current mirror, active current mirror, Wilson and Widlar current mirrors, voltage and current references.	
2.0		Design of MOS operational amplifier	08
	2.1	General considerations, One-Stage Op amps, Two-Stage Op amps, Gain Boosting, Input Range Limitation.	
	2.2	Frequency Response and Compensation, Slew Rate.	
3.0		Oscillators and Phase Locked Loops	08
	3.1	General Considerations, Ring Oscillators, LC Oscillators, Voltage Controlled Oscillators (VCO), tuning range, tuning linearity Mathematical Model of VCO.	
	3.2	Simple PLL-phase detector, Charge-pump PLL's, Non ideal effects in PLL, Delay locked Loops, applications of PLL.	
4.0	4.1	Switched Capacitor circuits	06
	4.1	Theory of sampled data systems, Basic sampling circuits for analog signal sampling, performance metrics of sampling circuits, design and analysis of switched capacitor circuits.	
	4.2	Switched capacitor amplifiers (SC), switched capacitor integrators, first and second order switched capacitor circuits.	
5.0		Data converters	06
	5.1	Analog versus digital discrete time signals, converting analog signals to data signals, sample and hold characteristics. DAC specifications, ADC specifications.	
	5.2	Mixed signal Layout issues, Floor planning, power supply and Ground issues, other interconnect Considerations.	
6.0		Data Converter Architectures	10
	6.1	DAC architectures: R-2R ladder networks, current steering, charge scaling DACs, Cyclic DAC, pipeline DAC, Switched capacitor based DAC design.	
	6.2	ADC architectures: flash, 2-step flash ADC, pipeline ADC, integrating ADC, and successive approximation ADC, Switched capacitor based ADC design	
		Total	48

#### **Text Books:**

- 1. Razavi, "Design of analog CMOS integrated circuits", McGraw Hill, Edition 2002.
- 2. Jacob Baker, "CMOS Mixed-Signal circuit design", IEEE Press, 2009.
- 3. P. E. Allen and D R Holberg, "CMOS Analog Circuit Design", second edition, Oxford University Press, 2002.
- 4. Baker, Li, Boyce, "CMOS: Circuit Design, layout and Simulation", PHI, 2000.
- 5. Sedra/Smith, "Microelectronic Circuits", Oxford University Press.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duation of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECCDLO 7035	Embedded Systems	04	-1	1	04			04

Subject Code	Subject Name	Examination Scheme									
			Theory Marks								
		Internal assessment				Term	Practical	Oral	Total		
				Avg. Of Test	End Sem. Work		& Oral	Orai	Total		
		Test 1	Test2	Avg. Of Test 1 and Test 2	Exam						
ECCDLO		20	20	20	80				100		
7035	Embedded										
	Systems										

- To develop background knowledge Embedded Systems.
- To understand communication techniques.
- To write programs for embedded systems and real time operating sytems

## **Course outcomes:**

- Understand the detailed processor design techniques and methods of communication.
- Study the in-depth program modelling concepts.
- Study the concepts of Real time operating systems and write programs
- Design embedded system applications using RTOS

Module No.	Unit No.	Topics	Hrs.
No. 1.0		Introduction:-	08
	1.1	Definition of Embedded System, Embedded Systems Vs General Computing Systems, Classification, Major Application Areas	
	1.2	Characteristics and quality attributes (Design Metric) of embedded system. Real time system's requirements, real time issues, interrupt latency. Embedded Product development life cycle	
	1.3	Program modeling concepts: DFG, FSM, Petri-net, UML	
2.0		Processor	08
	2.1	Overview of Custom Single-Purpose Processors, General-Purpose Processors,	
	2.2	Parallel Port example, Standard Single-Purpose Processors	
	2.3	RISC and CISC architectures	
	2.4	GCD example	
3.0		Communication	06
	3.1	CAN bus, I2C, MOD bus, SPI,	
	3.2	Examples on Parallel Communication, Serial Communication,	
		Wireless Communication	
4.0		Real Time Operating Systems[RTOS]	07
	4.1	Operating system basics	
	4.2	Types of OS	
	4.3	Tasks, process,Threads	
	4.4	Multiprocessing and ,Multitasking	
	4.5	Task scheduling	
	4.6	Threads, Process, Scheduling:- Putting them all together	
5.0			07
	5.1	Task communications,	
	5.2	Task synchronization	
	5.3	Device drivers	
	5.4	How to choose RTOS	
	5.5	Examples of RTOS	
6.0		Design examples and case studies of program model and programming with RTOS	12
	6.1	Digital Camera:-Introduction to simple digital camera, Requirements and specifications, Design using Microcontroller and Microcontroller and CCDPP	
	6.2	Automatic Chocolate Vending Machine	
	6.3	Adaptive Cruise Control in car	
		Total	48

#### **Text Books:**

- 1. Frank Vahid, and Tony Givargis, "Embedded System Design: A unified Hardware/Software Introduction", Wiley Publication.
- 2. Raj Kamal," Embedded Systems Architecture, Programming and design", Tata MCgraw-Hill Publication.
- 3. Iyer, Gupta," Embedded real systems Programming", TMH
- 4. David Simon, "Embedded systems software primer', Pearson
- 5. Shibu K.V," Introduction to Embedded Systems", Mc Graw Hill, 2nd edition.
- 6. K.V.K.K. Prasad, "Embedded Real Time Systems: Concepts, Design & Programming", Dreamtech Publication.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	Practical	Tutorial	Total	
<b>7011</b>	Product Lifecycle Management	03	1	1	03	-		03	

Subject Code		Examination Scheme									
	Cubicat	Theory Marks									
	Subject Name	Internal assessment				Term	Practical	Orol	Total		
				Avg. Of Test	End Sem.	Work	& Oral	Orai	1 Otal		
		Test 1	Test2		Exam						
ECCILO	Product	20	20	20	80				100		
7011	Lifecycle										
	Management										

- To familiarize the students with the need, benefits and components of PLM
- To acquaint students with Product Data Management & PLM strategies
- To give insights into new product development program and guidelines for designing and developing a product
- To familiarize the students with Virtual Product Development

### Course outcomes:

- Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- Illustrate various approaches and techniques for designing and developing products.
- Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Unit	Topics	Hrs.
No. 1.0	No.	Introduction to Product Lifecycle Management (PLM)	10
	1.1	Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications	
	1.2	PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	
2.0		Product Design	09
	2.1	Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	
3.0		Product data Management	05
	3.1	Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	
4.0		Virtual Product Development Tools	05
	4.1	For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	
5.0	_	Integration of Environmental Aspects in product Design	05
	5.1	Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design	
6.0		Life Cycle Assessment and Life Cycle Cost Analysis	05

6.1	Properties, and Framework of Life Cycle Assessment, Phases of LCA in	
	ISO Standards, Fields of Application and Limitations of Life Cycle	
	Assessment, Cost Analysis and the Life Cycle Approach, General	
	Framework for LCCA, Evolution of Models for Product Life Cycle Cost	
	Analysis	
	Total	39

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECCILO 7012	Reliability Engineering	03			03			03	

	Subject Name	Examination Scheme									
Subject Code		Theory Marks									
		Internal assessment				Term	Practical & Oral	Oral	Total		
				Avg. Of Test	Elia Selli.	Work	& Oral	Oran	Total		
		Test 1	Test2	1 and Test 2	Exam						
ECCILO	Reliability	20	20	20	80				100		
7012	Engineering										

- To familiarize the students with various aspects of probability theory
- To acquaint the students with reliability and its concepts
- To introduce the students to methods of estimating the system reliability of simple and complex systems
- To understand the various aspects of Maintainability, Availability and FMEA procedure

### Course outcomes:

- Understand and apply the concept of Probability to engineering problems
- Apply various reliability concepts to calculate different reliability parameters
- Estimate the system reliability of simple and complex systems
- Carry out a Failure Mode Effect and Criticality Analysis

Module	Unit	Topics	Hrs.
No. 1.0	No.	Probability Theory	08
210	1.1	Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem.  Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance.  Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	
2.0			08
	2.1	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve.  Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions.  Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	
3.0		System Reliability	05
	3.1	System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	
4.0		Reliability Improvement	08
	4.1	Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis.  System Reliability Analysis – Enumeration method, Cut-set method, Success  Path method, Decomposition method.	
5.0		Maintainability and Availability	05
	5.1	System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement.  Availability – qualitative aspects.	
6.0		Failure Mode, Effects and Criticality Analysis	05
	6.1	Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fau1t tree analysis and Event tree Analysis	
		Total	39

1. L. S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B. S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECCILO 7013	Management Information System	03	-1	1	03			03	

		Examination Scheme									
Subject	Subject	Theory Marks									
Code	Name	Internal assessment				Term	Practical & Oral	Oral	Total		
Code	Code			Avg. Of Test 1 and Test 2	End Sem.	Work	& Oral	Oran	Total		
		Test 1	Test2	1 and Test 2	Exam						
ECCILO	Management	20	20	20	80				100		
7013	Information										
	System										

- The course is blend of Management and Technical field.
- Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- Identify the basic steps in systems development

#### Course outcomes:

- Explain how information systems Transform Business
- Identify the impact information systems have on an organization
- Describe IT infrastructure and its components and its current trends
- Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module No.	Unit No.	Topics	Hrs.
1.0	110.	Introduction To Information Systems (IS)	04
	1.1	Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	
2.0		Data and Knowledge Management	07
	2.1	Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management  Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	
3.0		Ethical issues and Privacy	07
	3.1	Information Security. Threat to IS, and Security Controls	
4.0		Social Computing (SC)	07
	4.1	Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	
5.0			06
	5.1	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	
6.0		Information System within Organization	08
	6.1	Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	
		Total	<b>39</b>

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K. C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	<b>Practical</b>	Tutorial	Theory	Practical	Tutorial	Total
ECCILO 7014	Design of experiments	03			03			03
	•				•		•	

	Cubicat	Examination Scheme									
Subject			The								
Subject Code	Subject Name	Int	ernal ass			Term	Practical & Oral	Oral	Total		
Couc	1 (unit	<b>7</b> 5 4 4	T . 40	Avg. Of Test		Work			Total		
		Test 1	Test2	1 and Test 2	Exam						
<b>ECCILO</b>		20	20	20	80				100		
7014	Design of										
	experiments										

- To understand the issues and principles of Design of Experiments (DOE)
- To list the guidelines for designing experiments
- To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

## **Course outcomes:**

- Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- Apply the methods taught to real life situations
- Plan, analyze, and interpret the results of experiments

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction	06
	1.1	Strategy of Experimentation	
	1.2	Typical Applications of Experimental Design	
	1.3	Guidelines for Designing Experiments	
	1.4	Response Surface Methodology	
2.0		Fitting Regression Models	08
	2.1	Linear Regression Models	
	2.2	Estimation of the Parameters in Linear Regression Models	
	2.3	Hypothesis Testing in Multiple Regression	
	2.4	Confidence Intervals in Multiple Regression	
	2.5	Prediction of new response observation	
	2.6	Regression model diagnostics	
	2.7	Testing for lack of fit	
3.0		Two-Level Factorial Designs	07
	3.1	The 2 ² Design	
	3.2	The 2 ³ Design	
	3.3	The General2 ^k Design	
	3.4	A Single Replicate of the 2 ^k Design	
	3.5	The Addition of Center Points to the 2 ^k Design,	
	3.6	Blocking in the 2 ^k Factorial Design	
	3.7	Split-Plot Designs	
4.0		Two-Level Fractional Factorial Designs	07
	4.1	The One-Half Fraction of the 2 ^k Design	
	4.2	The One-Quarter Fraction of the 2 ^k Design	
	4.3	The General 2 ^{k-p} Fractional Factorial Design	
	4.4	Resolution III Designs	
	4.5	Resolution IV and V Designs	
	4.6	Fractional Factorial Split-Plot Designs	
5.0		Response Surface Methods and Designs	07
	5.1	Introduction to Response Surface Methodology	
	5.2	The Method of Steepest Ascent	
	5.3	Analysis of a Second-Order Response Surface	
	5.4	Experimental Designs for Fitting Response Surfaces	
6.0		Taguchi Approach	04
	6.1	Crossed Array Designs and Signal-to-Noise Ratios	
	6.2	Analysis Methods	
	6.3	Robust design examples	
		Total	39

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
7015	Operations Research	03			03			03	

	Subject Name	Examination Scheme									
Subject		Theory Marks									
Subject Code		Inte	ernal ass			Term	Practical & Oral	Oral	Total		
	T (WILL)	Test 1	Test2	Avg. Of Test 1 and Test 2			& Oral	Oran	Tutai		
ECCILO 7015	Operations Research	20	20	20	80				100		

- Formulate a real-world problem as a mathematical programming model.
- Understand the mathematical tools that are needed to solve optimization problems.
- Use mathematical software to solve the proposed models

#### **Course outcomes:**

- Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- Understand the applications of integer programming and a queuing model and compute important performance measures

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction to Operations Research	14
	1.1	Introduction, , Structure of the Mathematical Model, Limitations of Operations Research	
	1.2	<b>Linear Programming</b> : Introduction, Linear Programming Problem, Requirements of LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty Cost Method or Big M-method, Two Phase Method, Revised simplex method,	
	1.3	<b>Duality</b> , Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	
	1.4	<b>Transportation Problem</b> : Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions — Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method.	
	1.5	<b>Assignment Problem</b> : Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem, Travelling Salesman Problem	
	1.6	<b>Integer Programming Problem</b> : Introduction, Types of Integer Programming Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to Decomposition algorithms.	
2.0		Queuing Models	05
	2.1	Queuing systems and structures, single server and multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	
3.0		Simulation	05
	3.1	Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	
4.0		Dynamic programming	05
	4.1	Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	
5.0		Game Theory	05

	Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	
6.0	Inventory Models	05
	Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	
	Total	39

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECCILO 7016	Cyber Security and Laws	03	1	-	03			03

		Examination Scheme								
Subject Code	Subject	Theory Marks								
	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Oran	Total	
ECCILO	Cyber	20	20	20	80				100	
7016	Security and									
	Laws									

- To understand and identify different types cybercrime and cyber law
- To recognized Indian IT Act 2008 and its latest amendments
- To learn various types of security standards compliances

## **Course outcomes:**

- Understand the concept of cybercrime and its effect on outside world
- Interpret and apply IT law in various legal issues
- Distinguish different aspects of cyber law
- Apply Information Security Standards compliance during software design and development

Module No.	Unit No.	Topics	Hrs.
1.0	110.	Introduction to Cybercrime	04
	1.1	Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the	
2.0		Cyber Offenses & Cybercrime	09
3.0	3.1	How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in  Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops  Tools and Methods Used in Cyberline  Phishing, Password Cracking, Key loggers and Spywares, Virus and	06
		Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	
4.0		The Concept of Cyberspace	08
	4.1	E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	
5.0		Indian IT Act	06
	5.1	Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	
6.0		Information Security Standard compliances	06
	6.1	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	
		Total	39

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

814

129

- 5. Nina Godbole, *Information Systems Security*, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008-TIFR : https://www.tifrh.res.in
- 9. Website for more information, A Compliance Primer for IT professional <a href="https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538">https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538</a>

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
7017	Disaster Management and Mitigation Measures	03			03			03	

	Subject Name	Examination Scheme									
Subject		Theory Marks									
Code		Internal assessment				Term		Oral	Total		
				Avg. Of Test	End Sem.	Work	& Oral	Oran	1 Otai		
		Test 1	Test2	1 and Test 2	Exam						
<b>ECCILO</b>	Disaster	20	20	20	80				100		
7017	Management										
	and										
	Mitigation										
	Measures										

- To understand physics and various types of disaster occurring around the world
- To identify extent and damaging capacity of a disaster
- To study and understand the means of losses and methods to overcome /minimize it.
- To understand role of individual and various organization during and after disaster
- To understand application of GIS in the field of disaster management
- To understand the emergency government response structures before, during and after disaster

#### Course outcomes:

After successful completion of the course student will be able to

- Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- Plan of national importance structures based upon the previous history.
- Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- Get to know the simple do's and don'ts in such extreme events and act accordingly.

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction	03
	1.1	Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change	
2.0		Natural Disaster and Manmade disasters	09
	2.1	Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion	
	2.2	Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters	
3.0		Disaster Management, Policy and Administration	06
	3.1	Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management Policy and administration:	
		Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	
4.0		Institutional Framework for Disaster Management in India	06
	4.1	Importance of public awareness, Preparation and execution of emergency management program. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations.	
		Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	
5.0		Financing Relief Measures	09
	5.1	Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams.	
	5.2	International relief aid agencies and their role in extreme events	
6.0		Preventive and Mitigation Measures	06

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

Pre-disaster, during disaster and post-disaster measures in some events in general	
Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication	
Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans	
Do's and don'ts in case of disasters and effective implementation of relief aids.	
Total	39

- 1. Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elsevier Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards' and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	Practical	Tutorial	Total	
7018	Energy Audit and Management	03			03			03	

Subject Code		Examination Scheme								
	Subject	Theory Marks								
	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total	
	1 (dillo	Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem.	Work	& Oral		Total	
ECCILO	Energy Audit		20	20	80				100	
7018	and	20	20	20	00				100	
	Management									

- To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

#### Course outcomes:

- To identify and describe present state of energy security and its importance.
- To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- To analyze the data collected during performance evaluation and recommend energy saving measures

Module No.	Unit No.	Topics	Hrs.
1.0		Energy Scenario	04
	1.2	Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	
2.0		Energy Audit Principles	08
	2.1	Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	
3.0		<b>Energy Management and Energy Conservation in Electrical System</b>	10
	3.1	Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings.  Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers.  Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	
4.0		<b>Energy Management and Energy Conservation in Thermal Systems</b>	10
	4.1	Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system.  General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	
5.0		Energy Performance Assessment	04
	5.1	On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	
6.0		Energy conservation in Buildings	03

Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	
Total	39

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	To	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ECCILO	Development	03			03			03		
7019	Engineering									

		Examination Scheme									
Subject Code	Subject	Theory Marks									
	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total		
	1 varie			Avg. Of Test	Ena Sem.	Work	& Oral	Orai	1 Otai		
		Test 1	Test2	1 and Test 2	Exam						
<b>ECCILO</b>		20	20	20	80				100		
7019	Development										
	Engineering										

- To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural Development.
- To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
- An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the context of work life and the personal life of modern Indian professionals
- To understand the Nature and Type of Human Values relevant to Planning Institutions

#### Course outcomes:

- Apply knowledge for Rural Development.
- Apply knowledge for Management Issues.
- Apply knowledge for Initiatives and Strategies
- Develop acumen for higher education and research.
- Master the art of working in group of different nature.
- Develop confidence to take up rural project activities independently

Module No.	Unit No.	Topics	Hrs.
1.0	110.		08
	1.1	Introduction to Rural Development Meaning, nature and scope of development; Nature of rural society in India; Hierarchy of settlements; Social, economic and ecological constraints for rural development Roots of Rural Development in India Rural reconstruction and Sarvodaya programme before independence; Impact of voluntary effort and Sarvodaya Movement on rural development; Constitutional direction, directive principles; Panchayati Raj - beginning of planning and community development; National extension services.	
2.0			04
	2.1	Post-Independence rural Development Balwant Rai Mehta Committee - three tier system of rural local Government; Need and scope for people's participation and Panchayati Raj; Ashok Mehta Committee - linkage between Panchayati Raj, participation and rural development	
3.0			06
	3.1	Rural Development Initiatives in Five Year Plans Five Year Plans and Rural Development; Planning process at National, State, Regional and District levels; Planning, development, implementing and monitoring organizations and agencies; Urban and rural interface - integrated approach and local plans; Development initiatives and their convergence; Special component plan and sub-plan for the weaker section; Micro-eco zones; Data base for local planning; Need for decentralized planning; Sustainable rural development.	
4.0			04
	4.1	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule, devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Technology and rural planning; Need for further amendments.	
5.0			10

	Values and Science and Technology Material development and its values; the challenge of science and technology; Values in planning profession, research and education. Types of Values Psychological values — integrated personality; mental health; Societal values — the modern search for a good society; justice, democracy, rule of law, values in the Indian constitution; Aesthetic values — perception and enjoyment of beauty; Moral and ethical values; nature of moral judgment; Spiritual values; different concepts; secular spirituality; Relative and absolute values; Human values— humanism and human values; human rights; human values as freedom, creativity, love and wisdom.	
6.0		04
	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility; Work ethics; Professional ethics; Ethics in planning profession, research and education	
	Total	36

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V., Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395 407

## **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

### **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECL701	Microwave Engineering Laboratory		02			1		1

Subject Code		Examination Scheme								
	Cubicat	Theory Marks								
	Subject Name	Internal assessment			End Sem.	Term	Practical & Oral	Oral	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Oran	Total	
ECL701	Microwave					25	25		50	
	Engineering									
	Laboratory									

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Teaching Scheme Credits Assigned Name (Hrs.)						signed	
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total
ECL702	Mobile		02			1		1
	Communica							
	tion System							
	Laboratory							

Subject Code	Carleia at	Examination Scheme								
		Theory Marks								
	Subject Name	Internal assessment			End	Term	Practical & Oral	Orol	Total	
	1 valle	Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Orai	Total	
		1681 16812	1 and Test 2	Exam						
ECL702	Mobile					25	25		50	
	Communicat									
	ion System									
	Laboratory									

## **Suggested Experiment List**

- To observe the effect of velocity and direction of arrival of a vehicle on Doppler frequency
- To observe the effect of N on C/I ratio and comment on the voice quality
- To observe the effect of incidence angle on reflection coefficient using MATLAB
- To observe the effect of different propogation models on coverage distance
- To observe the effect of C/I ratio in a sectorised cell site and perform worst case analysis for different values of N and degree of sectorisation
  - A) Worst case C/I in a 3 sector cellular system for K=7
  - B) Worst case C/I in a 3-sector cellular system for K=4
  - C) Worst case C/I in a 6 sector cellular system for K=7
  - D) Worst case C/I in a 6 sector cellular system for K=4
- To generate Pseudo noise code used in a CDMA system
- To generate Walsh Codes using Hadamard Matrix.
- To plot Knife edge diffraction gain as a function of Fresnel diffraction parameter
- To plot channel capacity versus SNR for different MIMO systems
- Simulation of OFDMA system
- Simulation of spectrum sensing using energy detection method in cognitive radio

## List of Mini projects:

Note: These are few examples of mini projects; teachers may prepare their own list.

1. Developing automated Notification based System using GSM

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

141

- 2. Mobile Communication Based App development
- 3. Creating Virtual Lab Experiments.

#### **Software Tools:**

- 1. Ns-2: http://www.isi.edu/nsnam/ns/
- 2. Virtual Lab: <a href="http://vlab.co.in/">http://vlab.co.in/</a>
- 3. Scilab Experiments Book: http://www.scilab.in/textbook_companion/generate_book/2081

## **Online Repository Sites:**

- 1. Google Drive
- 2. GitHub
- 3. Code Guru

Note: Small Project can be considered as a part of term-work.

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.) Theory   Practical   Tutorial			Credits Assigned					
					Theory	TW/Pracs	Tutorial	Total		
ECL703	Optical	02				1		1		
	Communica									
	tion									
	Laboratory									

				Examin	ation Sch	eme			
Subject	Cubicat		The	ory Marks					
Subject Code	Subject Name	Internal assessment			End	Term	Practical & Oral	Orol	Total
Code	1 (dille	Tost 1	Test 1 Test 2 Avg. Of Test 1 and Test 2		Sem.	Work	& Oral	Orai	Total
		1 est 1	1 6812	1 and Test 2	Exam				
ECL703	Optical					25	25		50
	Communicat								
	ion								
	Laboratory								

## **Suggested Experiment List**

- Calculation of Numerical aperture
- Calculation of dispersion for given fiber
- Calculation of link Loss for given link
- Performance analysis of Single mode fiber
- Performance Analysis of Optical Link with Different Sources
- Performance Analysis of Optical Link with Different Detectors
- Performance Analysis of Optical Amplifier
- Calculation of link Loss for given link with nonlinearities

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

# The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory Practical Tutorial			Theory	TW/Pracs	Tutorial	Total	
FCLDLO 7031	Neural networks & Fuzzy Logic Laboratory		02			1	-1	1	

				Examin	ation Sch	eme			
Subject	Cubicat		Theory Marks						
Subject Code	Subject Name	Inte	ernal ass	ssessment End		Term	Practical	Oral	Total
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Orai	1 Otal
		1050 1	10002	1 and Test 2	Exam				
<b>ECLDLO</b>	Neural					25	25		50
7031	networks &								
	Fuzzy Logic								
	Laboratory								

## **Suggested List of Experiments**

- Write a program for implementing perceptron based linear functions AND and OR function. Conclude about the noise tolerance of the function.
- Write a program for implementing optimal neural network based XOR functions. Conclude about the noise tolerance of the function
- Write a program for training and testing of Multilayer Perceptron for pattern classification application
- Write a program for training and testing of Multilayer Perceptron for interpolation application
- Program for Support vector Machine based classifiers and compare result with that of Multilayer Perceptron based neural network classification
- Program for application of Multilayer perceptron for character recognition
- Program to develop Fuzzy Inference System for Speed control of DC motor
- Program for fuzzy logic based train brake control with suitable input variable assumptions
- Program to develop Fuzzy Inference System for fuzzy control of washing machines

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 7032	Big Data Analytics Laboratory		02			1		1	

	Subject	Examination Scheme										
Subject			The									
Subject Code	Subject Name	Inte	Internal assessment End				Practical & Oral	Owal	Total			
Code	1 (41110	Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Orai	1 Otal			
		1 CSt 1	16812	1 and Test 2	Exam							
<b>ECLDLO</b>	Big Data					25	25		50			
7032	Analytics											
	Laboratory											

# **Suggested Experiment List**

- Study of Hadoop ecosystem
- Programming exercises on Hadoop
- Programming exercises in No SQL
- Implementing simple algorithms in Map- Reduce Matrix multiplication, Aggregates.

#### List of Mini project

- 1. Design and implementation of any case study/ applications based on standard Datasets available on the web
  - a. Twitter data analysis b. Fraud Detection c. Text Mining etc. using modern tools.

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

146

will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 7033	Internet Communica tion Engineering Laboratory		02		1	1		1	

				Examin	ation Sch	neme			
Subject	Cubiaat		The	ory Marks					
Code	Subject Name	Inte	essment	End	Term	Practical & Oral	Oral	Total	
Code	Code		Test2	Avg. Of Test 1 and Test 2	Sem.			Work	Total
		Test 1	10002	1 and Test 2	Exam				
<b>ECLDLO</b>	Internet					25	25		50
7033	Communicat								
	ion								
	Engineering								
	Laboratory								

# **Suggested Experiment List**

- Simulation study on congestion control
- Multimedia networking
- Multimedia streaming
- Assignments / Practicals can be given on writing the programs to encode and decode the various kinds of data by using the algorithms. Students can collect several papers from journals/conferences/Internet on a specific area of Internet and multimedia communications and write a review paper and make a presentation.
- Form small groups to complete projects in audio, image and video coding. The use of C/C++ is encouraged
- Conduct network simulations using OPNET and protocol analysis using Wireshark.

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	To	eaching Scho (Hrs.)	eme	Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	Practical	Tutorial	Total	
	CMOS Mixed			02			01	01	
7034	Signal VLSI								
	Laboratory								

			Examination Scheme									
Subject	Subject		Theory Marks									
Code	Name	Inte	ernal ass			Term	<b>Practical</b>	Oral	Total			
Code				Avg. Of Test	End Sem.	Work	& Oral	Oran	Total			
		Test 1	Test2	1 and Test 2	Exam							
<b>ECLDLO</b>	CMOS					25	25		50			
7034	Mixed Signal											
	VLSI											
	Laboratory											

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 7035	Embedded System Laboratory		02			1		1	

	Subject		<b>Examination Scheme</b>										
Subject		Theory Marks											
Subject Subjec Code Name		Inte	essment	End	Term	Practical & Oral	Oral	Total					
Code	1 (61110	Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Orai	1 Otal				
		Test 1 Tes	1 6812	1 and Test 2									
<b>ECLDLO</b>	Embedded					25	25		50				
7035	System												
	Laboratory												

# **Suggested Experiment List**

- Interfacing of I2C,CAN,SPI,zigbee etc with ARM
- Simulation of multitasking using RTOS
- Simulation of mutex using RTOS
- Simulation of mailboxes using RTOS
- Interprocess communication using semaphore in RTOS
- Simulation of message queues using RTOS

**Minimum One project based on** any application related to RTOS and embedded system can be implemented.

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

# The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)  Theory   Practical   Tutorial   7			Credits Assigned				
					Theory	TW/Pracs	Tutorial	Total	
ECL704	Project Stage-		06			3		3	

Subject Code		Examination Scheme									
	Subject		The	ory Marks							
	Subject Name	Internal assessment			End	Term	Practical	Orol	Total		
		Test 1	est 1 Test2	Avg. Of Test 1 and Test 2	Sem. Work	Work	& Oral	Orai	Total		
		Test 1 Test2		1 and Test 2	Exam						
ECL704						50	50		100		
	Project Stage-										
	I										

**Objective:** The Project work enables the students to develop the required skills and knowledge gained during the programme by applying them for the analysis of a specific problem or issue, via a substantial piece of work which is carried out over an extended period. It also enables the students to demonstrate the proficiency in the design of a research project, application of appropriate research methods, collection and analysis of data and presentation of results.

#### **Guidelines:**

### 1. Project Topic:

- To proceed with the project work it is very important to select a right topic. Project can be undertaken on any domain of electronics and telecommunication programme. Research and development projects on problems of practical and theoretical interest should be encouraged.
- Project work must be carried out by the group of at least two students and maximum four and must be original.
- Students can certainly take ideas from anywhere, but be sure that they should evolve them in the unique way to suit their project requirements.
- The project work can be undertaken in a research institute or organization/company/any business establishment.
- Student must consult internal guide along with external guide (if any) in selection of topic.
- Head of department and senior staff in the department will take decision regarding selection of projects.
- Student has to submit weekly progress report to the internal guide and whereas internal guide has to keep track on the progress of the project and also has to maintain attendance report. This progress report can be used for awarding the term work marks.

• In case of industry projects, visit by internal guide will be preferred.

# 2. Project Report Format:

At the end of semester a project report should preferably contain at least following details:-

- Abstract
- Introduction
- Literature Survey
  - a) Survey Existing system
  - b) Limitation of the Existing system or research gap
  - c) Problem Statement and Objective
  - d) Scope
- Proposed System
  - a) Analysis/Framework/ Algorithm
  - b) Details of Hardware & Software
  - c) Design details
  - d) Methodology (your approach to solve the problem)
- Implementation Plan for next semester
- Conclusion
- References

# 3. Term Work:

Distribution of marks for term work shall be as follows:

- a) Weekly Attendance on Project Day
- b) Contribution in the Project work
- c) Project Report (Spiral Bound)
- d) Term End Presentation (Internal)

The final certification and acceptance of TW ensures the satisfactory performance on the above aspects.

#### 4. Oral & Practical:

Oral &Practical examination of Project-I should be conducted by Internal and External examiners approved by University of Mumbai. Students have to give presentation and demonstration on the Project-I.

Subject Code	Subject Name	Teaching Scheme (Hrs.) Theory Practical Tutorial			Credits Assigned				
					Theory	Practical	Tutorial	Total	
ECC801	RF Design	04	1	-	04	1		04	

			Examination Scheme									
G1-:4	Cubicat	Theory Marks										
	Subject Code	Subject Name	Internal assessment			End	Term	Practical & Oral	Oral	Total		
Code	T (WILL)	Test 1	Test2	Avg. Of Test 1 and Test 2	Sem. Exam	em. Work	& Oral	Orai	Total			
	ECC801	RF Design	20	20	20	80				100		

# **Prerequisites:**

- Electromagnetic Engineering
- Antenna & Radio Wave Propagation
- Communication Engineering
- Microwave Engineering

# **Course objectives:**

- To learn RF circuit fundamentals for designing various circuit building blocks in a typical RF transceiver
- To learn importance of EMI/EMC

#### **Course outcomes:**

- Design impedance matching networks and passive RF filters.
- Design and appraise RF amplifiers and oscillators.
- Analyze EMI and EMC in RF circuits.

Module No.	Unit No.	Topics	Hrs.
1.0		RF Filter Design	10
	1.1	Image parameter method	
	1.2	Insertion loss method- Maximally flat low pass prototype, Equal ripple low pass prototype, Filter transformation and filter implementation	
2.0		Amplifier Design	08
	2.1	Two-port power gain stability	
	2.2	Single stage amplifier design: Design for maximum gain, design for specified gain, low noise amplifier design	
	2.3	Power amplifier design.: Characteristics of power amplifier and classes of amplifiers, design of class A power amplifier	
3.0		Frequency Generation & Mixer	08
	3.1	One-port and two-port microwave oscillator design.	
	3.2	Analysis of phase noise in oscillators.  Mixers: Characteristics, Various types of Mixers: Single ended diode	
		mixers, FET mixers, Balanced mixers, Image reject mixers and other types of mixers.	
4.0		Frequency Synthesizers	06
	4.1	Direct Frequency Synthesis, Frequency Synthesis by Phase Lock, Effects of Reference Frequency on Loop Performance,	
	4.2	Variable-Modulus Dividers, Down Conversion, Methods for Reducing Switching Time, Direct Digital Synthesis, Synthesizer Design.	
	4.3	Phase Noise: A Model for Oscillator Phase Noise, Phase Noise in Phase-Locked Loops, Effect of Frequency Division and Multiplication on Phase Noise.	
5.0		Electromagnetic Interference in RF circuits	08
	5.1	Introduction. Natural and Nuclear Sources of EMI, EMI From Apparatus and Circuits. Quantification Of Communication System EMI	
	5.2	Elements Of Interference, Including Antennas, Transmitters, Receivers And Propagation. <b>Electronic Equipment And System EMI Concepts.</b> Examples Of EMI Coupling Modes	
	5.3	Equipment Emissions And Susceptibilities- Types of coupling: Common-Mode Coupling: Common-Mode Coupling Mechanisms Including Field To Cable, Ground Impedance, Ground Loop And Coupling Reduction Techniques Differential-Mode Coupling: Differential-Mode Coupling Mechanisms Including Field To Cable, Cable To Cable And Coupling Reduction Techniques.	
	5.4	Other Coupling mechanisms: Power Supplies And Victim Amplifiers	

6.0		Electromagnetic Compatibility	08
	6.1	The Importance Of Grounding For Achieving EMC. Grounding,	
		Including The Reasons (I.E., Safety, Lightning Control, EMC,	
		Grounding Schemes (Single Point, Multi-Point And Hybrid), Shield	
		Grounding And Bonding. Shielding Effectiveness, Shielding	
		Considerations (Reflective And Absorptive), Shielding Compromises	
		(I.E., Apertures, Gaskets, Waveguide Beyond Cut-Off)	
	6.2	EMI Diagnostics And Fixes: Techniques Used In EMI Diagnostics	
		And Fixes	
	6.3	EMC Specifications, Standards And Measurements. A Discussion	
		Of The Genesis Of EMC Documentation Including A Historical	
		Summary, The Rationale, And A Review Of MIL-Stds, FCC And	
		CISPR Requirements.	
		Total	48

# **Text Books**

- 1. David M Pozar, Microwave Engineering, John Wiely and Sons, 2005
- 2. Ludwig R. and Bogdanov G, RF Circuit Design, Prentice Hall, 2007.
- 3. Jack Smith, Modern Communication circuits, Tata McgrawHill.
- 4. W. Prasad Kodali, Engineering Electromagnetic Compatibility: Principles, Measurements, Technologies, and Computer Models, 2nd Edition, ISBN: 978-0-7803-4743-4, January 2001, Wiley-IEEE Press
- 5. David. A. Weston, Electromagnetic Compatibility-principles and applications, Second Edition, Publisher: Marcel Dekker, Inc. 2001, ISBN 0-8247-8889-3

#### **References:**

- 1. Guillermo Gonzalez, 'Microwave Transistor Amplifiers Analysis and Design', Prentice Hall, 2nd Edition.
- 2. Devendra Misra, 'Radio Frequency and Microwave Communication Circuits-Analysis and Design', John Wiley & Sons, 2nd Edition.
- 3. Clayton R. Paul, 'Electromagnetic Compatibility', John Wiley & Sons, 2nd Edition.

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

## **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Theory Practical Tutorial T			Practical	Tutorial	Total	
ECC802	Wireless	04			04			04	
	Networks								

Subject Code		Examination Scheme									
	Ch-i-a-4		The	ory Marks							
	Subject Name	Internal assessment			End	Term	Practical & Oral	Onol	Total		
	1 valie			Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Orai	Total		
		Test 1	Test2	1 and Test 2	Exam						
ECC802		20	20	20	80				100		
	Wireless										
	Networks										

# **Prerequisites:**

• Mobile Communication

# **Course objectives:**

- Introduction to wireless Body Networks and study emerging technologies like Bluetooth and Zigbee
- To study Wireless LAN, PAN & MAN.
- Understanding Ultra Wideband communication.
- Introduction to Femtocells

#### **Course outcomes:**

- Explain the working of different wireless technologies like bluetooth and zigbee.
- Understand the working of wireless LAN, PAN & MAN
- Analyze the different types of Wireless Networks like LAN,PAN & MAN
- Comprehend the working of Femtocells.

Module No.	Unit No.	Topics	Hrs.
1.0		Wireless Body Area Networks	12
	1.1	Introduction to WBAN, Network Architecture, Network Components	
	1.2	Network Protocol: Physical Layer, Data Link layer, Media Access Control (MAC) Layer, Network Layer	
	1.3	WBAN Technologies: Bluetooth: Concept of Piconet, Scatternet, Protocol Stack Connection establishment Zigbee: Components, Protocol Stack, Architecture & Network Topologies	
2.0		Wireless LAN	10
	2.1	Introduction to wireless LAN, Transmission Techniques	
	2.2	Medium Access Control Protocol Issues: Hidden Terminal Problem, Reliability, Collision Avoidance, Congestion Avoidance, Congestion Control. Energy Efficiency	
	2.3	IEEE 802.11 Standard for Wireless LAN: Network Architecture, Physical Layer, MAC Layer, Security, System design and considerations	
	2.4	Enhancements to IEEE 802.11 MAC: Power Control, Spatial Reusability & QoS Provisioning	
3.0		Wireless PAN	08
	3.1	Introduction to wireless PAN, Need of Wireless PAN	
	3.2	Bluetooth Technology: History & Applications, Technical Overview, Bluetooth Specifications, Piconet Synchronization, master-slave switch, Bluetooth security.	
	3.3	Enhancements to Bluetooth: Bluetooth Interface issues, Intra & Inter Piconet Scheduling, Scatternet Formation, QoS Assignment	
	3.4	IEEE 802.15 Working group for WPAN, IEEE 802.15.3 & IEEE 802.15.4	
	3.5	Comparison between WPAN System & Comparison between WLAN & WPAN	
4.0		Wireless MAN	08
	4.1	Introduction to Wireless Metropolitan Area Networks, IEEE 802.16 Standards Advantages of IEEE 802.16	
	4.2	WMAN Network Architecture: Network Components, features of WiMAX, WiMAX Mobility Support	
	4.3	Network Protocols : Physical Layer, MAC Layer	
		WMAN Applications: Banking Networks, Educational Networks, Public Safety	
5.0	_	Ultra wideband Communication	06
	5.1	Introduction, UWB indoor channel, UWB capacity	

	5.2	Pulsed UWB: Pulse shape, Modulation & Multiple access techniques, Pulsed UWB transceivers,							
	5.3	Iultiband UWB: Modulation of pulsed multiband UWB, MB-OFDN WB							
6.0		Femtocells	04						
	6.1	Introduction to Femtocell, Femtocell Attributes, Femtocell Standards,							
	6.2	Concept of Femtocells, Types of Femtocells							
	6.3	Applications of Femtocells.							
		Total							

#### **Text Books & References:**

- 1. Carlos de Morais Cordeiro, Dharma Prakash Agrawal, "AD HOC & Sensor Networks Theory & Applications", Cambridge University Press India Pvt. Ltd.
- 2. KE- LIN DU & M. N. S. Swamy, "Wireless Communication Systems", Cambridge University Press India Pvt. Ltd.
- 3. D. E. Comer, "Femtocells- Opportunity & Challenges for Business & Technology", Wiley Publications.
- 4. Dr. Sunilkumar S. Manvi, Mahabaleshwar S. kakkasageri, "Wireless & Mobile Networks: Concepts and Protocols".

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Theory   Practical Tutorial T			Practical	Tutorial	Total	
ECCDLO 8041	Optical Networks	04			04			04	

	Subject Name		Examination Scheme									
Subject Code			The									
		Int	ernal ass	essment	End	Term	Practical & Oral	Orol	Total			
Code				Avg. Of Test	DCIII.		& Oral	Total				
		Test 1	Test2	1 and Test 2	Exam							
ECCDLO		20	20	20	80				100			
8041	Optical											
	Networks											

# **Prerequisites:**

- Principles of Communication Engineering
- Digital Communication
- Antenna Wave Propagation
- Optical Communication

## **Course objectives:**

- The issues related to signal degradation due to linear impairment
- High data rate WDM optical transport networks
- Link budget and optical networks, design and management.

#### **Course outcomes:**

- Identify the issues related to signal degradation and multiplexing.
- Explore concepts of designing and operating principles of modern optical communication systems and networks.
- Apply the knowledge developed in-class to contemporary optical fiber communication research and industrial areas.

Module	Unit	Topics	Hrs.
No. 1.0	No.	Tutus du stien to Ontical Common anta and Naturalis	06
1.0	1.1	Introduction to Optical Components and Networks	VO
	1.1	OPTICAL Components - Couplers, Isolators and Circulators, Multiplexes and Filters Optical Amplifiers. Transmitters, Detectors,	
		Switches, Wavelength Converters	
	1.0		
	1.2	OPTICAL Networks - Telecommunication networks, First	
		generation optical networks, Multiplexing techniques, Second generation optical networks, System and network evolution	
2.0		- · · · · · · · · · · · · · · · · · · ·	00
2.0	2.1	Optical Networks Architecture	08
	2.1	SONET/SDH, Computer interconnects, MANS, Layered architecture for SONET and second generation networks.	
	2.2	Broadcast and Select Networks - Topologies for Broadcast Networks,	
		Media-Access Control Protocols,	
	2.3	Operational principle of WDM, WDM network elements and	
		Architectures, Introduction to DWDM, Solitons	
3.0	2.1	Packet Switching and Access Networks	08
	3.1	Photonic Packet Switching – OTDM, Multiplexing and Demultiplexing,	
	3.2	Synchronization, Broadcast OTDM networks, Switch-based networks	
	3.3	Access Networks - Network Architecture overview, Future Access	
		Networks,	
	3.4	Optical Access Networks Architectures; and OTDM networks	
4.0		Wavelength Routing Networks	10
	4.1	Optical layer, Node design, Network design and operation, routing and wavelength assignment architectural variations	
	4.2	Optical Network Routing Principles - Impairment Aware Routing	
	7.2	Optical Circuit Switching, Optical Packet Switching	
		Optical Burst Switching	
	4.3	Energy Awareness in Optical Networking ,Network Modeling Tools	
		Network Design Guidelines	
5.0		Design of Optical Networks	10
	5.1	Core Optical Networks, Metro Optical networks, Access Optical	
		Networks	
	5.2	Wavelength Routing and Assignment, Traffic Grooming and	
	<b>.</b>	Protection, Multilayer Network Structure	
	5.3	Transmission system model, power penalty-transmitter, receiver	
<b>60</b>		optical amplifiers, crosstalk, dispersion, wavelength stabilization	06
6.0	6.1	Virtual topology, Network Control and Management Virtual topology, design problem, Combines SONET/WDM network	06
	0.1	Virtual topology design problem, Combines SONET/WDM network design, an ILP formulation, Regular virtual topologies,	
		design, an 11.1 formulation, Regular virtual topologies,	

6.2	Control	and	management,	Network	management	configuration			
	management, Performance management, fault management. Network								
	management functions, Optical safety								
	Total								

#### Text Books:

- 1. Kumar Sivarajan and Rajiv Ramaswamy, Morgan Kauffman, Optical Networks: A Practical Perspective, Elsevier Publication Elsevier India Pvt. Ltd, 3rd Edition, 2010.
- 2. Harry G. Parros, Communication Oriented Networks, Wiley
- 3. G. Agrwal, Fiber Optic Communication Systems, John Wiley and Sons, 3rd Edition, New York, 2014.

#### **References:**

- 1. C. Siva Ram Moorthy and Mohan Gurusamy, WDM Optical Networks: Concept, Design and Algorithms, Prentice Hall of India, 1st Edition, 2002.
- 2. Biswajit Mukherjee, Optical Communication Networks, TMG1998.
- 3. Jane M. Simoons, Optical Network Design and Planning, Second Edition, Springer
- 4. Ulysees Black, Optical Networks, Pearson education 2007.
- 5. Milorad Cvijetic, Ivan B. Djordjevic, Advanced Optical Communication Systems and Networks, Artech House Applied Photonics, 2012.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	<b>Tutorial</b>	Total
8042	Advanced Digital Signal Processing	04	-1	1	04			04

			Examination Scheme								
Subject	Cubicat		The								
Subject Code	Subject Name	Internal assessment			End	Term	Practical & Oral	Oral	Total		
Code	Code			Avg. Of Test Sem. 1 and Test 2 Exam		Work			Total		
		Test 1	Test2	1 and Test 2	Exam						
<b>ECCDLO</b>	Advanced	20	20	20	80				100		
8042	Digital										
	Signal										
	Processing										

# **Prerequisites:**

Discrete Time Signal Processing

#### **Course objectives:**

The aim of this course is to provide in-depth treatment on methods and techniques on

- Multirate Signal Processing, Power Spectrum Estimation, Adaptive Filtering and Wavelet Transform.
- Application of signal processing to real world problems.

#### **Course outcomes:**

- Demonstrate an understanding of multirate sampling and its mechanism.
- Study and apply the techniques of power spectrum estimation and wavelet theory for various applications.
- Implement adaptive filters for given applications.
- Apply signal processing tools to Biomedical and Telecommunication Applications

Module No.	Unit No.	Topics	Hrs.
1.0		Multirate Digital Signal Processing	08
	1.1	Advantages of Multirate Signal Processing	
	1.2	Interpolation and Decimation	
	1.3	Sampling Rate Conversion by Non Integer Factor	
	1.4	Multistage Interpolation and Decimation	
	1.5	Polyphase Decomposition	
	1.6	Digital Filter Banks	
	1.7	Applications of Multirate Signal Processing	
2.0		Power Spectrum Estimation	10
	2.1	Non Parametric Method of Power Spectrum Estimation: Periodogram, Modified Periodogram, Barlett Method, Welch's Method, Blackman-Tukey Approach	
	2.2	Parametric Methods of Power Spectrum Estimation: Auto Regressive Spectrum Estimation, Model Parameters-Yule-Walker Equation, Least Square Method and Linear Prediction, Moving Average Spectrum Estimation, Autoregressive Moving Average Spectrum Estimation	
	2.3	Eigen Analysis Algorithm for Spectrum Estimation	
3.0		Linear Prediction and Optimum Linear Filters	10
	3.1	Representation of Stationary Random Process	
	3.2	Forward and Backward Linear Prediction	
	3.3	Solution of Normal Equation(Levinson-Durbin and Schur Algorithm)	
	3.4	AR Lattice and ARMA Lattice Ladder Filters	
4.0	3.3	Weiner Filters for Filtering and Prediction  Adaptive Filters	10
140	4.1	Applications of Adaptive Filters: System Identification, Adaptive Channel Equalization, Echo Cancellation, Adaptive Noise Cancellation, Suppression of Narrowband Interference in Wideband Signals, Adaptive Arrays.  Adaptive Algorithms: LMS Algorithm, RLS Algorithm, Lattice Ladder Algorithm	
5.0		Wavelet Transform	06
	5.1	Introduction to Time Frequency Analysis	
	5.2	Short Time Fourier Transform	
	5.3	Continuous Wavelet Transform	
	5.4	Discrete Wavelet Transform	
	5.5	Multiresolution Analysis	

	5.6	Applications	
6.0		Application Of Signal Processing	04
	6.1	Biomedical Applications	
	6.2	Audio Applications	
	6.3	Telecommunication Applications(Radar)	
		Total	48

#### **Textbooks**

- 1. John G. Proakis, Dimitris G. Monolakis "Digital Signal Processing", PHI 2007.
- 2. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing A Practical Approach", Pearson Education 2008.

#### **Reference Books**

- 1. Simon Haykin, "Adaptive Filter Theory", Pearson Education 2013.
- 2. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press.
- 3. Raghuveer M. Rao and Ajit S. Bopardikar, "Wavelet Transforms", "Introduction to Theory and Applications", Pearson Education Asia 2000.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECCDLO 8043	Satellite Communicati	04			04			04
	on							i

	Subject Name		Examination Scheme									
Subject			The									
Subject Code		Internal assessment			End	Term	Practical & Oral	Orol	Total			
Code	1 value			Avg. Of Test	Sem. Work		& Oral	Orai	Total			
		Test 1	Test2	1 and Test 2	Exam							
<b>ECCDLO</b>	Satellite	20	20	20	80				100			
8043	Communicati											
	on											

# **Prerequisites:**

- Analog Communication
- Digital Communication

# Course objectives:

- To understand the basics of satellite communications and different satellite communication orbits
- Provide an in-depth understanding of satellite communication system operation, launching techniques, satellite link design and earth station technology
- To explain the tools necessary for the calculation of basic parameters in a satellite communication system.
- Review the state of the art in new research areas such as speech and video coding, satellite
  networking and satellite personal communications, mobile satellite communication, Laser
  satellite

#### **Course outcomes:**

- Explain basics of satellite communication, space segment and earth segment
- Understand different satellite orbits and orbital parameters
- Explain and analyze link budget of satellite signal for proper communication
- Understand various applications of satellite communications

Module No.	Unit No.	Topics	Hrs.
1.0	2,00	Overview of Satellite Systems, Orbits and Launching	09
	1.1	An overview of space and satellite, Frequency allocation for satellite communication, Polar orbiting satellites, Kepler's First, second and third law, orbital elements, apogee, perigee heights, orbital perturbations, effects of a non-spherical earth, atmospheric drag	
	1.2	Wave Propagation & Polarization, Atmospheric Losses, Ionospheric Effects, Rain Attenuation, Other impairments, Antenna Polarization, Polarization of Satellite signals, Cross polarization discrimination, Ionospheric depolarization, Rain depolarization, Ice depolarization	
	1.3	Sub-satellite Point, predicting satellite position, antenna look angels, polar mount antenna, limits of visibility, near geostationary orbits, earth eclipse of satellite, sun transit outage	
	1.4	Selection of launching site, launch window, zero and non-zero degree latitude launching, sea launch, launch vehicles; satellite launch vehicle (SLV), augmented satellite launch vehicle (ASLV), polar SLV, geostationary satellite launch vehicle (GSLV)	
2.0		Space Segment	06
	2.1	Satellite configuration, Transponder sub-system, Antenna sub-system, AOC Sub-system, TT&C Sub-system, power sub-system, Thermal sub-system, reliability and quality Assurance.	
3.0		Earth station	05
	3.1	Design consideration	
	3.2	General configuration- Block diagram, Receive only type earth, transmit-receive type earth station, Antenna system, Feed system, Tracking system, LNA, HPA	
4.0		Satellite Links	10
	4.1	Isotropic radiated power, transmission losses, free-space transmission, feeder losses, antenna misalignment losses, fixed atmospheric and ionospheric losses, link power budget	
	4.2	System noise, antenna noise, amplifier noise temperature, amplifiers in cascade, noise factor, noise temperature of absorptive networks, overall system noise temperature, carrier to noise ratio	
	4.3	Uplink: Saturation flux density, input back off, earth station HPA, Downlink: Output back off, satellite TWTA output	
	4.4	Effects of rain, uplink rain-fade margin, downlink rain-fade margin, combined uplink and downlink C/N ratio, inter-modulation noise	
5.0		The Space Segment Access and Utilization	08
	5.1	Space segment access methods, pre-assigned FDMA, demand assigned FDMA, SPADE system, bandwidth-limited and power-limited TWT amplifier operation	

		TDMA: Reference Burst; Preamble and Postamble, carrier recovery, network synchronization, unique word detection, traffic date, frame efficiency, channel capacity, preassigned TDMA, demand assigned TDMA, satellite switched TDMA  Code Division Multiple Access: Direct-sequence spread spectrum—	
		acquisition and tracking, spectrum spreading and dispreading — CDMA throughput	
6.0		Satellite Applications	10
		VSAT systems: Advantages, configurations, frequency bands, elements, Applications	
	6.2	Broadcast services: Television broadcast systems, DAB,	
		Mobile satellite communication: INMARSAT, LMSS, mobile satellite systems with non GEO satellites	
	6.4	Satellite navigation systems	
		Laser Satellite Communication: Link analysis, optical satellite link transmitter, optical satellite link receiver, satellite beam acquisition, tracking & positioning, deep space optical communication link	
	6.6	Recent applications	
	6.7	Modern development and future trends	
		Total	48

#### **Text Books & References:**

- 1. Dennis Roddy, "Satellite Communications", 4th Ed., Mc. Graw-Hill International Ed. 2009.
- 2. M. Richharia, "Satellite Communication Systems Design Principles", Macmillan Press Ltd. Second Edition 2003.
- 3. R. N. Mutangi, "Satellite Communication", Oxford university press, 2016.
- 4. Gerard Maral and Michel Bousquet, "Satellite Communication Systems", 4th Edition Wiley Publication
- 5. Gerard Maral, "VSAT Networks", John Willy & Sons
- 6. Timothy Pratt, Charles Bostian, and Jeremy Allmuti, "Satellite Communications", John Willy & Sons (Asia) Pvt. Ltd. 2004
- 7. Wilbur L. Pritchard, Henri G. Suyderehoud, and Robert A. Nelson, "Satellite Communication systems Engineering", Pearson Publication

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Network	04			04			04
8044	Management							
	in							
	TeleCommun							
	ication							

	Subject Name		Examination Scheme									
Subject Code			The									
		Internal assessment			End Term	Practical & Oral	Oral	Total				
Code				Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Oran	Total			
		Test 1 Test 2 1 and Test 2		1 and Test 2	Exam							
<b>ECCDLO</b>	Network	20	20	20	80				100			
8044	Management											
	in											
	TeleCommu											
	nication											

# **Prerequisites:**

- Computer Communication and Networks,
- Operating System
- Basic Programming skills

#### **Course objectives:**

 To understand the concept of Telecommunication, network management, architecture and protocol

#### Course outcomes:

- Explain the need for interoperable network management & Damp; analyze the trends and development of the Telecommunications Network Management.
- Demonstrate broad knowledge of fundamental principles and technical standards underlying.
- Describe the concepts and architecture behind standards based network management associated with SNMP and CMIP.
- Apply basic of telecommunication, networking and information technologies and architect and implement networked informative systems.
- Continuously improve their technology knowledge and communication skills.

Module	Unit	Topics	Hrs.
No. 1.0	No.	Introduction of Network Management	10
1.0	1.1	Introducing Network Design Concepts: Network designers ensure that our communications networks can adjust and scale to the demands for new services. To support our network-based economy, designers must work to create networks that are available nearly 100 percent of the time. Challenges of IT managers.	
	1.2	Network Management: Goals, organization and functions	
	1.3	Network management architecture and organization network management perspectives	
2.0		OSI Network Management	04
	2.1	Network management standards	
	2.2	Network management models	
	2.3	Organization model	
	2.4	Information model	
	2.5	Communication model and functional model	
	2.6	Abstract syntax notation – encoding structure, macros functional model CMIP/CMISE	
3.0		Internet Management	12
	3.1	SNMP-organizational model-	
	3.2	System overview.	
	3.3	Information model, communication model, functional model	
	3.4	SNMP proxy server, Management information, Protocol	
	3.5	SNMPv1,v2 and V3	
	3.6	Remote monitoring. RMON	
4.0	4.1	Telecommunication Management Networks(TMN)	04
	4.1	Need for TMN, Conceptual TNM model	
		TMN Network Management Architecture	
5.0	4.3	TMN management services architecture and TMN implementation	10
5.0	5.1	Network Management Tools and Applications System Utilities for network management	12
	5.1	Network statistics and measurements	
	5.3	NMS Design, NMS components, NMS Server Architecture	
	5.4	Network Management Systems and FCAPS	
	5.5	Automatic Fault Management and Event correlation Techniques	
	5.6	Security Management	
6.0		Broadband Network Management	06
	6.1	Broadband networks and services, ATM Technology – VP, VC, ATM Packet, Integrated service, ATM LAN emulation, Virtual LAN	

ATM Network Management – ATM network reference model, integrated local management interface. ATM management management information base, role of SNMP and ILMI in ATM.				
M1, M2, M3, M4 interface. ATM digital exchange interface management				
Total				

#### **Text Books & References:**

- 1. Mani Subramaniam, —Network Management Principles and Practise", Addison Wisely, New York, 2000.
- 2. Designing and Supporting Computer Networks, CCNA Discovery Learning Guide By Kenneth Stewart, Aubrey Adams, Allan Reid, Jim Lorenz, Cisco Press
- 3. Network Management: Concepts and Practice, A Hands-On Approach by J. Richard Burke, Pearson Publications.
- 4. Network Management: Accounting and Performance Strategies by Benoit Claise CCIE No. 2686; Ralf Wolter CISCO Press
- 5. Network Management Fundamentals, Alexander Clemm, Cisco Press, December 2006, ISBN-13: 978-158720137
- 6. Python for Software Design by Allen B. Downey, Cambridge University Press, March 2009, ISBN-13: 978-0521725965. A free manuscript is available at the author's website.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
0021	Project Management	03			03			03

				Examiı	nation Sch	eme					
Subject	Subject Subject	Theory Marks									
Subject Code	Subject Name	Inte	ernal ass	essment		Term	Practical	Oral Tot	Total		
Couc	1 (02220			Avg. Of Test 1 and Test 2	End Sem.	Work	& Oral	Orai	Total		
		Test 1	Test2	1 and Test 2	Exam						
ECCILO	Project	20	20	20	80				100		
8021	Management										
	_										

# **Course objectives:**

- To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

#### Course outcomes:

- Apply selection criteria and select an appropriate project from different options.
- Write work break down structure for a project and develop a schedule based on it.
- Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- Use Earned value technique and determine & predict status of the project.
- Capture lessons learned during project phases and document them for future reference

Module No.	Unit No.	Topics	Hrs.
1.0		Project Management Foundation	05
	1.1	Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager, Negotiations and resolving conflicts, Project management in various organization structures, PM knowledge areas as per Project Management Institute (PMI)	
2.0		Initiating Projects	06
	2.1	How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming &performing), team dynamics.	
3.0		Project Planning and Scheduling	08
	3.1	Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart, Introduction to Project Management Information System (PMIS).	
4.0		Planning Projects	06
	4.1	Crashing project time, Resource loading and levelling, Goldratt's critical chain, Project Stakeholders and Communication plan Risk Management in projects: Risk management planning, Risk identification and risk register, Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	
5.0			08
	5.1	Executing Projects:  Planning monitoring and controlling cycle, Information needs and reporting, engaging with all stakeholders of the projects, Team management, communication and project meetings	
	5.2	Monitoring and Controlling Projects:  Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep, Project audit	
	5.3	Project Contracting	
		Project procurement management, contracting and outsourcing,	06
6.0	6.1	6.1 Duoingt I and auchin and Ethics:	06
	6.1	<b>6.1 Project Leadership and Ethics:</b> Introduction to project leadership, ethics in projects, Multicultural and virtual projects	

Closing the Project:	
Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration,	
Starvation), Process of project termination, completing a final report;	
doing a lessons learned analysis; acknowledging successes and	
failures; Project management templates and other resources; Managing without authority; Areas of further study.	
Total	39

#### **References:**

- 1. Project Management: A managerial approach, Jack Meredith & Samuel Mantel, 7th Edition, Wiley India
- 2. A Guide to the Project Management Body of Knowledge (PMBOK $^{\circledR}$  Guide),  $5^{th}$  Ed, Project Management Institute PA, USA
- 3. Project Management, Gido Clements, Cengage Learning
- 4. Project Management, Gopalan, Wiley India
- 5. Project Management, Dennis Lock, 9th Edition, Gower Publishing England

## **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Te	eaching Scho (Hrs.)	eme	Credits Assigned			
		Theory	<b>Practical</b>	Tutorial	Theory	<b>Practical</b>	Tutorial	Total
8022	Finance Management	03			03			03
					•			

				Examiı	nation Sch	eme					
Subject	Subject		The	ory Marks					Total		
Subject Code	Subject Name	Inte	ernal ass	essment		Term	Practical	Oral Tot	Total		
Code	1 (0.2220			Avg. Of Test 1 and Test 2	End Sem.	Work	& Oral	Orai	Total		
		Test 1	Test2	1 and Test 2	Exam						
<b>ECCILO</b>	Finance	20	20	20	80	-			100		
8022	Management										

# **Course objectives:**

- Overview of Indian financial system, instruments and market
- Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- Knowledge about sources of finance, capital structure, dividend policy

## **Course outcomes:**

- Understand Indian finance system and corporate finance
- Take investment, finance as well as dividend decisions

Module	Unit	Topics	Hrs.
No. 1.0	No.		06
	1.1	Overview of Indian Financial System Characteristics, Components and Functions of Financial System.  Financial Instruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills.  Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market  Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
2.0			06
	2.1	Concepts of Returns and Risks: Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio.  Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding and Continuous Discounting.	
3.0			09
	3.1	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.  Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
4.0			10
	4.1	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)  Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.	

5.0		05
	Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance—Trade Credit, Bank Finance, Commercial Paper; Project Finance.  Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of Capital Structure Theories and Approaches— Net Income Approach, Net Operating Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	
6.0		03
	<b>Dividend Policy:</b> Meaning and Importance of Dividend Policy; Factors Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	
	Total	39

#### **References:**

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECCILO 8023	Entrepreneurs hip Development and Management	03			03			03	

		Examination Scheme									
Subject	Subject		The	ory Marks							
Code	Name	Internal assessment				Term	Practical & Oral	Oral	Total		
Code	1 (dille				End Sem.	Work	& Oral		1 Otai		
		Test 1	Test2	1 and Test 2	Exam						
ECCILO	Entrepreneur	20	20	20	80				100		
8023	ship										
	Development										
	and										
	Management										

# **Course objectives:**

- To acquaint with entrepreneurship and management of business
- Understand Indian environment for entrepreneurship
- Idea of EDP, MSME

# **Course outcomes:**

After successful completion of the course student will be able to

- Understand the concept of business plan and ownerships
- Interpret key regulations and legal aspects of entrepreneurship in India
- Understand government policies for entrepreneurs

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

179

Module	Unit	Topics	Hrs.
No. 1.0	No.		04
110	1.1	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	
2.0			09
3.0	2.1	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	
3.0	3.1	Women's Entrepreneurship Development, Social entrepreneurship-	<u>US</u>
	3.1	role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	0.0
4.0	11	Indian Environment for Entrepreneuration ber acceletions and	08
	4.1	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	
5.0			08
	5.1	<b>Effective Management of Business:</b> Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	
6.0			05
	6.1	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	
		Total	39

#### **References:**

- 1. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 2. T N Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 3. C N Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 4. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 5. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 6. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

### **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	To	eaching Scho (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
	Human	03			03			03	
8024	Resource								
	Management								

		Examination Scheme									
Subject	Subject		The	ory Marks							
Subject Code	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total		
Couc				Avg. Of Test	Elia Selli.	Work	& Oral	Oran	Total		
		Test 1	Test2	1 and Test 2	Exam						
ECCILO	Human	20	20	20	80				100		
8024	Resource										
	Management										

# **Course objectives:**

- To introduce the students with basic concepts, techniques and practices of the human resource management
- To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations
- To familiarize the students about the latest developments, trends & different aspects of HRM
- To acquaint the student with the importance of inter-personal & inter-group behavioural skills in an organizational setting required for future stable engineers, leaders and managers

#### Course outcomes:

After successful completion of the course student will be able to

- Understand the concepts, aspects, techniques and practices of the human resource management.
- Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- Gain knowledge about the latest developments and trends in HRM.
- Apply the knowledge of behavioural skills learnt and integrate it with in inter personal and intergroup environment emerging as future stable engineers and managers.

Module No.	Unit No.	Topics	Hrs.			
1.0		Introduction to HR	05			
	1.1	Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions				
	1.2	Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues				
2.0		Organizational Behaviour (OB)	07			
	2.1	Introduction to OB Origin, Nature and Scope of Organizational Behaviour, Relevance to Organizational Effectiveness and Contemporary issues				
	2.2	Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness				
	2.3 Perception: Attitude and Value, Effect of perception on Individual Decision-making, Attitude and Behaviour					
	2.4	Motivation: Theories of Motivation and their Applications for Behavioural Change (Maslow, Herzberg, McGregor)				
	2.5	Group Behaviour and Group Dynamics: Work groups formal and informal groups and stages of group development, Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team				
	2.6	Case study				
3.0		Organizational Structure & Design	06			
	3.1	Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress.				
	3.2	Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership.				
	3.3	Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.				
4.0		Human resource Planning	05			
	4.1	Recruitment and Selection process, Job-enrichment, Empowerment - Job-Satisfaction, employee morale				
	4.2	Performance Appraisal Systems: Traditional & modern methods, Performance Counselling, Career Planning				
	4.3	Training & Development: Identification of Training Needs, Training Methods				
5.0		Emerging Trends in HR	06			

	5.1	Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development, managing processes & transformation in HR. Organizational Change, Culture, Environment	
	5.2	Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation	
6.0			10
	6.1	<b>HR &amp; MIS:</b> Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries	
	6.2	<b>Strategic HRM:</b> Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals	
	6.3	Labor Laws & Industrial Relations: Evolution of IR, IR issues in	
		organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	
		Total	39

# **References:**

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

### **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
8025	Professional Ethics and Corporate Social Responsibilit y (CSR)	03		-1	03			03	

			<b>Examination Scheme</b>								
Subject	Subject		The	ory Marks							
Code	Name	Internal assessment				Term	<b>Practical</b>	Oral	Total		
Couc			T		End Sem.	Work	& Oral		Total		
		Test 1	Test2	1 and Test 2	Exam						
ECCILO	Professional	20	20	20	80				100		
8025	Ethics and										
	Corporate										
	Social										
	Responsibilit										
	y (CSR)										

# **Course objectives:**

- To understand professional ethics in business
- To recognized corporate social responsibility

# **Course outcomes:**

After successful completion of the course student will be able to

- Understand rights and duties of business
- Distinguish different aspects of corporate social responsibility
- Demonstrate professional ethics
- Understand legal aspects of corporate social responsibility

Module No.	Unit No.	Topics	Hrs.
1.0			04
	1.1	<b>Professional Ethics and Business:</b> The Nature of Business Ethics; Ethical Issues in Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties of Business	
2.0			08
	2.1	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition; Oligopolistic Competition; Oligopolies and Public Policy Professional Ethics and the Environment: Dimensions of Pollution and Resource Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	
3.0			06
	3.1	<b>Professional Ethics of Consumer Protection:</b> Markets and Consumer Protection; Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising Ethics; Consumer Privacy <b>Professional Ethics of Job Discrimination:</b> Nature of Job Discrimination; Extent of Discrimination; Reservation of Jobs.	
4.0			05
	4.1	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple bottom line, Human resources, Risk management, Supplier relations; Criticisms and concerns—Nature of business; Motives; Misdirection.  Trajectory of Corporate Social Responsibility in India	
5.0			08
	5.1	Corporate Social Responsibility: Articulation of Gandhian Trusteeship Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India, Corporate Social Responsibility and Public-Private Partnership (PPP) in India	
6.0			08
	6.1	Corporate Social Responsibility in Globalizing India: Corporate Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs, Government of India, Legal Aspects of Corporate Social Responsibility—Companies Act, 2013.	
		Total	39

# **References:**

1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.

- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

### **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Theory Practical Tutorial T			Practical	Tutorial	Total	
9026	Research Methodology	03	-		03			03	

	Subject Name	Examination Scheme								
Subject		Theory Marks								
Subject Code		Internal assessment				Term	Practical & Oral	Oral	Total	
Code				Avg. Of Test			k   & Oral	Orai	Total	
		Test 1	Test2	1 and Test 2	Exam					
<b>ECCILO</b>		20	20	20	80	-			100	
8026	Research									
	Methodology									

# **Course objectives:**

- To understand Research and Research Process
- To acquaint students with identifying problems for research and develop research strategies
- To familiarize students with the techniques of data collection, analysis of data and interpretation

## **Course outcomes:**

After successful completion of the course student will be able to

- Prepare a preliminary research design for projects in their subject matter areas
- Accurately collect, analyze and report data
- Present complex data or situations clearly
- Review and analyze research findings

Module No.	Unit No.	Topics	Hrs.
1.0		Introduction and Basic Research Concepts	09
	1.1	Research – Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle. Research methods vs Methodology	
	1.2	Need of Research in Business and Social Sciences	
	1.3	Objectives of Research	
	1.4	Issues and Problems in Research	
	1.5	Characteristics of Research: Systematic, Valid, Verifiable, Empirical and Critical	
2.0		Types of Research	07
	2.1	Basic Research	
	2.2	Applied Research	
	2.3	Descriptive Research	
	2.4	Analytical Research	
	2.5	Empirical Research	
	2.6	Qualitative & Quantitative Approaches	
3.0		Research Design and Sample Design	07
	3.1	Research Design – Meaning, Types and Significance	
	3.2	Sample Design - Meaning and Significance Essentials of a good	
		sampling Stages in Sample Design Sampling methods/techniques	
4.0		Sampling Errors  Personal Methodology	08
4.0	4.1	Research Methodology  Meaning of Research Methodology	VO
	4.2	Stages in Scientific Research Process:	
	1.2	a. Identification and Selection of Research Problem	
		b. Formulation of Research Problem	
		c. Review of Literature	
		d. Formulation of Hypothesis	
		e. Formulation of research Design	
		f. Sample Design	
		g. Data Collection	
		h. Data Analysis	
		i. Hypothesis testing and Interpretation of Data	
5.0		j. Preparation of Research Report	0.4
5.0	5.1	Formulating Research Problem  Considerations: Polyanas Interest Data Availability Chains of	04
	5.1	Considerations: Relevance, Interest, Data Availability, Choice of	
6.0		data, Analysis of data, Generalization and Interpretation of analysis  Outcome of Research	04
0.0		Outcome of Research	0.

6.1	Preparation of the report on conclusion reached	
6.2	Validity Testing & Ethical Issues	
6.3	Suggestions and Recommendation	
	Total	39

#### **References:**

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C. R.,1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nd ed.), Singapore, Pearson Education

# **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

### **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.) Theory Practical Tutorial			Credits Assigned			
					Theory	<b>Practical</b>	Tutorial	Total
9027	IPR and Patenting	03			03			03

	Subject Name	Examination Scheme							
Subject Code		Theory Marks							
		Internal assessment				Term	Practical & Oral	Oral	Total
Couc				Avg. Of Test	Ena Sem.	Work	& Oral	Orai	1 otai
		Test 1	Test2	1 and Test 2	Exam				
<b>ECCILO</b>	IPR and	20	20	20	80				100
8027	Patenting								
	_								

# **Course objectives:**

- To understand intellectual property rights protection system
- To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- To get acquaintance with Patent search and patent filing procedure and applications

### **Course outcomes:**

After successful completion of the course student will be able to

- Understand Intellectual Property assets
- Assist individuals and organizations in capacity building
- Work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module No.	Unit No.	Topics	Hrs.
1.0	_ , _ ,		05
	1.1	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc.  Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development	
2.0			07
	2.1	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active in IPR enforcement Indian Scenario of IPR: Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc.	
3.0			05
	3.1	<b>Emerging Issues in IPR:</b> Challenges for IP in digital economy, ecommerce, human genome, biodiversity and traditional knowledge etc.	
4.0			07
	4.1	<b>Basics of Patents:</b> Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc.), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	
5.0			08
	5.1	<b>Patent Rules:</b> Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	
6.0			07
	6.1	Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publication, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases	
		Total	39

### **References:**

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

#### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

#### **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (O.2 to O.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECCILO	Digital	03			03			03
8028	Business							
	Management							

		Examination Scheme								
Subject	Subject		The							
Code	Subject Name	Internal assessment				Term	Practical & Oral	Oral	Total	
Couc	1,02220			Avg. Of Test	Elia Selli.	Work	& Oral	Oran	1 Otal	
		Test 1	Test2	1 and Test 2	Exam					
ECCILO	Digital	20	20	20	80	-			100	
8028	Business									
	Management									

# **Course objectives:**

- To familiarize with digital business concept
- To acquaint with E-commerce
- To give insights into E-business and its strategies

# **Course outcomes:**

After successful completion of the course student will be able to

- Identify drivers of digital business
- Illustrate various approaches and techniques for E-business and management
- Prepare E-business plan

Module	Unit	Topics	Hrs.
No.	No.		0.0
1.0			09
	1.1	Introduction to Digital Business- Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business,	
2.0			06
	2.1	Overview of E-Commerce E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC	
3.0			06
	3.1	<b>Digital Business Support services</b> : ERP as e –business backbone, knowledge Tope Apps, Information and referral system <b>Application Development:</b> Building Digital business Applications and Infrastructure	
4.0			06
	4.1	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –business Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	
5.0			04
	5.1	<b>E-Business Strategy</b> -E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)	

6.0			08
	6.1	Materializing e-business: From Idea to Realization-Business plan	
		preparation	
		Case Studies and presentations	
		Total	39

### **References:**

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective- DoI:10.1787/9789264221796-enOECD Publishing

### **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

## **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (0.2 to 0.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	<b>Practical</b>	Tutorial	Theory	<b>Practical</b>	Tutorial	Total
ECCILO 8029	Environmenta I	03			03			03
	Management							

	Carlo i a sa	Examination Scheme								
Subject Code		Theory Marks								
	Subject Name	Internal assessment				Term Practica	Practical	Oral	Total	
Couc	1 (02220			Avg. Of Test	Eliu Selli.	Work	& Oral	Oran	1 Otal	
		Test 1	Test2	1 and Test 2	Exam					
ECCILO	Environment	20	20	20	80				100	
8029	al									
	Management									

# **Course objectives:**

- Understand and identify environmental issues relevant to India and global concerns
- Learn concepts of ecology
- Familiarise environment related legislations

# **Course outcomes:**

After successful completion of the course student will be able to

- Understand the concept of environmental management
- Understand ecosystem and interdependence, food chain etc.
- Understand and interpret environment related legislations

Module	Unit	Topics	Hrs.
No. 1.0	No.		10
1.0			10
	1.1	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities, Environmental issues relevant to India, Sustainable Development, the Energy scenario	
2.0			06
	2.1	Global Environmental concerns: Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical hazards, etc.	
3.0			05
	3.1	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	
4.0			10
	4.1	Scope of Environment Management, Role and functions of Government as a planning and regulating agency Environment Quality Management and Corporate Environmental Responsibility	
5.0			05
	5.1	Total Quality Environmental Management, ISO-14000, EMS certification	
6.0			03
	6.1	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	
		Total	39

#### **References:**

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016 199

Press

7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

# **Internal Assessment:**

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approximately 40% syllabus is completed and second class test when additional 40% syllabus is completed. The average marks of both the test will be considered for final Internal Assessment. Duration of each test shall be of one hour.

# **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	<b>Tutorial</b>	Theory	TW/Pracs	Tutorial	Total	
ECL801	RF Design		02			1		1	
	Laboratory								

	Subject Name		Examination Scheme									
Subject		Theory Marks										
Subject Code		Internal assessment			End Sem.	Term Work	Practical & Oral	Onal	Total			
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Orai	Total			
ECL801						25	25		50			
	RF Design Laboratory											

# **Suggested List of experiments**

- Calibration of Network analyser for measurements.
- Characterization of RF low pass filter.
- Characterization of RF high pass filter.
- Characterization of RF band pass filter.
- Design of passive matching networks.
- Stability circles for microwave transistor
- Gain and Noise circles for transistor amplifier design
- Measurement of radiated emission using EMI Probes for DOT.
- Measurement of conducted radiations.
- Grounding & shielding for EMC.
- Testing of various emission standards like MIL CESPARE.

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

# The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Te	aching Scho (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL801	Wireless		02			1		1	
	Networks								
	Laboratory								

		Examination Scheme									
Cubicat	Cubiast		The								
Subject Code	Subject Name	Internal assessment En				Term	Practical & Oral	Owal	Total		
Coae		Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Work &	& Oral	Orai	1 Otai		
		1651 1	16812	1 and Test 2	Exam						
ECL801	Wireless					25	25		50		
	Networks										
	Laboratory										

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Te	aching Sche (Hrs.)	eme	Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 8041	Optical Networks Laboratory		02			1		1	

		Examination Scheme										
Cubicat	Cubiast		Theory Marks									
Subject Code	Subject Name	Internal assessment En				Term	Practical	Owal	Total			
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Term Practic & Ora	& Oral	l Oran	Total			
		Test 1 Test2		1 and Test 2	Exam							
<b>ECLDLO</b>	Optical					25	25		50			
8041	Networks											
	Laboratory											

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 05 Experiments, 02 tutorials and 1 mini project covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one miniproject can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Te	aching Sche (Hrs.)	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECLDLO 8042	Advanced Digital Signal Processing Laboratory		02		1	1		1	

				Examir	nation Sch	eme			
Subject	Subject		The	ory Marks					
Code	Name	Internal assessment End Se				Term Work	Practical & Oral	Oral	Total
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	Exam	Work	& Oral	Oran	Total
ECLDLO	Advanced					25	25		50
8042	Digital								
	Signal								
	Processing								
	Laboratory								

# **Suggested List of Experiments**

- Write a program to implement multirate sampling technique for Interpolation.
- Write a program to implement multirate sampling techniques for Decimation.
- Design Anti-aliasing and Anti-Imaging filters.
- Write a program to demonstrate LMS algorithm for noise cancellations.
- Write a program to demonstrate RLS algorithm to calculate it's error function.
- Demonstrate application of Wavelet Transform for denoising.
- Analyse the frequency contents in EEG record.
- Write a program to generate ECG signal and isolate the QRS complex.

#### **Instructions:**

- 1. Minimum 4 experiments and 4 assignments must be submitted by each student.
- 2. Assignments can be designed on problem based learning from the content of the syllabus.
- 3. Simulation tools like Matlab/Scilab can be used.

Note: Small Project can be considered as a part of term-work.

### Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Te	aching Scho (Hrs.)	eme	Credits Assigned				
		Theory Practical Tutor			Theory	TW/Pracs	Tutorial	Total	
ECLDLO 8043	Satellite Communica tion Laboratory	1	02	1	1	1		1	

				Examin	ation Sch	neme			
Subject	Cubicat		The						
Subject Code	Subject Name	Inte	rnal ass	essment	End	Term	Practical & Oral	Orol	Total
Code		Test 1	Test2	Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Orai	Total
	1 and Test 2		Exam						
<b>ECLDLO</b>	Satellite					25	25		50
8043	Communicat								
	ion								
	Laboratory								

Note: Small Project can be considered as a part of term-work.

### Term Work:

At least 08 Experiments covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Те	aching Scho (Hrs.)	eme	Credits Assigned				
		Theory Practical Tutorial			Theory	TW/Pracs	Tutorial	Total	
ECLDLO 8044	Network Managemen t in TeleCommu nication Laboratory		02			1		1	

				Examin	ation Sch	eme			
Subject	Subject		The	ory Marks					
Code	Subject Name	Inte	essment	End	Term Pr	Practical & Oral	Oral	Total	
Code		Test 1	Test2	Avg. Of Test			& Oral	Orai	Total
		1 est 1	1 6512	1 and Test 2	Exam				
<b>ECLDLO</b>	Network					25	25		50
8044	Management								
	in								
	TeleCommu								
	nication								
	Laboratory								

# **Suggested List of Experiments**

- Network Monitoring tools
  - a) Status b)Route c)Traffic Tools
- Network Audit using NMAP Gui
- Monitoring and management network using SNMP
  - a) Basic SNMP b) Advanced SNMP v3 Authentication/Encryption and ACL
  - c) SNMP Trap Daemon Implementation
- Configuration SNMP Protocol on Cisco Router using Packet Tracer
- Install and configure SNMP MIB browser
  - a) qtmib b)snmpB c) OpManager MIB browser
- Configuration manageable Switch: Dlink DES 3026 24 Port L2 Switch
- Network Statistics and measurement

a] LAN Traffic Monitoring b) Protocol statistics

- LAN Troubleshooting using Wireshark
- Monitoring of services and Servers using Observium\
- Monitoring of services and Servers using Cacti
- Install and configure NAGIOS and monitor server
- Installation and Configuration of OpenNMS as a NMS.
- Implementation of Centralized Log Management System: Syslog-ng
- Study of commercial network management tools: HPOpenView, OpManager, GFILanguard and IBM NMS.

Note: Small Project can be considered as a part of term-work.

#### Term Work:

At least 08 Experiments covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects (if included) are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	<b>Practical</b>	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL803	Project		12			6		6	
	Stage-II								

	Subject Name	Examination Scheme								
Subject Code		Theory Marks								
		Internal assessment			End	Term Prac	Practical	Oral	Total	
		Test 1 T	Test2	Avg. Of Test 1 and Test 2	Sem.	Work	& Oral	Orai	10tai	
			16812		Exam					
ECL803						100	50		150	
	Project									
	Project Stage-II									

**Objective:** The primary objective is to meet the milestones formed in the overall project plan decided in Project - I. The idea presented in Project -I should be implemented in Project -II with results, conclusion and future work. The project will culminate in the production of a thesis by each individual student.

#### **Guidelines:**

# **Project Report Format:**

At the end of the semester the student needs to prepare a project report which should be prepared as per the guidelines issued by the University of Mumbai. Along with the project report a CD containing: project documentation, Implementation code, required utilities, Software's and user Manuals need to be attached.

#### Term Work:

Student has to submit weekly progress report to the internal guide and the internal guide has to keep a track on the progress of the project and also has to maintain the attendance report. This progress report can be used for awarding the term work marks. In case of industry projects, visit by internal guide will be preferred to get the status of project. Distribution of marks for term work shall be as follows:

- a) Weekly Attendance on Project Day
- b) Project work contributions as per objective
- c) Project Report (Hard Bound)
- d) Term End Presentation (Internal)

The final certification and acceptance of TW ensures the satisfactory performance on the above aspects.

# **Oral & Practical:**

Oral & Practical examination of Project- II should be conducted by Internal and External examiners approved by University of Mumbai. Students have to give presentation and demonstration on the Project-II.



# THADOMAL SHAHANI ENGINEERING COLLEGE

# Chemical Engineering

Sr. No.	Subject Code	Subject Name	
1	CHL301	Industrial and Engineering Chemistry I Lab	
2	CHL302	Fluid Flow Operation Lab	
3	CHL303	Basic Chemical Engineering Lab	
4	CHL304	Skilled Based Lab: Chemical Technology Lab	
5	CHM301	Mini Project 1A	
6	CHL401	Industrial and Engineering Chemistry II Lab	1
7	CHL402	Numerical Method in Chemical Engineering Lab	1
8	CHL403	Solid Fluid Mechanical Operation Lab	1
9	CHL404	Skilled based lab: Design Calculation of Auxiliary Plant	1
		Equipment	
10	CHM401	Mini Project 1B	1
11	CHL501	Computer programming and Numerical Methods Lab	1
12	CHL502	Chemical Engineering Lab IV (MTO-I)	1
13	CHL503	Chemical Engineering Lab V (HTO)	1
14	CHL504	Chemical Engineering Lab VI (CRE-I)	1
15	CHL601	Chemical Engineering Lab VII (EE)	1
16	CHL602	Chemical Engineering Lab VIII (MTO-II)	1
17	CHL603	Chemical Engineering LabIX CRE-II)	1
18	CHL701	PED Lab	1
19	CHL702	Chemical Engineering Lab X (PDC)	1
20	CHL801	Chemical Engineering Lab XI (MSO)	1
		Total	20

# **UNIVERSITY OF MUMBAI**



# **Bachelor of Engineering**

in

# **Chemical Engineering**

Second Year with Effect from AY 2020-21

Third Year with Effect from AY 2021-22

Final Year with Effect from AY 2022-23

(REV- 2019 'C' Scheme) from Academic Year 2019 – 20

Under

# **FACULTY OF SCIENCE & TECHNOLOGY**

(As per AICTE guidelines with effect from the academic year 2019–2020)

# **Preamble**

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self-learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self-learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

# Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self-learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande
Associate Dean
Faculty of Science and Technology
University of Mumbai

Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

### Preamble to the Revision of Syllabus in Chemical Engineering

Development in all fields including Chemical Engineering along with use of soft wares for process plant and process engineering, there is demand on academician to upgrade the curriculum in Education. Choice based Credit and grading system enables a much required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. The Curriculum must integrate knowledge of the basic and advanced sciences with problem solving and creativity abilities.

The Curriculum must be broad enough to cover all areas from design to operation of Process plants. It should be deep enough to enable the learners to carry out research and develop products to meet rapidly changing needs and demands. The major challenge in the current scenario is to ensure quality to the stakeholders. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program.

With these objectives, online meeting was organized on 30th May 2020 which was attended by heads of the departments and subject faculty of affiliating Institutes. The program objectives and outcomes were thoroughly discussed in line with AICTE guidelines and the core structure of the syllabus was formulated keeping in mind choice based credit and grading system curriculum along with more emphasis on learning outcomes. Thus Skilled based laboratories and Mini projects are introduced in appropriate semesters. Views from experts and UG teachers were taken into consideration and final Academic and Exam scheme was prepared with the consent of all the members involved. Subject wise online meetings were held by various subjects convenors to finalize the detail syllabus in the month of June 2020.

The Program Educational Objectives finalized for the undergraduate program in Chemical Engineering are:

- 1. To prepare the student for mathematical, scientific and engineering fundamentals
- 2. To motivate the student to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social and environmental responsibilities.
- 4. To prepare the student in achieving excellence which will benefit individually and society at large.

### **Board of Studies in Chemical Engineering**

Dr. Sunil S. Bhagwat - Chairman

Dr. Kalpana S. Deshmukh - Member

Dr. Sunil J. Kulkarni - Member

Dr. Ramesh S. Bhande - Member

Dr. Aparna N. Tamaskar - Member

Dr. Shyamala P. Shingare - Member

Dr. Manisha V. Bagal - Member

# Program Structure for B.E. Chemical Engineering (Revised 2020-2021)

### **Semester III**

Course	Course Name		eaching Scheintact Hours)	me	Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC301	Engineering Mathematics-III	3	-	1	3	-	1	4
CHC302	Industrial and Engineering Chemistry I	3	-	-	3	-	-	3
CHC303	Fluid Flow Operations	3	-	-	3	-	-	3
СНС304	Chemical Engineering Thermodynamics I	3	-	-	3	-	-	3
CHC305	Process Calculations	3	-	-	3	-	-	3
CHL301	Industrial and Engineering Chemistry I Lab	-	3	-	-	1.5	-	1.5
CHL302	Fluid Flow Operation Lab	-	3	-	-	1.5	-	1.5
CHL303	Basic Chemical Engineering Lab	-	3	-	-	1.5	-	1.5
CHL304	Skilled Based Lab: Chemical Technology Lab	-	2*2	-	-	2	-	2
CHM301	Mini Project 1A	-	3#	-	-	1.5	-	1.5
	Total	15	16	1	15	8	1	24

					Exa	mination Sch	eme							
Course	Course Name			Theory	y		Term	D4						
code		Interi	nal Assessn	nent	End Sem	Exam Duration	Work			Total				
		Test 1	Test 2	Avg	Exam	(in hrs)								
CHC301	Engineering Mathematics-III	20	20	20	80	3	25	-	-	125				
CHC302	Industrial and Engineering Chemistry I	20	20	20	80	3	-	-	-	100				
CHC303	Fluid Flow Operations	20	20	20	80	3	-	-	-	100				
CHC304	Chemical Engineering Thermodynamics I	20	20	20	80	3	-	-	-	100				
CHC305	Process Calculations	20	20	20	80	3	-	-	-	100				
CHL301	Industrial and Engineering Chemistry I Lab	-	-	-	-	3	25	25	-	50				
CHL302	Fluid Flow Operation Lab	-	-	-	-	3	25	25	-	50				
CHL303	Basic Chemical Engineering Lab	-	-	-	-	-	25	-	25	50				
CHL304	Skilled Based Lab: Chemical Technology Lab	-	-	-	-	-	25	-	25	50				
CHM301	Mini Project 1A	-	-	-	-	-	25	-	25	50				
	Total	-	-	100	400	-	150	50	75	775				

^{*}Indicates Theory class to be conducted for full class;

indicates work load of Learner (Not Faculty), for Mini Project;

For mini project faculty load: 1 hour per week per four groups

# Program Structure for B.E. Chemical Engineering (Revised 2020-2021)

# Semester IV

	Course Name	Т	eaching Sche (Contact H			Credits Ass	signed	
Course code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC401	Engineering Mathematics-IV	3	-	1	3	-	1	4
CHC402	Industrial and Engineering Chemistry II	3	-		3	-	-	3
CHC403	Numerical Method in Chemical Engineering	3	-	-	3	-	-	3
CHC404	Solid Fluid Mechanical Operations	3	-	-	3	-	-	3
CHC405	Chemical Engineering Thermodynamics II	3	-	-	3	-	-	3
CHL401	Industrial and Engineering Chemistry II Lab	-	3	-	-	1.5	-	1.5
CHL402	Numerical Method in Chemical Engineering Lab	-	3	-	-	1.5	-	1.5
CHL403	Solid Fluid Mechanical Operation Lab	-	3	-	-	1.5	-	1.5
CHL404	Skilled based lab: Design Calculation of Auxiliary Plant Equipment	-	3	-	-	1.5	-	1.5
CHM401	Mini Project 1B	-	2#		-	1		1
	Total	15	14	1	15	7	1	23

					Exa	mination Sch	ieme		Oral To				
Course	Course Name			Theo	ry		Тотт	Pract					
code		Intern	Internal Assessment		End	Exam	Term Work	/Oral	Oral	Total			
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	WOIK	/Oran					
CHC401	Engineering Mathematics-IV	20	20	20	80	3	25	-	-	125			
CHC402	Industrial and Engineering Chemistry II	20	20	20	80	3	-	-	-	100			
CHC403	Numerical Method in Chemical Engineering	20	20	20	80	3	-	-	-	100			
CHC404	Solid Fluid Mechanical Operations	20	20	20	80	3	-	-	-	100			
CHC405	Chemical Engineering Thermodynamics II	20	20	20	80	3	-	-	-	100			
CHL401	Industrial and Engineering Chemistry II Lab	-	-	-	-	3	25	25	-	50			
CHL402	Numerical Method in Chemical Engineering Lab	-	-	-	-	-	25	-	25	50			
CHL403	Solid Fluid Mechanical Operation Lab	-	-	-	-	3	25	25	-	50			
CHL404	Skilled based lab: Design Calculation of Auxiliary Plant Equipment	-	-	-	-	-	25	-	25	50			
CHM401	Mini Project 1B	-	-	-	-	-	25	-	25	50			
	Total	-	-	100	400	-	150	50	75	775			

 $[\]hbox{\it\# indicates work load of Learner (Not Faculty), for Mini Project;}$ 

For mini project faculty load : 1 hour per week per four groups  $\,$ 

# Program Structure for B.E. Chemical Engineering (Revised 2021-2022)

### Semester V

Course code	Course Name	Т	eaching Sche (Contact H			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
CHC501	Mass transfer Operations-I	3	-	-	3	-	-	3	
CHC502	Heat transfer Operations	3	-	-	3	-	-	3	
CHC503	Chemical Reaction Engineering-I	3	-	-	3	-	-	3	
CHC504	Transport Phenomena	3	-	-	3	-	-	3	
CHDO501X	Department Optional Course 1	3	-	-	3	-	-	3	
CHL501	Mass transfer Operations-I Lab	-	3	-	-	1.5	-	1.5	
CHL502	Heat transfer Operations Lab	-	3	-	-	1.5	-	1.5	
CHL503	Chemical Reaction Engineering-I Lab	-	3	-	-	1.5	-	1.5	
CHL504	Skilled Based Lab: Business Communication and Ethics Lab	-	2*2	-	-	2	-	2	
CHM501	Mini Project-2A	-	3#	-	-	1.5	-	1.5	
	Total	15	14	-	15	8	-	23	

Course code					Exa	mination Sch	eme					
	Course Name			Theo	ry							
	Course Name	Intern	al Assessi	ment	End	Exam	Term	Pract	Oral	Total		
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	Work	/Oral				
CHC501	Mass transfer Operations-I	20	20	20	80	3	-	-	-	100		
CHC502	Heat transfer Operations	20	20	20	80	3	-	-	-	100		
CHC503	Chemical Reaction Engineering-I	20	20	20	80	3	-	-	-	100		
CHC504	Transport Phenomena	20	20	20	80	3	-	-	-	100		
CHDO501X	Department Optional Course 1	20	20	20	80	3	-	-	-	100		
CHL501	Mass transfer Operations-I Lab	-	-	-	-	3	25	25	-	50		
CHL502	Heat transfer Operations Lab	-	-	-	-	3	25	25	-	50		
CHL503	Chemical Reaction Engineering-I Lab	-	-	-	-	3	25	25	-	50		
CHL504	Skilled Based Lab: Business Communication and Ethics Lab	-	-	-	-	-	25	-	25	50		
CHM501	Mini Project-2A	-	-	-	-	-	25	-	25	50		
	Total			100	400	-	125	75	50	750		

Department Optional Course 1 (Semester V)

Engineering Stream (Elective Code)	Technology Stream (Elective Code)	Management Stream
Food Engineering(CHDO5011)	Advanced Material Sciences (CHDO5012)	Total Quality Management (CHDO5013)

^{*}Indicates Theory class to be conducted for full class; # indicates work load of Learner (Not Faculty), for Mini Project;
For mini project faculty load: 1 hour per week per four groups

# 

Course code	Course Name	Т	eaching Sche (Contact H			Credits As	signed	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC601	Mass Transfer Operation II	3	-	-	3	-	-	3
CHC602	Chemical Reaction Engineering II	3	-	-	3	-	-	3
CHC603	Pollution Control Technology	3	-	-	3	-	-	3
CHC604	Process Engineering and Economics	3	-	1	3	-	1	4
CHDO602X	Departmental Optional Course 2	3	-	-	3	-	-	3
CHL601	Mass Transfer Operation II Lab	-	3	-	-	1.5	-	1.5
CHL602	Chemical Reaction Engineering II  Lab	-	3	-	-	1.5	-	1.5
CHL603	Pollution Control TechnologyLab	-	3	-	-	1.5	-	1.5
CHL604	Skilled Based Lab: Piping Design Engineering Lab	-	3	-	-	1.5	-	1.5
CHM601	Mini Project – 2B	-	2#	-	-	1	-	1
	Total	15	14	1	15	7	1	23

					Exa	amination Sch	eme			
C	Course Name			Theo	ory		<b>T</b>	D		
Course code		Intern	al Assess	ment	End	Exam	Term Work	Pract /Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)		,		
CHC601	Mass Transfer Operation II	20	20	20	80	3	-	-	-	100
CHC602	Chemical Reaction Engineering II	20	20	20	80	3	-	-	-	100
CHC603	Pollution Control Technology	20	20	20	80	3	-	-	-	100
CHC604	Process Engineering and Economics	20	20	20	80	3	25	-	-	125
CHDO602X	Departmental Optional Course 2	20	20	20	80	3	-	-	-	100
CHL601	Mass Transfer Operation II Lab	-	-	-	-	3	25	25	-	50
CHL602	Chemical Reaction Engineering II  Lab	-	-	-	-	3	25	25	-	50
CHL603	Pollution Control TechnologyLab	-	-	-	-	3	25	25	-	50
CHL604	Skilled Based Lab: Piping Design Engineering Lab	-	-	-	-	-	25	-	25	50
CHM601	Mini Project – 2B	-	-	-	-	-	25	-	25	50
	Total			100	400	-	150	75	50	775

Department Optional Course 2 (Semester VI)

Ī	<b>Engineering Stream (Elective Code)</b>	Technology Stream (Elective Code)	Management Stream (Elective Code)
	Piping Engineering (CHDO6021)	Polymer Technology (CHDO6022)	Industrial Organization and Management (CHDO6023)

# indicates work load of Learner (Not Faculty), for Mini Project; For mini project faculty load: 1 hour per week per four groups

# Program Structure for B.E. Chemical Engineering (Revised 2022-2023)

### Semester VII

Course code	Course Name		ching Sch Contact l			Credi	ical ial	
Course code		Theory	Pract ical	Tutor ial	Theory	Pract ical		Total
CHC701	Instrumentation Process Dynamics and Control	3	-	-	3	-	-	3
CHC702	Chemical Engineering Equipment Design	3	-	-	3	-	-	3
CHDO703X	Department Optional Course 3	3	-	-	3	-	-	3
CHDO704X	Department Optional Course 4	3	-	-	3	-	-	3
IOC701X	Institute Optional Course 1	3	-	-	3	-	-	3
CHL701	Instrumentation Process Dynamics and Control Lab	-	3	-	-	1,5	-	1.5
CHL702	Chemical Engineering Equipment Design Lab	-	3	-	-	1.5	-	1.5
CHL703	Hazard and Risk Analysis Lab	-	2	-	-	1	-	1
CHP701	Major Project I	-	6#	-	-	3	-	3
	Total	15	8	-	15	7	-	22

					Ex	amination Sc	heme			
	Course Name			The	ory					
Course code	Course Name	Intern	al Asses	sment	End	Exam	Term	Pract	Oral	Total
		Test	Test	Avg	Sem	Duration	Work	/Oral		Total
		1	2	Avg	Exam	(in hrs)				
CHC701	Instrumentation Process Dynamics and Control	20	20	20	80	3	-	-	-	100
CHC702	Chemical Engineering Equipment Design	20	20	20	80	3	-	-	-	100
CHDO703X	Department Optional Course 3	20	20	20	80	3	-	-	-	100
CHDO704X	Department Optional Course 4	20	20	20	80	3	-	-	-	100
IOC701X	Institute Optional Course 1	20	20	20	80	3	-	-	-	100
CHL701	Instrumentation Process Dynamics and Control Lab	-	-	-	-	3	25	25	-	50
CHL702	Chemical Engineering Equipment Design  Lab	-	-	-	-	-	25	-	25	50
CHL703	Hazard and Risk Analysis Lab	-	-	-	-	-	25	-	25	50
CHP701	Major Project I	-	-	-	-	3	25	-	25	50
	Total	-	-	100	400	-	100	25	75	700

# Department Optional Course 3 (Semester VII)

Engineering Stream (Elective Code)	Technology Stream (Elective Code)	Management Stream (Elective)
Corrosion Engineering (CHDO7031)	Fundamental of Colloids and Interface	Project Management for Chemical Process
	Science and Technology (CHDO7032)	Industries (CHDO7033)

### Department Optional Course 4 (Semester VII)

Engi	neering S	tream (Ele	ective C	ode)	Technology Stream (Elective Code)	Management Stream (Elective)
Chemical	Plant	3		Hazards	Petroleum Refining Technology (CHDO7042)	Operation Research (CHDO7043)
(CHDO704	1)					•

 $[\]textit{\# indicates work load of Learner (Not Faculty), for Major Project; } \quad \textbf{faculty load: semester VII-} \\ \textit{1} \quad \textbf{hour per week per project group-} \\ \textbf{1} \quad \textbf{2} \quad \textbf{3} \quad \textbf{3} \quad \textbf{4} \quad \textbf{$ 

# Program Structure for B.E. Chemical Engineering (Revised 2022-2023)

### **Semester VIII**

Course code	Course Name	Т	eaching Sche (Contact H					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC801	Modelling Simulation and Optimization	3	-	-	3	-	-	3
CHDO805X	Department Optional Course 5	3	-	-	3	-	-	3
CHDO806X	Department Optional Course 6	3	-	-	3	-	-	3
IO802X	<b>Institute Optional Course 2</b>	3	-	-	3	-	-	3
CHL801	Modelling Simulation and Optimization Lab	-	3	-	-	1.5	-	1.5
CHL802	Software application in Chemical Engineering Lab	-	3	-	-	1.5	-	1.5
CHP801	Major Project II	-	12#	-	-	6	-	6
	Total	12	18	-	12	9	-	21

					Exa	mination Sch	eme			
	Course Name			Theo	ry					
Course code	oomse i tunie	Intern	al Assess	ment	End	Exam	Term	Pract	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	Work	/Oral		
CHC801	Modelling Simulation and Optimization	20	20	20	80	3	-	-	-	100
CHDO805X	Department Optional Course 5	20	20	20	80	3	-	-	-	100
CHDO806X	Department Optional Course 6	20	20	20	80	3	-	-	-	100
IO802X	<b>Institute Optional Course 2</b>	20	20	20	80	3	-	-	-	100
CHL801	Modelling Simulation and Optimization Lab	-	-	-	-	3	25	25	-	50
CHL802	Software application in Chemical Engineering Lab	-	-	-	-	-	25	-	25	50
CHP801	Major Project II	-	-		-	-	50	-	100	150
	Total			80	320	-	175	25	50	650

### Department Optional Course 4 (Semester VIII)

Engineering Stream (Course Code)	Technology Stream (Course Code)	Management Stream (Course Code)
Energy System Design (CHDO8041)	Advanced Separation Technology (CHDO8042)	Financial Management (CHDO8043)

### Department Optional Course 5 (Semester VIII)

Engineering Stream (Course Code)		Technology Stream (Course Code)	Management Stream (Course Code)
Fuel Cell Electrochemical Engineering	1.	Biotechnology Technology (CHDO8052)	Chemical Waste Management
(CHDO8051)	2.	Nanotechnology (CHDO8053)	(CHDO8054)

 $^{\#\} indicates\ work\ load\ of\ Learner\ (Not\ Faculty), for\ Major\ Project;\ Faculty\ load:\ semester\ VIII-1\ hour\ per\ week\ per\ project\ group$ 

# **UNIVERSITY OF MUMBAI**



Revised syllabus (Rev- 2016) from Academic Year 2016 -17

# **Chemical Engineering**

Second Year with Effect from AY 2017-18
Third Year with Effect from AY 2018-19
Final Year with Effect from AY 2019-20
Under

# FACULTY OF TECHNOLOGY

As per **Choice Based Credit and Grading System**With effect from the AY 2016–17

# From Coordinator's Desk

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) give freedom to affiliated Institutes to add few (PEO's) course objectives course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. Credit grading based system was implemented for Second Year of B.E. in Chemical Engineering from the academic year 2017-2018. This system is carried forward for Third Year of B.E. in Chemical Engineering in the academic year 2018-2019 and will be implemented for Fourth Year B.E. in the year 2019-2020 respectively.

Dr. S. K. Ukarande

Co-ordinator,

Faculty of Technology,

**Member - Academic Council** 

University of Mumbai, Mumbai

### Preamble to the Revision of Syllabus in Chemical Engineering

To match the increasing pace of development in all fields including Chemical Engineering and Biotechnology along with use of softwares for process plant and process engineering, there is demand on academician to upgrade the curriculum in Education. The availability of free software such as Scilab, DW SIM expand the boundaries of learning. Hence, the Undergraduate Curriculum in Chemical Engineering must provide the necessary foundation for a Chemical Engineer to be able to specialize in any area as and when the need and opportunity arise. The Curriculum must integrate knowledge of the basic and advanced sciences with problem solving abilities and inclusion of technological development. The Curriculum must be broad enough to cover all areas from design to operation of Process plants. It should be deep enough to enable the learners to carry out research and develop products to meet rapidly changing needs and demands. The major challenge in the current scenario is to ensure quality to the stakeholders along with expansion. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program.

With these objectives, a meeting was organized at Thadomal Shahani Engineering College Bandra on 17th November 2016 which was attended by Industries experts, heads of the departments and subject faculty of affiliating Institutes. The program objectives and outcomes were thoroughly discussed in this meeting and the core structure of the syllabus was formulated keeping in mind choice based credit and grading system curriculum to be introduced in this revised syllabus for B.E. (Chemical Engineering) for all semesters. Views from experts and UG teachers were taken into consideration and final Academic and Exam scheme was prepared with the consent of all the members involved. Subject wise meetings were held to finalize the detail syllabus in Bharati Vidyapeeth College of Engineering on 13th Jan 2017, SS Jondhale College of Engineering on 27th Jan 2017, Datta Meghe College of Engineering Airoli on 20th February 2017 and 13th April 2017 and in D. J. Sanghavi College of Engineering on 17th April 2017.

The Program Educational Objectives finalized for the undergraduate program in Chemical Engineering are:

- 1. To prepare the student for mathematical, scientific and engineering fundamentals
- 2. To motivate the student to use modern tools for solving real life problems
- To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities.
- 4. To prepare the student in achieving excellence in their career in Indian and Global Market.

Dr. Kalpana S. Deshmukh,

Chairman, Board of Studies in Chemical Engineering (Adhoc),

University of Mumbai

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

### **General Guidelines**

#### **Tutorials**

- The number of tutorial batches can be decided based on facilities available in the institution.
- Tutorials can be creative assignments in the form of models, charts, projects, etc.

#### Term Work

- Term work will be an evaluation of the tutorial/practical done over the entire semester.
- It is suggested that each tutorial/practical be graded immediately and an average be taken at the end.
- A minimum of eight tutorials/ten practical will form the basis for final evaluation.
- The total 25 marks for term work (except project and seminar) will be awarded as follows:

Tutorial / Practical Journal – 20 marks

Overall Attendance – 05

Further, while calculating marks for attendance, the following guidelines shall be adhered to:

75 % to 80%. – 03 marks

81% to 90% - 04 marks

91% onwards – 05 marks

### **Theory Examination**

- In general all theory examinations will be of 3 hours duration.
- Question paper will comprise of total six questions, each of 20 Marks.
- Only four questions need to be solved.
- Question one will be compulsory and based on maximum part of the syllabus.

### Note:

In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus as far as possible.

### **Practical Examination:**

- Duration for practical examination would be the same as assigned to the respective Lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

# **Project and Seminar Guidelines**

- Project Groups: Students can form groups with minimum 2 (Two) and not more than 3 (Three)
- The load for projects may be calculated proportional to the number of groups, not exceeding two hours per week.
- The load for projects may be calculated as: Sem VII: ½ hr for teacher per group. Sem VIII: 1 hr for teacher per group.
- Each teacher should have ideally a maximum of three groups and only in exceptional cases four groups can be allotted to the faculty.
- Seminar topics will be the consensus of the project guide and the students. Each student will work on a unique topic.
- The load for seminar will be calculated as one hour per week irrespective of the number of students
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, eight hours each were allotted in Project A, B and three hours for Seminar to the students.

### University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) S.E. Semester III (w.e.f 2017-2018)

Course	Course Name	T (Contact	eaching Sche Hours)	me	(			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC301	Applied Mathematics-III	3	-	1	3	-	1	4
CHC302	Engineering Chemistry I	4	-	-	4	-	-	4
CHC303	Fluid Flow Operations (FFO)	4	-	-	4	-	-	4
CHC304	Chemical Engineering Thermodynamics I	3	-	1	3	-	1	4
CHC305	Process Calculations	3	-	1	3	-	1	4
CHC306	Chemical Technology	4	-	-	4	-	-	4
CHL301	Engineering Chemistry-I Lab	-	3	-	-	1.5	-	1.5
CHL302	Chemical Engineering Lab I (FFO)	-	3	-	-	1.5	-	1.5
CHL303	Chemical Engineering Lab II (Synthesis)	-	2	-	-	1	-	1
	Total	21	8	3	21	4	3	28

					Exa	mination Sch	eme			
Course	Course Name			Theo	ry		Term	Pract		
code		Intern	al Assess	ment	End	Exam	Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC301	Applied Mathematics-III	20	20	20	80	3	25	-	-	125
CHC302	Engineering Chemistry I	20	20	20	80	3	-	-	-	100
CHC303	Fluid Flow (FF)	20	20	20	80	3	-	-	-	100
CHC304	Chemical Engineering Thermodynamics I	20	20	20	80	3	25	-	-	125
CHC305	Process Calculations	20	20	20	80	3	25	-	-	125
CHC306	Chemical Technology	20	20	20	80	3	-	-	-	100
CHL301	Engineering Chemistry-I Lab	-	-	-	-	3	-	25	-	25
CHL302	Chemical Engineering Lab I (FFO)	-	-	-	-	3	25	25	-	50
CHL303	Chemical Engineering Lab II (Synthesis)	-	-	-	-	-	25	-	25	50
	Total			120	480	-	125	50	25	800

### University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) S.E. Semester IV (w.e.f 2017-2018)

Course code	Course Name		eaching Sche Contact Hou		C			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC401	Applied Mathematics-IV	3	-	1	3	-	1	4
CHC402	Engineering Chemistry II	4	-		4	-	-	4
CHC403	Chemical Engineering Thermodynamics II	3	-	1	3	-	1	4
CHC404	Solid Fluid Mechanical Operations (SFMO)	4	-	-	4	-	-	4
CHC405	Mechanical Equipment Design (MED)	4	-	-	4	-	-	4
CHC406	Chemical Engineering Economics	3	-	1	3	-	1	4
CHL401	Engineering Chemistry-II Lab	-	3	-	-	1.5	-	1.5
CHL402	Chemical Engineering Lab III (SFMO)	-	3	-	-	1.5	-	1.5
CHL403	MED Lab	-	2	-	-	1	-	1
	Total	21	8	2	21	4	3	28

Course					Exai	nination Sch	eme			
code	Course Name			Theo	ory		Term	Pract		<b></b>
		Interr	al Assess	ment	End	Exam	Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC401	Applied Mathematics-IV	20	20	20	80	3	25	•	-	125
CHC402	Engineering Chemistry II	20	20	20	80	3	-	-	-	100
CHC403	Chemical Engineering Thermodynamics II	20	20	20	80	3	25	•	-	125
CHC404	Solid Fluid Mechanical Operations (SFMO)	20	20	20	80	3	-	ı	-	100
CHC405	Mechanical Equipment Design (MED)	20	20	20	80	3	-	-	-	100
CHC406	Chemical Engineering Economics	20	20	20	80	3	25	•	-	125
CHL401	Engineering Chemistry-II Lab	-	-	-	-	3	-	25	-	25
CHL402	Chemical Engineering Lab III (SFMO)	-	-	•		3	25	25	-	50
CHL403	MED Lab	-	-	-	-	-	25	-	25	50
	Total			120	480	-	125	50	25	800

### University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) T.E. Semester V (w.e.f 2018-2019)

Course code	Course Name		eaching Sche Contact Hou		C			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC501	Computer programming and Numerical Methods	4	-	-	4	-	-	4
CHC502	Mass transfer Operations-I (MTO- I)	4	1	-	4	•	•	4
CHC503	Heat transfer Operations (HTO)	4	•	-	4	-	-	4
CHC504	Chemical Reaction Engineering-I (CRE I)	4	-	-	4	-	-	4
CHC505	Business Communication & Ethics	2	-	2	-	-	2	2
CHDE501X	Department Elective I	4	-	-	4	-	-	4
CHL501	Computer programming and Numerical Methods lab	-	2	-	-	1	-	1
CHL502	Chemical Engineering Lab IV (MTO-I)	-	3	-	-	1.5	•	1.5
CHL503	Chemical Engineering Lab V (HTO)	-	3	-	-	1.5	-	1.5
CHL504	Chemical Engineering Lab VI (CRE-I)	-	2	-	-	1	-	1
	Total	20	14	-	20	5	2	27

Course code					Exai	mination Sch	eme			
	Course Name			Theo	ory				Oral	
		Interr Test 1	Test 2	ment Avg	End Sem Exam	Exam Duration	Term Work	Pract /Oral		Total
CHC501	Computer programming and Numerical Methods	20	20	20	80	(in hrs)	-	-	-	100
CHC502	Mass transfer Operations-I (MTO- I)	20	20	20	80	3		-	-	100
CHC503	Heat transfer Operations (HTO)	20	20	20	80	3		-	-	100
CHC504	Chemical Reaction Engineering-I (CRE I)	20	20	20	80	3		-	-	100
CHC505	Business Communication & Ethics	-	-	-	-	-	50	-	-	50
CHDE501X	Department Elective I	20	20	20	80	3		-	-	100
CHL501	Computer programming and Numerical Methods Lab	-	-	-	-	2	25	25	-	50
CHL502	Chemical Engineering Lab IV (MTO-I)	-	-	-	-	3	25	25	-	50
CHL503	Chemical Engineering Lab V (HTO)	-	-	-	-	3	25	25	-	50
CHL504	Chemical Engineering Lab VI (CRE-I)	-	-	-	-	2	25	25	-	50
	Total			100	400	-	150	100	-	750

Department Elective I (Sem V)						
Engineering Stream (Elective Code)	Advanced Sciences Stream (Elective code)	Technology Stream (Elective Code)				
1. Piping Engineering (CHDE5011) 2. Instrumentation (CHDE5014)	1. Colloids and Interfaces (CHDE5012)	1. Advanced Material Sciences (CHDE5013)				

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

# University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) T.E. Semester VI (w.e.f 2018-2019)

Course code	Course Name		Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
CHC601	Environmental Engineering (EE)	4	-	-	4	-	-	4	
CHC602	Mass transfer Operations –II (MTO-II)	4	-	-	4	-	-	4	
CHC603	Transport Phenomenon	3	-	1	3	-	1	4	
CHC604	Chemical Reaction Engineering –II (CRE- II)	4	-	-	4	-	-	4	
CHC605	Plant Engineering & Industrial Safety	3	-	1	3	-	1	4	
CHDE602X	Department Elective II	4	-	-	4	-	-	4	
CHL601	Chemical Engineering Lab VII (EE)	-	3	-	-	1.5	-	1.5	
CHL602	Chemical Engineering Lab VIII (MTO-II)	-	3	-	-	1.5	-	1.5	
CHL603	Chemical Engineering LabIX CRE-II)	-	2	-	-	1	-	1	
	Total	22	8	2	22	4	2	28	

		Examination Scheme									
Course code	ode Course Name			ory	Term	Pract		m . 1			
		Intern	nal Assess	ment	End	Exam	Work	/Oral	Oral	Total	
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)					
CHC601	Environmental Engineering (EE)	20	20	20	80	3	-	-	-	100	
CHC602	Mass transfer Operations –II (MTO-II)	20	20	20	80	3	-	-	-	100	
CHC603	Transport Phenomenon	20	20	20	80	3	25	-	-	125	
CHC604	Chemical Reaction Engineering –II (CRE- II)	20	20	20	80	3	-	-	-	100	
CHC605	Plant Engineering & Industrial Safety	20	20	20	80	3	25	-	-	125	
CHDE602X	Department Elective II	20	20	20	80	3	-	-	-	100	
CHL601	Chemical Engineering Lab VII (EE)	-	-	-	-	3	25	25		50	
CHL602	Chemical Engineering Lab VIII (MTO-II)	-	-	-	-	3	25	25	-	50	
CHL603	Chemical Engineering Lab IX CRE-II)	-	-	-	-	2	25	25	-	50	
·	Total			120	480	-	125	75		800	

Department Elective II (Sem VI)							
Engineering Stream (Elective Code) Management Stream (Elective Code) Technology Stream (Elective Co							
1. Computational Fluid Dynamics (CHDE6021)	1. Operation Research (CHDE6022)	1. Biotechnology (CHDE6023)					

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

### University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) B.E. Semester VII (w.e.f 2019-2020)

Course code	Course Name		Teaching Scheme (Contact Hours)			Credits Assigned			
Course code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
CHC701	Process Equipment Design. (PED)	4	-	-	4	-	-	4	
CHC702	Process Engineering	3	-	1	3	-	1	4	
CHC703	Process Dynamics and Control (PDC)	4	-	-	4	-	-	4	
CHDE703X	Department Elective III	4	-	-	4	-	-	4	
ILO701X	Institute Elective I	3	-	-	3	-	-	3	
CHP701	Project A	-	-	8	-	-	3	3	
CHS701	Seminar	-	-	3	-	-	3	3	
CHL701	PED Lab	-	3	-	-	1.5	-	1.5	
CHL702	Chemical Engineering Lab X (PDC)	-	3	-	-	1.5	-	1.5	
	Total	18	6	12	18	3	7	28	

					]	Examination	Scheme			
	g . v			The	eory					
Course code	Course Name		interna ssessme		End	Exam	Term Work	Pract /Oral	Oral	Total
		Test 1	Te st 2	Avg	Sem Exam	Duration (in hrs)				
CHC701	Process Equipment Design. (PED)	20	20	20	80	3	-	-	-	100
CHC702	Process Engineering	20	20	20	80	3	25	-	-	125
CHC703	Process Dynamics and Control (PDC)	20	20	20	80	3	-	-	-	100
CHDE703X	Department Elective III	20	20	20	80	3	-	-	-	100
ILO701X	Institute Elective I	20	20	20	80	3	-	-	-	100
CHP701	Project A	-	-	-	-	-	100		25	125
CHS701	Seminar	-	-	-	-	-	50	-	-	50
CHL701	PED Lab	-	-	-	-	-	25	-	25	50
CHL702	Chemical Engineering Lab X (PDC)	-	-	-	-	3	25	25	-	50
	Total			100	400	-	225	25	50	800

	Department Elective III (Sem VII)						
Engineering Stream	(Elective Code)	Technology Stream (Elective Code)					
1. Corrosion (CHDE7031)	Engineering	2. Industrial organization and Management. (CHDE7032)	1.Petroleum Refining Technology(CHDE7033) 3. Food Technology (CHDE7034)				

Institute Level Optional Subject I (Sem VII)							
1. Product Lifecycle Management(ILO7011)	4. Design of Experiments(ILO7014)	7. Disaster Management and Mitigation Measures(ILO7017)					
2. Reliability Engineering (ILO7012)	5. Operation Research (ILO7015)	8. Energy Audit and Management (ILO7018)					
3. Management Information System (ILO7013)	6. Cyber Security and Laws (ILO7016)	9. Development Engineering (ILO7019)					

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

### University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) B.E. Semester VIII (w.e.f 2019-2020)

Course code	Course Name	Course Name Teaching Scheme (Contact Hours)			(			
Course code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC801	Modeling, Simulation & Optimization (MSO)	4	-	-	4	-	-	4
CHC802	Project Engineering & Entrepreneurship Management	3	-	1	3	-	1	4
CHC803	Energy System Design	3	-	1	3	-	1	4
CHDE804X	Department Elective IV	4	-	-	4	-	-	4
ILO802X	Institute Elective II	3	-	-	3	-	-	3
CHP801	Project B	-	-	8	-	-	6	6
CHL801	Chemical Engineering Lab XI (MSO)	-	2	-	-	1	-	1
	Total	17	2	10	17	1	8	26

		Ex						xamination Scheme						
Course code	Course Name			ry	Term	Pract	Oral	Total						
		Intern	al Assess	ment	End	Exam	Work	/Oral	Orai	Total				
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)								
CHC801	Modeling, Simulation & Optimization (MSO)	20	20	20	80	3	-	-	-	100				
CHC802	Project Engineering & Entrepreneurship Management	20	20	20	80	3	25	-	-	125				
CHC803	Energy System Design	20	20	20	80	3	25	-	-	125				
CHDE804X	Department Elective IV	20	20	20	80	3		-	-	100				
ILO802X	Institute Elective II	20	20	20	80	3		-	-	100				
CHP801	Project B	-	-	-	-	-	100	-	50	150				
CHL801	Chemical Engineering Lab XI (MSO)	-	1	1	-	2	25	25	-	50				
	Total			100	400	-	175	25	50	750				

Department Elective IV (Sem VIII)							
Engineering Stream (Course Code)	Technology Stream (Course Code)						
1. Advanced Process Control (CHDE8041)	1. Total Quality Management (CHDE8042)	1. Advanced Separation Technology (CHDE8043) 2. Polymer Technology(CHDE8044)					

Institute Level Optional Subject II (Sem VIII)						
1. Project Management (ILO8021)	7. IPR and Patenting (ILO8027)					
2. Finance Management (ILO8022)	5. Professional Ethics and CSR (ILO8025)	8. Digital Business Management (ILO8028)				
3. Entrepreneurship Development and Management (ILO8023)	6. Research Methodology(ILO8026)	9. Environmental Management (ILO8029)				

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

### University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) S.E. Semester III (w.e.f 2017-2018)

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC301	Applied Mathematics-III	3	-	1	3	-	1	4
CHC302	Engineering Chemistry I	4	-	-	4	-	-	4
CHC303	Fluid Flow Operations (FFO)	4	-	-	4	-	-	4
CHC304	Chemical Engineering Thermodynamics I	3	-	1	3	-	1	4
CHC305	Process Calculations	3	-	1	3	-	1	4
CHC306	Chemical Technology	4	-	-	4	-	-	4
CHL301	Engineering Chemistry-I Lab	-	3	-	-	1.5	-	1.5
CHL302	Chemical Engineering Lab I (FFO)	-	3	-	-	1.5	-	1.5
CHL303	Chemical Engineering Lab II (Synthesis)	-	2	-	-	1	-	1
	Total	21	8	3	21	4	3	28

		Examination Scheme								
Course code	Course Name		Theory					Pract		
code		Internal Assessment			End	Exam	Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	1			
CHC301	Applied Mathematics-III	20	20	20	80	3	25	-	-	125
CHC302	Engineering Chemistry I	20	20	20	80	3	-	-	-	100
CHC303	Fluid Flow (FF)	20	20	20	80	3	-	-	-	100
CHC304	Chemical Engineering Thermodynamics I	20	20	20	80	3	25	-	-	125
CHC305	Process Calculations	20	20	20	80	3	25	-	-	125
CHC306	Chemical Technology	20	20	20	80	3	-	-	-	100
CHL301	Engineering Chemistry-I Lab	-	-	-	-	3	-	25	-	25
CHL302	Chemical Engineering Lab I (FFO)	-	-	-	-	3	25	25	-	50
CHL303	Chemical Engineering Lab II (Synthesis)	-	-	-	-	-	25	-	25	50
	Total			120	480	-	125	50	25	800

<b>Course Code</b>	Course/Subject Name	Credits
CHC301	Applied Mathematics III	4

### **Pre-requisites:**

• Basics of Complex numbers, Modulus, Argument, Equation of circle, Roots of unity, Euler's formula, Hyperbolic functions, Matrices, Symmetric, Orthogonal and Unitary matrices, Rank, Normal form, Solution of system of linear equations, L. I. & L. D. vectors, Basics of Probability.

### **Course Objectives:**

- To enable students to solve initial value ODE problems using L-transforms.
- To strengthen the knowledge of students in Linear Algebra.
- To study the basics of statistics and Probability.
- To study the basics of Complex Variable.

### **Course outcomes:**

- The student will be able to apply Laplace Transform techniques for solving initial value problems.
- Identify the Analytic function and Harmonic function and to apply Bilinear Transformation.
- Understanding and apply the concept of Probability distribution and Sampling theory to engineering problems.

Module	Topics	Contact
		hours
1	Laplace transform:	10
	1.1 Introduction, Definition of Laplace transform, Laplace	
	transform of constant, trigonometrical, exponential functions.	
	1.2 Important properties of Laplace transform: First shifting	
	theorem, Laplace transform of L{ $f(at)$ }, L{ $t^n f(t)$ }, L{	
	$\left\{\frac{f(t)}{t}\right\}, L\left\{\frac{d^n f(t)}{dt^n}\right\}, L\left\{\int_0^t f(u)du\right\}, \text{ without proof.}$	
	1.3 Unit step function, Heavi side function, Second shifting	
	theorem, Dirac-delta function, Periodic function and their	
	Laplace transforms without proof.	
	1.4 Inverse Laplace transform with Partial fraction and	
	Convolution theorem. (without proof)	
	1.5 Application to solve initial and boundary value problem	
	involving ordinary differential equations with one dependent	
	variable and constant coefficients.	
2	Matrices:	08
	2.1 Eigen values and eigen spaces of 2x2 and 3x3 matrices;	
	existence of a basis and finding the dimension of the eigen space	
	(no proofs); diagonalisable matrices.	
	2.2 Cayley - Hamilton theorem. (without proof)	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	<del>-</del>	
	2.3 Quadratic forms; orthogonal and congruent reduction of a	
	quadratic form in 2 or 3 variables; rank, index, signature; definite and indefinite forms.	
3		07
3	Probability:	U/
	3.1 Random Variables:- discrete & continuous random variables, expectation, Variance, Probability Density Function &	
	Cumulative Density Function.	
	3.2 Moments, Moment Generating Function.	
	3.3 Probability distribution: binomial distribution, Poisson &	
	normal distribution.	
4	Sampling Theory:	07
7	4.1 Test of Hypothesis, Level of significance, Critical region,	07
	One Tailed and two Tailed test, Test of significant for Large	
	Samples:-Means of the samples and test of significant of means	
	of two large samples.	
	4.2 Test of significant of small samples:- Students t- distribution	
	for dependent and independent samples.	
	4.3 Chi square test:- Test of goodness of fit and independence of	
	attributes, Contingency table.	
	Correlation:	
	4.4 Karl Pearson's coefficient of correlation, covariance,	
	Spearman's Rank correlation.	
	4.5 Regression Lines.	
5	Complex Variable:	07
	5.1 Functions of a complex variable, Analytic functions,	
	Cauchy-Riemann equations in Cartesian co-ordinates, Polar co-	
	ordinates. (without proof)	
	5.2 Harmonic functions, Analytic method and Milne Thomson	
	methods to find $f(z)$ , Orthogonal trajectories. (without proof)	
	Mapping  5.2 Conformal Manning Linear Bilinear transformations Cross	
	5.3 Conformal Mapping, Linear, Bilinear transformations, Cross	
	ratio, fixed points and standard transformation such as rotation	
	and magnification, invertion, translation.	

### **Term work**

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks Attendance: 05 marks **Total:** 25 marks

### Assessment

### **Internal:**

University of Mumbai

• Assessment consists of average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

B. E. (Chemical Engineering) Rev 2016 Page 14

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

### **Reference Books**

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal 42th edition, Khanna Publication.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 3. A Text Book of Applied Mathematics Vol. II by P.N.Wartilar & J.N.Wartikar, Pune, Vidyarthi Griha Prakashan., Pune.
- 4. Advanced Engg. Mathematics by C. Ray Wylie & Louis Barrett.TMH International Edition.
- 5. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 6. Laplace Transforms by Murry R. Spieget, Schaun'sout line series-McGraw Hill Publication.
- 7. Theory And Problems of Statistics by Murry R. Spieget, Schaun'sout line series-McGraw Hill Publication.
- 8. Fundamentals Of Mathematical Statistics by S. C. Gupta, V. K. Kapoor, Sultan Chand & Sons -2003

University of Mumbai

<b>Course Code</b>	Course/Subject Name	Credits
CHC302	Engineering Chemistry- I	4

### **Prerequisites:**

- Knowledge of Vander-Waal's forces, various bonds, Octet rule, Resonance theory, Hybridization.
- Knowledge of variable valency, ligands.
- Knowledge of properties of transition metals.
- Knowledge of intermediate steps involved in conversion of reactants to products.
- Basic concept of quantum chemistry & wave theory approach.

### **Course Objectives:**

- To understand chemical bonding.
- To study chelation and its advantages.
- To understand structures of different bio-molecules and their chemistry.
- To study importance of iron compounds for life.
- To understand different concepts of organic reactions.
- To study the effect of temperature and time on chemical reactions.
- To become aware of industrially important reactions.
- To understand mechanism of aromatic substitution and elimination reactions.

### **Course Outcomes:**

- Students will understand different theories of chemical bonding, organometallic chemistry, mechanism and application of Photochemical processes.
- Students will also be capable of defining Stability of Coordination compounds, Kinetics and energy profile diagrams of reactions.
- Students will have knowledge of metal carbonyls and their properties.
- Students will able to express role of metalloproteins in biological processes.
- Students will be able to carry out organic estimations, gravimetric analysis and handle different instruments in the laboratory.

Module	Content	Contact
		Hours
	Basic Concepts of Chemistry and Molecular Structures-	
1	Hydrogen bonding, Valence bond theory (application for H ₂	
	molecule). Molecular orbital theory, Bonding, Non-bonding and	08
	anti-bonding orbitals, LCAO method, VSEPR theory .Structure	
	of BrF ₃ ,SF ₄ , XeF ₄ , and IF ₇ . Molecular orbital diagrams of	
	homonuclear and heteronuclear molecules H ₂ , Be ₂ , B ₂ , C ₂ , N ₂ ,	
	O ₂ , F ₂ ,HF CO,NO and NO ⁺ typesetc, metallic bond.	

University of Mumbai

	Co-ordination chemistry	
	Definitions- Co-ordination number or ligancy, Ligand, Complex	
	ion, Co-ordination or dative bond. Nomenclature and isomerism	00
2	(Only Geometrical and Structural) in co-ordination compounds	08
	with respect to co-ordination number 4 and 6. Theories of	
	coordination compounds- Werner's Co-ordination theory,	
	Valence bond theory, Crystal field theory (CFT), Ligand field	
	theory. Effective Atomic Number (EAN), Application of CFT to	
	tetrahedral and octahedral complexes, drawbacks of CFT.	
	Measurement of CFSE (10Dq), and Numericals based on EAN	
	and 10Dq measurement.	
	Organometallic compounds and Bio-inorganic chemistry	
	Chemistry of Fe-Carbonyls –Fe(CO) ₅ ,Fe ₂ (CO) ₉ w.r.t preparation,	06
3	properties, structure and bonding. Biochemistry of proteins	
	containing Fe and Zn. O ₂ atom transfer reactions of bio molecules	
	containing Fe.	
	Reaction Mechanism & Reactive Intermediates	
	Transition state (T.S.), Intermediate, Difference between T.S. &	
	intermediate. Equilibrium (Thermodynamically) controlled & rate	07
4	(Kinetically) controlled reactions.	
	Explain w.r.t. Nitration of chlorobenzene, methylation of toluene	
	by Friedel-Craft's reaction, sulphonation of naphthalene.	
	Reactive intermediates	
_	Definition, carbocation, carbanion, carbon free radicals and	
5	carbenes – their formation, structure & stability.	08
	Reactive intermediate formation with mechanism and	
	applications-	
	Carbocation – Pinacol - Pinacolone reaction.	
	Carbanion – Michael reaction.	
	Free radical - Wohl-Ziegler bromaination reaction.	
	Carbene - Reimer-Tiemann reaction.	0.0
	Photochemistry	08
6	Introduction, difference between Photochemical and	
	thermochemical reaction, laws of Photochemistry i) Grothus	
	Draper Law ii) Stark Einstein Law. Fluorescence and	
	phosphorescence. Jablonskii diagram, Quantum yield, reasons	
	for high quantum yield.	
	Photochemical reactions of carbonyl compounds-(i) Norrish	
	type- I cleavage (ii) Norrish type-II cleavage with mechanism.	

### Assessment

### **Internal:**

Assessment consists of average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

• Question paper will comprise of 6 questions, each carrying 20 marks.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 17

- Total 4 questions need to be solved.
- Question No.1 should be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module

#### References

- 1. Principles of Inorganic Chemistry- Puri, Sharma, Kalia Milestone/Vishal Publishers
- 2. Advanced Inorganic Chemistry J. D. Lee
- 3. Organic Chemistry I L Finar volume I and II.
- 4. Advanced Organic Chemistry Jerry March, John Wiley & Sons (Wiley India)
- 5. Organic Chemistry J. Clayden, Greeves, Warren, Wothers. Oxford
- 6. Organic reaction Mechanisms- V.K. Ahluwalia , Rakesh Parashar, Narosa Publication
- 7. A textbook of Physical Chemistry Glasston Samuel, Macmillan India Ltd. (1991)
- 8. Inorganic Chemistry: Huheey.
- 9. Principles of Physical Chemistry- B. R. Puri, L. R. Sharma, M.S. Pathania.
- 10. Photochemistry and Pericyclic Reactions- Jagdamba Singh, Jaya Singh
- 11. Organic reaction mechanism Peter sykes
- 12. Vogel's Textbook of Practical organic chemistry.

University of Mumbai

<b>Course Code</b>	Course/Subject Name	Credits
CHC303	Fluid Flow Operation	4

### **Prerequisites:**

• Students are assumed to have adequate background in physics, units and dimensions and thermodynamics.

### **Course Objectives:**

- Students should be able to understand the scope of the subject in chemical industry.
- They should be comfortable with measurement of pressure or pressure drop.
- They should be able to calculate pressure drop and flow rates in conduits for incompressible as well as compressible fluids.
- They should be able to determine viscosity using different methods such as Stokes Law, Capillary viscometer.
- They should be able to calculate power requirement in agitation and to be able to select and calculate power requirement for pumps.
- They should be able to select proper valves.

#### **Course Outcomes:**

- After studying this subject, students would be able to measure pressure drop, flow rates etc.
- Students will able to understand basic concepts and pressure measurement.
- Students will able to understand kinetics and rheological behavior of fluid flow.
- Students will able to understand flow equations for compressible and incompressible flow.
- Students will able to select pumps and valves and would be able to calculate power requirement for pumping as well as agitation operations.

Module	Contents	Contact
		Hours
1	Introduction and Basic Concepts:	7
	Scope and Applications of fluid flow, Properties of fluids such	
	as Density, viscosity, surface tension, capillarity effect, vapour	
	pressure.	
	Pressure and Fluid Statics:	
	• Fluid Pressure at a Point, Pascal's Law, Pressure Variation	
	in a fluid at rest. Hydrostatic Equilibrium.	
	• Measurement of Pressure, Manometers – Peizometers, U-	
	Tube, Single Column manometer, U – Tube differential	
	manometer, Inverted Differential U – tube manometer,	
	inclined manometer.	
2	Fluid Kinematics:	2

		1
	Types of fluid flow namely steady and unsteady, Uniform	
	and non- uniform, laminar and turbulent, compressible and	
	incompressible internal and external, one, two dimensional	
	flow.	
	• Newton's Law of Viscosity, Rheological behavior of fluid,	
	capillary viscometer.	
3	Basic Equations of Fluid Flow:	10
3	<u>-</u>	10
	Bernoulli's equation Euler's Equation, Modified	
	Bernoulli's equation.	
	Major and Minor losses, Equivalent length, flow through	
	pipe in series, parallel, pipe network.	
	Practical Application of Bernoulli's Equation:	
	• Venturimeter: Horizontal and inclined, Orificemeter, Pitot	
	tube	
	Notches and Weirs: Introduction, classification, Derivation	
	for V – notch, Rectangular notch.	
4	ğ .	12
4	Flow through Pipes:	12
	A] Incompressible flow:	
	Shear stress distribution and velocity distribution. Relationship	
	between Skin friction and wall shear, friction factor, Darcy-	
	Weisbach equation. Reynolds experiment and Reynolds no.,	
	Formation of Boundary.	
	Laminar Flow:	
	Shear stress, velocity distribution, Derivation of local velocity,	
	maximum velocity, average velocity, Kinetic Energy Correction	
	factor, Hagen – Poiseullie equation.	
	<b>Turbulent Flow:</b> Velocity distribution equations, Average	
	velocity, local velocity, maximum velocity, kinetic energy	
	correction factor (No Numericals on universal velocity). Von	
	Carman equation and friction factors, Moody diagram.	
	Equivalent diameter for circular and non-circular ducts. Pipes in	
	series and parallel. Frictional Losses in different pipe fittings.	
	B] Compressible Fluids:	
	Introduction, Mach no, Sonic, supersonic and subsonic flow,	
	continuity equation and Bernoulli's equation, stagnation	
	properties, Acoustic velocity. Adiabatic Flow. Isothermal Flow.	
	Isentropic Flow.	
5	Flow past immersed bodies:	2
	Drag forces, Coefficient of drag, Terminal settling velocity,	
	Stoke's law.	
6	Pumps, Valves and Agitators:	12
	Classification and types, Centrifugal pumps – Construction and	
	working, Power required, Definitions of heads and efficiency,	
	NPSH, Priming, Cavitations, characteristic curves. Specific	
	speed, minimum speed.	
L	~F,	

B. E. (Chemical Engineering)

Rev 2016

Reciprocating Pump: Classifications and working.

**Power Consumption in Agitation:** Power curves, Power No., types of impellers.

Introduction to Compressors, Fans and Blowers.

**Types of Valves:** Globe valves, Gate valves, butterfly valves and non – Return valves.

#### Assessment

#### **Internal:**

Assessment consists of average of two tests which should be conducted at proper interval.

### **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Warren L. Mccabe, Julian C. Smith, Peter Harriott, Unit Operations of Chemical Engineering, McGraw Hill International Edition.
- 2. Okiishi, Huebsch, Rothmayer Munson, Fluid Mechanics SI Version, Wiley, 7th edition, 2015.
- 3. Coulson J. M., Richardson J. F., Backhurst J. R. and J. H. Harker, Chemical Engineering, Vol. 1 and 2.
- 4. Suresh Ukarande, Fluid Mechanics and Hydraulics, Ane Books, 2012.
- 5. Robbert W. Fox, Philip J. Pritchard, Alan T. McDonald, Introduction to Fluid Mechanics, 7th edition, WILEY, India Edition.
- 6. Yunus A. Cengel, John M. Cimbala, Adapted by S. Bhattacharya, Fluid Mechanics Fundamentals and Applications, The McGraw Hill Companies.
- 7. Dr. R. K. Bansal, Fluid Mechanics and Hydraulic Machines, Laxmi Publications Pvt. Ltd.
- 8. Fluid Mechanics for Chemical Engineers by Noel de Nevers, McGraw Hill Education

University of Mumbai

<b>Course Code</b>	Course/Subject Name	Credits
CHC304	Chemical Engineering Thermodynamics I	04

### **Prerequisites:**

- Basic thermodynamic properties, laws and equations.
- Engineering Mathematics: Differential Equations, Linear Algebraic Equations.

### **Course Objectives:**

- To make students understand the Laws of Thermodynamics and Basics of Chemical Engineering Thermodynamics
- To make students learn to apply the concepts of Chemical Engineering Thermodynamics to various Chemical Engineering Processes

### **Course Outcomes:**

• The students will be able to apply thermodynamic laws and equations to various Chemical Engineering processes.

Module	Contents	Contact Hours
01	• First Law of Thermodynamics for flow and non-flow	08
	processes	
0.0	Calculation of heat and work for various types of processes	00
02	<ul> <li>Second Law of Thermodynamics</li> </ul>	08
	<ul> <li>Concepts of heat engine, heat pump and refrigerator</li> </ul>	
	<ul> <li>Carnot Cycle and Carnot Principle</li> </ul>	
	<ul> <li>Clausius Inequality</li> </ul>	
	• Concept of Entropy and estimation of Entropy change of	
	various processes	
	Third Law of Thermodynamics	
03	Concept of Exergy, Exergy Balance	06
	<ul> <li>Steady flow Exergy equation and its application</li> </ul>	
04	• Equations of State for non-ideal gases: Virial equation of	06
	state, van der Waals equation of state, Redlich-Kwong,	
	Redlich-Kwong-Soave and Peng-Robinson equation of state	
05	Maxwell Equation, Joule Thomson effect	08
	• Enthalpy and Entropy departure functions (vander Waals and	
	RedlichKwong EOS)	
	• Thermodynamic Charts, Diagrams and their applications	
	• Fugacity and fugacity coefficient(vander Waals and	
	RedlichKwong EOS)	

### Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks

Attendance: 05 marks **Total:** 25 marks

### Assessment

#### **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

### **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### Reference

- 1. Introduction to Chemical Engineering Thermodynamic by J.M. Smith, H.C. Van Ness, M.M. Abbott, Latest Edition, McGraw Hill Publishing Company Limited
- 2. A textbook of Chemical Engineering Thermodynamics by K.V. Narayanan, Latest Edition, Prentice Hall of India Private Limited
- 3. Chemical Engineering Thermodynamics by Y.V.C. Rao, Latest Edition, University Press
- 4. Fundamentals of Engineering Thermodynamics by Micheal J Moran , Howard N Shaprio, Latest Edition, Wiley publication.
- 5. Introduction to Chemical Engineering Thermodynamics by Gopinath Halder, PHI learning Pvt. Ltd

<b>Course Code</b>	Course/Subject Name	Credits
CHC305	<b>Process Calculations</b>	4

### **Prerequisites:**

- Linear algebra.
- Differential equations

### **Course Objectives:**

- Students will learn to write mass balances on various process equipments with and without recycle.
- Students will learn to write energy balances on various process equipments with and without recycle.
- Students will learn to write mass and energy balances for chemical reactions with and without recycle.
- Students will learn to flow sheeting calculations.

### **Course Outcomes:**

- Students will learn to calculate mass and energy flow rates into and out of various process equipments.
- Students will learn to calculate conversion, selectivity etc for various reactions with and without recycle.
- Students will learn to carry out degrees of freedom analysis for various units.

Module	Contents	Contact Hours
1	Introduction. Basic Chemical Calculations .Units And Dimensions Various systems of units, conversion of units. Density, specific volume, specific gravity, Concentration & composition of mixtures and solutions. Ideal Gas law, Dalton's law, Amagat,s law, Raoult's law, Henry's law	06
2	Material Balance without chemical reactions. General material balance equation, degree of freedom analysis for individual units, solving material balance problems for various unit operations using steady state equation, Material Balance for Unsteady Processes. Recycle, Bypass and Purge Calculations.	07
3	Material Balance with chemical reactions. Concept of limiting and excess reactants, conversion and yield, selectivity and degree of completion of reaction, material balance problems related to chemical reactions including recycle, bypass and purge Calculations.	07
4	Energy Balance. Heat capacity, sensible heat, latent heat, calculation of enthalpy changes. General energy balance equation. Energy balances for process involving chemical reaction including adiabatic reactions & combustion processes (Orsat Analysis & Net, Gross Calorific Value determination).	10

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

5	Combined Material and Energy balance. Material and Energy	08
	balance for binary distillation, combustion and evaporation.	

#### **Tutorials**

- 1. Basic chemical calculations.
- 2. Material balance without chemical reaction.
- 3. Material balance without chemical reaction for unsteady. Bypass, recycle and purge operations
- 4. Material balance without chemical reaction for unsteady. Bypass, recycle and purge operations.
- 5. Energy balance based on heat capacity, enthalpy change.
- 6. Energy balance based on Hess's law, temperature of reaction.
- 7. Energy balance based on orsat analysis, NCV and GCV.
- 8. Combined material and energy balance.

#### Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks
Attendance: 05 marks
Total: 25 marks

#### Assessment

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

### **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

### **Text Books**

- 1. Narayan, K. V. and Lakshmikutty, B. "Stioichiometry and Process Calculations", 1st edition, Prentice Hall of India Pvt. Ltd., New Delhi (2006)
- 2. Bhatt, B. I. and Thakore, S. B., "Stoichimetry, 5th edition Tata McGraw Hill Education Private Limited, New Delhi
- 3. Ch. Durga Prasad Rao and D. V. S. Murthy, "Process Calculations for Chemical Engineers", McMilan India Ltd. (2010)
- 4. O. A. Hougen, K. M. Watson, and R. A. Ragatz., "Chemical process principles-part 1, Material and Energy Balances". Second Edition. John Wiley & Sons, Inc., New York (1954). 525 pages.

University of Mumbai

### **Reference books**

- 1. Himmelblau, D. M. and Riggs, J. B., "Basic Principles and Calculations in Chemical Engineering, 7th edition, Prentice Hall of India Pvt. Ltd., New Delhi (2009)
- 2. Stoichiometry and Process calculations by K.V. Narayanan and B. Lakshmikutty, PHI learning Pvt. Ltd

<b>Course Code</b>	Course/Subject Name	Credits
CHC306	Chemical Technology	4

### **Prerequisites**

• Knowledge of Inorganic, Organic and Physical Chemistry, Physics and Mathematics.

### **Course Objectives**

- To give students an insight of different chemical processes.
- To understand the development of a process from its chemistry.
- To understand different engineering problems in process industries.

### **Course Outcomes**

At the end of the course the student will be able to:

- Describe various manufacturing processes used in the chemical process industries.
- Explain industrial processing and overall performance of any chemical process including the major engineering problems encountered in the process.
- Determine the overall process aspects including yield, formation of by-products and generation of waste, etc.
- Draw and illustrate the process flow diagram for a given process.

Module	Contents	Contact Hours
1	Introduction:	05
	Concept and brief description of the Unit Operations and Unit	
	Processes used in Chemical Industries.	
	Overview of Industrially Important Products in the Chemical	
	Process Industries:	
	Soaps and Detergents	
	Dyes and Intermediates	
	Agrochemicals	
2	Manufacture of Acids :	12
	Sulphuric Acid (DCDA Process), Nitric Acid, Phosphoric Acid	
	(Wet Process) and Acetic Acid (by reaction of carbon monoxide	
	with methanol).	
	Manufacture of Fertilizers:	
	Ammonia, Urea and Superphosphate (SSP and TSP).	
3	Natural Product Industries :	12
	Hydrogenation of Vegetable Oils	
	Manufacture of Sugar from Sugarcane, By-products obtained in	
	manufacture of sugar, Inversion of sugar	
	Manufacture of ethanol by fermentation of molasses	
	Introduction to Biodiesel Processing: Biodiesel production by	
	base- catalysed transesterification process	
	Chloro-Alkali Industries :	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	Manufacture of Caustic Soda	
	Manufacture of Hydrochloric Acid by combustion of chlorine and	
	hydrogen	
	Manufacture of Soda Ash (Solvay and Dual Processes)	
4	Synthesis of Important Heavy Organic Chemicals and	05
	Intermediates:	
	Manufacture of Styrene by dehydrogenation of ethylbenzene	
	Manufacture of Cumene from benzene and propylene	
	Manufacture of Phenol from cumene by peroxidation-hydrolysis	
	process	
	Manufacture of Purified Terephthalic Acid (PTA) by oxidation of	
	p-xylene	
5	Synthesis of Polymers :	03
	Manufacture of Polyethylene : LDPE and HDPE	
	Manufacture of Nylon 66	
6	Basic Building Blocks of Petrochemical Industry :	08
	Introduction to Petroleum Refining	
	Catalytic Cracking by Fluidized Catalytic Cracking Unit (FCCU)	
	Naphtha Cracking for manufacture of ethylene and propylene	
	Naphtha Reforming	
	Separation of BTX (Benzene-Toluene-Xylene)	
	Isomerization of Xylenes	
	Separation of Xylene isomers	

### **Assessment**

#### **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

### **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### Reference

- 1. Austin G.T., Shreve's Chemical Process Industries, 5th Edition, McGraw Hill International Edition.
- 2. Pandey, G.N., A Textbook of Chemical Technology, Vol.I and II, Vikas Publications, 1984.
- 3. Rao, G.N. and Sittig M., Dryden's Outlines of Chemical Technology for 21st Century, East West Press, 3rd Edition.
- 4. B.K. Bhaskara Rao, Modern Petroleum Refining Processes.
- 5. B.K. Bhaskara Rao, A Textbook of Petrochemicals.

University of Mumbai

- 6. Heaton, C.A., An Introduction to Industrial Chemistry, Leonard Hill, 1984.
- 7. Thomson, R., Modern Inorganic Chemical Industries, Royal Society of Chemistry, 2nd. Edition, 1994.
- 8. Kirk-Othmer's Encyclopedia of Chemical Technology, John Wiley and Sons, Inc., 4th Edition, 1990.
- 9. Ullmann's Encyclopedia of Industrial Chemistry, VCH, 1985.
- 10. McKetta's Encyclopedia of Chemical Processing and Design, Marcel Dekker, 1999.
- 11. Pletcher D. and Walsh, F.C., Industrial Electrochemistry, Chapman and Hall, 1990
- 12. Alok Adholeya and Pradeepkumar Dadhich, Production and Technology of Biodiesel: Seeding a Change, TERI Publication, New Delhi, 2008.
- 13. NIIR Board of Consultants and Engineers, The complete book on Jatropha (Biodiesel) with Ashwagandha, Stevia, Brahmi and Jatamansi Herbs (Cultivation, Processing and Uses), Asia Pacific Business Press Inc.

<b>Course Code</b>	Course/Subject Name	Credits
CHL301	Engineering Chemistry Lab– I	1.5

## **List of Experiments Suggested:**

Volumetric analysis-[Any 2]

Preparation of standard solutions and to find normality and deviation factor.

## Titrimetric analysis- [Any 3]

- Analysis of talcum powder for Mg content by EDTA method
- Analysis of Aspirin as per I.P. or USP
- Determination of Strength of KMnO₄
- Determination of fluoride content in the toothpaste spectrophotometrically
- Estimation of CaO in cement
- Estimation of Vitamin C using Ceric ammonium sulphate
- Estimation of Glycine by non aqueous titration using perchloricacid

# Organic estimations - [Any 2]

- Estimation of aniline
- Estimation of phenol
- Estimation of Acetamide

## Gravimetric estimation - [Any 2]

- Barium as BaCl2
- Tin as SnCl2
- Nickel as Ni D.M.G.
- Zinc as ZnSO4

#### Preparation.

• Preparation of Methyl Salicylate

Students have to perform any 10 practicals from the above during the semester.

#### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

University of Mumbai

<b>Course Code</b>	Course/Subject Name	Credits
CHL302	Chemical Engineering Lab (FFO)	1.5

# List of Experiments Suggested

Minimum Ten experiments must be performed

- Viscosity by Efflux time
- Reynolds Apparatus
- Bernoulli's apparatus
- Venturimeter
- Orificemeter
- Pitot tube
- V Notch/ Rectangular notch
- Friction through Circular pipe
- Flow through Annulus.
- Flow through Helical coil
- Pipe Fitting (Minor Losses)
- Pumps
- Power Consumption in agitated vessel
- Viscosity by Stoke's Law

#### Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks

Attendance: 05 marks Total: 25 marks

#### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

<b>Course Code</b>	Course/Subject Name	
CHL303	Chemical Engineering Lab II (Synthesis )	1

s.n	Preparation	Chemicals required	Apparatus/ glassware
	<b>I</b>		required
1	Soap	Sodium hydroxide (20% solution), ethanol saturated solution of sodium chloride ,calcium chloride (5% solution), magnesium chloride (5% solution), ferric chloride (5% solution), cooking oil, phenolphthalein indicator solution.	250-mL beaker, 100- mL beaker; wire gauze; laboratory burner; glass stirring rod; test tubes; filter flask and Buchner funnel; filter paper; graduated cylinder
2	Alum from Aluminum	Aluminum can or aluminum metal, Crushed ice, 9M H2SO4, 1.5M KOH solution, Methanol, NaHCO3 (sodium bicarbonate)	Glass filter funnel, Buchner filter funnel, filter paper, steel wool, two 150 mL and two 150 ml beakers, 500 ml beaker, thermometer, ruler, stirring rod
3	Asprin	2 gm salicylic acid, 5.0 ml of acetic anhydride, ve drops of 85% phosphoric acid, distilled water	burette clamp, burner, stand with iron ring, wire gauze, ice bath,50 ml ask beaker, Buchner funnel aspirator
4	Methyl orange	0.29 g of anhydrous sodium carbonate, 1.0 g of sulfanilic acid monohydrate, 0.375 g of sodium nitrite, 0.7 ml of dimethylaniline and 0.5 mL of glacial acetic acid, 10% aqueous sodium hydroxide, 1.25 ml of concentrated hydrochloric acid	50 ml Erlenmeyer ask, lter,100 ml beaker, test tube
5	Thiokol rubber	Sodium hydroxide solution, 1M Sulfur 1,2-dichloroethane distilled or deionized water	
6	RUBBER BALL FROM RUBBER LATEX	15 ml rubber latex, 15 ml vinegar, 15 ml wate	Two paper cups (5 ounce), stir- ring rod (popsicle stick or equiv-

			alent), small bucket or large beaker (1000 ml or larger)
7	p-BROMO-	Conc. H2SO4, conc. HNO3,	Conical flask, funnel, filter
	NITROBENEZENE FROM BRO- MOBENEZENE	bromobenzene, ethyl alcohol, conical ask, funnel, lter paper, water Bath	paper, water bath.
8	DETERGENT	Dodecanol (dodecyl alcohol), sulphuric acid, concentrated	beakers, 400 ml, 150 ml, 100 ml graduated cylinders,

# Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks
Total: 25 marks

# University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) S.E. Semester IV (w.e.f 2017-2018)

Course code	Course Name		eaching Sche Contact Hou		C	Credits Assign	ned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC401	Applied Mathematics-IV	3	-	1	3	-	1	4
CHC402	Engineering Chemistry II	4	-		4	-	-	4
CHC403	Chemical Engineering Thermodynamics II	3	-	1	3	-	1	4
CHC404	Solid Fluid Mechanical Operations (SFMO)	4	-	-	4	-	-	4
CHC405	Mechanical Equipment Design (MED)	4	-	-	4	-	-	4
CHC406	Chemical Engineering Economics	3	-	1	3	-	1	4
CHL401	Engineering Chemistry-II Lab	-	3	-	-	1.5	-	1.5
CHL402	Chemical Engineering Lab III (SFMO)	-	3	-	-	1.5	-	1.5
CHL403	MED Lab	-	2	-	-	1	-	1
	Total	21	8	2	21	4	3	28

Course					Exai	nination Sch	eme			
code	Course Name		nal Assess		End Sem	Exam Duration	Term Work	Pract /Oral	Oral	Total
		Test 1	Test 2	Avg	Exam	(in hrs)				
CHC401	Applied Mathematics-IV	20	20	20	80	3	25	-	-	125
CHC402	Engineering Chemistry II	20	20	20	80	3	-	-	-	100
CHC403	Chemical Engineering Thermodynamics II	20	20	20	80	3	25	-	-	125
CHC404	Solid Fluid Mechanical Operations (SFMO)	20	20	20	80	3	-	-	-	100
CHC405	Mechanical Equipment Design (MED)	20	20	20	80	3	-	-	-	100
CHC406	Chemical Engineering Economics	20	20	20	80	3	25	-	-	125
CHL401	Engineering Chemistry-II Lab	-	-	-	-	3	-	25	-	25
CHL402	Chemical Engineering Lab III (SFMO)	-	-	-	-	3	25	25	-	50
CHL403	MED Lab	-	-	-	-	-	25	-	25	50
	Total			120	480	-	125	50	25	800

<b>Course Code</b>	Course/Subject Name	Credits
CHC401	Applied Mathematics- IV	4

- The concepts of basic Mathematics as well as a few concepts of higher mathematics.
- The concepts of basic chemistry, basic civil engineering, basic mechanical engineering, etc. in order to understand the concepts like, corrosion, corrosion allowance, construction costs, equipment costs, etc.

## **Course Objectives:**

- The Fourier Series, Fourier Transform and Partial Differential Equation
- Module does the Ground work for the techniques required to solve and find the answer for various physiochemical problems.
- To study the basics of Finite Differences.
- To study the basics of Complex Integration.
- To introduce the basics of NLPP.

#### **Course outcomes:**

- Demonstrate the ability of using Fourier Series and Fourier Transform in solving PDE.
- Enable the students to solve boundary value Problem using Finite Differences Approximations.
- Identify the applicability of theorems and evaluate the Contour Integral.
- The students will be ready for any further course on Optimization.

Module	Topics	Contact
		Hours
01	Fourier Series:	10
	1.1 Orthogonal and Ortho-normal functions	
	1.2 Dirichlet's conditions, Fourier series of periodic functions	
	with period $2\pi$ and 2L. Parsevel's identities (without proof).	
	1.3 Fourier series for even and odd functions.	
	1.4 Half range sine and cosine Fourier series,	
	1.5 Complex form of Fourier series.	
	1.6 Fourier Integral Representation, sine & cosine Integrals	
	1.7 Fourier Transform sine & cosine transforms, complex	
	transforms.	
	NO PROOFS REQUIRED.	
02	Partial Differential Equations:	08
	2.1 Solutions of linear partial differential Equation by method of	
	separation of variables	
	2.2 Partial differential equations governing transverse vibrations	
	of elastic string its solution using Fourier series.	
	2.3 Heat equation, steady-state configuration for heat flow.	
	2.4 Two dimensional Laplace equations.	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	(ONLY NUMERICAL PROBLEMS. NO PROOFS				
	REQUIRED).				
	Finite Differences and Interpolation 3.1 Forward difference operator $\Delta$ , backward difference operator $\nabla$ , shift operator E, properties of operators $\Delta$ , $\nabla$ and	07			
	E, relation between E and D where $D = \frac{d}{dx}$ .				
	3.2Missing terms (equal Intervals), Factorial Notation 3.3 Assumption of interpolation, Gregory Newton's Forward Interpolation formula for equal Intervals, Gregory Newton's Backward Interpolation formula for equal Intervals 3.4 Interpolation with arguments at unequal Intervals-Divided				
	Difference table Newton's Divided Difference Formula,				
	3.5 Lagrange's Interpolation Formula.				
04	Complex Integration 4.1 Line Integral, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula(without proof) 4.2 Taylor's and Laurent's series (without proof) 4.3 Zeros, poles of $f(z)$ , Residues, Cauchy's Residue theorem 4.4 Applications of Residue theorem to evaluate Integrals of the type $\int_0^{2\pi} f(sin\theta, cos\theta) d\theta$ , $\int_{-\infty}^{\infty} f(x) dx$ ,	07			
05	Optimization (No theory) 5.1Non-linear programming: Lagrange multiplier method for one and two equality constraints for 2 and 3 variables, conditions on the Hessian matrix (no proof); 5.2 Non-linear programming: Kuhn-Tucker conditions with at most 2 constraints with two variables.	07			

#### Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks
Attendance: 05 marks **Total:** 25 marks

#### Assessment

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

• Weightage of marks should be proportional to number of hours assigned to each Module.

## **Reference Books**

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal 42th edition, Khanna Publication 2005.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 3. A Text Book of Applied Mathematics Vol. II by P.N.Wartilar & J.N.Wartikar, Pune, Vidyarthi Griha Prakashan., Pune.
- 4. Advanced Engg. Mathematics by C. Ray Wylie & Louis Barrett.TMH International Edition.
- 5. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 6. Lapplace Treansforms by Murry R. Spieget, Schaun'sout line series-McGraw Hill Publication.
- 7. Operation Research by S. D. Sharma.
- 8. Operation Research by ER.Prem Kumar Gupta & Dr. D. S. Hira.

<b>Course Code</b>	Course/Subject Name	Credits
CHC402	Engineering Chemistry– II	4

- Knowledge of electronic structure of atom and electrolytic properties and their laws
- Basic concept of quantum chemistry & wave theory approach.
- Knowledge of intermediate steps involved in conversion of reactants to products.
- Knowledge of properties of solutions.

# **Course Objectives:**

- To understand applications of EMF measurement.
- To understand the principles of different instrumental and chromatographic techniques.
- To state and understand Nernst distribution law in extraction.
- To be able to solve numerical on solvent extraction and ion exchange.
- To understand colloidal phenomenon and its applications.
- To be able to predict the significance of active methylene group.
- To state and understand the Huckel's rule of aromaticity and its application to aromatic hydrocarbons and heterocyclic compounds.

#### **Course Outcomes:**

- They should be able to understand the role of different conductivity cells and different tirimetric methods and solvent extractions.
- Students will be able to detect the organic and inorganic biological compound by the use of spectrophotometer.
- Students will know the colloidal phenomenon applied in food industry and pesticides.
- Students will be to identify the significance of rearrangement reactions, active methylene group.
- Students will be able to predict and synthesize different products by learning reaction mechanism.
- Students will have deep knowledge of Qualitative (Analysis) and Quantitative (estimations) methods.

Module	Content	Contact
		Hours
1	Electrochemistry Conductance, specific conductance, equivalent conductance, molar conductance. Effect of dilution and temperature on conductance. Transport number (Numerical on moving boundary method). Debye Huckel theory of strong electrolytes. Hydrogen ion concentration by glass electrode/Quinhydrone electrode. Concentration cells with and without transference w.r.t. cations. Weston Standard cells. Application of emf measurement for	08

University of Mumbai

	determination of solubility product (Ksp) of sparingly soluble	
	salt.	
	Instrumental methods of Analysis Conductometry -Principle and types of titrations - Acid-base and	
2	precipitation.  Potentiometry- Principle and types of titrations –precipitation	10
	only.	
	Chromatography	
	Adsorption and partition. Study of Paper Chromatography,	
	ThinLayer Chromatography, High Performance Liquid Chromatography (HPLC), Gas (Liquid and solid)	
	Chromatography —Principle and their applications.	
	Optical Methods	
	(Principle, Instrumentation and applications) UV, IR, NMR	
	spectroscopy, flame photometry.	
	Ion exchange and solvent extraction techniques	
	Ion exchange resins, cation and anion exchangers. Desalination	06
3	by ion exchange and separation of lanthanides.	
	Solvent extraction. Nernst distribution law. Distribution ratio. Batch, continuous and counter current extraction. Numericals	
	based on solvent extraction.	
	Colloids and surfactants	
	Origin of charge on colloidal particles. Concept of electrical	
	double layer-Helmholtz and stern model. Electro-kinetic	10
4	Phenomenon- Electrophoresis, electro-osmosis, streaming	
	potential and Dorn effect (Sedimentation potential).	
	Colloidal electrolytes, Donnam Membrane equilibrium and its significance.	
	Catalysis- Definition. Criteria of catalysis. Types	
	(Homogeneous and Heterogeneous). Catalytic promoters, poisons.	
	Negative catalysis and inhibition. Autocatalysis and Induced	
	catalysis. Activation energy. Intermediate compound formation	
	theory. Adsorption theory. Acid Base catalysis and mechanism.	
	Enzyme catalysis- Characteristics and mechanism.	
5	Industrially important esters and Aromaticity Synthesis and properties of malonic ester and acetate acetic ester.	
	Huckel's rule of aromaticity, Aromatic character and reactions of	06
	Benzene, Naphthalene, Pyrrole, Furan, Thiophene, Pyridine.	00
	Name reactions.	05
6	Definition, meachanism and application of -Beckman	
	rearangement, Fishcher-Indole synthesis, Favorskii reaction,	
	Reformatsky reaction, Paal-Knorr synthesis of pyrrole, Benzil-	
	Benzilic acid rearrangement.	

# **Assessment Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Principles of Physical Chemistry- B. R. Puri, L. R. Sharma, M.S. Pathania.
- 2. A textbook of Physical Chemistry Glasston Samuel, Macmillan India Ltd. (1991).
- 3. Physical chemistry Castellan G.W.Addison Hesly-Haroda Student Edition (1994).
- 4. Instrumental methods of Analysis Willard, Merritt, CBS publishers and Distributor.
- 5. Instrumental Methods of Chemical Analysis S.M.Khopkar
- 6. Principle of instrumental analysis Douglas A. Skoog
- 7. Organic Chemistry I L Finar volume I and II.
- 8. Advanced Organic Chemistry Jerry March, John Wiley& Sons(Wiley India)
- 9. Organic Chemistry J. Clayden, Greeves, Warren, Wothers. Oxford
- 10. Organic reaction Mechanisms- V.K. Ahluwalia , Rakesh Parashar, Narosa Publication
- 11. Spectroscopy P.S. Kalsi
- 12. Introduction to Spectroscopy Pavia, lampman, Kritz.
- 13. Engineering Chemistry- Jain & Jain Dhanapat Rai publication.
- 14. Vogels Textbook of Practical organic chemistry.

<b>Course Code</b>	Course/Subject Name	Credits
CHC403	Chemical Engineering Thermodynamics II	04

• Engineering Mathematics, Chemical Engineering Thermodynamics-I

## **Course Objectives:**

- To make students understand the concepts of equilibrium in phases and in chemical reactions
- To make students learn to calculate conditions and compositions of ideal and nonideal vapor liquid equilibrium systems and of various chemical reactions at equilibria.
- To make students understand the concept of refrigerator and learn to calculate COP, power required etc. for a given duty of refrigeration

## **Course Outcomes**

- Students learn the application of First law and second law to the problem of phase equilibrium and reaction equilibrium.
- Students learn to calculate the refrigerant flow rate for a given duty of refrigeration.
- Students learn to calculate the compressor sizes and loads for refrigeration.
- The calculation of phase equilibria and the understanding of it is a fundamental concept to design of mass transfer

Module	Contents	Contact hrs
01	Properties of ideal mixtures and solutions	04
	<ul> <li>Non idealities of solutions and mixtures</li> </ul>	
	Chemical potential	
	Activity and activity coefficients	
	Gibbs Duhem equations	
02	Partial molar properties	06
	Properties changes of mixing	
	Excess properties	
03	Concept of equilibrium between phases	10
	Review of Raoult's law and Henry's law	
	Phase diagrams for binary solutions	
	Vapor liquid equilibria in ideal and non-ideal solutions	
	• Estimation of activity coefficients using van Laar	
	equation, Margules equation, Wilson equation	
04	Representation of reaction stoichiometry	10
	• Concept of reaction equilibrium in single and multiple	
	reactions	
	<ul> <li>Estimation of standard enthalpy change of a reaction</li> </ul>	
	Heat of reaction in a batch and continuous reactor	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	Estimation of standard Gibbs free change and equilibrium	
	constantof a reaction	
	Estimation of degree of conversion and composition of	
	reactor effluents	
	Degree of freedom for single and multiple reactions	
05	Theory of Refrigeration	06
	Vapor compression refrigeration system	
	Vapor absorption refrigeration system	
	• Refrigeration cycle diagrams (P-V, T-S, H-S, H-X)	
	• Estimation of COP, power of compression, refrigerant	
	flow rate etc.	

#### Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks Attendance: 05 marks **Total:** 25 marks

#### Assessment

#### **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

#### **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

## Reference

- 1. Introduction to Chemical Engineering Thermodynamic by J.M. Smith, H.C. Van Ness, M.M. Abbott, Latest Edition, McGraw Hill Publishing Company Limited
- 2. A textbook of Chemical Engineering Thermodynamics by K.V. Narayanan, Latest Edition, Prentice Hall of India Private Limited
- 3. Chemical Engineering Thermodynamics by Y.V.C. Rao, Latest Edition, University Press
- 4. Elementary Principle of Chemical Processes by Felder and Rousseau Latest Edition.
- 5. Introduction to Chemical Engineering Thermodynamics by GopinathHalder, PHI learning Pvt. Ltd

<b>Course Code</b>	Course/Subject Name	Credits
CHC404	Solid Fluid Mechanical Operations	4

- Fluid Flow Operations
- Engineering Mechanics
- Differential Equations

## **Course Objectives:**

- understanding basic concept of particle size analysis and size reduction
- Understanding concept of flow through packed bed fluidization and filtration
- Understanding concept of sedimentation & gas solid separation
- Understanding concept of size enlargement, solid mixing and solid storage &conveying.

#### **Course outcomes:**

- The students would understand the concept of particle size analysis and size reduction
- The students would understand the concept of flow through packed bed, fluidization and filtration
- The students would understand the concept of sedimentation and gas-solid separation.
- The students would understand the concept of solid mixing, solid storage & conveying, size enlargement.

Module	Contents	Contact
		Hours
1	Introduction- scope & application of solid fluid operation	12
	• Particle size analysis, particle size measurement and distribution	
	Sieve analysis	
	Capacity and effectiveness of screen	
	• Screening Equipment: Vibrating screens; Grizzlier; Trommels	
	Size reduction of solids	
	Mechanism of size reduction and method of operation	
	Energy of size reduction	
	• Size reduction Equipments:Jaw Crusher; Hammer Mill; Ball	
	Mill; Roll Crusher	
2	Flow through packed bed	12
	Types of packing	
	• Flow of a single fluid through a packed bed, Ergun's	
	equipment	
	• Fluidization: Conditions for fluidization; Minimum	

	fluidization velocity; Types of fluidization; Application of Fluidization; Numerical on Fluidization	
	• Filtration: Mechanism of Filtration; Types of Filtration –	
	constant rate & constant pressure; Filtration; Filter aids, washing	
	of filter cake; Flow of filtrate through the cloth & cake combine;	
	Numerical onconstant pressure & constant cloth rate & combine	
	cake.	
	• Filters: Rotary drum vacuum filter, Plate & frame filter	
	press	10
3	Economics of production and Growth	10
	• Sedimentation: Batch sedimentation; Kynch Theory of	
	sedimentation; Area and Depth of thickener	
	Particle separation by Flotation and Elutriation	
	• Gas solid separation Equipments: Cyclone separator- theory	
	and derivation for minimum particle separated in cyclone	
	separator. Fabric filter, Electrostatic precipitator	
4	• Size enlargement of particles: Agglomeration & granulation	10
	Growth mechanism; Size enlargement processes	
	• Storage of solids: Properties of particulate masses;	
	Pressures in Bins &Silos Jansen's equation	
	• Conveying of solids: Belt conveyor, bucket conveyer, screw	
	conveyer, pneumatic conveyer	
	• Solid mixing: Introduction to solid mixing, degree of mixing,	
	mixing Index & rate of mixing; Mixing Equipments:1) Mixers	
	for cohesive solids: Muller Mixer; Kneaders . 2) Mixers for free	
	flowing solids: Ribben Blender; Internal Screw mixer	
	,	1

#### Assessment

#### **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Unit operations of Chemical engineering, WC McCabe & J C Smith, McGraw Hill
- 2. Chemical Engineering, Vol II J M Coulson & J F Richardson, pergamon Press
- 3. Unit operations by foust
- 4. Perry's Handbook for chemical Engineers, Robert H. Perry & Don W. Green, 8th edition, McGraw Hill

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 44

<b>Course Code</b>	Course/Subject Name	Credits
CHC405	<b>Mechanical Equipment Design (MED)</b>	4

- Fundamentals of units
- Elementary theory of engineering mechanics
- Engineering drawing

# **Course Objectives:**

- To understand the basics for design as per the codes & standards for the mechanical design of equipments used in the process industry.
- Selection of material of construction and stress analysis by determining values of stresses arising out of different loading conditions.

#### **Course Outcomes:**

- Students will demonstrate ability to design various components of process equipment as heads, shell, flanges and supports and complete design of chemical equipment
- Students will demonstrate understanding of design of storage vessel
- Students will demonstrate general understanding of fabrication techniques and equipment testing as a designer.

Module	Contents	Contact
		Hours
1	Introduction to Chemical process equipment design. Nature of process equipment, General design procedure. Basic consideration in process equipment design, Standards, codes & their significance, equipment classification & selection. Fundamentals of various stresses due to compression, tension, bending, torsion& thermal stresses. Fundamental of bending moment and shear stress. Concept of moment of inertia. Calculating moment of inertia for I, T, circle and solid bar. Calculation of bending moment of cantilever and simply supported beam and uniform distributed load. Principal stress and theories of failure. Concept of hook's law, material behavior and poison's ratio, material of construction for chemical process equipment, Design pressure, Design temperature, design stress & design loads, Significance of factor of safety and economic considerations.	6
2	Design of Unfired Pressure Vessels Type of pressure vessels, code & standard for pressure vessels (IS: 2825:1969). Material of Construction, Selection of corrosion Allowance & weld joint efficiency. Thin cylinder theory for internal pressure. PART A: Pressure Vessel Subjected to Internal Pressure. Complete design of cylindrical pressure vessel as per IS: 2825: 1969. Study, selection & design of various heads such	10

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	as flat, hemispherical, torispherical, elliptical & conical openings/nozzles & manholes etc. Flanged joints. Gasket: Types, selection & design. Bolt design & selection. Flange dimensions & optimization for bolt spacing. PART B: Pressure Vessel Subjected to External Pressure. Design of shell, heads nozzles, flanged joints & stiffening rings as per IS 2825: 1969 equation. Appendix F by use of charts. Analytical approach by elastic bucking & plastic deformation.	
3	Study of Various types of storage vessels and application. Atmospheric vessels, vessels for storing volatile & non-volatile liquids. Storage of gases, Losses in storage vessel. Various types of roofs used for storage vessels. Manholes, Nozzles and mounting. Design of cylindrical storage vessels as per IS: 803 should include base plates, shell plates ,roof plate and wind girders.	5
4	Study of various types of agitators & their application. Baffling. Power requirement of agitators & their applications, system which includes design of shaft based on equivalent bending moment and critical speed. Design of blades & Blade assembly, key & key ways. Study of seals. Design of stuffing box and gland.	6
5	Introduction, Classification of reaction vessels, Material of Construction, Heating system. Material of Construction, Heating system. Design of vessel. Study & design of various types of jackets like plain and half coil.	4
6	Introduction & classification of support. Design of skirt Support considering stresses due to dead weight, wind load, Seismic load & period of vibration. Design of base plates, skirt bearing plate, anchor bolt and bolting chair. Introduction to bracket support. Design of saddle supports.	5
7	Fundamentals of pipeline design. Optimum diameter of pipelines. Supporting structure for pipelines. Pipeline design for liquids and gases, steam and thermic fluids. Material of construction for pipelines.	4
8	Equipment fabrication and inspection Metal forming techniques (bending, Rolling, Forming). Metal Joining techniques – welding (Gas of Arc & Electric) for various types such as Butt, Lap, fillet, corner. Inspection of vessel by radiography.	4

# **Assessment**

# **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

• Question paper will comprise of 6 questions, each carrying 20 marks.

University of Mumbai B. E. (Chemical Engineering) Rev 2016

- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### **Text Books**

- 1. Process Equipment Design, 4thEdition,V.V.Mahajani, Umarji, Macmillan Publishers
- 2. Process Design of Equipments, 4th Edition, S.D. Dawande, Central Techno publications
- 3. Introduction to Chemical Equipment Design, B.C.Bhattacharya, CBS publications
- 4. Design of machine elements, V.B. Bhandari, McGraw Hill publications
- 5. Machine Drawing, N.D. Bhatt and V.M. Panchal, Charotar publication
- 6. Process Equipment Design and Drawing by Kiran Ghadyalji, Nandu publication. Kiran Ghadyalji, Nandu publication

#### Reference books

- 1. RC's Chemical Engineering, Fourth edition, R. K. Sinnott, Pergamon Press publications
- 2. Chemical Engineering Design, Fifth edition, Ray Sinnott and Cavin Towler, Elseveir, Butterworth-Heinemann publications
- 3. Equipment design handbook for refineries and chemical plants, volume 1 & 2,Evans F.L, Gulf publications
- 4. Process equipment design-vessel design, Brownell L.E., Edwin Young, John Wiley publications

University of Mumbai

<b>Course Code</b>	Course/Subject Name	Credits
CHC406	Chemical Engineering Economics	4

- The concepts of basic Mathematics as well as a few concepts of higher mathematics.
- The concepts of basic chemistry, basic civil engineering, basic mechanical engineering, etc. in order to understand the concepts like, corrosion, corrosion allowance, construction costs, equipment costs, etc.

## **Course Objectives:**

- To understand various economical terms and economics related activities which can be helpful to them during economical evaluation of any chemical engineering related problem.
- To learn about various basic economic aspects like need, demand, supply, price, cost and market.
- To make familiar to calculate the interest amount on investments as well as loans by different methods
- To understand the concepts of present and future worth of property.
- To understand existing rules and regulations as well as types related to taxes and insurance.
- To understand the methodology of cost estimation including fixed and variable costs by considering the concept of cost indices.
- To have the knowledge about evaluation of depreciation cost as well as salvage value, scrap value, book value of property
- To understand the concept of profitability evaluation of project and select best process alternative based on its economic evaluation.
- To understand the concept of balance sheet, profit and loss accounting and income statement

## **Course Outcomes:**

- Students should will be expose to market And demand driven economics in chemical industry.
- Get an idea on the growth and development of futuristic planning.
- Students will be able to calculate the profitability, rate of return on investments and cost estimation.
- After acquiring the knowledge in this subject, students become familiar with various aspects related to economics and can apply them for economic evaluation of chemical process and decide its economical feasibility.
- The knowledge in this subject will make the students well aware about economic evaluation of dissertation work that they will undertake in final year of their curriculum.
- Students will learn to prepare realistic cost estimation to prepare plan and offer.

Module	Contents	Contact hours
1	Introduction to Basic Principles of Economics:	02
	Economics-various definitions	
	<ul> <li>Concept of Need – hierarchy</li> </ul>	
	Market - Concept of Price determination under particular	
	market conditions – perfect competition market & monopoly	
	market, causes	
	Price Discrimination-concept, types	
	• Concept of Cost-total cost, fixed and variable cost, direct	
	and indirect cost	
	<ul> <li>Cost index – definition, types</li> </ul>	
2	Demand and Supply analysis:	02
	<ul> <li>Law of demand-assumptions and exceptions</li> </ul>	
	Demand schedule and demand curve	
	Determinants of demand	
	Changes and variations in demand	
	• Demand elasticity-definition, types, methods of	
	measurement of elasticity, Income elasticity of demand, types.	
	Law of Supply-assumptions and exceptions	
	Supply schedule and supply curve	
	<ul> <li>Determinants of supply, changes and variations in supply</li> </ul>	
	• Supply elasticity-definition, types, determinants	
	Methods of measurement of supply	
3	• Economics of production and Growth:	02
	<ul> <li>Production function-types of production economies</li> </ul>	
	Diseconomies of scale	
	Features of growth	
	Growth v/s Development	
	Determinants of growth (economic and non-economic)	
	Stages of growth & futuristic planning	
	• Growth strategy- steady state and big – push growth	
	strategy; balanced and unbalanced growth	
4	Cost Accounting:	03
	Outline of Accounting Procedure	
	Basic Relationship in Accounting	
	Balance Sheet- types of Asset; Current and Cash Ratio	
	• Income Statement; Debits and Credits; General format of	
	Journal and Ledger	
	<ul> <li>Methods of cost accounting 03</li> </ul>	
	Accumulation, inventory and cost-of-sales account	
	Material cost – Different Methods: current average, fifo, lifo	
5	• Interests and Investment Costs:	06
	Importance of time value of money- Interest and Interest	

	,	
	rate;	
	• Types of Interest – Simple interest (ordinary and exact),	
	Compound interest, Nominal and Effective interest rates,	
	Continuous interest	
	Present worth and Discount	
	<ul> <li>Annuities, Perpetuities and Capitalized costs</li> </ul>	
	Cash Flow in Chemical Project	
6	• Taxes and Insurance:	03
	Concept of taxes and insurance	
	• Types of Taxes - property tax, excise tax, income tax Capital	
	gain tax, surtax, normal tax	
	• Insurance types, Legal responsibilities, Self insurance	
	Effect of taxes and depreciation on annual income	
	• Depreciation , types of depreciation, Methods of	
	depreciation &Numericals	
7	Cost Estimation:	10
	• Cash flow to Industrial operation – Tree diagram;	
	Cumulative Cash position	
	<ul> <li>Factors affecting cost estimation;</li> </ul>	
	Total, fixed, working capital investment	
	• Breakdown of Fixed capital investment- Direct costs;	
	Indirect costs;	
	Types of Capital Cost Estimates	
	Grass Root plant; Battery limit;	
	• Estimation of equipment cost by scaling; Components of	
	costs in FCI;	
	Methods of Cost Estimation	
	Estimation of Total Product Cost;	
	Break even Analysis	
	Cost estimation to prepare offer.	
8	Profitability, Alternative Investments & Replacements:	11
	Introduction; Profitability Standards;	
	Mathematical methods for profitability evaluation- Rate of	
	Return on investment method, Discounted cash flow method,	
	Net present worth method, Capitalized Cost method, Pay out	
	period method; Advantages & Disadvantages of Different	
	Profitability Analysis Methods and their comparison	
	Alternative investments	
	Replacement analysis	
	Practical factors affecting investment and replacement	
	decisions	

# Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks
Attendance: 05 marks **Total:** 25 marks

#### Assessment

#### **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Peters, M. S. and Timmerhaus, K. D., "Plant design and economics for chemical engineers", latest edition, Mcgraw Hill, New York
- 2. Pravin Kumar "Fundamentals of Engineering Economics" Wiley India.
- 3. Kharbanda, O. P. and Stallworthy, E. A. "Capital cost estimating for process industries", Butterworths, Londen
- 4. K. K Dewett and Adarshchand, "Modern Economic Theory", latest edition, S Chand and Company
- 5. O. P Khanna, "Industrial Engineering and Management" DhanpatRai Publications (P) Ltd.
- 6. AtulSathe, ShubhadaKanchan, "Chemical Engineering Economics", VipulPrakashan, Mumbai
- 7. Indrajit N. Yadav, "Chemical Engineering Economics" Sai- publication, Pune 2nd edition, 2017

<b>Course Code</b>	Course/Subject Name	Credits
CHL401	Engineering Chemistry Lab-II	1.5

## **List of Experiments Suggested:**

- Organic spotting- Identification of organic compounds [at least 05].
- Potentiometric Titrations
- Titration of strong acid and strong base potentiometrically.
- Determination of solubility and solubility product of AgCl.
- pH-metry.
- Determination of dissociation constant of dibasic organic acids such as malonic acid, succinic acid.
- Conductometric Titrations.
- Titration of strong acid with strong base.
- Weak acid against strong base.
- Titration of mixture of weak acid and strong acid against strong base.
- Flame photometry.
- Determination of Na / K / Ca present in the given sample.
- Chromatography.
- Estimation of Sodium by Ion Exchange chromatography.
- Paper Chromatography and TLC [Demonstration of techniques].
- Organic Estimations.
- Estimation of Glucose Iodometrically.
- Estimation of Ester by Hydrolysis.
- Volume strength and amount of H₂O₂.
- Organic preparations
- Nitration of benzene
- Nitration of Salicylic Acid
- Sulphonation of Benzene

Students have to perform any 10 practicals from the above during the semester.

## **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
CHL402	Chemical Engineering Lab III (SFMO)	1.5

# List of Experiments Suggested

Minimum Ten Experiments must be performed

- 1. Sieve Analysis
- 2. Effectiveness Of Screen
- 3. Size reduction by Jaw Crusher
- 4. Size reduction by Hammer Mill
- 5. Size reduction by Ball Mill
- 6. Batch Sedimentation
- 7. Flow through Packed Bed
- 8. Flow through Fluidized Bed
- 9. Filtration
- 10. Mixing
- 11. Cyclone Separator
- 12. Roll Crusher
- 13. Elutriation
- 14. Froth Floatation

#### Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks **Total:** 25 marks

#### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
CHL403	MED Lab	1

# Drawing sheets based on (Minimum of 8 sheets):

- 1. Design of Unfired Pressure Vessel with internal pressure.
- 2. Design of Unfired Pressure Vessel with external pressure.
- 3. Storage Vessel.
- 4. Agitator.
- 5. Reaction Vessel.
- 6. Vessel Supports.

## Term work

Term work shall be evaluated based on performance in Lab.

Drawing Sheets: 20 marks
Attendance: 05 marks **Total:** 25 marks

# University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) T.E. Semester V (w.e.f 2018-2019)

Course code	Course Name		Teaching Scheme (Contact Hours)		Credits Assigned		ned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC501	Computer programming and Numerical Methods	4	-	-	4	-	-	4
CHC502	Mass transfer Operations-I (MTO- I)	4	1	-	4	-	-	4
CHC503	Heat transfer Operations (HTO)	4	-	-	4	-	-	4
CHC504	Chemical Reaction Engineering-I (CRE I)	4	-	-	4	-	-	4
CHC505	Business Communication & Ethics	2	-	2	-	-	2	2
CHDE501X	Department Elective I	4	-	-	4	-	-	4
CHL501	Computer programming and Numerical Methods lab	-	2	-	-	1	-	1
CHL502	Chemical Engineering Lab IV (MTO-I)	-	3	-	-	1.5	-	1.5
CHL503	Chemical Engineering Lab V (HTO)	-	3	-	-	1.5	-	1.5
CHL504	Chemical Engineering Lab VI (CRE-I)	-	2	-	-	1	-	1
	Total	20	14	-	20	5	2	27

Course code					Exa	mination Sch	eme			
	Course Name			Theo	ory					
		Interr	al Assess	ment	End	Exam	Term	Pract	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	Work	/Oral		
CHC501	Computer programming and Numerical Methods	20	20	20	80	3	-	-	-	100
CHC502	Mass transfer Operations-I (MTO- I)	20	20	20	80	3		-	-	100
CHC503	Heat transfer Operations (HTO)	20	20	20	80	3		-	-	100
CHC504	Chemical Reaction Engineering-I (CRE I)	20	20	20	80	3		-	-	100
CHC505	Business Communication & Ethics	-	-	-	-	-	50	-	-	50
CHDE501X	Department Elective I	20	20	20	80	3		-	-	100
CHL501	Computer programming and Numerical Methods Lab	-	-	-	-	2	25	25	-	50
CHL502	Chemical Engineering Lab IV (MTO-I)	-	-	-	-	3	25	25	-	50
CHL503	Chemical Engineering Lab V (HTO)	-	-	-	-	3	25	25	-	50
CHL504	Chemical Engineering Lab VI (CRE-I)	-	-	-	-	2	25	25	-	50
	Total			100	400	-	150	100	-	750

	Department Elective I (Sem V)			
Engineering Stream (Elective Code)  Advanced Sciences Stream (Elective code)  Technology Stream (Elective Code)				
1. Piping Engineering (CHDE5011)	1.Colloids and Interfaces (CHDE5012)	1. Advanced Material Sciences		
2. Instrumentation (CHDE5014)		(CHDE5013)		

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

<b>Course Code</b>	Course/ Subject Name	Credits
CHC501	Computer Programming & Numerical Methods	4

- Differential Calculus.
- Integral Calculus.
- Differential Equations.
- Linear Algebraic Equations.

# **Course Objectives:**

- To familiarize students with the use of software in solving numerical problems.
- To develop analytical thinking in designing programs.
- To learn to interpret results of computer programs and debug the same.
- To learn to present results in graphical form.

#### **Course Outcomes:**

- The students will be able to solve linear algebraic equations.
- The students will be able to solve non-linear algebraic equations.
- The students will be able to solve differential equations.
- The students will be able to solve partial differential equations.

Module	Contents	Contact Hours
	Fundamentals of Python	8
1	<ul> <li>Variables</li> </ul>	
	<ul> <li>Expressions and Arithmetic</li> </ul>	
	Conditional Execution	
	<ul> <li>Functions</li> </ul>	
	<ul> <li>Lists and Objects</li> </ul>	
2	Solution of algebraic and transcendental equations.	8
	Bisection Method	
	RegulaFalsi Method.	
	• Successive substitution.	
	<ul> <li>Secant Method.</li> </ul>	
	<ul> <li>Newtons Method for one and two simultaneous equations</li> </ul>	
	Applications in Chemical Engineering	
3	Systems of linear equations.	8
	Gaussian Elimination	
	Gauss Jordan Method	
	<ul> <li>LU Decomposition</li> </ul>	
	Jacobi Iteration Method	
	Gauss-Seidel Method.	
	<ul> <li>Applications in Chemical Engineering</li> </ul>	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

4	Ordinary differential equations.	10
	<ul> <li>Euler's explicit and implicit methods.</li> </ul>	
	<ul> <li>Runge-Kutta second and fourth order methods.</li> </ul>	
	Adams-Bashforth formulas.	
	Predictor and Corrector Formulas	
	Gear's Method	
	Applications in Chemical Engineering	
5	Difference Equations	6
	<ul> <li>Linear and Non-linear equations</li> </ul>	
	<ul> <li>Applications to Absorption, Adsorption, Extraction etc.</li> </ul>	
6	Partial differential equations.	8
	One-dimensional diffusion equation: Transient and Steady-	
	state problems using explicit and implicit methods.	
	Two-dimensional diffusion: steady-state problems.	

#### Assessment

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### **Text Books**

- 1. Numerical Methods for Engineers. By Santosh K. Gupta New Age Publishers, Second Edition, 2010
- 2. Introduction to Chemical Engineering Computing by Bruce A. Finlayson Wiley-International, 2005.
- 3. Numerical Methods by Chapra and Canale, 4th Ed.

#### References

- Learning Python
   Mark Lutz and David Ascher
- 2. Numerical Methods John Mathews

<b>Course Code</b>	Course/ Subject Name	Credits
CHC502	Mass Transfer Operation I	4

• Knowledge of chemistry, physics, physical chemistry, mathematics, process calculations and unit operations.

# **Course Objectives:**

• To give insight of mass transfer basic principle and mass transfer mechanisms.

#### **Course Outcomes:**

At the end of the course students will be able to:

- Demonstrate the knowledge of mass transfer by applying principles of diffusion, mass transfer coefficients, and interphase mass transfer.
- Understand the concept and operation of various types of gas-liquid contacts equipments.
- Determine NTU, HTU, HETP and height of packed bed used for Absorption and Humidification operations.
- Find time required for drying and design of drying equipments.

Module	Contents	Contact
Module	Contents	Hours
1	Molecular Diffusion in Gases and Liquid:	10015
1		10
	Basics of Molecular Diffusion, Fick's First Law of Molecular	
	Diffusion, Various fluxes and relations between them, Molecular	
	Diffusion in binary gas mixtures- Steady state diffusion of one	
	component in non-diffusing second component, Equimolal counter	
	diffusion of two components. Molecular Diffusion in binary liquid	
	solutions- Steady state diffusion of one component in non-	
	diffusing second component, Steady State Equimolal counter	
	diffusion of two components.	
	Diffusivity of gases. Theoretical and experimental determination	
	of diffusivities, Diffusivities of liquids - Theoretical	
	Determination. Diffusion in Solids: Ficks law of diffusion in	
	solids, Types of Solid Diffusion, Diffusion through Polymers,	
	Diffusion through Crystalline Solids, Diffusion in Porous Solids	
2	Mass Transfer Coefficients:	12
	Definition of Mass Transfer Coefficient, F-Type and K-Type Mass	
	Transfer Coefficients and relations between them, Mass Transfer	
	Coefficients in Laminar and Turbulent Flow. Heat, Mass and	
	Momentum Transfer Analogies and dimensionless numbers,	
	Interphase Mass Transfer- Individual and Overall Mass Transfer	
	Coefficients and relation between them. Methods of contacting	
	two insoluble phases- Continuous Contact, Stage-wise Contact.	
	Cocurrent, counter current and cross current operations,	
	Equillibrium stage definition and concepts, equilibrium stage	

University of Mumbai

	operations: material balance, concepts of operating line and equilibrium line, theoretical stage, point and stage efficiency, overall efficiency. Continuous contacting, concepts of	
	HTU,NTU,HETP etc.	
3	<ul> <li>Equipments for Gas-Liquid Contacting:         <ul> <li>Classification of equipments for gas-liquid contacting</li> </ul> </li> <li>Gas dispersed and liquid continuous phase-Sparged Vessels (Bubble Columns), Mechanically Agitated Vessels, Tray Towers.</li> <li>Liquid dispersed phase and gas continuous phase -Venturi</li> </ul>	06
	Scrubbers, Wetted Wall Towers, Spray Towers and Spray Chambers, Packed Towers.  Comparison of Packed Towers with Tray Towers.	
4	Gas Absorption: Solubility of gases in liquids, Effect of temperature and pressure on solubility, Ideal and Non-ideal solutions, Choice of solvent for gas absorption, Single component gas absorption- Cross Current, Co-current, Countercurrent, Multistage Counter current Operation. Absorption with Chemical Reactions.	07
5	<b>Drying:</b> Introduction to drying, Equilibrium, Different types of moisture contents, Rate of Drying and drying curve, Batch Drying and calculation of time of drying, Continuous drying. Equipments for drying.	06
6	Humidification and Dehumidification: Introduction, Vapor Pressure Curve, Properties of Vapor-Gas mixtures [Understanding various terms], Theory of wet bulb temperature, Adiabatic Saturation Curves, Humidity Charts, Adiabatic operation: (Air water systems) water coolers, cooling towers	07

#### **Assessment**

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### **Text Book**

- 1. Treybal R.E., Mass transfer operation, 3 Ed., McGraw Hill New York, 1980.
- 2. McCabe W.L. and Smith J.C., Unit operation in chemical engineering, 5 Ed., McGraw Hill, NewYork, 1993.

University of Mumbai B. E. (Chemical Engineering) Rev 2016

3. Geankoplis C.J., Transport processes and unit operations, Prentice Hall, New Delhi 1997.

## References

- 1. Coulson J.M. Richardson J.F., Backhurst J.R. and Harker J.H., Coulson and Richardson chemical Engineering, vol 1 & 2, Butterworth Heinman, New Delhi, 2000.
- 2. Dutta B.K., Mass Transfer and separation processes, Eastern economy edition, PHI learning private ltd, New Delhi, 2009.

<b>Course Code</b>	Course/ Subject Name	Credits
CHC 503	Heat Transfer Operations	4

• Units and Dimensions, Fluid Flow Principles, Laws of Thermodynamics, Solution Technique of ODEs and PDEs.

# **Course Objectives:**

- Students should be able to calculate heat transfer rates by various modes of heat transfer, for various geometry of equipment and should get introduced to Unsteady Heat Transfer.
- Students should be able to design Double Pipe Heat Exchanger and also be able to do preliminary design of Shell and Tube Heat Exchanger. Should be familiar with Extended Surfaces, Evaporators, and Agitated Vessels etc.

#### **Course Outcomes:**

Upon Completion of this course students would be able to

- Analyze Steady and Unsteady State Conduction systems.
- Analyze Convective Heat transfer Systems.
- Analyze Radiative Heat Transfer Systems.
- Analyze Extended Surfaces, Evaporators and Agitated Vessels.
- Basic design of DPHE and STHE.

Module	Contents	Contact Hours
1	Introduction to Heat Transfer Operations and Heat Transfer	10
	by Conduction	
	Fundamentals of heat transfer, basic modes of heat transfer.	
	Concept of driving force and heat transfer coefficients, rate	
	expressions for three modes i. e. conduction, convection, radiation.	
	Steady State Conduction:-Fourier's Law, thermal conductivity,	
	conduction through a flat slab, composite slab, conduction through	
	a cylinder wall, composite cylinder, Conduction through hollow	
	sphere, composite sphere. Thermal resistance network. Critical	
	radius of insulation.	
	Unsteady state conduction: -Lumped Parameter Analysis -	
	systems with negligible internal resistance (Heat transfer by	
	convection and radiation). Biot number, Fourier number, Heating a	
	body under conditions of negligible surface resistance, heating a	
	body with finite surface and internal resistance.	
2	Heat Transfer by Convection	8
	Forced and Natural Convection:-Fundamental considerations in	
	convective heat transfer, significant parameters in convective heat	
	transfer such as momentum diffusivity, thermal diffusivity, Prandtl	
	number, Nusselt number, dimensional analysis of convective heat	
	transfer-Natural and Forced convection, convective heat transfer	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	correlations for internal and external flows, equivalent diameter	
	for heat transfer, estimation of wall temperature, Reynold's	
	Analogy, Prandtl' Analogy, Coulburn's Analogy. Correlations for	
	heat transfer by natural convection from hot surfaces of different	
	geometries and inclination.	
3	Č	
3	Boiling and Condensation: -Introduction, types of condensation,	6
	Nusselt's theory of condensation, correlations for vertical and	
	horizontal tube, plate, for stack of tubes etc. Heat transfer to	
	boiling liquids, regimes of pool boiling of saturated liquid,	
	correlations for estimating the boiling heat transfer coefficients.	
4	Heat Transfer by Radiation	8
	Emissivity, absorptivity, black body, grey body, opaque body,	
	Stephan Boltzmann law, Kirchhoff's law. Calculations for rate of	
	heat transfer by radiation (Steady State) for various cases.	
	Construction and working of various types of Box and Cylindrical	
	types of Furnaces.	
5	Heat Exchangers	5
	Extended Surfaces: -longitudinal, transverse and radial fins,	
	calculations with different boundary conditions, efficiency and	
	effectiveness of fin, calculation of rate of heat transfer.	
6	<b>DPHE</b> and <b>STHE</b> : -Overall Heat Transfer Coefficients (U),	5
	Resistance form of U, LMTD, and Wilson plot; fouling	
	factors.Process design of Double Pipe Heat Exchanger.	
	Preliminary process design and Kern's method of Design for Shell	
1	Tremmary process design and Kern's method of Design for Shen	
	and Tube Heat Exchanger. Effectiveness-NTU method.	
7		6
7	and Tube Heat Exchanger. Effectiveness-NTU method.	6
7	and Tube Heat Exchanger. Effectiveness-NTU method.  Heat Transfer to Vessels: - Jacketed Vessels, Internal Coils and	6
7	and Tube Heat Exchanger. Effectiveness-NTU method. <b>Heat Transfer to Vessels:</b> - Jacketed Vessels, Internal Coils and Agitated Vessels- heat transfer correlations and calculations.	6
7	and Tube Heat Exchanger. Effectiveness-NTU method.  Heat Transfer to Vessels: - Jacketed Vessels, Internal Coils and Agitated Vessels- heat transfer correlations and calculations.  Evaporators:-Types of Tubular Evaporators, Performance	6

## Assessment

## **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 62

# **Text Books**

- 1. B. K. Datta, Heat Transfer: Principles and applications, PHI learning.
- 2. Yunus A. Cengel and A. J. Ghajar, Heat and Mass Transfer.
- 3. Welty, Wicks, Wilson and Rorrer, Fundamentals of Momentum, Heat and Mass Transfer,5th Edition, Wiley India.
- 4. D. Q. Kern, Process Heat Transfer, McGraw hill, 1997.

## References

- 1. MaCabe W. L., Smith J. C., Harriot P., Unit Operations of Chemical Engineering, 5th edition, McGraw Hill,1993.
- 2. Holman J. P., Heat Transfer, 9th Edition, McGraw Hill, 2008.
- 3. R. K. Sinnot, Coulson & Richardsons Chemical Engineering Design, Vol 1 & 6, Elsevier Science & Technology Books.

<b>Course Code</b>	Course Name	Credits
CHC504	Chemical Reaction Engineering-I	4

 Students should know basic chemistry pertaining to chemical reactions, chemical formula etc. They are required to be aware of chemical process and unit operations used for the manufacturing of chemical products. Simple to complex numerical methods of solving one and two dimensional Mathematical equations.

## **Course Objectives:**

- To understand the different types of reactions and formulation of their reaction rate.
- Development of Kinetic model for homogeneous reactions giving emphasis on various types of reactions.
- Development of design strategy for homogeneous reactions considering different types of reactors.
- To understand the effect of temperature on reactor performance for adiabatic and non adiabatic operation

#### **Course Outcomes:**

- Students will be able to identify and analyze different types of homogeneous reactions.
- Students will be able to apply the knowledge they have gained to develop kinetic models for different types of Homogeneous reactions
- Students will be able to find the model equation and use this model to design the reactors used for Homogeneous reactions.
- Students will be able to understand the effect of temperature on reactor performance for adiabatic and non adiabatic operation and develop kinetic model to design the reactors for adiabatic and non-isothermal operations.

Module	Topics	Contact
		Hours
1	Introduction to Reaction Engineering: Classification of reactions, definitions of reactions rate, variables affecting reaction rate, speed of chemical reactions.  Kinetics of homogenous reactions: Simple reactor types, the rate equation, concentration dependent term of rate equation.  Molecularity and order of reaction. Rate constant k, representation of an elementary and non elementary reaction.  Kinetic models for non elementary reactions. Testing kinetic models. Temperature dependant term of rate equations from Arrhenius theory and comparison with collision and transition state theory. Activation energy and temperature dependency. Predictability of reaction rate from theory.	10
2	Methods of analysis of experimental data	12

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	For constant volume and Variable Volume Batch Reactor-	
	Integral Method of analysis of experimental data. Differential	
	Method of analysis of experimental data. Concept of Half	
	Life/Fractional Life. Overall order of irreversible reaction.	
	Analysis of total pressure data. Reversible and irreversible	
	reaction in parallel and in series. Homogeneous catalyzed	
	reactions, Auto catalytic reactions, Shifting Order reactions.	
3	Design of Reactors:	12
3	e	14
	Ideal batch reactor and concept of batch time. Flow reactor and	
	concept of space time / space velocity and holding	
	time/residence time. Ideal Mixed Flow reactor(MFR) and Plug	
	Flow Reactor (PFR). Design for single reactions: Single reactor	
	performance of reversible and irreversible first order, pseudo	
	first order, second order reactions for MFR, PFR. Graphical and	
	analytical techniques.	
	Combination of reactors: PFR in series/ parallel, unequal size	
	MFR in series, performance of the above for the first order and	
	second order reactions. Semi batch reactor and Recycle Reactor.	
	Design for complex reactions: Irreversible and Reversible	
	reactions in series and parallel with same or different order	
	in various combinations.	
4	Heat and pressure effects:	10
	Single Reactions: Calculations of heats of reaction and	
	equilibrium constants from thermodynamics, equilibrium	
	conversion, general graphical design procedure. Optimum	
	temperature progression, Energy balances equations in adiabatic	
	and non-adiabatic case. Exothermic reaction in mixed flow,	
	Rules for choice of reactors and optimum operation of reactors.	
	reactors and optimization of reactors.	

## Assessment

## **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Levenspiel O., Chemical Reaction Engineering, John Wiley&Sons,3ed.,1999.
- 2. Smith J.M., Chemical Reaction Engineering, 3ed., TataMcGrawHill, 1980.
- 3. Fogler, H.S. Elements of Chemical Reaction Engineering, 4ed., PHI, 2008

University of Mumbai B. E. (Chemical Engineering)

- 4. HillC.G., Chemical Reaction Engineering.
- 5. Walas, Reaction Kinetics for Chemical Engineers, McGraw Hill, 1959.

<b>Course Code</b>	Course/Subject Name	Credits
CHC505	Business Communication and Ethics	2

• Students should have basic knowledge of English and general engineering.

## **Course Objectives**

- To inculcate in students professional and ethical attitude, effective communication skills, teamwork, multidisciplinary approach, and an ability to understand Engineers' social responsibilities
- To provide students with an academic environment where they will be aware of the excellence,leadership and lifelong learning needed for a successful professional career
- To inculcate professional ethics and codes of professional practice
- To prepare students for successful careers that meets the global Industrial and Corporate requirement

### **Course Outcomes:**

Students will be able to

- Communicate effectively in both oral and written form and equip to demonstrate knowledge of professional and ethical responsibilities.
- participate and succeed in campus placements and competitive examinations like GATE, TOFEL
- Possess entrepreneurial approach and ability for life-long learning
- Have education necessary for understanding the impact of Engineering solutions on Society, and demonstrate awareness of contemporary issues Detailed Syllabus.
- Design a technical document using precise language, suitable vocabulary and apt style.
- Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships.
- Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities.
- Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
- Deliver formal presentations effectively implementing the verbal and non-verbal skills.

Module	Contents	Contact
		Hours
1	Report Writing	05
	Objectives of Report Writing	
	Language and Style in a report	
	Types: Informative and Interpretative (Analytical, Survey and	
	Feasibility) and Formats of reports (Memo, Letter, Short and Long	

University of Mumbai

	Report)	
2	Technical Writing	03
	Technical Paper Writing (IEEE Format)	
	Proposal Writing	
3	Introduction to Interpersonal Skills	09
	Emotional Intelligence	
	Leadership and Motivation	
	Team Building	
	Assertiveness	
	Conflict Resolution and Negotiation Skills	
	Time Management	
	Decision Making	
4	Meetings and Documentation	02
	Strategies for conducting effective meetings	
	Notice, Agenda and Minutes of a meeting	
	Business meeting etiquettes	
5	Introduction to Corporate Ethics	02
	Professional and work ethics (responsible use of social media -	
	Facebook, WA, Twitter etc.)	
	Introduction to Intellectual Property Rights	
	Ethical codes of conduct in business and corporate	
	activities(Personal ethics, conflicting values, choosing a moral	
	response and	
	making ethical decisions)	
6	Employment Skills	07
	Group Discussion	
	Resume Writing	
	Interview Skills	
	Presentation Skills	
	Statement of Purpose	

## **Term Work**

The term work shall be comprised of the neatly written Journal comprising below mentioned assignments.

Assignment 1- Interpersonal Skills (Group activity Role play)

Assignment 2- Interpersonal Skills (Documentation in the form of soft copy or hard copy)

Assignment 3- Cover Letter Resume

Assignment 4- Report Writing

Assignment 5- Technical Proposal (document of the proposal)

Assignment 6- Technical Paper Writing

Assignment7 -Meetings Documentation (Notice, Agenda, Minutes of Mock Meetings)

Assignment 6- Corporate Ethics (Case study, Role play)

Assignment 8- Printout of the PowerPoint presentation

## Term-work Marks: 50 Marks

The marks of term-work shall be judiciously awarded depending upon the quality of the term work including that of the report on experiments assignments. The final certification acceptance of Term work warrants the satisfactory the appropriate completion of the assignments, presentation, book report, group discussion and internal oral the minimum passing marks to be obtained by the students. The following weightage of marks shall be given for different components of the term work.

Attendance: 05 MarksAssignments: 20 Marks

 Internal Oral: 25 Marks. Comprising of: Presentation of the Project Report: 10 Marks Book Report (one copy per group): 05 Marks

Group discussion: 10 Marks

### References

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", McGraw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education
- 7. Ghosh,B. N., "Managing Soft Skills for Personality Development", Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, "BCOM", Cengage Learning, 2ndedition
- 9. Bell, Smith, "Management Communication" Wiley India Edition, 3rdedition.
- 10. Dr. Alex, K., "Soft Skills", S Chand and Company
- 11Subramaniam, R., "Professional Ethics" Oxford University Press.
- 12. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 13. https://grad.ucla.edu/asis/agep/advsopstem.pdf

<b>Course Code</b>	Course Name	Credits
CHDE5011	Department Elective I-Piping Engineering	4.0

Basics of various Chemical Process.

## **Course Objectives:**

- To introduce students to the crucial role of piping engineer in turn key projects
- To make students understand the approval drawings and execute the work adhering to procedures and standards
- To understand the layout and manage the work with adequate safety and reliability

## **Course Outcomes:**

By the end of the course students should be able

- understand the piping fundamentals, codes and standards
- understand pipe fittings, selections, drawings and dimensioning
- understand Pipe Material specifications
- understand pressure design of pipe systems

Module	Content	Contact Hours
1	Introduction to Piping	06
	1.1 Introduction to piping	
	1.2 Piping	
	1.3 Pipe classification	
	1.4 General definitions	
	1.5 Length, area, surface & volume acronyms and	
	abbreviation. Color coding of piping as per types fluid passing	
	through piping (IS 2379:1990)	
	1.6 Concept of high point vent and low point drain.	
	1.7 Duties & responsibilities of piping field engineer	
2	Materials of Piping	08
	2.1Selection of material for piping,	
	2.2 Desirable properties of piping materials	
	2.3Iron Carbide Diagram	
	2.4 Materials for various temperature and pressure conditions,	
	2.5 Materials for corrosion resistance.	
	2.6 Pipe coating and insulation	

3	Piping Components	10
	3.1 Pipe & tube product	10
	3.2 Pipe sizes & materials, Mitre Joint.	
	3.3 Pipes joints & bending (Cold & Hot Bending), Welding	
	defect (NDT)	
	3.4 Valves: Types of valves and selection	
	3.5 Strainers & traps	
	3.6 Expansion joints	
	3.7 Threaded joints	
	3.8 Types of piping support	
4	Piping Codes and Standards	06
	4.1Introduction of ASME codes	
	4.2 Code cases interpretation	
	4.3 Introduction of ASME B 31.1, 31.2, 31.3	
	4.4 Introduction of ANSI	
	4.5 Introduction of ASTM	
	4.6 Introduction of API	
	4.7 Introduction of AWS	
5	Piping System Design	10
	5.1 Flows through Pipes.	
	5.2 Loss of energy / head in pipes Loss of head due to friction.	
	5.3Minor energy losses,	
	5.4Water hammer in pipes Unit.	
	5.5Design Principles and Line Sizing	
	5.6. Mitre Joint Calculation.	
	5.7 Various stresses in piping	
	5.8 Bending stress calculation	
6	Piping Drawing	08
	6.1 Piping drawing symbols and abbreviations	
	6.2 Classification/Types of drawing	
	6.3 Introduction to simple piping drawings	
	6.3.1 Plot Plan	
	6.3.2 G.A.Drawing	
I	1622 Dungang flow, diagram (D.E.D.)	
	6.3.3 Process flow diagram (P.F.D)	
	6.3.4 Piping and instrumentation diagram (P&ID)  / Engineering flow diagram.	

# **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions to be solved
- Question no.1 will be compulsory and based on entire syllabus where in sub questions can be asked.

- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

## References

- 1. Handbook of piping design- S.K. Sahu Elsevier Publishers
- 2. Piping/mechanical hand book- Mohinder L. Nayyar. Peter H. O. Fischer, Manager, Pipeline Operations, Bechtel
- 3. Piping Design Handbook by John J. Mcketta, by Marcel Dekker, Inc, New York.

### **Recommended:**

- i. Arrange visit to a process industry and discuss different features of process piping in use
- ii. Arrange expert lecture by some experienced process piping engineer.

<b>Course Code</b>	Course/Subject Name	Credits
CHDE5012	Department Elective I- Colloids and Interfaces	4

• Basic knowledge of Chemical Engineering, basic concept of electron, atom, ions, molecules & molecular rearrangements, Basic knowledge of fluid flow, thermodynamics and heat transfer, Various types of material and metals, Basic knowledge of particle size measurement.

# **Course Objectives:**

- To understand the fundamental knowledge of the Colloids, interfaces and explain their applications
- To understanding of basic nomenclature, concepts and tools of colloid and interface science and engineering; multi-phase nano-systems; mechanics and thermodynamics on small scales.
- To impart the interdisciplinary subject in which chemical engineers, chemists and biotechnologists are involved
- Understand the engineering aspects of fluid-fluid and fluid-solid interfaces and Surface energy.

## **Course Outcomes:**

Upon completion of the course, the student should be able to

- Describe the colloidal state, including colloids and their preparation and properties as well as fundamental concepts in colloid and interface engineering.
- Discuss factors that affect colloidal systems and important factors on solid/liquid interactions as well as apply knowledge in colloid and surface science and analyze and solve problems calculations concerning the practical problems
- Explain experimental techniques used to determine colloidal properties; interfacial phenomena
- To facilitate skills transfer from another relevant area of engineering or science and technology to the study of Interfacial engineering.
- Students should understand, know how to interpret and apply the following topics in colloid and interface engineering to wettability, solubility, surface tension, diffusion, sedimentation, colloid stability and aggregation, adsorption, electrical interfacial layer and surface equilibrium and experimental methods for surface characterization
- Gain knowledge of fabrication methods in nanotechnology and characterization methods in nanotechnology.

Module	Contents	Contact hrs
01	Introduction of Colloids, The colloidal state and classification, Importance of colloids, Properties and application of colloid systems, interaction between particles, colloid stability and aggregation	
02	Surface tension and interfacial tension surfaces, Experimental	08

	method for measurement of Surface Tension, dynamic surface	
	•	
	tension & Contact Angle, Vander Waals forces between	
	colloidal particles	
03	Surfactants: classification, properties, applications	08
	Surfactants in solution: micelles, vesicles, Micro emulsions	
	Electrical phenomena at interfaces: Electric double layer, zeta	
	potential, DLVO theory	
04	Surface free energy, films on liquid substrates (mono-molecular	08
	films, Langmuir-Blodgett layers),	
	Adsorption-Langmuir and Gibbs adsorption isotherm,	
	Types of Interface (Solid-Gas, Solid-liquid, liquid –gas, liquid-	
	liquid) and its features	
05	Top-down and bottom-up approach for nanostructure Methods:	07
05		U/
	Vacuum Synthesis, Gas Evaporation Tech, Condensed Phase,	
	Synthesis, Sol Gel Processing, Polymer Thin Film	
06	Interaction between Biomolecules & Nanoparticle Surface,	07
	Influence of Electrostatic Interactions in the binding of Proteins	
	with Nanoparticles, The Electronic effects of bimolecule -	
	Nanoparticle Interaction, Different Types of Inorganic materials	
	used for the synthesis of Hybrid Nano-bio assemblies,	
	Application.	
07	Particle Size, Surface area, Volume, Equivalent Diameter and	08
	Aerodynamic Diameter	
	Measurement Methods – Microscopy, Optical Counter,	
	Electrical Aerosol Analyzer, Bacho Microparticle classifier,	
	Particle Size analyzer	
	Particle mass, Volumetric flow rate and average particle	
	concentration calculation	
	concentration calculation	

## **Internal:**

• Assessment consists of an average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.

## Textbook/References Book

- 1. J. C. Berg, An Introduction to Interfaces and Colloids: The Bridge to Nanoscience, World Scientific, Singapore
- 2. P. Ghosh, Colloid and Interface Science, PHI Learning, New Delhi
- 3. R. J. Hunter, Foundations of Colloid Science, Oxford University Press, New York

University of Mumbai

- 4. D.J. Shaw, Colloid and Surface Chemistry, 4th Edition, Butterworth-Heinemann, Oxford
- 5. Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications. New York
- 6. Robert J. Stokes, D Fennell Evans, "Fundamentals of Interfacial Engineering", Wiley-VCH
- 7. P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York
- 8. Louis Theodore, A John, Nanotechnology: Basic Calculations for Engineers and Scientists Willy & Sons
- 9. T. Pradeep, Nano-The Essentials, Understanding Nanoscience and Nanotechnology,
- 10. Kal Ranganathan Sharma, Nanostructuring Operations in NanoScale Science and Engineering, McGraw-Hill

<b>Course Code</b>	Course/ Subject Name	Credits
CHDE5013	Department Elective I- Advanced Material Science	4

• Mechanical, Electrical, Magnetic and Optical Properties of Materials, Commonly used Materials of Construction and their Selection, Corrosion in Materials.

# **Course Objectives**

- To understand various advanced materials such as conducting polymers, high temperature polymers, stainless steels, composites, ceramics, etc.
- To understand the properties and engineering applications of the above materials.
- To understand the fabrication methods of the above materials.

## **Course Outcomes**

At the end of the course the student will:

- Identify various types of advanced materials such as polymers, ceramics and composites.
- Understand the properties of various advanced polymeric, ceramic and metallic materials and their applications in various fields.
- Have knowledge of different types of composite materials and their properties and applications.
- Understand the fabrication of various composite materials.
- Have knowledge of types of nanotubes and nanosensors and their applications.
- Understand the different thin film coating methods and their applications in various fields.

Module	Contents	Contact
1	Advanced Metallic Metaviola	Hours
1	Advanced Metallic Materials:	08
	Stainless Steels: Types, properties of stainless steels, corrosion	
	resistance and selection of stainless steels, failure of stainless	
	steels.	
	High Temperature Alloys: Properties and types.	
	Titanium Alloys and Cobalt-Chromium Alloys: Composition,	
	properties and applications.	
	Nitinol as Shape Memory Alloy and its applications.	
2	Advanced Polymeric Materials:	06
	Structure, preparation, and application of various conducting	
	polymers, high temperature polymers and liquid crystal	
	polymers.	
	Biomedical applications of polymers such as hydrogels,	
	polyethylene, polyurethanes, polyamides and silicone rubber.	
3	Ceramic Materials:	08
	Properties of ceramic materials, classification of ceramic	00
	materials, ceramic crystal structures.	
	Behaviour of ceramic materials: dielectric, semiconductor,	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 76

	ferroelectric, magnetic, and mechanical behaviour.	
	Preparation and application of ceramic materials: Alumina,	
	Partially Stabilized Zirconia, Sialon, Silicon Nitride, Silicon	
	Carbide.	
	Processing of Ceramics.	
4	Composite Materials:	08
	Necessity of composite materials, classification of composite	
	materials, types of matrix materials and reinforcements,	
	reinforcement mechanism, choosing material for matrix and	
	reinforcement.	
	Fiber Reinforced Plastic Processing:	
	Open Moulding Processes: Filament Winding Process	
	Closed Moulding Processes: Pultrusion and Pulforming, Sheet	
	Moulding Compound Process	
	Carbon-Carbon Composites: Fabrication and Properties	
5	Metal Composites:	08
	Advantage of metal composite over metal, types of	
	reinforcement and matrix fabrication types, various fabrication	
	processes: diffusion bonding process, in-situ process,	
	mechanical behaviour and properties.	
	Ceramic Composites:	
	Matrices and reinforcements, mechanical properties, fabrication	
	methods: Slurry infiltration processes, chemical vapour	
	infiltration process.	
6	Carbon Nanotubes: Synthesis, properties and applications.	07
	Nanoshells: Types, properties and applications.	
	Nanosensors: Assembly methods, nanosensors based on optical,	
	quantum size, electrochemical and physical properties.	
	<b>Thin Film Coatings:</b> Physical and chemical vapour deposition	
	coatings, hard facing, thermal spraying, diffusion process, useful	
	material for appearance, corrosion and wear.	
	Tr	

## **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No. 1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

## **Text Books and Reference Books**

- 1. B.K. Agrawal, Introduction to Engineering Materials, Tata McGraw Hill Education Pvt. Ltd., 2012.
- 2. A.K. Bhargava, Engineering Material: Polymers, Ceramics and Composites, PHI Learning Pvt. Ltd., Second Edition 2012.
- 3. Dr. H.K. Shivanand and B.V. Babu Kiran, Composite Material, Asian Books Private Limited, 2010.
- 4. T. Pradeep, Nano: The Essentials, Tata McGraw-Hill Education Pvt. Ltd., 2010.
- 5. William Smith, Structure and Properties of Engineering Alloys, Second Edition, McGraw Hill International Book Co.
- 6. William Smith, JavedHasemi, Ravi Prakash, Material Science and Engineering, Tata McGraw Hill Education Company Ltd., 2006.
- 7. Kenneth G. Budinski, Michael K. Budinski, Engineering Materials Properties and Selection, 8th Edition, Prentice Hall.
- 8. Bowden M.J. and Tumber S.R., Polymer of High Technology, Electronics and Photonics, ACS Symposium Series, ACS, 1987.
- 9. Dyson, R.W., Engineering Polymers, Chapman and Hall, First Edition, 1990.
- 10. Chawala K.K., Composite Materials, Science and Engineering, 3rd Edition.
- 11. Sujata V. Bhat, Biomaterials, Narosa Publication Pvt. Ltd., Second Edition, 2005.
- 12. V. Raghavan, PHI Learning Private Ltd, Sixth Edition.

<b>Course Code</b>	Course/ Subject Name	Credits
CHDE5014	Department Elective I- Instrumentation	4

• Process Calculations

## **Course Objectives**

- To understand the primary mechanisms of sensors
- To understand how measured quantities are processed for transmission and control
- To understand how alarms and interlocks are incorporated into over-all instrumentation and control
- To understand basic control configurations of typical process units

## **Course Outcomes**

- The student will be able to calculate the output of various measuring schemes
- The student will be able to select a DAQ card for any given application
- The student will be able to select the appropriate type of instrument for any application
- The student will be able to prepare a basic control scheme for process units
- The student will be able to write programs for a PLC.

4	•	
٩	,	

Module	Contents	Contact
		Hours
1	Fundamentals of Measuring Instruments:	04
	Introduction Standards and Calibration, Elements of Measuring	
	Systems, Classification of Instruments, Performance	
	Characteristics, Errors in Measurement.	
2	Primary Sensing Mechanisms:	04
	Introduction, Resistive Sensing Elements, Capacitive Sensing	
	Elements, Inductive Sensing Elements, Thermo-electric Sensing	
	Elements, Piezo-electric Sensing Elements, Elastic Sensing	
	Elements, Pneumatic Sensing Elements, Deferential Pressure	
	Sensing Elements, Expansion Sensing Elements	
3	Signal Conversion:	04
	Signal Conditioning , Wheatstone Bridge, Potentiometer	
	Measurement System, Signal Processing, Mechanical Amplifier,	
	Electronic Amplifier, A/D and D/A conversion, Signal	
	Transmission, Selection of DAQ cards.	
4	Measuring Instruments:	10
	Flow Measurement, Temperature Measurement, Level	
	Measurement, Pressure Measurement.	
5	Valves and Drives:	04
	Introduction, Control Valve Characteristics, Sizing and Selection	
	ofValves, Variable Drives.	

6	Programmable Logic Controllers:	04			
	Introduction, Ladder Logic, Applications of PLCs to typical				
	processes.				
7	Introduction to Safety Relief Systems:	10			
	Introduction, Types of Relieving Devices, Relief Valves,				
	Rupture Discs, Over-pressurization, Emergency				
	Depressurization, Introduction to SIL Classification, LOPA				
	Methods, Basic Process Control				
	Schemes.				

### **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No. 1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

### Refrences

- 1. K. Krishnaswamy and S. Vijayachitra, Industrial Instrumentation, second Edition, New Age International.
- 2.B. E. Noltingk, Jones Instrument Technology, Vol. 4 and 5, Fourth Edition, Butterworth-Heinemann.
- 3. W. Bolton, Instrumentation and Control Systems, First Edition, Newnes, Elsevier, 2004.
- 4. Stephanopoulos, Chemical Process Control, Prentice Hall of India.
- 5. John P. Bentley, Principles of Measurement Systems, Third edition, Addison Wesley Longman Ltd., UK, 2000.
- 6. Doebelin E.O, Measurement Systems Application and Design, Fourth edition, McGraw-Hill International Edition, New York, 1992.
- 7. Noltingk B.E., Instrumentation Reference Book, 2nd Edition, Butterworth Heinemann, 1995

<b>Course Code</b>	Course/ Subject Name			
CHL501	Computer Programming and Numerical Methods Lab	1		

Minimum Ten practicals should be performed from the modules of Theory course of Computer Programming and Numerical Methods (CHC501)

## Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks **Total:** 25 marks

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments

<b>Course Code</b>	Course/ Subject Name			
CHL502	Chemical Engineering Lab IV (MTO-I)	1.5		

# **Concept for Experiments**

Minimum of ten experiments are to be conducted.

- To determine the diffusivity of given liquid sample.
- To study diffusion through porous solids and determine effective diffusivity.
- To determine Mass Transfer Coefficient in a packed extraction column
- To determine Mass Transfer Coefficient in a packed extraction column
- To determine Mass Transfer Coefficient in a spray extraction column
- To estimate the mass transfer coefficient in flow process system (eg.benzoic acid + water).
- To determine mass transfer co-efficient in gas liquid system by evaporation.
- To study absorption in packed tower.
- To determine the efficiency of cooling and tower study of Humidification and water cooling operations.
- To study the operation of a fluidized bed drier and analyze drying curve.
- To determine rate of absorption and study absorption in spray tower.
- To study batch drying and plot drying curve.
- To study hydrodynamics of packed bed and study variation in pressure drop with velocity.
- Experiments demonstrating determination of mass transfer coefficient/diffusivity/ number of transfer units, HTU, HETP are envisaged.

## Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks
Total: 25 marks

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments

<b>Course Code</b>	Course/ Subject Name	Credits
CHL503	Chemical Engineering Lab IV (HTO)	1.5

## **Concept for Experiments**

Minimum of ten experiments are to be conducted.

- 1. Thermal conductivity of a metal rod.
- 2. Heat transfer through composite wall.
- 3. Newtonian heating/cooling.
- 4. Heat transfer by forced convection.
- 5. Heat transfer by natural convection.
- 6. Heat transfer by condensation.
- 7. Stefan Boltzmann's apparatus
- 8. Kirchoff's law
- 9. Double pipe heat exchanger
- 10. Shell & Tube heat exchanger
- 11. Finned tube heat exchanger
- 12. Heat transfer in agitated vessel.

### Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks **Total:** 25 marks

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

<b>Course Code</b>	Course/ Subject Name	
CHL504	Chemical Engineering Lab VI (CRE-I)	1

# **Concept for Experiments**

Minimum 10 experiments need to be performed by the students on following concepts

- 1. Differential and Integral Analysis (Order of Reaction at Room Temperature)
- 2. Arrhenius Constants (Verification of Laws)
- 3. Order and rate constant using Half Life Method
- 4. Study of Pseudo Order Reaction
- 5. Acidic Hydrolysis
- 6. Batch Reactor
- 7. Plug Flow Reactor (PFR)
- 8. Continuous Stirred Tank Reactor (CSTR)
- 9. Continuous Stirred Tank Reactors Series (Three CSTRs In Series)
- 10. PFR CSTR In Series Combination

## Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks
Total: 25 marks

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

# University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) T.E. Semester VI (w.e.f 2018-2019)

Course code	Course Name		eaching Sche Contact Hou		(	Credits Assign	ned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC601	Environmental Engineering (EE)	4	-	-	4	-	-	4
CHC602	Mass transfer Operations –II (MTO-II)	4	-	-	4	-	-	4
CHC603	Transport Phenomenon	3	-	1	3	-	1	4
CHC604	Chemical Reaction Engineering –II (CRE- II)	4	-	-	4	-	-	4
CHC605	Plant Engineering & Industrial Safety	3	-	1	3	-	1	4
CHDE602X	Department Elective II	4	-	-	4	-	-	4
CHL601	Chemical Engineering Lab VII (EE)	-	3	-	-	1.5	-	1.5
CHL602	Chemical Engineering Lab VIII (MTO-II)	-	3	-	-	1.5	-	1.5
CHL603	Chemical Engineering Lab IX CRE-II)	-	2	-	-	1	-	1
	Total	22	8	2	22	4	2	28

		Examination Scheme								
Course code	Course Name	Theory					Term	Pract		
		Intern	al Assess	ment	End	Exam	Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC601	Environmental Engineering (EE)	20	20	20	80	3	-	-	-	100
CHC602	Mass transfer Operations –II (MTO-II)	20	20	20	80	3	-	-	-	100
CHC603	Transport Phenomenon	20	20	20	80	3	25	-	-	125
CHC604	Chemical Reaction Engineering –II (CRE- II)	20	20	20	80	3	-	-	-	100
CHC605	Plant Engineering & Industrial Safety	20	20	20	80	3	25	-	-	125
CHDE602X	Department Elective II	20	20	20	80	3	-	-	-	100
CHL601	Chemical Engineering Lab VII (EE)	-	-	-	-	3	25	25		50
CHL602	Chemical Engineering Lab VIII (MTO-II)	-	-	-	-	3	25	25	-	50
CHL603	Chemical Engineering Lab IX CRE-II)	-	-	-	-	2	25	25	-	50
	Total			120	480	-	125	75		800

Department Elective II (Sem VI)							
Engineering Stream (Elective Code)	Management Stream (Elective Code)	Technology Stream (Elective Code)					
1. Computational Fluid Dynamics (CHDE6021)	1. Operation Research (CHDE6022)	1. Biotechnology (CHDE6023)					

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 85

<b>Course Code</b>	Course/ Subject Name			
CHC601	Environmental Engineering	4		

 Basic concepts of Fluid Flow Operations, Solid Fluid Mechanical Operations, Mass Transfer Operations and Chemical Reaction Engineering.

# **Course Objectives:**

- Students should be able to understand the scope of subjects in Chemical Industry.
- Students should learn to apply the Environmental Engineering concepts to control management of various types of pollutants.

## **Course Outcomes:**

- To understand Importance of environmental pollution, such as air, water, solid, noise. Various pollutants sources, adverse effects, Environmental Legislation
- To understand meteorological aspects air pollutant dispersion. Sampling and measurement, Control Methods and Equipment:
- To understand Sampling, measurement of various water pollutants.
- To understand and design various Waste Water Treatments,

Module	Contents	Contact
		Hours
1	Environmental pollution, Importance of environmental pollution	2
	control, Concept of ecological balance, Role of environ-mental	
	engineer, Environmental Legislation & Regulations, Industrial	
	pollution emissions &Indian standards, Water (prevention &	
	control of pollution) act, Air (prevention & control of pollution)	
	act.	0
2	Water Pollution:	8
	Classification of sources and effect of water pollutant on human	
	being and ecology, Sampling, measurement and standards of water	
	quality, Determination of organic matters: DO, BOD, COD, and	
	TOC.	
	Determination of inorganic substances: nitrogen, phosphorus,	
	trace elements, alkalinity. Physical characteristics: suspended	
	solids, dissolved solids, colour and odour, Bacteriological	
	measurements.	
3	Waste Water Treatment:	12
	<b>Primary treatment</b> : pre-treatment, settling tanks and their sizing.	
	Secondary treatment: micro-organisms growth kinetics, aerobic	
	biological treatment, activated sludge process, evaluation of bio-	
	kinetic parameters, trickling filters, sludge treatment and disposal.	
	<b>Tertiary treatment</b> : advanced methods for removal of nutrients,	
	suspended and dissolved solids, Advanced biological systems,	
	Chemical oxidation, Recovery of materials from process effluents.	
4	Air Pollution:	14

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 86

	Air pollutants, sources and effect on man and environment, behaviour and fate of air pollutants, photochemical smog, Meteorological aspects of Air pollutants: Temperature lapse rate and stability, inversion, wind velocity and turbulence, Plume behaviour, Dispersion of air pollutants, Gaussian plume model, Estimation of plume rise, Air pollution sampling and	
	measurement, Analysis of air pollutants	•
5	Air Pollution Control Methods and Equipment:  Source correction methods for air pollution control, Cleaning of gaseous effluents, Particulate emission control, Equipment, system and processes for. Particulate pollutants: gravity settler, cyclones, filters, ESP, scrubbers etc. Gaseous pollutants: scrubbing, absorption, adsorption, catalytic conversion.	8
6	Solid Waste Management: Solid waste including plastic, nuclear and hazardous waste management, E waste management	3
7	Noise Pollution: Noise pollution: measurement and control, effect on man and environment.	1

### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## **Text Books**

- 1. Rao, C.S., Environmental Pollution Control Engineering, New Age International (P) Ltd.
- 2. Peavy, H. S., Rowe, D.R., Tchobanoglous, G., Environmental Engineering, McGraw-Hill Book Company Limited
- 3. Metcalf et al., Waste Water Treatment, Disposal & Reuse, Tata McGraw Hill Publishing Company Limited.
- 4. Mahajan, S.P., Pollution Control in Process Industries, Tata McGraw Hill Publishing Company Limited.

### References

1. Industrial and Pollution Engineering, Cavaseno, VinCene N.T.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 87

- 2. Sewage Disposal and Air Pollution Engineering, S.K. Garg
- 3. Chemistry for Environmental Engineering, C.N. Sawyer
- 4. Wastewater Engineering, B.C Punmia

<b>Course Code</b>	Course/ Subject Name	Credits
CHC602	Mass Transfer Operations II	4

- Knowledge of chemistry, physics, physical chemistry and mathematics.
- Knowledge of process calculations.
- Knowledge of diffusion, mass transfer coefficients, modes of contact of two immiscible phases.

## **Course Objectives:**

- To understand design methods for distillation columns.
- To understand design of extractor and leaching equipments.
- To understand membrane separation.
- To understand crystallisation process and to design crystallization equipments

### **Course Outcomes**

At the end of the course student will be able to:

- understand equilibrium in all separation process
- design the mass transfer equipments for extraction, leaching and crystallization processes
- design distillation column
- choose the separation operation which will be economical for the process
- optimize the process parameters
- understand membrane separation processes principle and working

Module	Contents	Contact
		Hours
1	Distillation:	12
	Introduction to Distillation, Vapor-liquid Equilibrium-At constant	
	Pressure and At constant temperature, Minimum and maximum	
	boilingAzeotropes. Methods of distillation [binary mixtures] -	
	Flash Distillation, Differential distillation, Rectification.	
	Calculations of number of ideal stages in multistage countercurrent	
	rectification. McCabe Thiele Method. Ponchon-Savarit Method,	
	Lewis-Sorel Method, Concepts of [Brief Discussion], Steam	
	Distillation, Azeotropic Distillation, Extractive Distillation,	
	Reactive Distillation, Molecular Distillation, Introduction to	
	Multicomponent Distillation.	
2	Liquid-Liquid Extraction:	10
	Introduction to Liquid-Liquid Extraction, Choice of Solvent for	
	Liquid-Liquid Extraction, Triangular coordinate system, Ternary	
	Equilibria [Binodal Solubility Curve with effect of temperature	
	and pressure on it], Single Stage Operation, Multistage Cross	
	Current Operation, Multistage Counter Current Operation[with	

University of Mumbai

	and without reflux, Equipments for liquid-liquid extraction.	
3	Leaching:	06
	Representation of Equilibria, Single stage leaching, Multistage	
	Cross Current Leaching, Multistage Counter Current Leaching,	
	Equipments for Leaching.	
4	Adsorption and Ion Exchange:	12
	Introduction to Adsorption, Types of Adsorption, Adsorption	
	Isotherms, Single Stage Adsorption, Multistage Cross Current	
	Adsorption, Multistage Counter Current adsorption, Equipments	
	for Adsorption, Break through curve, Ion Exchange Equilibria, Ion	
	Exchange Equipments	
5	Crystallization:	4
	Solubility curve, Super saturation, Method of obtaining super	
	saturation, Effect of heat of size and growth of crystal, Rate of	
	Crystal growth and $\Delta L$ law of crystal growth, Material and energy	
	balance for crystallizers, Crystallization equipment-description.	
6	Membrane separation Technique:	4
	Need of membrane separation, and its advantages, classification of	
	membrane separation process, Various membrane configurations.	
	Various membrane and their applications, Ultrafiltration,	
	Nanofiltration. Reverse osmosis, Pervaporation, Membrane	
I	distillation.	

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Treybal R.E., Mass transfer operation, 3 Ed., McGraw Hill New York, 1980.
- 2. McCabe W.L. and Smith J.C., Unit operation in chemical engineering, 5 Ed., McGraw Hill NewYork 1993.
- 3. Geankoplis C.J., Transport processed and unit operations, Prentice Hall, New Delhi 1997.
- 4. Coulson J.M. Richardson J.F., Backhurst J.R. and Harker J.H., Coulson and Richardson chemical engineering, vol 1 & 2, Butterworth Heinman, New Delhi, 2000.
- 5. R.K.Sinnot (Ed) Coulson and Richardson chemical engineering, vol 6, Butterworth Heinman, NewDelhi, 2000.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 90

- 6. Kiran D. Patil, Principals and Fundamentals of mass transfer operation II, Nirali Prakashan Pune.
- 7. Dutta B.K., Mass Transfer and separation processes, Eastern economy edition, PHI learning private ltd, New Delhi, 2009.

<b>Course Code</b>	Course/Subject Name	Credits
CHC603	Transport Phenomena	4.0

- Continuity equation, equation motion covered in Fluid Mechanics, Diffusion and absorption from Mass Transfer and Conduction, convection and radiation from Heat Transfer.
- Numerical methods to solve ordinary differential equations.

## **Course Objectives:**

- Students will be able to get depth knowledge of momentum, energy and mass transport.
- Applications of fundamental subjects learned, towards chemical engineering problems.
- Ability to analyze industry oriented problems.

## **Course Outcomes:**

- Understanding of transport processes.
- Student will learn to establish and simplify appropriate conservation statements for momentum, energy and mass transfer processes.
- Ability to do momentum, energy and mass transfer analysis.
- To apply conservation principles, along with appropriate boundary conditions for any chemical engineering problem.

Module	Contents	Contact Hours
1	<b>Introduction:</b> Importance of transport phenomena, Introduction to analogies between momentum, heat and mass transfer and defining of dimensionless number, Eulerian and Lagrangian approach, introduction of molecular and convective flux, equation of continuity, motion and energy.	06
2	Momentum Transport: Introduction of viscosity and mechanism of momentum transport: Newton's law of viscosity, Newtonian & Non-Newtonian fluids, Pressure and temperature dependence of viscosity, theory of viscosity of gases and liquids. Velocity distribution in laminar flow: Shell momentum balances and boundary conditions a) Flow of falling film b) Flow through the circular tube c) Flow through an annulus d) Flow in a narrow slit e) Adjacent flow of two immiscible fluids	10
3	Energy Transport: The introduction of thermal conductivity and mechanism of energy transport: Fourier's law of heat conduction, temperature and pressure dependence of thermal conductivity in gases and liquids. Temperature distribution in solids and in laminar flow, shell energy balance and boundary conditions a) Heat conduction with electrical heat source b) Heat conduction with a nuclear heat source c) Heat conduction with a viscous heat	10

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 92

	source d) Heat conduction with a chemical heat source e) Heat conduction with variable thermal conductivity f) Heat conduction in composite wall and cylinder g) Heat conduction in a cooling fin	
4	Mass Transport: Introduction of diffusivity and mechanism of mass transport: Definitions of concentrations, velocities and mass fluxes, Fick's law of diffusion, temperature and pressure dependence of mass diffusivity. Concentration distribution in solids and in laminar flow, Shell mass balances and boundary conditions a) Diffusion through stagnant gas film b) Diffusion with heterogeneous chemical reaction c) Diffusion with homogeneous chemical reaction d) Diffusion into a falling liquid film (Gas absorption)	10

### **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

### Assessment

### **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

## **End Semester Theory Examination:**

- Question paper will be comprises of six questions, each carrying 20 Marks.
- Total 4 questions need to be solved.
- Question no. 1 will be compulsory and based on entire syllabus wherein subquestions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

### References

- 1. Bird, R.B., W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 2nd ed., 2002.
- 2. Christie J. Geankoplis, Transport Processes and Separation Process Principles, 4th Edition, 2004
- 3. Slattery, J.C., Advanced Transport Phenomena, Cambridge University Press, Cambridge, 1999.
- 4. Brodkey, R.S. and H.C. Hershey, 1988, Transport Phenomena: A Unied Approach, McGraw-Hill, New York.
- 5. Bodh Raj, Introduction to Transport Phenomena (Momentum, Heat and Mas), PHI Learning Pvt. Ltd, Eastern Economy Edition.

<b>Course Code</b>	Course/Subject Name	Credits
CHC604	Chemical Reaction Engineering II	4.0

 Students should know basic chemistry pertaining to chemical reactions, chemical formula etc. They are required to be aware of chemical process and unit operations used for the manufacturing of chemical products. Simple to complex numerical methods of solving one and two dimensional Mathematical equations.

## **Course Objectives:**

- To understand the concept of Residence Time Distribution (RTD) in various reactors and obtain the actual design parameters to design Real Reactor.
- To find the model equation and use this model to design the reactors used for heterogeneous non catalytic reactions.
- To apply the knowledge they have gained to develop kinetic model and Design strategy for heterogeneous catalytic reactions.
- To apply the knowledge they have gained to develop kinetic model and use this model to design the reactors used for Fluid-Fluid reactions.

### **Course Outcomes:**

- Students will be able to understand the concept of Residence Time Distribution (RTD) in various reactors and obtain the actual design parameters to design Real Reactor.
- Students will be able to find the model equation and use this model to design the reactors used for heterogeneous non catalytic reactions.
- Students will be able to apply the knowledge they have gained to develop kinetic model and Design strategy for heterogeneous catalytic reactions.
- Students will be able to apply the knowledge they have gained to develop kinetic model and use this model to design the reactors used for Fluid-Fluid reactions.

Module	Content	Contact
		Hours
1	Non Ideal flow reactors:  Concept of residence time distribution (RTD), Measurement	12
	and characteristics of RTD, RTD in Ideal batch reactors,	
	Plug Flow Reactor and CSTR. Zero Parameter Model – Segregation and Maximum mixedness model. One	
	parameter model—Tanks in series model and Dispersion Model. Effect of dispersion on conversion for general	
	irreversible reaction case, Diagnostic methods of analysis of flow patterns in reactors, Role of micro and macro mixing	
	and segregation in ideal (MFR, PFR) and non ideal reaction	
	cases.	
2	Non Catalytic heterogeneous Reactions:	10
	<b>Kinetics:</b> General mechanism of reaction. Various models.	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	Specific cases with respect: (a) Film diffusion controlling.	
	(b) Ash diffusion controlling. (c) Chemical reaction	
	controlling.	
	Design of reactors for non-catalytic reactions:	
	Experimental reactors for heterogeneous Reactions, Non-	
	Catalytic Fluid Solid Reactions in Flow Reactor.	
	Application to design of continuous solid flow reactors;	
	various designconsiderations, Application of fluid bed	
	reactors and their design consideration.	
3	Kinetics and mechanism of various Heterogeneous	12
	reactions and design consideration of reactors used during	12
	different operating conditions.	
	Catalytic heterogeneous reactions: Properties of	
	solid catalysts, Physical adsorption and Chemisorption,	
	Surface area and pore size distribution, Langmuir-	
	Hinshelwood model, and General mechanism of solid	
	catalyzed fluid phase reactions. Special cases when (a)	
	Film resistance controls. (b) Surface phenomenon controls.	
	(c) Surface reaction controls (d) Pore diffusion controls.	
	Concept of effectiveness factor of catalyst and its	
	dependence on catalyst properties and kinetic parameters.	
	Numericals based on physical properties of catalyst,	
	Derivations for LHHW model mechanism-various cases,	
	Effectiveness factor. Numericals based on kinetics	
	Introduction to Catalytic Reactors: Packed Bed Reactor	
	Fluidized Bed, Trickle Bed and Slurry Reactor.	
	Numericals based on Design of Packed Bed	
	Reactor (Calculation of weight/volume of catalyst).	
4	Kinetics of fluid-fluid reactions: Reaction with mass	10
_	transfer, the rate equation pertaining to fast to very slow	
	reactions.	
	Applications to design: Design of gas-liquid, liquid-liquid	
	and gas liquid-solid reactors- Heterogeneous reactors,	
	Bubble heterogeneous reactors, co-current and counter-	
	current flow packed bed reactors.	
	current now packed bed reactors.	

## **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

# **End Semester Theory Examination:**

- Question paper will be comprises of six questions, each carrying 20 Marks.
- Total 4 questions need to be solved.
- Question no. 1 will be compulsory and based on entire syllabus wherein subquestions can be asked.
- Remaining questions will be randomly selected from all the modules.

University of Mumbai

• Weightage of marks should be proportional to number of hours assigned to each module.

## References

- 1. LevenspielO., Chemical Reaction Engineering, John Wiley&Sons,3rded.,1999.
- 2. Smith J.M., Chemical Reaction Engineering, 3rded., TataMcGrawHill, 1980.
- 3. Fogler, H.S.Elements of Chemical Reaction Engineering, 4thed.,PHI, 2008
- 4. Hill C.G., Chemical Reaction Engineering.
- 5. Walas, Reaction Kinetics for Chemical Engineers, McGraw Hill, 1959.

<b>Course Code</b>	Course/Subject Name	Credits
CHC605	Plant Engineering and Industrial Safety	4

• Knowledge of Process Calculations, Thermodynamics and Fluidflow.

## **Course Objectives:**

- At the end of the course the students should understand the knowledge of industrial safety, plant utilities.
- They should able to understand industrial accidents and hygiene, hazards and risk analysis.
- They should able to understand various types of steam generators, its performance.
- They should be able to understand various properties of compressed air, air drying methods, study different types of compressors and calculate the power required by compressors.
- They should understand how to select vacuum system.

### **Course Outcomes**

- Students should be able to identify the causative and initiating factors of accidents. They should be able to make quantitative assessment of vapour release and noise impact.
- Students should be able to understand and evaluate situations causing industrial fire and evaluate risk. .
- Students should learn and understand type of boilers and be able to calculate its efficiency.
- Students should be able to calculate work requirements for compressors and draw schematic of instrument air, plant air and venting system.

Module	Contents	Contact Hours
1	Industrial Accidents: Causative and initiating factors of accidents.	3
	Identifying the causative and initiating factors of Industrial accidents, case studies.	
	Industrial Hygiene. Definition and evaluation of toxicity and noise	5
	Ventilation. Local Ventilation, Dilution Ventilation. Problems on Ventilation airflow.	1
	Fire. Fire triangle, Flammability characteristics of liquids and gases, Limiting oxygen concentration, ignition energy, auto ignition, auto oxidation, adiabatic compression. Ignition sources, spray and mist.	2
	Explosion: Detonation, Deflagration, Confined explosion, unconfined explosion, VCE, BLEVE, Problems on energy of chemical explosion.	5
	Types of relief systems	2
	HAZOP, How to do a HAZOP. HAZOP Checklist.	2
	Risk assessment: Event tree analysis, Fault tree analysis.	2

University of Mumbai

3	Steam generators:	8	
	Properties of steam, Use of steam tables, Steam generators,		
	Classification of boilers, Study of high pressure boilers, boiler		
	mountings and accessories.		
	Performance of steam generators. Distribution of steam in plant;		
	Efficient use of steam, steam traps.		
4	Air:	6	
	Reciprocating compressors, work calculations, PV Diagrams, Two		
	stage compression system with intercooler, problems of work and		
	volumetric efficiency. Instrument Air System, Process Air System,		
	Vacuum producing devices		

### **Term Work**

Term work shall consist of minimum eight tutorials (two from each module) from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: **25 Marks** 

### Assessment

### **Internal:**

Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Crowl, D. A. and Louvar, J. P.; Chemical Process Safety: Fundamentals with Applications; Prentice Hall, Englewood
- 2. Khurmi, R. S. and Gupta, J. K. A textbook of thermal Engineering, S. Chand.
- 3. Rajput, R.K. A textbook of Power Plant Engineering. Laxmi Publications (P) Ltd., Navi Mumbai.
- 4. K. S. N. Raju, Chemical Process Industry Safety, McGraw Hill Education.

<b>Course Code</b>	Course/ Subject Name	Credits
CHDE6021	Department Elective II -Computational Fluid Dynamics	04

- Linear Algebra
- Partial Differential Equations
- Scilab or Python

# **Course Objectives:**

- To understand the formulation of CFD problems
- To discretize the problems
- To solve the set of equations in simple cases using Scilab routines.
- To understand and use software in CFD

# **Course Outcomes:**

- The student will be able to obtain flow profiles for some simple applications using Scilab.
- The student will be able to use appropriate software for solving realistic problems.

Module	Contents	Contact Hours
1	Module: Introduction	02
_	Contents: Advantages of Computational Fluid Dynamics	
	Typical Practical Applications	
	Equation Structure	
	Overview of CFD	
2	Module: Preliminary Computational Techniques	04
	Contents: Discretisation	
	Approximation to Derivatives	
	Accuracy of the Discretisation Process	
	Wave Representation	
	Finite Difference Method	
3	Module: Theoretical Background	06
	Contents: Convergence	
	Consistency	
	Stability	
	Solution Accuracy	
	Computational Efficiency	
4	Module: Weighted Residual Methods	08
	Contents: General Formulation	
	Least Squares, Galerkin and Subdomain Formulations.	
	Weak form of Galerkin Method	
5	Module: Finite Element Method	08
	Contents: Piece-wise Continuous Trial Functions	
	One Dimensional Linear and Quadratic Elements	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 99

	One Dimensional Heat Transfer	
	Tri-diagonal Matrix Algorithm	
6	Module: Two Dimensional Elements	08
	Quadrilateral Elements	
	Steady State Heat Transfer in Two Dimensions	
	Alternating Direction Implicit Method	
	Potential Flow in Two Dimensions	
7	Module: Finite Volume Method	06
	One Dimensional Diffusion	
	Two Dimensional Diffusion	
	Diffusion With Convection and The Upwind Scheme	
8	Module: Pressure Velocity Coupling in Steady Flows	06
	The Staggered Grid	
	The Momentum Equation	
	The Simple Algorithm	

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## **Text Books**

- 1. C.A.J. Fletcher; Computational Techniques for Fluid Dynamics 1; Springer-Verlag Berlin Heidelberg GmbH
- 2. P. Seshu; Textbook of Finite Element Analysis; PHI Learning Private Limited, New Delhi
- 3. H.K. Versteeg and W. Malalasekera; An Introduction To Computational Fluid Dynamics; Longman Scientific & Technical

## References

1. John D. Anderson; Computational Fluid Dynamics; McGraw Hill Education Private Limited

<b>Course Code</b>	Course/ Subject Name	Credits
CHDE6022	Department Elective II -Operations Research	4

- Linear Algebra
- Computer Programming

# **Course Objectives:**

- To understand Linear Programming and its applications to OR models.
- To understand and solve network models in OR.
- To understand Game theory and its applications.
- To study and design Queuing systems.

## **Course Outcomes:**

- The student will be able to solve typical OR models using linear integer and dynamic programming techniques.
- The student will be able to model and solve network flow problems in OR.
- The student will be able to make decisions under various scenarios.
- The student will be able to design Queuing Systems.

Module	Contents	Contact Hours
1	Module: Linear Programming	10
	Contents: Introduction	
	Graphical Method of Solution	
	Simplex Method	
	Two-Phase Method	
	Duality	
	Dual Simplex	
	Revised Simplex	
2	Module: Transportation Models	06
	Contents: Examples of Transportation Models	
	The Transportation Algorithm	
	The Assignment Model	
	The Transshipment Model	
3	Module: Network Models	06
	Contents: Scope and Definition of Network Models	
	Minimal Spanning Tree Algorithm	
	Shortest Route Problem	
	Maximal Flow Model	
4	Module: Integer and Dynamic Programming	06
	Contents: Branch and Bound Method	
	Travelling Salesman Problem	
	Introduction to Dynamic Programming	
	Forward and Backward Recursion	
	Selected Applications	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 101

5	Module: Deterministic Inventory Models Contents: Classic EOQ Model EOQ with Price Breaks Dynamic EOQ Models No-Setup Model Setup Model	06
6	Module: Decision Analysis and Game Theory Contents: Decision Making under Certainty Decision Making under Risk Decision Under Uncertainty Game Theory	06
7	Module: Queuing Systems Contents: Elements of a Queuing Model Role of Exponential Distribution Pure Birth and Death Models Generalized Poisson Queuing Model Measures of Performance	08

## **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

# **Text Books**

1. Operations Research; Hamdy A. Taha; Eighth Edition; Prentice Hall India

## References

1. Hillier and Lieberman; Introduction to Operations Research

Course Code	Course/ Subject Name	Credits
CHDE6023	Department Elective II -Biotechnology	04

# **Prerequisites**

• Knowledge of biology, chemistry, chemical engineering

## **Course Objectives**

- At the end of the course the students should understand the basic concept of biotechnology. They should be able to classify micro-organisms, understand cell structure and basic metabolism.
- They should be able to understand basic knowledge about biological polymers.
- They should be able to understand basic knowledge about enzyme technology.
- They should understand role of biotechnology in medical field and industrial genetics.
- They should know importance of biotechnology in agricultural, food and beverage industries, environment, energy and chemical industries.
- They should understand to how to recover biological products.

## **Course Outcomes**

- Students will demonstrate the knowledge of biotechnology in various fields.
- Students will know cell and metabolism.
- Students will have deep knowledge of biological polymers.
- Students will have deep knowledge of enzymes.
- Students will able to know about other uses of biotechnology in medical/pharmaceutical field and industrial genetics.
- Students will be able to understand how biotechnology helps in agricultural, food and beverage industry, chemical industries, environment and energy sectors.
- Students will be able to understand how biological products are recovered.

Module	Contents	Contact
		Hours
1	<b>Introduction:</b> Traditional and modern applications of biotechnology.	7
	Classification of micro-organisms. Structure of cells, types of cells.	
	Basic metabolism of cells. Growth media. Microbial growth kinetics.	
2	Biological polymers: Lipids, Proteins, Amino acids, Nucleic acids,	6
	Carbohydrates, Macronutrients and micronutrients.	
3	<b>Enzyme Technology:</b> Nomenclature and classification of enzymes.	7
	Enzyme kinetics. Michaels Menten Kinetics, Immobilized enzyme	
	kinetics, Immobilization of enzymes. Industrial applications of	
	enzymes. The technology of enzyme production	
4	<b>Biotechnology in health care and genetics:</b> Pharmaceuticals and bio-	10
	pharmaceuticals, antibiotics, vaccines and monoclonal antibodies, gene	
	therapy. Industrial genetics, protoplast and cell fusion technologies,	
	genetic engineering& protein engineering, Introduction to Bio-	
	informatics. Potential lab biohazards of genetic engineering. Bioethics.	
5	Applications of biotechnology: Biotechnology in agriculture, food	8
	and beverage industries, chemical industries, environment and energy	
	sectors.	
6	<b>Product recovery operations:</b> Dialysis, Reverse osmosis,	10

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

ultrafiltration, microfiltration, chromatography, electrophoresis, electrodialysis, crystallization and drying.

### Assessment

### **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions to be solved
- Question no.1 will be compulsory and based on entire syllabus where in sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

### Reference Books

- 1. Shuller M.L. and F. Kargi. 1992. Bioprocess Engineering, Prentice-Hall, Englewood Cliffs,NJ.
- 2. Bailey. J.E. and Ollis D.F. 1986, Biochemical Engineering Fundamentals, 2 nd Edition, McGraw Hill, NewYork.
- 3. Kumar H.D., Modern Concepts of Biotechnology, Vikas Publishing House Pvt. Ltd.
- 4. Gupta P.K., Elements of Biotechnology, Rastogi Publications
- 5. Inamdar, Biochemical Engineering, Prentice Hall of India.

<b>Course Code</b>	Course/ Subject Name	Credits
CHL601	Chemical Engineering Lab VII (EE)	1.5

# **Concept for Experiments**

Students should be able to apply the Environmental Engineering concepts to control and management of various types of pollutants. A minimum of TEN experiments must be performed on following concepts:

- Physical characterization (TDS /turbidity measurement) of waste water.
- Chemical characterization (chloride ion, sulphate ion etc.) of waste water.
- Determination of organic matters (dissolved oxygen) in waste water.
- Sampling measurement and standard of water quality (determination of BOD).
- Sampling measurement and standard of water quality (determination of COD).
- Determination of toxic matters (phenol, chromium etc.) in waste water.
- Determination of inorganic matters (heavy metal) in waste water.
- Measurement of particulate matter in air.
- Measurement of gaseous pollutant (any one) in air.
- Measurement of various types of residues or solids in the given sample.
- Measurement of sound level.

### Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks **Total:** 25 marks

### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

<b>Course Code</b>	Course/ Subject Name	Credits
CHL602	Chemical Engineering Lab VIII (MTO II)	1.5

# **Concept for Experiments**

A minimum of TEN experiments must be performed on following concepts:

- Verification of Rayleigh Equation.
- To determine the percentage recovery of solute by solid liquid leaching operation (multistage crosscurrent).
- To determine the vapour-liquid equilibrium curve.
- To find out distribution coefficient. [eg. acetic acid between water and toluene]
- To verify Freundlich adsorption isotherm
- To find the yield of crystals in batch crystallizer.
- To prepare the ternary phase diagram of Binodal solubility curve and tie line relationship for ternary system
- To study distillation at total reflux in a packed column.
- To determine the efficiency of steam distillation
- To study the performance of Swenson Walker crystallizer and also to determine the yield.
- To carry out multistage cross current operation in liquid liquid extraction and compare with single stage operation
- To carry out multistage cross current adsorption and compare with single stage operation.

### Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks **Total:** 25 marks

### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

<b>Course Code</b>	Course/ Subject Name	Credits
CHL603	Chemical Engineering Lab IX (CRE II)	1

# **Concept for Experiments**

Minimum 10 experiments need to be performed by the students on following concepts:

- 1. Residence Time Distribution (RTD) In Continuous Stirred Tank Reactor (CSTR)-Pulse Input
- 2. Residence Time Distribution (RTD) In Plug Flow Reactor (PFR) Pulse Input
- 3. Residence Time Distribution (RTD) In Packed Bed Reactor (PBR) Pulse Input
- 4. Residence Time Distribution (RTD) In Continuous Stirred Tank Reactor (CSTR) Step Input
- 5. Residence Time Distribution (RTD) In Plug Flow Reactor (PFR) Step Input
- 6. Void volume, Porosity and solid density of catalyst
- 7. Semibatch reactor
- 8. Solid fluid heterogeneous non catalytic reaction
- 9. Soli fluid Heterogeneous catalytic reaction.
- 10. Study of adsorption isotherm
- 11. Adiabatic batch reactor

### Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks **Total:** 25 marks

## **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

# University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) B.E. Semester VII (w.e.f 2019-2020)

Course code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC701	Process Equipment Design. (PED)	4	-	-	4	-	-	4
CHC702	Process Engineering	3	-	1	3	-	1	4
CHC703	Process Dynamics and Control (PDC)	4	-	-	4	-	-	4
CHDE703X	Department Elective III	4	-	-	4	-	-	4
ILO701X	Institute Elective I	3	-	-	3	-	-	3
CHP701	Project A	-	-	8	-	-	3	3
CHS701	Seminar	-	-	3	-	-	3	3
CHL701	PED Lab	-	3	-	-	1.5	-	1.5
CHL702	Chemical Engineering Lab X (PDC)	-	3	-	-	1.5	-	1.5
	Total	18	6	12	18	3	7	28

		Examination Scheme								
		Theory								
Course code	Course Name		interna ssessme		End	Exam	Term Work	Pract /Oral	Oral	Total
		Test 1	Te st 2	Avg	Sem Exam	Duration (in hrs)				
CHC701	Process Equipment Design. (PED)	20	20	20	80	3	-	-	-	100
CHC702	Process Engineering	20	20	20	80	3	25	-	-	125
CHC703	Process Dynamics and Control (PDC)	20	20	20	80	3	-	-	-	100
CHDE703X	Department Elective III	20	20	20	80	3	-	-	-	100
ILO701X	Institute Elective I	20	20	20	80	3	-	-	-	100
CHP701	Project A	-	-	-	-	-	100		25	125
CHS701	Seminar	-	-	-	-	-	50	-	-	50
CHL701	PED Lab	-	-	-	-	-	25	-	25	50
CHL702	Chemical Engineering Lab X (PDC)	-	-	-	-	3	25	25	-	50
	Total			100	400	-	225	25	50	800

Department Elective III (Sem VII)							
Engineering Stream	(Elective Code)	Management Stream (Elective Code)	Technology Stream (Elective Code)				
1.Corrosion (CHDE7031)	Engineering	1. Industrial organization and Management. (CHDE7032)	1.Petroleum Refining Technology (CHDE7033) 2. Food Technology (CHDE7034)				

Institute Level Optional Subject I (Sem VII)							
1. Product Lifecycle Management (ILO7011)	4. Design of Experiments (ILO7014)	7. Disaster Management and Mitigation Measures (ILO7017)					
2. Reliability Engineering (ILO7012)	5. Operation Research (ILO7015)	8. Energy Audit and Management (ILO7018)					
3. Management Information System (ILO7013)	6. Cyber Security and Laws (ILO7016)	9. Development Engineering (ILO7019)					

<b>Course Code</b>	Course/ Subject Name	Credits
CHC701	Process Equipment Design	4

# **Prerequisites:**

- Fundamentals of units
- Elementary theory of engineering mechanics,
- Engineering drawing.
- Knowledge of heat transfer, mass transfer, mechanical operations and
- Mechanical equipment design.

# **Course Objectives:**

- To understand the basic of design of heat transfer equipments.
- To understand the design of mass transfer equipments.
- To understand the basic of construction and design of high pressure vessels.
- To understand basics of flow diagrams and different equipment inspection methods.

### **Course Outcomes:**

Students would be able to

- Design heat exchanger and evaporator.
- Design distillation and absorption columns.
- Design high pressure vessels.
- Explain different flow sheet presentation and equipment inspection methods.

Module	Contents	Contact
		Hours
1	Heatexchangers	8
	Introduction codes and standards for heat exchangers. Material of construction.	
	• Design of shell and tube heat exchanger (U-tube and	
	fixed tube) as per IS: 4503, TEMA standards i.e., shell, tube,	
	tube sheets, channel and channel cover, flanged joints.	
2	Evaporators	6
	Design of standard vertical evaporator with design of	
	calendria and tube, flange evaporator drums and heads.	
3	Distillation and Absorption column	10
	Basic features of columns, stresses in column shell.	
	Shell thickness determination at various heights, elastic	
	stability under compression stresses, allowable deflection.	
	<ul> <li>Column internals, design of supports for trays.</li> </ul>	
4	HighPressure Vessels	8
	Materials of construction, constructional method of high pressure	
	vessels and stress analysis.	
	Design of mono block and multi layered high pressure	
	vessels (stress distribution diagram).	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

5	Flow Diagram	8
	<ul> <li>Symbols of process equipments and their concepts</li> </ul>	
	<ul> <li>Flow sheet representation:</li> </ul>	
	1. Block diagram	
	2. Process Flow Diagram (PFD)	
	3. Engineering Line Diagram (ELD or PID)	
	4. Utility line Diagram (ULD)	
	5. Plant Layout	
	6. Tank Farm and Plot plan	
6	<b>Equipment Inspection</b>	8
	<ul> <li>Methods of Inspection of Equipments</li> </ul>	
	1. Radiography	
	2. Ultrasound	
	3. Dye Penetration	
	4. Fatigue assessment test	

### **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions to be solved
- Question no.1 will be compulsory and based on entire syllabus where in sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

## References

- 1. Process Equipment Design- Vessel Design by E. Brownell and Edwin, H. Young. John Wiley, New York 1963.
- 2. Chemical Engineering volume 6- Design by J.M Coulson, J.F. Richardson and P.K. Sinnot, Pregamovr press, International edition 1989.
- 3. Introduction to Chemical Equipment Design- Mechanical aspects by B.C. Bhattacharya CBS Publications
- 4. Process Equipment Design by M.V.Joshi Macmillan India.

<b>Course Code</b>	Course/ Subject Name	Credits
CHC 702	Process Engineering	04

# **Prerequisites:**

- The students should have knowledge of Heat transfer and Mass Transfer to carry out Mass and Energy balance around process.
- They should be aware about basic principles of economics to evaluate cost and profit of process.
- They should be familiar with process and mechanical design of Process equipments.
- They should be familiar with various types of plant utilities.

# **Course Objectives:**

- To provide training to solve problems relevant to the general practice of chemical engineering and design
- To provide experience in the process of original chemical engineering design in the areas of equipment design, process design and plant design through the process of formulating a design solution to a perceived need and then executing the design and evaluating its performance including economic considerations and societal impacts if any, along with other related constraints, and culminating in both written and oral presentation of results.
- To provide students familiarity with professional issues in chemical engineering including ethics, issues related to the global economy and to emerging technologies and fostering of important job related skills such as improved oral and written communications and experience in working in teams at a number of levels.

### **Course Outcomes:**

- The graduates are expected to have ability to apply knowledge of mathematics, science and engineering.
- The graduates are expected to have ability to design a system, a component, or a process to meet the desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, manufacturability and sustainability.
- The graduates are expected to possess ability to function on multi disciplinary teams.
- The graduates are expected to possess ability to identify, formulate and solve engineering problems.
- The graduates are expected to have an understanding of professional and ethical responsibility.
- The graduates are expected to engage themselves in lifelong learning.
- The graduates are expected to posses' ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Module	Contents	Contact
		Hours
1	Introduction to Process Engineering Chemical Products, Formulation of the Design Problem, Chemical Process Design and Integration, The Hierarchy of Chemical Process, Design and Integration, Continuous and Batch Processes, New Design and Retrofit, Approaches to Chemical Process Design and Integration, Process Control, Basic concepts regarding PFD, Block diagrams, P and ID Process flow diagram, piping and instrumentation diagram, Importance of safety and environmental aspects.	06
2	Process Design of Piping, Fluid moving Devices and Flow Meters(with numerical).  Process design of piping, process design of fluid moving devices, Centrifugal pump performance for viscous fluids, Revision of formulae for power requirement for fans, blowers, adiabatic compressor, Process Design for orifice and rotameter, Trouble shooting in fluid flow systems	08
3	Process Design of Distillation Column Selection criteria, equipment selection, distillation column design (multicomponent with numerical), FUG, Lewis Matheson method, Thiele Geddes method, Selection of tray, process design of tray tower, height of packings, Short path distillation, design and working of short path distillation, energy conservation in distillation	08
4	Process Design of Absorbers Selection criteria, design of absorber including multicomponent (with numerical) using shortcut methods	08
5	Reactors: Mass and Energy Balance for reactor, Choice of reactors-Reactor Configuration(Temperature Control, Catalyst Degradation, Gas—Liquid and Liquid—Liquid Reactors, Reactor Configuration, Reactor Configuration for Heterogeneous Solid-Catalyzed Reactions, Reactor Configuration from Optimization of a Superstructure	06
6	<b>Sizing/Costing of Equipments in Flow Sheet</b> : Distillation columns absorbers, pumps, compressors, heat exchangers(with numerical)	08
7	<b>Role and responsibilities:</b> Role and responsibility of process and chemical engineering profession towards society, environment, ethical aspects, safety concerns.	

# **Tutorials**

- Minimum 8 tutorials should be conducted
- At least one tutorial on each module is expected.
- Tutorial on modules 2 to 6 must include numerical problems.

• One tutorial will be presentation on any process flow sheet demonstrating all the concepts in process engineering.

## **Term work**

Term work should consist of minimum 8 tutorials from entire syllabus which are to be given at regular intervals batch wise.

Tutorial: 20 marks

Attendance: 05 marks Total: 25 marks

### Assessment

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### **Text Books**

- 1. Process Engineering and Design: Shuchen B. Thakore, Bharat I Bhatt, Second Ed., McGraw Hill Education(I) Private Limited, 2011-[modules 2,3].
- 2. Robin Smith, Chemical Process Design and Integration, John Wiley and Sons,[module 1,5]
- 3. Systematic Methods Of Chemical Process Design, Loren T Biegler, Grossman E.I., West-berg, A.W. Prentice Hall Intl ed., 1997. [module 4,6]
- 4. Richard M. Felder, Ronald W. Rousseau, Elementary Principles of Chemical Processes, John Wiley & Sons [Module 5].

### References

- 1. Conceptual Design of Chemical Processes, J.M. Douglas, McGraw Hill International Editions, 1988
- 2. Chemical Process Equipment: selection & design, Walas, S.M., Butterworth, London,1980
- 3. Strategy of Process Engineering, John D.F. Rudd& C.C. Watson, Wiley & Sons International, 1968
- 4. Process Design Principles: synthesis analysis & evaluation, Sieder, W.D., Seader J.D. & Lewin D.R., John Wiley & Sons, 1998.
- Analysis, Synthesis, and Design of Chemical Processes, Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz, PHI Learning Private Limited, New Delhi, 2011.

<b>Course Code</b>	Course/ Subject Name	Credits
CHC703	<b>Process Dynamics and Control</b>	4

# **Prerequisites:**

- Linear Algebra
- Differential Equations
- Laplace Transforms

# **Course Objectives:**

- To understand dynamic behavior of process systems and equipments.
- To understand frequency response of dynamic systems.
- To understand and analyze stability characteristics of dynamic systems.
- To design controllers.

## **Course Outcomes:**

- The student will be able to model dynamical systems
- Will be able to study their responses in Time, Laplace and Frequency domains.
- The student will be able to design stable controllers, for important chemical processes.

Module	Contents	Contact
		Hours
1	Introduction To Process Control	04
	Typical Control Problems	
	A Blending Process Example	
	Control Strategies	
	Hierarchy of Control Activities	
	An Overview of Control System Design	
2	The Rationale for Dynamic Process Models	06
	General Modeling Principles	
	Degrees of Freedom Analysis	
	Typical Dynamic Models	
3	Transfer Functions of Typical Systems	06
	First and Second Order Systems	
	Properties of Transfer Functions	
	Transfer Functions of Systems in Series	
	Time Delay Processes	
	Linearization of Non-linear Systems	
4	Dynamic Behavior of Processes	08
	Standard Process inputs	
	Response of First Order Processes	
	Response of Second Order Processes	
	Response of Integrating Processes	
5	Development of Empirical Models From Process Data	04
	Fitting First and Second Order Models Using Step Tests	

	Development of Discrete Time Dynamic Models	
	Identifying Discrete Time Models From Experimental Data	
6	Basic Control Modes	04
	Features of PID and On-off Control	
	Response of Feedback Control Systems	
	Digital Versions of PID Controllers	
7	Closed-Loop Transfer Functions	08
	Closed-Loop Response	
	Stability of closed loop systems	
	Frequency Response	
	Stability based on Bode criteria.	
	Gain and Phase Margins	
8	Controller Design and Tuning	04
	Performance Criteria	
	On-line controller Tuning	
	Guidelines for common control loops	
9	Control Strategies at the process unit level	04
	Degrees of Freedom Analysisfor process control	
	Selection of Controlled , Manipulated , and Measured Variables	
	Selection of Instrumentation	
	Typical Applications	

### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### **Text Books**

1. Dale E. Seborg, Thomas F. Edga, Duncan A. Mellichamp Francis J. Doyle; Process Dynamics and Control III; Third Edition; John Wiley & Sons (Asia) Pvt. Ltd., New Delhi - 110002

### References

- 1. William L. Luyben; Process Modeling Simulation and Control for Chemical Engineers; 2nd Edition; Mc-Graw Hill Publishing Co.
- 2. George Stephanopoulos; Chemical Process Control; PHI Learning Pvt. Ltd.
- 3. Sudheer S Baghade, G.D. Nageshwar, Process Dynamics and Control;, PHI learning Pvt. Ltd.
- 4. Prabir Kumar Sarkar, Advanced Process Dynamics and Control, PHI Learning Eastern Economy Edition.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 115

Course Code	Name of Subject	Credits
CHDE7031	Department Elective III- Corrosion Engineering	04

# **Prerequisites:**

 Basic knowledge of Chemical Engineering, Physical Chemistry and Electrochemistry, Basic knowledge of Reaction Mechanism, Thermodynamics, Fluid Flow and Chemical Reaction Engineering, Various types of Material and Metals.

# **Course Objectives:**

- To understand the needs for Corrosion Education, The Functions and Roles of an Engineer to prevent Corrosion.
- Understanding of basic concepts of Corrosion, Corrosion in different materials, Corrosion Electrochemistry, Corrosion Thermodynamics, Kinetics and Applications.
- To impart the interdisciplinary subject in which Chemical Engineering, Materials Engineering, Electrical Engineering, Civil Engineering and Metallurgy Engineering are involved.
- Understand the Methodology, Methods and Materials to prevent the Corrosion.

### **Course Outcomes:**

Upon completion of the course, the student should be able to

- Describe the Chemistry behind the corrosion, process of corrosion, different factors affecting the rate of corrosion.
- Discuss Kinetics and different forms of corrosion and will able to recognize the corrosion occurring in the different materials.
- Explain techniques of corrosion cells, Corrosion avoidance, corrosion failure and the various factors.
- Students shall understand how to prevent the corrosion, selection of materials for corrosion prevention, how to alter the environment for minimal rate of corrosion, different protection techniques and coating to prevent corrosion.
- Gain knowledge of corrosion by water, boilers feed water, cooling tower water and the scaling indices of water used in many processes. They will also learn about atmospheric corrosion, its tests as well as behavior and resistance to such corrosion.

Module	Contents	Contact
		Hours
01	The Study of Corrosion-Needs for Corrosion Education, The	06
	Functions and Roles of Corrosion Engineer, The Corrosion	
	Engineer's Education, Strategic Impact and Cost of Corrosion	
	Damage.	
	Corrosion Basics-Why Metals Corrode, Matter Building Blocks,	
	Acidity and Alkalinity (pH), Corrosion as a Chemical Reaction,	
	Corrosion in Acids, Corrosion in Neutral and Alkaline Solutions.	
02	Corrosion Electrochemistry- Electrochemical Reactions,	08

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	Anodic Processes, Faraday's Law, Cathodic Processes, Surface	
	Area Effect.	
	Corrosion Thermodynamics-Free Energy, Standard Electrode	
	Potentials, Nernst Equation, Thermodynamic Calculations,	
	Reference Half-Cells (Electrodes), Measuring the Corrosion	
	Potential, Measuring pH, Potential-pH Diagram.	
03	Corrosion Kinetics and Applications of Electrochemistry to	06
	Corrosion-What Is Overpotential? Activation Polarization,	
	Concentration Polarization, Ohmic Drop, Graphical Presentation	
	of Kinetic Data(Evans Diagrams), Examples of Applied	
	Electrochemistry	
	to Corrosion	
04	Eight Forms of Corrosion-Recognizing Corrosion, General or	08
	Uniform Attack, Galvanic or Two metal Corrosion, Crevice	
	Corrosion, Pitting, Intergranular, Selective Leaching, Erosion	
	Corrosion, Stress Corrosion, Hydrogen Damage.	
05	Corrosion Failures, Factors, and Cells-Introduction,	06
	Information to Look For, Identifying the Corrosion Factors,	
	Examples of Corrosion Cells, Corrosion Avoidance, Visualizing	
	Corrosion Cells.	
06	Corrosion Prevention- Materials Selection, Alteration of	06
	Environment, Design, Cathodic and Anodic Protection, Coatings.	
07	Corrosion by Water- Importance of Water, Corrosion and Water	08
	Quality and Availability, Types of Water, Cooling Water	
	Systems, Steam Generating Systems, Water Treatment, Scaling	
	Indices.	
	Atmospheric Corrosion- Introduction, Types of Corrosive	
	Atmospheres, Factors Affecting Atmospheric Corrosion,	
	Measurement of Atmospheric Corrosivity Factors, Atmospheric	
	Corrosivity Classification Schemes, Atmospheric Corrosion	
	Tests, Corrosion Behavior and Resistance.	

## **Internal:**

 Assessment consists of an average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.

## Textbook/References Book

1. Pierre R. Roberge, Handbook of Corrosion Engineering, McGraw-Hill Publication

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 117

- 2. Mars G. Fontana, Corrosion Engineering, McGraw-Hill Book Company
- 3. Pierre R. Roberge, Corrosion Engineering Principles and Practice, McGraw-Hill Pubication
- 4. Zaki Ahmad, Principles of Corrosion Engineering and Corrosion Control, Butterworth-Heinemann Publication
- 5. By Branko N. Popov, Corrosion Engineering: Principles and Solved Problems, Elsevier Publication

<b>Course Code</b>	Name of Subject	Credits
CHDE7032	Department Elective III- Industrial Organization and	04
	Management	

# **Prerequisites**

- Communication skills
- Basic Mathematical skills
- Analytical, logical and reasoning skills
- Operations Research

# **Course Objectives:**

- To understand basic concepts business, administration and management
- To understand functions of management such as planning, organizing and decision making
- To understand corporate/company governance structures and laws governing industries
- To understand production and quality management
- To understand basics of marketing and sales management
- To understand financial management of companies

#### **Course Outcomes:**

- 5. Students will be able to use concepts and knowledge of management to excel in their career
- 6. Students should be able to prepare detailed plans, organization structures and able to use modern tools for decision making
- 7. Students should be able to use the knowledge of corporate government structures and government law to upgrade their skills
- 8. Students should be able to use concepts of production and quality management to improve productivity and quality in manufacturing plants
- 9. Students should be able to use concepts of marketing and sales to improve profitability of business they will work in future
- 10. Students should be able to use tools of finance and accounting to keep control and improve profitability of industry they are working in.

Module	Contents	Contact Hours
1	Introduction to business and management Business: Definition, Characteristics, Divisions, Objectives, Management of business Administration, Organization. Management: Definitions, characteristics, nature, principles, Objectives, differe nce between policies-goals-objectives role of manager and required managerial skills, Difference of relationship between business, administration and management, types of management, Typical management structure, management structure chart for medium scale industry, difference between	5

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	,	
	management and administration, development of management	
	thought-:Taylor, Fayol, Follet, Gilbreth, Gantt(in brief)	
2	Functions of management:	7
_	forecasting, planning, organizing, staffing, directing,	-
	controlling, coordinating, decision making (brief),	
	Planning: type of plans, steps in planning, management	
	business objectives(MBO)	
	Organization: Concept, definition, importance, characterization,	
	process, principles of healthy organization, organization	
	planning, organizational structure, design of organization	
	structure, process of organization, organization chart, types of	
	organizations: military, functional, line and staff, committee,	
	matrix; departmentalization, span of management, delegation	
	of authority, decentralization, organizational conflict	
	Decision making:	
	importance, types, theories, techniques, decision making	
	process, scientific approach to decision making, guidelines for	
	effective decision making, quantitative methods in decision	
	<b>O</b> ' 1	
	making, markov analysis. Numericals based on decision making quantitative methods	
2	6 1	
3	Corporate Management Structures and laws governing industries	7
	Industrial ownership: types of company ownership: single	
	ownership, partnership, joint stock company, cooperative	
	,government companies; organs of company management and their functions(shareholders, board of directors, CEO,	
	managing director, manager, secretary), state regulation of	
	management, company law board, company meetings and resolutions. Companies act	
	Industries (Development and Regulation) Act, Contract	
	Law, Indian Sale of Goods Act, Foreign Exchange	
	Management Act, Foreign Exchange Regulation Act, labor	
	laws, factories act, payment of wages act, minimum wages act,	
	workmen's compensation act, industrial disputes act,	
	employees state insurance act, Union and industrial labor	
	relations :trade unions and industrial relations, types of	
	industrial disputes, settlements of industrial disputes, collective	
	bargaining, handling of grievances and disputes	
4	Production and quality management	6
_	Production system, input -output model, application of	U
	microeconomics to industries, productivity and measures to	
	± *	
	increase productivity	
	increase productivity.  Objectives and activities of production planning and	
	Objectives and activities of production planning and	
	<u> </u>	

1
6
7
/

# **Internal:**

• Assessment consists of an average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 121

## **Textbook/References Book**

- 1. Industrial Engineering and Management-O.P. Khanna, Dhanpat Rai publications(Module 1,2,3,4,5,6)
- 2. Fundamentals of Business Organization and Management, Y.K. Bhushan, S. Chand(Module 1,2,3)
- 3. Industrial Organization and Management: Dani, Sabhalok, Parikh, Shahani-Mananprakashan (Module 1,2,3,4)
- 4. Engineering Management, A.K.Gupta, S.Chand (Module 1,4,5,6)
- Basic Financial Accounting for Management, Paresh Shah, Oxford press(Module
   6)
- 6. Industrial Organization and Management, Basu S.K ,Prentice Hall India Learning Private Limited (1,2,3,4)
- 7. NPTEL Course Notes, Managerial Science II(Module 1,2,3,4,5)

<b>Course Code</b>	Course/ Subject Name	Credits
CHDE7033	Department Elective III- Petroleum Refining	4
	Technology	

# **Prerequisites:**

• Knowledge about Formation & Origin of petroleum, Composition & testing methods & Basic treatment techniques.

# **Course Objectives:**

- To understand Petroleum Refining processes & products, its evaluation & treatment techniques
- To understand various cracking processes & its applications in Chemical industries.

## **Course Outcome:**

- Characterize crude petroleum and petroleum refinery
- Fractionate crude petroleum into useful fractions
- Measure important physical properties of petroleum products
- Apply refinery processes to maximize desired petro products
- Use treatment techniques to purify petro products
- Manufacture widely used petrochemicals

Module	Contents	Contact
4		Hours
1	Introduction -Origin ,Formation & Composition of Petroleum:	05
	Importance, Origin theory, Reserves in India & world. Exploration	
	of Reserves, Types of crude, (Based on constituents, Sulfur	
	contents & Degree API). Indian crude reserves & production	
	scenario, Indian Petroleum Industry Scenario, Agencies engaged in	
	upstream & downstream petroleum industry (Government &	
	Private).	
2	Crude Oil Assay:	06
	Properties, composition, UOP Characterization factors, Correlation	
	index, Crude distillation curves. Important products test & methods,	
	Gasoline, Kerosene, Diesel.	
3	Crude Oil Processing & Refining:	12
	Separation of well fluid, Dehydration & desalting of crude, Heating	
	of crude, Overall refinery flow diagram, its processes & Products,	
	Low boiling products –LPG, Gasoline, Kerosene & their	
	Specifications. Multi component fractionation of petroleum	
	including pump around & side stripping, ADU & VDU, Blending	
	of gasoline, Corrosion problem.	
4	Treatment ,Techniques & Product Specifications:	08
	Treatment of Gasoline, Kerosene, Lubes & Wax.	
5	Catalytic Cracking & Thermal Processes:	10
	Fluidized bed catalytic cracking, Catalytic reforming, Coking,	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	Hydrogen Processes- Hydro cracking & Hydrodesulphurization,	
	Alkylation Process, Isomerization process, Polymer gasoline.	
6	Asphalt Technology & Environmental issues:	07
	Source of Asphalt, Air blowing of Bitumen, Brief review of Bio	
	refinery, Environmental issues in Petroleum industry, Alternative	
	energy sources (Bio Diesel, Heavy Oil, Shale Oil).	

### **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions to be solved
- Question no.1 will be compulsory and based on entire syllabus where in sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

### References

- 1. B.K Bhaskara Rao, Modern Petroleum Refining Process.
- 2. W.L Nelson, Petroleum Refinery Engineering 4th ed, McGraw Hill.
- 3. Petroleum Chemistry and Refining Edited by James G. Speight, Taylor and Francies.
- 4. Chemical Process Industries, Austin, G.T Shreves.
- 5. Encyclopedia of chemical processing and design by john J. McKhetta; Marcel Deckker, Inc.

<b>Course Code</b>	Course/ Subject Name	Credits
CHDE7034	Department Elective III : Food Technology	04

# **Prerequisites:**

• Knowledge of Microbiology, Biochemistry, chemical engineering

## **Course Objectives:**

• To impart knowledge to the students about food processing and various unit operations involved in it, packaging, storing and preservation, food adulteration, food related hazards and safety.

## **Course Outcomes:**

- Knowledge of food essential nutrients and the various causes of food deterioration.
- Identification of appropriate processing, preservation, and packaging method.
- Students should be able to analyze product quality and effect of processing technique on it.
- They should Identify important species of pathogenic microbes and describe factors that affect their growth in various types of food.
- Analysis of food related hazards and HACCP method

Module	Contents	Contact
		Hours
1.	Food Biochemistry and Food Microbiology: Food	06
	Constituents: Carbohydrates, Proteins, Vitamins, Lipids, And	
	Minerals, Flavors, Water, Nutritional & sensory characteristics,	
	Food fortification.	
	Water activity enzymes: Production from microorganisms and	
	application in food processing, Growth of microorganisms and	
	food spoilage, D & Z values, Indian laws regulating Foods and	
	Foods processing	
2	Ambient Temperature Process: Raw material preparation, Size	08
	reduction of solid fibrous foods and in liquid foods.,	
	Emulsification and Homogenization ,Theory and equipment ,	
	Mixing and Forming, Extraction and expression, Membrane	
	concentration Fermentation : Theory , Types, Equipment Effect	
	on foods	
3	Thermal Processing: Theory, Equipment, Effect on foods,	08
	blanching, extrusion, pasteurization, Heat Sterilization, In-	
	container Ultra high temperature (UHT)/aseptic processes,	
	Microbial spoilage, thermal death time curve.	
4	Freezing and Refrigeration: Types, Equipments, refrigerants,	08
	effects of low temperature on quality, chilling, freezing, freeze	
	drying and freeze concentration	
5	Food Storage & Packaging: Modified Atmosphere	06
	Storage(MAS) , Hurdle Technology, Modified atmosphere	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	packaging(MAP) Food Adulteration & Quality Management: Food Adulteration and food safety. HACCP, GMP, GHP, GLP.	
6	<b>Food Processing:</b> Manufacturing and processing of food products: Fruit juice processing, Alcoholic beverages, Milk and Milk Products; Milk powder, cheese, Ice cream, Tea coffee, cocca, Bread, Biscuits, confectionary(hard boiled sweets & chocolates)	08

## **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

## **End Semester Theory Examination**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions to be solved
- Question no.1 will be compulsory and based on entire syllabus where in sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

### **Text Book**

1. Fellows,P., Food Processing Technology: Principles and Practice, 2nd ed., Woodhead Publishing Ltd., England, 2000.

## **Reference Books**

- 1. Toledo, R., Fundamentals of Food Process Engineering, 2nd ed., CBS Publishers & Distributors, New Delhi, 1997.
- 2. Sharma K., et.al., Food Process Engineering, Theory and Laboratory Experiments, John Wiley and Sons Inc., Canada 2000.
- 3. Pandey and Srivastava, Chemical Process Technology, Vol.2
- 4. Singh, R.P. & Heldman, D.R., Introduction to Food Engineering, 3rd ed., Academic press, UK 2001.
- 5. Lelieveld, H.L.M., et.al. Hygiene in Food Processing, Woodhead Publ. Ltd., England 2003.
- 6. Subbulakshmi G. & Udipi S.A., Food Processing and Preservation, New Age International Pvt. Ltd., India 2001.
- 7. Valentas, k.J.et.al., Food Processing Operations and scale up, Marcel Dekker, N.Y 1991
- 8. Tamb, I.A. and Singh R.P., Food Storage Stability CRC Press 19981.
- 9. D. G. Rao, Fundamentals of Food Engineering, PHI Learning Pvt. Ltd.

<b>Course Code</b>	Course Name	Credits
ILO7011	Institute Level Optional Subject I- Product Life Cycle	03
	Management	

# **Objectives:**

- To familiarize the students with the need, benefits and components of PLM
- To acquaint students with Product Data Management & PLM strategies
- To give insights into new product development program and guidelines for designing and developing a product
- To familiarize the students with Virtual Product Development

## **Outcomes:**

Learner will be able to...

- Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- Illustrate various approaches and techniques for designing and developing products.
- Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Detailed Contents	Contact Hours
01	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM.	10
02	Product Design: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X	09

	Tools and Their Use in the Design Process.	
03	Product Data Management (PDM):Product and Product Data,	05
	PDM systems and importance, Components of PDM, Reason	
	for implementing a PDM system, financial justification of PDM,	
	barriers to PDM implementation.	
04	Virtual Product Development Tools: For components,	05
	machines, and manufacturing plants, 3D CAD systems and	
	realistic rendering techniques, Digital mock-up, Model building,	
	Model analysis, Modeling and simulations in Product Design,	
	Examples/Case studies.	
05	Integration of Environmental Aspects in Product Design:	05
	Sustainable Development, Design for Environment, Need for	
	Life Cycle Environmental Strategies, Useful Life Extension	
	Strategies, End-of-Life Strategies, Introduction of	
	Environmental Strategies into the Design Process, Life Cycle	
	Environmental Strategies and Considerations for Product	
	Design.	
06	Life Cycle Assessment and Life Cycle Cost Analysis:	05
	Properties, and Framework of Life Cycle Assessment, Phases of	
	LCA in ISO Standards, Fields of Application and Limitations of	
	Life Cycle Assessment, Cost Analysis and the Life Cycle	
	Approach, General Framework for LCCA, Evolution of Models	
	for Product Life Cycle Cost Analysis.	

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 128

<b>Course Code</b>	Course Name	Credits
ILO7012	Institute Level Optional Subject I- Reliability	03
	Engineering	

# **Objectives:**

- To familiarize the students with various aspects of probability theory
- To acquaint the students with reliability and its concepts
- To introduce the students to methods of estimating the system reliability of simple and complex systems
- To understand the various aspects of Maintainability, Availability and FMEA procedure

## **Outcomes:**

Learner will be able to...

- Understand and apply the concept of Probability to engineering problems
- Apply various reliability concepts to calculate different reliability parameters
- Estimate the system reliability of simple and complex systems
- Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Contact Hours
01	<b>Probability theory:</b> Probability: Standard definitions and	08
	concepts; Conditional Probability, Baye's Theorem.	
	<b>Probability Distributions:</b> Central tendency and Dispersion;	
	Binomial, Normal, Poisson, Weibull, Exponential, relations	
	between them and their significance.	
	Measures of Dispersion: Mean Median, Mode, Range, Mean	
	Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	
02	Reliability Concepts: Reliability definitions, Importance of	08
	Reliability, Quality Assurance and Reliability, Bath Tub Curve.	
	Failure Data Analysis: Hazard rate, failure density, Failure Rate,	
	Mean Time To Failure (MTTF), MTBF, Reliability Functions.	
	Reliability Hazard Models: Constant Failure Rate, Linearly	
	increasing, Time Dependent Failure Rate, Weibull Model.	
	Distribution functions and reliability analysis.	
03	System Reliability: System Configurations: Series, parallel,	05
	mixed configuration, k out of n structure, Complex systems.	
04	Reliability Improvement: Redundancy Techniques: Element	08
	redundancy, Unit redundancy, Standby redundancies. Markov	
	analysis.	
	System Reliability Analysis – Enumeration method, Cut-set	
	method, Success	
	Path method, Decomposition method.	
05	Maintainability and Availability: System downtime, Design for	05
	Maintainability: Maintenance requirements, Design methods:	
	Fault Isolation and self-diagnostics, Parts standardization and	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	Interchangeability, Modularization and Accessibility, Repair Vs Replacement.  Availability – qualitative aspects.	
06	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	05

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

<b>Course Code</b>	Course Name	Credits
ILO7013	Institute Level Optional Subject I- Management	03
	Information System	

# **Objectives**

- The course is blend of Management and Technical field.
- Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- Identify the basic steps in systems development

## Outcomes Learner will be able to...

- Explain how information systems Transform Business
- Identify the impact information systems have on an organization
- Describe IT infrastructure and its components and its current trends
- Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Contact Hours
01	Introduction To Information Systems (IS): Computer Based	4
	Information Systems, Impact of IT on organizations, and Importance of IS to Society. Organizational Strategy,	
	Competitive Advantages and IS.	
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management.	7
	Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, Ebusiness and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process.  Acquiring Information Systems and Applications: Various	8
	System development life cycle models.	

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

# References

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

<b>Course Code</b>	Course Name	Credits
ILO7014	Institute Level Optional Subject I- Design of	03
	Experiments	

# **Objectives:**

- To understand the issues and principles of Design of Experiments (DOE)
- To list the guidelines for designing experiments
- To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

## **Outcomes:**

Learner will be able to...

- Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- Apply the methods taught to real life situations
- Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Contact Hours
01	Introduction	06
	1.1 Strategy of Experimentation	
	1.2 Typical Applications of Experimental Design	
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
02	Fitting Regression Models	08
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
	2.3 Hypothesis Testing in Multiple Regression	
	2.4 Confidence Intervals in Multiple Regression	
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
03	Two-Level Factorial Designs and Analysis	07
	$3.1 \text{ The } 2^2 \text{ Design}$	
	3.2 The 2 ³ Design	
	3.3 The General2 ^k Design	
	3.4 A Single Replicate of the 2 ^k Design	
	3.5 The Addition of Center Points to the 2 ^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
04	Two-Level Fractional Factorial Designs and Analysis	07
	4.1 The One-Half Fraction of the 2 ^k Design	
	4.2 The One-Quarter Fraction of the 2 ^k Design	
	4.3 The General 2 ^{k-p} Fractional Factorial Design	
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	4.6 Fractional Factorial Split-Plot Designs	
05	Conducting Tests	07
	5.1 Testing Logistics	
	5.2 Statistical aspects of conducting tests	
	5.3 Characteristics of good and bad data sets	
	5.4 Example experiments	
	5.5 Attribute Vs Variable data sets	
06	Taguchi Approach	04
	6.1 Crossed Array Designs and Signal-to-Noise Ratios	
	6.2 Analysis Methods	
	6.3 Robust design examples	

### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Practical Experiment Designs for Engineers and Scientists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T. Voss
- 6. Phillip J Ross, "Taguchi Technique for Quality Engineering," McGraw Hill
- 7. Madhav S Phadke, "Quality Engineering using Robust Design," Prentice Hall

<b>Course Code</b>	Course Name	Credits
ILO7015	Institute Level Optional Subject I- Operations	03
	Research	

## **Objectives:**

- Formulate a real-world problem as a mathematical programming model.
- Understand the mathematical tools that are needed to solve optimization problems.
- Use mathematical software to solve the proposed models.

## **Outcomes:**

Learner will be able to...

- Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- Solve specialized linear programming problems like the transportation and assignment problems; solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Contact Hours
01	Introduction to Operations Research: Introduction, ,	14
	Structure of the Mathematical Model, Limitations of	
	Operations Research	
	<b>Linear Programming</b> : Introduction, Linear Programming	
	Problem, Requirements of LPP, Mathematical Formulation of	
	LPP, Graphical method, Simplex Method Penalty Cost	
	Method or Big M-method, Two Phase Method, Revised	
	simplex method, <b>Duality</b> , Primal – Dual construction,	
	Symmetric and Asymmetric Dual, Weak Duality Theorem,	
	Complimentary Slackness Theorem, Main Duality Theorem,	
	Dual Simplex Method, Sensitivity Analysis	
	Transportation Problem: Formulation, solution, unbalanced	
	Transportation problem. Finding basic feasible solutions –	
	Northwest corner rule, least cost method and Vogel's	
	approximation method. Optimality test: the stepping stone	
	method and MODI method.	
	<b>Assignment Problem</b> : Introduction, Mathematical	
	Formulation of the Problem, Hungarian Method	
	Algorithm, Processing of n Jobs Through Two Machines and	
	m Machines, Graphical Method of Two Jobs m Machines	
	Problem Routing Problem, Travelling Salesman Problem	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	Integer Programming Problem: Introduction, Types of	
	Integer Programming Problems, Gomory's cutting plane	
	Algorithm, Branch and Bound Technique. Introduction to	
	Decomposition algorithms.	
02	Queuing models: queuing systems and structures, single	05
	server and multi-server models, Poisson input, exponential	
	service, constant rate service, finite and infinite population	
03	Simulation: Introduction, Methodology of Simulation, Basic	05
	Concepts, Simulation Procedure, Application of Simulation	
	Monte-Carlo Method: Introduction, Monte-Carlo Simulation,	
	Applications of Simulation, Advantages of Simulation,	
	Limitations of Simulation	
04	<b>Dynamic programming</b> . Characteristics of dynamic	05
	programming. Dynamic programming approach for Priority	
	Management employment smoothening, capital budgeting,	
1		
	Stage Coach/Shortest Path, cargo loading and Reliability	
	Stage Coach/Shortest Path, cargo loading and Reliability problems.	
05		05
05	problems.	05
05	problems.  Game Theory. Competitive games, rectangular game, saddle	05
05	problems.  Game Theory. Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value	05
05	problems.  Game Theory. Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance	05
05	problems.  Game Theory. Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed	05

### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 136

<b>Course Code</b>	Course Name	Credits
ILO7016	Institute Level Optional Subject I- Cyber Security and	03
	Laws	

# **Objectives:**

- To understand and identify different types cybercrime and cyber law
- To recognized Indian IT Act 2008 and its latest amendments
- To learn various types of security standards compliances

## **Outcomes:**

Learner will be able to...

- Understand the concept of cybercrime and its effect on outside world
- Interpret and apply IT law in various legal issues
- Distinguish different aspects of cyber law
- Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Contact Hours
01	<b>Introduction to Cybercrime:</b> Cybercrime definition and origins	4
	of the world, Cybercrime and information security,	
	Classifications of cybercrime, Cybercrime and the	
	Indian ITA 2000, A global Perspective on cybercrimes.	
02	Cyber offenses & Cybercrime: How criminal plan the attacks,	9
	Social Engg, Cyber stalking, Cyber café and Cybercrimes,	
	Botnets, Attack vector, Cloud computing, Proliferation of Mobile	
	and Wireless Devices, Trends in Mobility, Credit Card Frauds in	
	Mobile and Wireless Computing Era, Security Challenges Posed	
	by Mobile Devices, Registry Settings for Mobile Devices,	
	Authentication Service Security, Attacks on Mobile/Cell Phones,	
	Mobile Devices: Security Implications for Organizations,	
	Organizational Measures for Handling Mobile, Devices-Related	
	Security Issues, Organizational Security Policies and Measures in	
03	Mobile Computing Era, Laptops  Tools and Methods Used in Cyberline	6
03	Phishing, Password Cracking, Keyloggers and Spywares, Virus	O
	and Worms, Steganography, DoS and DDoS Attacks, SQL	
	Injection, Buffer Over Flow, Attacks on Wireless Networks,	
	Phishing, Identity Theft (ID Theft)	
04	The Concept of Cyberspace	8
	E-Commerce, The Contract Aspects in Cyber Law, The Security	· ·
	Aspect of Cyber Law ,The Intellectual Property Aspect in Cyber	
	Law	
	, The Evidence Aspect in Cyber Law , The Criminal Aspect in	
	Cyber Law, Global Trends in Cyber Law, Legal Framework for	
	Electronic Data Interchange Law Relating to Electronic Banking,	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

	The Need for an Indian Cyber Law	
05	Indian IT Act.	6
	Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	
06	Information Security Standard compliances	6
	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information, A Compliance Primer for IT professional: https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

<b>Course Code</b>	Course Name	Credits
ILO7017	Institute Level Optional Subject I- Disaster	03
	Management and Mitigation Measures	

## **Objectives:**

- To understand physics and various types of disaster occurring around the world
- To identify extent and damaging capacity of a disaster
- To study and understand the means of losses and methods to overcome /minimize it.
- To understand role of individual and various organization during and after disaster
- To understand application of GIS in the field of disaster management
- To understand the emergency government response structures before, during and after disaster

### **Outcomes:**

#### Learner will be able to...

- Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- Plan of national importance structures based upon the previous history.
- Get acquainted with government policies, acts and various organizational structures associated with an emergency.
- Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Contact Hours
01	Introduction:	03
	Definition of Disaster, hazard, global and Indian scenario, general	
	perspective, importance of study in human life, Direct and	
	indirect effects of disasters, long term effects of disasters.	
	Introduction to global warming and climate change.	
02	Natural Disaster and Manmade disasters:	09
	Natural Disaster: Meaning and nature of natural disaster, Flood,	
	Flash flood, drought, cloud burst, Earthquake, Landslides,	
	Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm,	
	Storm Surge, climate change, global warming, sea level rise, ozone depletion	
	Manmade Disasters: Chemical, Industrial, Nuclear and Fire	
	Hazards. Role of growing population and subsequent	
	industrialization, urbanization and changing lifestyle of human	
	beings in frequent occurrences of manmade disasters.	
03	Disaster Management, Policy and Administration:	06
	Disaster management: meaning, concept, importance, objective of	
	disaster management policy, disaster risks in India, Paradigm shift	

	in disaster management.  Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	
04	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
05	Financing Relief Measures: Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events.	09
06	Preventive and Mitigation Measures: Pre-disaster, during disaster and post-disaster measures in some events in general structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

## **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. 'Disaster Management' by Harsh K. Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S. Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep, Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards' and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.
- (Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

<b>Course Code</b>	Course Name	Credits
ILO7018	Institute Level Optional Subject I- Energy Audit and	03
	Management	

# **Objectives:**

- To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

#### **Outcomes:**

#### Learner will be able to...

- To identify and describe present state of energy security and its importance.
- To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Contact Hours
01	Energy Scenario:	04
	Present Energy Scenario, Energy Pricing, Energy Sector	
	Reforms, Energy Security, Energy Conservation and its	
	Importance, Energy Conservation Act-2001 and its Features.	
	Basics of Energy and its various forms, Material and Energy	
	balance	
02	Energy Audit Principles:	08
	Definition, Energy audit- need, Types of energy audit, Energy	
	management (audit) approach-understanding energy costs, Bench	
	marking, Energy performance, Matching energy use to	
	requirement, Maximizing system efficiencies, Optimizing the	
	input energy requirements, Fuel and energy substitution.	
	Elements of monitoring& targeting; Energy audit Instruments;	
	Data and information-analysis.	
	Financial analysis techniques: Simple payback period, NPV,	
	Return on investment (ROI), Internal rate of return (IRR)	
03	<b>Energy Management and Energy Conservation in Electrical</b>	10

	System:	
	Electricity billing, Electrical load management and maximum	
	demand Control; Power factor improvement, Energy efficient	
	equipments and appliances, star ratings.	
	Energy efficiency measures in lighting system, Lighting	
	control: Occupancy sensors, daylight integration, and use of	
	intelligent controllers.	
	Energy conservation opportunities in: water pumps, industrial	
	drives, induction motors, motor retrofitting, soft starters, variable	
	speed drives.	
04	<b>Energy Management and Energy Conservation in Thermal</b>	10
	Systems:	
	Review of different thermal loads; Energy conservation	
	opportunities in: Steam distribution system, Assessment of steam	
	distribution losses, Steam leakages, Steam trapping, Condensate	
	and flash steam recovery system.	
	General fuel economy measures in Boilers and furnaces, Waste	
	heat recovery, use of insulation- types and application. HVAC	
	system: Coefficient of performance, Capacity, factors affecting	
	Refrigeration and Air Conditioning system performance and	
	savings opportunities.	
05	Energy Performance Assessment:	04
	On site Performance evaluation techniques, Case studies based	
	on: Motors and variable speed drive, pumps, HVAC system	
	calculations; Lighting System: Installed Load Efficacy Ratio	
	(ILER) method, Financial Analysis.	
06	Energy conservation in Buildings:	03
	Energy Conservation Building Codes (ECBC): Green Building,	-
	LEED rating, Application of Non-Conventional and Renewable	
	Energy Sources	

## **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B. Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

<b>Course Code</b>	Course Name	Credits
ILO7019	Institute Level Optional Subject I- Development	03
	Engineering	

• Interest in societal development.

# **Course Objective:**

- To understand the characteristics of rural Society and the Scope and Nature and Constraints of rural Development.
- To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
- The objective of the course is an exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life'. The context is the work life and the personal life of modern Indian professionals.
- To understand the Nature and Type of Human Values relevant to Planning Institutions.

## **Course Outcome:**

- Students will be able to apply knowledge for Rural Development.
- Students will be able to apply knowledge for Management Issues.
- Students will be able to apply knowledge for Initiatives and Strategies
- Students will be able to develop acumen for higher education and research.
- Students will master the art of working in group of different nature.
- Students will develop confidence to take up rural project activities independently.

Module	Contents	Contact
		Hours
1	Introduction to Rural Development Meaning, nature and scope of	04
	development; Nature of rural society in India; Hierarchy of	
	settlements; Social, economic and ecological constraints for rural	
	development.	
2	Roots of Rural Development in India Rural reconstruction and	04
	Sarvodaya programme before independence; Impact of voluntary	
	effort and Sarvodaya Movement on rural development;	
	Constitutional direction, directive principles; Panchayati Raj -	
	beginning of planning and community development; National	
	extension services.	
3	Post-Independence rural Development BalwantRai Mehta	04
	Committee - three tier system of rural local Government; Need	
	and scope for people's participation and Panchayati Raj; Ashok	
	Mehta Committee - linkage between Panchayati Raj,	
	participation and rural development.	
4	Rural Development Initiatives in Five Year Plans Five Year	06

	Plans and Rural Development; Planning process at National, State, Regional and District levels; Planning, development, implementing and monitoring organizations and agencies; Urban and rural interface - integrated approach and local plans; Development initiatives and their convergence; Special component plan and sub-plan for the weaker section; Micro-eco zones; Data base for local planning; Need for decentralized planning; Sustainable rural development.	
5	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule, devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Technology and rural planning; Need for further amendments.	04
6	Values and Science and Technology Material development and its values; the challenge of science and technology; Values in planning profession, research and education.	04
7	Types of Values Psychological values — integrated personality; mental health; Societal values — the modern search for a good society; justice, democracy, rule of law, values in the Indian constitution; Aesthetic values — perception and enjoyment of beauty; Moral and ethical values; nature of moral judgment; Spiritual values; different concepts; secular spirituality; Relative and absolute values; Human values— humanism and human values; human rights; human values as freedom, creativity, love and wisdom.	06
8	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility; Work ethics; Professional ethics; Ethics in planning profession, research and education	04

## **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 146

### Recommendation

Students can take any one or two live projects beneficial to rural population or society at large.

#### Reference

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rdGoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V., Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395 407

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 147

<b>Course Code</b>	Course Name	Credits
CHP701	Project-A	03

#### **Guidelines:**

- Project groups: Groups can formed with minimum TWO and not more than THREE students per group.
- Students should spend considerable time in applying all the concepts studied, into the Project, hence, eight hours each are allotted in project A and B to the students.
- Students are advised to take up industrial/ experimental/ simulation and/or optimization based topics for their project.
- Students should report their guides with their work on weekly basis.

### **Exam Guidelines**

## Term Work - 100 Marks:

- Presentation 50 Marks
- Report -50 Marks

### Oral - 25 Marks

<b>Course Code</b>	Course Name	Credits
CHS701	Seminar	03

### **Guidelines:**

- Each student has to present Seminar on the topic which will be the consensus of the project guide and the student, considering the recent development in the field of Chemical Engineering.
- The load for seminar will be calculated as one hour per week irrespective of the number of students

## **Exam Guidelines**

#### Term Work - 50 Marks:

- Seminar Presentation 25 Marks
- Report -25 Marks

<b>Course Code</b>	Course Name	Credits
CHL701	Process Equipment Design Lab	1.5

# **Concept of Lab**

The practical shall include Design and Drawing of:

Minimum TEN practicals should be performed

- 1. Heat Exchangers
- 2. Short Tube vertical Evaporator
- 3. Distillation Column
- 4. High Pressure vessels

With respect to:

- Symbols
- P&ID
- Plot plan and Tank farm
- Plant Layout

## Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks **Total:** 25 marks

<b>Course Code</b>	Course Name	Credits
CHL702	Chemical Engineering Lab X (PDC)	1.5

Minimum of TEN experiments should be performed from the modules of Theory Course Process Dynamics and Control (CHC703)

## Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks **Total:** 25 marks

## **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

# University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) B.E. Semester VIII (w.e.f 2019-2020)

Course code	Course Name	Teaching Scheme (Contact Hours)		(	Credits Assigned			
Course code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC801	Modeling, Simulation & Optimization (MSO)	4	-	-	4	-	-	4
CHC802	Project Engineering & Entrepreneurship Management	3	-	1	3	-	1	4
CHC803	Energy System Design	3	-	1	3	-	1	4
CHDE804X	Department Elective IV	4	-	-	4	-	-	4
ILO802X	Institute Elective II	3	-	-	3	-	-	3
CHP801	Project B	-	-	8	-	-	6	6
CHL801	Chemical Engineering Lab XI (MSO)	-	2	-	-	1	-	1
	Total	17	2	10	17	1	8	26

		Examination Scheme								
Course code	Course Name		Theory				Term	Pract		
		Intern	al Assess	ment	End	Exam	Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC801	Modeling, Simulation & Optimization (MSO)	20	20	20	80	3	-	-	-	100
CHC802	Project Engineering & Entrepreneurship Management	20	20	20	80	3	25	-	-	125
CHC803	Energy System Design	20	20	20	80	3	25	-	-	125
CHDE804X	Department Elective IV	20	20	20	80	3		-	-	100
ILO802X	Institute Elective II	20	20	20	80	3		-	-	100
CHP801	Project B	-	-	-	-	-	100	-	50	150
CHL801	Chemical Engineering Lab XI (MSO)	-	-	-	-	2	25	25	-	50
	Total			100	400	-	175	25	50	750

Department Elective IV (Sem VIII)						
Engineering Stream (Course Code)	Management Stream (Course Code)	Technology Stream (Course Code)				
1. Advanced Process Control (CHDE8041)	1.Total Quality Management (CHDE8042)  1. Advanced Separation Technol (CHDE8043) 2. Polymer Technology (CHDE8044)					

Institute Level Optional Subject II (Sem VIII)						
1. Project Management (ILO8021)	4. Human Resource Management (ILO8024)	7. IPR and Patenting (ILO8027)				
2. Finance Management (ILO8022)	5. Professional Ethics and CSR (ILO8025)	8. Digital Business Management (ILO8028)				
3. Entrepreneurship Development and Management (ILO8023)	6. Research Methodology(ILO8026)	9. Environmental Management (ILO8029)				

<b>Course Code</b>	Name of Subject	Credits
CHC801	Modelling Simulation and Optimization	04

• Linear Algebra, Process Calculations, Computer Programming

## **Course Objectives:**

- To make students understand writing and solving models of chemical engineering system
- To make students understand writing and solving systems of nonlinear equations for single and multiple units
- To make students understand simulation of complete flowsheets
- To make students understand optimization of single and multiple units

### **Course Outcomes:**

- The students will be able to write and solve models of chemical engineering system.
- The students will be able to carry out sequential and equation oriented simulation of complete flowsheets.
- The student will be able to optimize typical chemical processes.

Module	Contents	Contact
		hrs
01	Modeling Aspects:	08
	1.1 Definition of process model, physical and mathematical	
	modeling, classification of models, model building, classification	
	of mathematical methods	
	1.2 Mathematical Models of Chemical Engineering Systems:	
	Introduction, uses of mathematical models, scope of coverage,	
	principles of formulation, fundamental laws, continuity equations,	
	energy equations, equation of motion, transport equation, equation	
	of state, equilibrium, kinetics.	
02	Examples of Mathematical Models of Chemical Engineering	10
	Systems: Introduction, series of isothermal, constant-hold up	
	CSTR, CSTR with variable holds up, two heated tanks, gas-phase,	
	pressurized CSTR, non-isothermal CSTR, single-component	
	vaporizer, batch reactor, reactor with mass transfer, ideal binary	
	distillation column ,batch distillation with holdup. Degree of	
	Freedom analysis Concept of design and rating problem in	
	context of selection variables after DOF analysis.	
03	Introduction to Simulation, Sequential and Equation oriented	08
	Simulation, Flow sheet topology analysis, Recycle, Partitioning	
	and Tearing of flow sheets. Simulation Examples, Williams Otto	
	Flow sheeting	

04	Numerical Methods for solving sets of nonlinear equations, Newton's method with Armijo Line search, Successive substitution. Solution for models developed in module 2	08
05	Introduction to Optimization. Unconstrained single and multi variable non-linear optimization. Numerical methods for single and multivariable optimization. Golden section and Newton's method, for Single variable case, and Gradient and Newton's method for multi-variable cases may be considered. Optimization of specific process units such as Heat exchangers, Reactors, Separation equipment etc. can be considered.	16

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### Reference

- 1. William Y. Luyben, Process Modelling simulation and control for chemical Engineer, Second edition McGraw Hill
- 2. Thomas Edger, David M. Himmelbleau, Optimization of chemical processes, 2nd Ed., John Wiley
- 3.Lorenz T. Beigler, Ignacio E. Grossman, Arthur W. Wesburg, Systematic Methods of Chemical Process Design, Prentice Hall

University of Mumbai B. E. (Chemical Engineering) Rev 2016

Page 153

<b>Course Code</b>	Course/ Subject	Credits
CHC802	Project Engineering and Entrepreneurship	04
	Management	

• Communication skills, Mathematical skills, Analytical, logical and reasoning skills

## **Course Objectives:**

- To understand basic concepts project management and application of PM to process industries
- To understand project feasibility reports and learn about various clearances required to start an industry
- To learn various project organizations and basics of contracting
- To learn various tools and techniques used in PM and understand role of entrepreneurship in the society for the economic growth.

### **Course Outcomes:**

Students will be able to use

- concepts and knowledge of project management to manage projects in process industries
- Students should be able to prepare feasibility reports.
- Students should be able to understand various clearances required to start industry
- Students should be able to prepare project organization charts and contracts
- Students should be able to prepare contracts
- Students should be able to use tools of PM to solve problems and will be motivated to become entrepreneurs

Module	Name of module and contents	Contact Hours
1	Concepts of project management:  Definition of project, project management, project types, project life cycle: purpose, inputs, project manager's role and outputs, Tools and techniques in project management, major knowledge areas of project management , Difference between project management and formal management, Role-responsibilities and skills of project manager, project overruns  Project management in process industries: project strategy, project specification, project engineering, detailed design, procurement, construction, commissioning and closure  Case studies: swagruha constructions, Advanced recycling sciences, super clean paperboards, Instron manufacturing company, Ind constructions, Goshe Corporation, accorn, govt of India bridge project Delhi, Jharkhand project	
2	Feasibility report, licensing and clearances	06

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 154

	Feasibility reports: Raw material survey, Market survey and demand study, technical study, location survey, financial survey and types of cost estimates, Estimation of project profitability Industrial license and LOI, Various laws & regulations governing industries, need for clearances and influences on project, List of various clearances.  Case studies: Discussion of feasibility report for soap/mustard oil / ready to eat snacks, Decotile corporation, SIRIS pharma Hyderabad, coal fired boilers project, plant on river Yangtze, IC software, temples and towers. Numerical based on cost benefit analysis, profitability, cost estimation	
3	Project organization and contracting Project scope, project priorities, development of WBS, Development of process breakdown structure, Development of responsibility matrix, development of project communication plan. The traditional management structure, Project management organizational structure: pure project, matrix, task force, Project team, responsibilities of various members. Contracts types, selection criteria,3R of contracting,types of reimbursements and tendering procedure Case study: Hindustan oil company: Hamad petroleum company, corel production systems, Jones and Shephard Accountants, White manufacturing, Hotel pulkeshi international	06
4	Tools and techniques in project Management and entrepreneurship: Health-safety and environmental guidelines for chemical plants Quality assurance, Hazard analysis, Risk analysis and management, Change Management. Cost benefit analysis, Project execution plan (PEP), Bar charts/GANTT charts, LOB, Networking techniques (PERT/CPM), Productivity budgeting techniques, Value engineering (VE), ABC and VED Analysis, Economic Order Quantity (EOQ), CAT vs RAT, Time and cost control tools and techniques. Use of Microsoft projects. Entrepreneurship: Definition, Concept of entrepreneur and entrepreneurship, Characteristics, aspects, factors affecting entrepreneurship, Classification and types of entrepreneurship based on business, technology, motivation, growth and stages of development. Case: Prima industries, Rudra offshore, Bhargava oils case, Acme Corporation. Numerical based on topics mentioned above.	08

Term-work Marks: 25 MarksAssignments: 20 MarksAttendance: 05 Marks

A total of 10 tutorials need to be conducted. At least one tutorial on each module is expected. Six tutorials will be based on case studies and 4 tutorials based on numerical

#### Assessment

#### **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions to be solved
- Question no.1 will be compulsory and based on entire syllabus where in sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

#### References

- 1. Project Management, Choudhary, S., Tata McGraw Hill(module 1 to 4)
- 2. Total Project Management, Joy, P. K., (module 1 and 2)
- 3. Project Management for process Industries, Gillian Lawson, I chem. E (Module 1 and 4)
- 4. Project Management Case Studies, Harold Kerzner, Second edition, John Wiley and Sons (for case studies)
- 5. Project Management Methodology Guidelines, City of Chandler (Module 1)
- 6. Project Management-The Managerial Process, Clifford Gray, 6th edition, McGraw Hill (module 1, 2, 3)
- 7. Plant Design and Economics for Chemical Engineers, Klaus D Timmerhaus, 5th edition, McGraw Hill (Module 2 and 4)
- 8. Theory and problems in financial management, Khan, M.Y.; Jain, P.K.; Second Edition, Tata McGraw Hill (Module 2 and 4)
- 9. Fundamentals of Financial Management, Vyuptakesh Sharan, Second Edition, Pearson publications(module 2 and 4)
- 10. Dynamics of entrepreneurial development and management, Vasant Desai (module 4)

<b>Course Code</b>	Course/ Subject Name	Credits
CHC803	<b>Energy System Design</b>	4

- The students should have knowledge of Heat transfer to carry out Energy balance.
- They should be aware about basic principles of economics to evaluate cost and profit of energy efficient operations/modifications/techniques.
- They should be familiar with various types of plant utilities.
- They should be familiar with basic Industrial systems/operations like, HVAC, Lighting,
- Steam, Refrigeration, etc.

## **Course Objectives:**

- To provide training to solve problems relevant to the energy conservation.
- To provide students the knowledge in planning conducting energy audit, energy survey, and evaluate energy conservation opportunities.
- To provide knowledge to design and evaluate energy efficient technologies such as heat exchanger networks, multiple effect evaporators, co-generation, etc.

### **Course Outcomes:**

- The graduates should able to design an energy system to meet the desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, manufacturability and sustainability.
- The graduates should able to function on multidisciplinary teams, identify, formulate and solve engineering problems.
- The graduates are expected to have knowledge of professional and ethical responsibility.
- The graduates should able to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Module	Contents	Contact Hours
	Energy Audit:	02
1	Energy audit methodology, Types of energy audit,	
	instrumentation used in energy audit, Safety considerations	
	during energy audit, Post audit analysis.	
2	Energy Efficient Technologies:	02
	Energy efficient techniques for lighting system, motors, belt and	
	drives system, fans and pumps system, compressed air system;	
	steam system, refrigeration system.	
3	<b>Energy Integration in The Process Industries:</b>	13
	Temperature Pinch analysis, concept of minimum number of	
	heat exchangers, Heat Exchanger Network design, Threshold	
	approach temperature difference, targeting for number of shells,	
	Area targets, Optimum approach temperature difference	

4	Heat Integration in Process Units:	10
	Heat integration of Multiple effect evaporators (MEE) with	
	background process. Heat integration MEE with and without	
	vapour re-compression: mechanical vapour re-compression,	
	thermal vapour re-compression.	
	Distillation column: heat integration in distillation column –	
	multiple effect distillation, heat pumping, vapour re-	
	compression, Reboiler flashing. Different arrangements of heat	
	integration of columns with background process.	
5	Co-generation:	06
	Definitions, Brayton cycle, Rankine cycle, topping cycle,	
	bottoming cycle, combined cycle. Steam turbine system, gas	
	turbine system, combined gas steam turbine system, diesel	
	engine system. Heat integration and cogeneration.	
6	Waste Heat Recovery (WHR):	03
	Waste heat sources, quality and classification of waste heat and	
	its applications. Benefits of WHR. WHR equipments like	
	recuperators, radiation/convective hybrid recuperator, ceramic	
	recuperator, regenerator, heat wheel, heat pipe, waste heat boiler,	
	economizer, heat pumps.	
7	Global Energy Scenario: national and international.	Assignm
•		ent

#### Term work

Term work should consist of minimum 8 tutorials from entire syllabus which are to be given at regular intervals batch wise.

Tutorial: 20 marks

Attendance: 05 marks Total: 25 marks

#### **Assessment:**

#### **Internal:**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination:**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### **Text Books:**

1. Robin Smith, Chemical Process Design and Integration, Wiley India, 2005. [Module: 3, 4, 5, 6]

- 2. Serth, Robert W., Process Heat Transfer Principles and Applications, Elsevier Science & Technology Books, 2007. [Module: 3]
- 3. Wayne C. Turner, Steve Doty (Ed.), Energy Management Hand Book, John Wiley and Sons, 2000. [Module: 1, 2, 5, 6]

### **References:**

- 1. Seider W. D., and Seader J. D. and Lewin D. R., Process Design Principles, John Wiley and Sons Inc., 1988.
- 2. Douglas J. M., Conceptual Design of Chemical Process, McGraw Hill Book Co., 1988.
- 3. Biegler L. T., Grossman E. I. and Westerberg A. W., .Systematic Methods of Chemical Process Design., Prentice Hall International Ltd., 1997.
- 4. P K Nag, Power Plant Engineering, The McGraw-Hill Publishing Company Limited.
- 5. H.M.Robert, J.H.Collins, Handbook of Energy Conservation-Volume 1, CBS Publishers & Distributors.
- 6. D. P. Kothari, K. C. Singal, Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt Ltd, Second Edition.
- 7. https://www.beeindia.gov.in

<b>Course Code</b>	Course/Subject	Credits
CHDE8041	Department Elective IV: Advanced Process Control	4

• Linear Algebra, Differential Equations, Difference Equations, Laplace Transforms.

# **Course Objectives:**

- To understand dynamics of MIMO processes.
- To understand Batch Process Control.
- To understand Model Predictive Control.
- To design digital controllers.

## **Course Outcomes:**

- The student will be able to analyze multi-loop and multi-variable control systems.
- The student will be able to design batch controllers.
- The student will be able to design MIMO controllers.
- The student will be able to design Model Predictive Controllers.

Module	Contents	Contact Hours
1.	Advanced SISO Control Strategies:	06
	Cascade Control, Time Delay Compensation, Inferential Control,	
	Selective Control/Override Systems, Nonlinear Control Systems,	
	Adaptive control Systems	
2	Digital Sampling Filtering and Control:	06
	Sampling and Signal Reconstruction, Signal Processing and Data	
	Filtering, z-Transform Analysis for Digital Control, Tuning of	
	Digital PID Controllers, Direct Synthesis for Design of Digital	
	Controllers, Minimum Variance Control	
3	Multiloop and Multivariable Control:	06
	Process and Control Loop Interactions, Pairing of Control and	
	Manipulated Variables, Singular Value Analysis, Tuning of Multi-	
	loop PID Control Systems, Decoupling and Multivariable	
	Strategies, Strategies for Reducing Control Loop Interactions	
4	Model Predictive Control:	06
	Overview of Model Predictive Control, Predictions for SISO	
	Models, Predictions for MIMO Models, Model Predictive Con	
	trol Calculations, Set Point Calculations, Selection of Design and	
	Tuning Parameters, Implementation of MPC	
5	Batch Process Control:	06
	Batch Control Systems, Sequential and Logic Control, Control	
	During The Batch, Run-to-Run Control	
6	Introduction To Plant wide Control:	06
	Plant wide Control Issues, Hypothetical Plant for Plant wide	

	Control Studies, Internal Feedback of Material and Energy,	
	Interaction of Plant and Control System Design	
7	Plant wide Control System Design:	06
	Procedures for the Design of Plant wide Control Systems. A	
	Systematic Procedure for Plant wide Control System Design.	
	Case Study: The Reactor/Flash Unit Plant, Effect of Control	
	Structure on Closed Loop Performance	
8	Optimal Control:	06
	Introduction to Optimal Control, Batch Process Optimisation	

#### **Internal:**

Assessment consists of average of two tests which should be conducted at proper interval.

# **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No. 1 should be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all modules
- Weightage of marks should be proportional to number of hours assigned to each module.

#### References

- 1. Dale E. Seborg, Thomas F. Edgar, Duncan A. Melli champ, Francis J. Doyle III, Process Dynamics and Control, 3 Ed., John Wiley & Sons (Asia) Pvt. Ltd., New Delhi.
- 2. William L. Luyben, Process Modeling Simulation and Control For ChemicalEngineers, 2 Ed., McGraw Hill Publishing Co.
- 3. Stephanopoulos, Chemical Process Control, PHI Learning Pvt. Ltd.
- 4. D Patranabis, Principles of Process Control, McGraw Hill Education
- 5. Donald R Coughanowr, Stevan E Leblance, Process System Analysis and Control, McGraw Hill Education.

<b>Course Code</b>	Course/Subject	Credits
CHDE8042	Department Elective IV: Total Quality Management	4

### **Course Objectives:**

- To acquaint with the significance and features of TQM philosophy.
- To familiarize with various quality tools and their uses in problem solving.
- To appraise on the modern productivity improvement approaches and their interface with TOM
- To familiarize with various quality standards, quality auditing and certification methodology.
- To give and an insight into the ongoing global trends in quality approach and practices with special forms to the customer relationship

### **Course Outcomes:**

Learner will be able to:

- Appreciate the importance of quality and its dimensions in striving for excellence
- Understand the conscious compromise between cost and quality
- Develop competency in the selection in various manufacturing and service functions
- Develop competency in the use of appropriate quality tools in various manufacturing and service functions
- Integrate quality approaches for productivity improvement.
- Acquire knowledge base and develop skills for conducting quality audits

Module	Contents	Contact
		Hours
01	Introduction:	8
	Definition of Quality, principles and dimensions of TQMQuality	
	in manufacturing and service segments. Approach in	
	implementation of TQM, barriers in implementation. Cost of	
	quality prevention, appraisal and failure costs, hidden costs,	
	trade-o between quality and cost.	
02	Planning for quality and Quality improvement:	8
	Planning for quality: Need for quality policies and objective.	
	Significance of top management commitment, strategic planning	
	for quality. Quality improvement: Management of controllable	
	defects, operator controllable defects, sporadic and chronic	
	problems of operator controllable defects, sporadic and chronic	
	problems of quality, Pareto's principle. Bench marking:	
	Definition and significance, data collection for bench marking	
	and its use.	
03	Customer relations:	8
	Customers, user and consumers, product awareness, types of	

	On the	
	customers, customer perception and expectations. Quality	
	feedback and redressal. Basic principles of reliability: quality	
	and reliability, Product life cycle, trade-o between	
	maintainability.	
04	Vendor relations:	8
	Vendor as a partner, vendor selection, vendor evaluation. Push	
	Pull view of supply chain and cycle view of chain management	
05	SQC Tool:	8
	Histograms, Pie charts, Scatter diagrams, Cause and diagram	
	etc.	
	Statistical Process Control:	
	<b>Process variability:</b> Variables and process variation, measures	
	of accuracy and centering, precision or spread, normal distribution	
	<b>Process Control:</b> Control charts for variables (X-chart, R- chart,	
	-chart) and attributes (np-charts, p-chart, c-charts, U-	
	chart)Process capability: OC curve, acceptance sampling, single	
	and double sampling producer's and consumer's risk.	
06	Quality System:	8
00	Quality standards:	<b>o</b>
	• ISO 9001:2000 Quality management system. ^	
	• ISO 14001:2004 Environmental management system.	
	• ISO 27001:2005 Information security management	
	system.	
	Quality assurance: Nature of assurance, reports on quality,	
	measuring performance, internal audit, surveillance audit,	
	quality certification methodology and implications	
	Productivity improvement Tools/ Approaches/ Techniques:	
	Principles of Six-Sigma, approaches like JIT, Lean	
	manufacturing zero defect concept, KANBAN, QFD, FMEA,	
	Basics of DOE and Shining concepts of quality. Productivity	
	improvement techniques like 5S, POKAYOKE, SMED,	
	improvement techniques like 35, 10101101CE, SWIED,	1
	KAIZEN and Concurrent Engineering.	

Note: Seminar/Case study presentation with report by individual or in groups comprising of not more than three students can be considered.

#### **Assessment**

### **Internal:**

Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No. 1 should be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all modules

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 163

• Weightage of marks should be proportional to number of hours assigned to each module.

### References

- 1. Juran, J. M., Gryana, F. M., Quality planning and analysis, TMH.
- 2. Bester Fidd, D. H., et.al., Total quality management, Prentice Hall.
- 3. Erossbly, Pillip b., Quality is free, Mentor/New Americal Library.
- 4. Ishikawa, K., What is total quality control? The Japanese way, Prentice Hall
- 5. Fergenbaum, Armand V., Total quality control.
- 6. Logothetis, N., Managing for total quality, Prentice Hall
- 7. Aurora, K. C., Total Quality Management, S. K. Kataria and Sons
- 8. Haldar, U. K., Total Quality Management, Dhanpatrai and Co.

<b>Course Code</b>	Course/ Subject Name	Credits
CHDE8043	Department Elective IV: Advanced Separation	4
	Technology	

• Basic knowledge regarding fundamental separation Processes and its application in chemical Industries.

## **Course Objectives:**

The students completing this course are expected to understand:

- The various separation principles like adsorption process, the types and designs.
- The supercritical extraction and modern distillation process.
- Introduction to foam fractionation process and application in waste water treatment.
- Liquid chromatography types and separation of enzymes using it.
- Types of membranes, membrane characterization, membrane material, membrane modules, membrane applications in biotechnology and other industries.

### **Course Outcomes:**

- The graduates are expected to have ability to apply knowledge of mathematics, science and engineering.
- The graduates are expected to have ability to design a system, a component, or a process to meet the desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, manufacturability and sustainability.
- The graduates are expected to possess ability to identify, formulate and solve engineering problems.
- The graduates are expected to possess ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Module	Content	Contact Hours
1.	Adsorption Process: Absorbent such as activated carbon,	8
	molecular sieves of various types, activated alumina. Their	
	characteristics and applications. Regeneration & Activation of	
	absorbents. Thermal & pressure swing process. Fixed bed, moving bed, stimulated moving bed and other processing	
	schemes. Design of adsorption process for separation and	
	purification. Industrial examples and related numericals.	
2.	Super critical extraction and advanced distillation techniques:	8
	Working principle, advantages and disadvantages of supercritical	
	solvents over conventional liquid solvents, advantages and	
	disadvantages of supercritical extraction over liquid- liquid	
	extraction. Commercial applications of supercritical extraction.	
	The concept of advanced distillation techniques, advantages and	
	disadvantages and comparison with conventional techniques.	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 165

3.	Foam Fractionation Process: Foam Formation, coalescence,	8
	collapse and drainage phenomena Adsorption properties of	
	foams. Principle of froth flotation,. Application of froth flotation	
	in industries and waste water treatment.	
4.	Liquid Chromatographic Process: Basic concept of	8
	chromatography, phenomena and characterization. Various	
	chromatography options. Typical chromatographic separation	
	systems for preparative chromatography. Applications of	
	chromatography in enzymes and other Industrial separations.	
5.	Membrane process: Introduction to the membrane	10
	process, definition of membrane, importance, process.	
	Characterization of membranes: Characterization of porous	
	membranes, characterization of ionic membranes,	
	characterization of non-ionic membranes.Preparation of synthetic	
	membranes. Preparation of phase inversion membranes.	
	Preparation techniques for immersion precipitation, preparation	
	techniques for composite membranes, influence of various	
	parameters on membrane morphology, preparation of inorganic	
	membranes.Transport process in membrane driving force.	
	Polarization phenomenon and fouling concentration polarization,	
	characteristic flux behavior in pressure driven membrane	
	preparation, various models, membrane fouling, methods to	
	reduce fouling. Modules and process design plate and frame,	
	spiral wound, tubular, capillary, hollow fibre modules and liquid membranes.	
-		-
6	<b>Applications of membranes in industries</b> : Introduction to various applications in the chemical and allied industries. Basics	6
	of design and numericals based on reverse osmosis and dialysis	
	techniques	
	techniques	

#### **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No. 1 should be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all modules
- Weightage of marks should be proportional to number of hours assigned to each module.

### References

- 1. Ruthven, D.M., Principal Adsorption & Adsorption Process, Wiley, 1984.
- 2. Lemlich, R., Adsorptive Bubble Separation Techniques, Academic Press, 1972.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 166

- 3. Coulson, Richardson, Chemical Engineering, Vol.3, Pergamon.
- 4. Terybal, R.E, Mass Transfer Operations, McGraw Hill.
- 5. Ruthven, Faruqh, Knalbal, Pressure Swing Adsorption, VCH, 1994.
- 6. Snyder, Kirl, Introduction To Liquid Chromatography, 2 ed., 1979. University of Mumbai Chemical Engineering Rev 2014-15 42
- 7. Scott RTW, Liquid Chromatography Column Theory, Wiley, 1992.
- 8. Marcel Mulder, Basic Concepts Of Membrane Technology, Kluwer Academic Publishers (1997).
- 9. E.J. Hoffman, Membrane Separation Technology, Gulf Professional Publishing.
- 10. Nath, Membrane Separation Process, Prentice Hall of India.
- 11. Membrane Handbook Editors W.S. Winston Ho, K.K. Sirkar, Van Nostrand Reinhold Publication.
- 12. J. D. Seader and E. J. Henely, Separation Process Principles.
- 13. C. J. King, Separation Processes.

<b>Course Code</b>	Course/ Subject Name	Credits
CHDE8044	Department Elective IV: Polymer Technology	04

• Chemistry, physics, Chemical reaction engineering

## **Course Objectives:**

- To understand thermodynamics of polymer structure.
- To select polymerization reactor for a polymer product.
- To characterize polymers and state polymer additives, blends and composites.

#### **Course Outcomes:**

At the end of the course students will be able to

- Understand thermodynamics of polymer structure. .
- Student will identify various types of advance material in polymer, ceramics, & composites. Understand the properties of various polymeric, ceramic and metallic materials and their application in various fields.
- Select polymerization reactor for a polymer product
- Characterize polymers and state polymer additives, blends and composites.
- Student will have knowledge of different types of composite material, their properties and application
- After acquiring the knowledge in this subject, students become familiar with various aspects related to polymerization and can apply them for economic evaluation of chemical process and decide its feasibility

Module	Contents	Contact
		Hours
1	Introduction:	05
	Introduction and Classification of Polymers. Thermosets, Factors	
	influencing the polymer properties, Glass Transition Temperature	
	Monomers used for polymer synthesis, Thermoplastics, Linear	
	Branch, Cross Linked Polymers.	
	Addition and Condensation Polymerisation: Mechanism,	
	kinetics, synthesis and reactions.	
2	Natural Polymers:	12
	Chemical & Physical structure, properties, source, important	
	chemical modifications, applications of polymers such as cellulose,	
	lignin, starch, rosin, shellac, latexes, vegetable oils and gums,	
	proteins etc.	
	<b>Polymerization Techniques</b> : Bulk polymerization, Solution	
	polymerization, Emulsion polymerization and Suspension	
	polymerization, Interfacial Polymerization with their merits	
	Comparison of the various processes Advantages and	
	disadvantages.	
3	Molecular Weight and Molecular Weight Distribution:	08
	Molecular Weights, Polydispersity Index, Different Methods of	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 168

	determination of Molecular weight, Effect of Molecular weight on Engineering Properties of Polymers.	
	Co-Polymerization: Basic concept, Technical significance, steady	
	state assumptions in free radical copolymerization, The copolymer	
	equation, Instantaneous molar composition of copolymer formed; Monomer reactivity ratios; Significance and method of	
	determination, Types of copolymers.	
4	Polymerization Reactor:	06
	Polymerization reactors types and mode of operation,	
	Polymerization reactor design, control of polymerization, Post	
	polymerization unit operations and unit processes Polymer	
	Degradation.	
5	Polymer Processing:	08
	High Performance and Specialty Polymers, Polymer additives,	
	compounding. Fillers plastisizers lubricants colourants UV	
	stabilizers, fire retardants, antioxidants, Different moulding	
	methods of polymers. Injection moulding , blow moulding,	
	thermoforming, film blowing etc.	
6	Manufacturing Processes:	13
	Manufacturing of typical polymers with flow-sheet diagrams	
	properties & application: PE, PP, PS, Polyesters, Nylons, ABS,	
	PC,Teflon,Epoxy,Ureaformaldehyde,and poly Urathane.	
	Manufacturing of thermoset polymers such as Phenolic resins	

#### **Internal**

 Assessment consists of average of two tests which should be conducted at proper interval

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions to be solved
- Question no.1 will be compulsory and based on entire syllabus where in sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

#### References

- 1. Fried J R, Polymer Science and Technology, Prentice Hall of India Pvt. Ltd., New Delhi, Eastern Economy Edition, 2000.
- 2. PremamoyGhosh, Polymer Science and Technology, 3rd Edition, Tata Mc. Graw-Hill Publishing Company, New Delhi, 2010.
- 3. R. Sinha, Outlines of Polymer Technology: Manufacture of Polymers, Prentice Hall of India Pvt. Ltd., New Delhi, 2002.
- 4. Gowarikar V.R. et.al., Polymer Science Wiley Eastern 1984.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 169

- 5. Ghosh P, Polymer Science & Technology of Plastics & Rubbers Tata McGraw Hill, 1990.
- 6. Encyclopedia of Polymer Science & Engineering., Wiley 1988.
- 7. Rosen S.L. Fundamental Principles of Polymeric materials, 2nd e.d., John Wiley & Sons Inc, 1993
- 8. NiranjanKarak, Fundamentals of Polymers, PHI Learning Pvt. Ltd.

<b>Course Code</b>	Course Name	Credits
ILO8021	Institute Level Optional Subject II- Project	03
	Management	

## **Objectives**;

- To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

### **Outcomes:**

Learner will be able to...

- Apply selection criteria and select an appropriate project from different options.
- Write work break down structure for a project and develop a schedule based on it.
- Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- Use Earned value technique and determine & predict status of the project.
- Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Contact Hours
01	Project Management Foundation:	5
	Definition of a project, Project Vs Operations, Necessity of	
	project management, Triple constraints, Project life cycles	
	(typical & atypical) Project phases and stage gate process. Role	
	of project manager. Negotiations and resolving conflicts. Project	
	management in various organization structures. PM knowledge	
02	areas as per Project Management Institute (PMI).	
02	Initiating Projects:	6
	How to get a project started, Selecting project strategically,	
	Project selection models (Numeric /Scoring Models and Non-	
	numeric models), Project portfolio process, Project sponsor and	
	creating charter; Project proposal. Effective project team,	
	Stages of team development & growth (forming, storming,	
0.2	norming & performing), team dynamics.	
03	Project Planning and Scheduling:	8
	Work Breakdown structure (WBS) and linear responsibility	
	chart, Interface	
	Co-ordination and concurrent engineering, Project cost	
	estimation and budgeting, Top down and bottoms up budgeting,	
	Networking and Scheduling techniques. PERT, CPM, GANTT	
	chart. Introduction to Project Management Information System	
0.4	(PMIS).	
04	Planning Projects:	6
	Crashing project time, Resource loading and leveling,	

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 171

	Goldratt'scritical chain, Project Stakeholders and	
	Communication plan.	
	Risk Management in projects: Risk management planning, Risk	
	identification and risk register. Qualitative and quantitative risk	
	assessment, Probability and impact matrix. Risk response	
	strategies for positive and negative risks	
05	5.1 Executing Projects:	8
	Planning monitoring and controlling cycle. Information needs	
	and reporting, engaging with all stakeholders of the projects.	
	Team management, communication and project meetings.	
	5.2 Monitoring and Controlling Projects:	
	Earned Value Management techniques for measuring value of	
	work completed; Using milestones for measurement; change	
	requests and scope creep. Project audit.	
	5.3 Project Contracting	
	Project procurement management, contracting and outsourcing,	
06	6.1 Project Leadership and Ethics:	6
	Introduction to project leadership, ethics in projects.	
	Multicultural and virtual projects.	
	6.2 Closing the Project:	
	Customer acceptance; Reasons of project termination, Various	
	types of project terminations (Extinction, Addition, Integration,	
	Starvation), Process of project termination, completing a final	
	report; doing a lessons learned analysis; acknowledging	
	successes and failures; Project management templates and other	
	resources; Managing without authority; Areas of further study.	

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9th Ed.

<b>Course Code</b>	Course Name	Credits
ILO8022	Institute Level Optional Subject II- Finance	03
	Management	

# **Objectives:**

- Overview of Indian financial system, instruments and market
- Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- Knowledge about sources of finance, capital structure, dividend policy

### **Outcomes:**

Learner will be able to...

- Understand Indian finance system and corporate finance
- Take investment, finance as well as dividend decisions

Module	Detailed Contents	Contact Hours
01	Overview of Indian Financial System: Characteristics, Components and Functions of Financial System.  Financial Instruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills.  Financial Markets: Meaning, Characteristics and Classification of Financial Markets: Meaning, Characteristics and Classification	06
	of Financial Markets — Capital Market, Money Market and Foreign Currency Market  Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
02	Concepts of Returns and Risks: Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio.  Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding	06
03	and Continuous Discounting.  Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision,	09
	Financing Decision, and Dividend Decision.  Financial Ratio Analysis: Overview of Financial Statements— Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of	

	Ratio Analysis.						
04	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)  Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of	10					
05	Cash and Marketable Securities.  Sources of Finance: Long Term Sources—Equity, Debt, and	05					
US	Hybrids; Mezzanine Finance; Sources of Short Term Finance— Trade Credit, Bank Finance, Commercial Paper; Project Finance.  Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of Capital Structure Theories and Approaches— Net Income Approach, Net Operating Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	U5					
06	<b>Dividend Policy:</b> Meaning and Importance of Dividend Policy;						
	Factors Affecting an Entity's Dividend Decision; Overview of						
	Dividend Policy Theories and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach						

# **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

# References

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.

University of Mumbai B. E. (Chemical Engineering) Rev 2016 Page 174

- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

<b>Course Code</b>	Course Name	Credits
ILO8023	Institute Level Optional Subject II- Enterpreneurship	03
	<b>Development and Management</b>	

- To acquaint with entrepreneurship and management of business
- Understand Indian environment for entrepreneurship
- Idea of EDP, MSME

# **Outcomes:**

Learner will be able to...

- Understand the concept of business plan and ownerships
- Interpret key regulations and legal aspects of entrepreneurship in India
- Understand government policies for entrepreneurs

Module	<b>Detailed Contents</b>					
01	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	04				
02	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	09				
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05				
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	08				

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 176

05	Effective Management of Business: Issues and problems faced	08						
	by micro and small enterprises and effective management of M							
	and S enterprises (risk management, credit availability,							
	technology innovation, supply chain management, linkage with							
	large industries), exercises, e-Marketing							
06	Achieving Success In The Small Business: Stages of the small							
	business life cycle, four types of firm-level growth strategies,							
	Options – harvesting or closing small business Critical Success							
	factors of small business							

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGraw Hill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

<b>Course Code</b>	Course Name	Credits
ILO8024	Institute Level Optional Subject II- Human Resource	03
	Management	

- To introduce the students with basic concepts, techniques and practices of the human resource management.
- To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- To familiarize the students about the latest developments, trends & different aspects of HRM.
- To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

#### **Outcomes:**

Learner will be able to...

- Understand the concepts, aspects, techniques and practices of the human resource management.
- Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- Gain knowledge about the latest developments and trends in HRM.
- Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and intergroup environment emerging as future stable engineers and managers.

Module	Detailed Contents							
01	Introduction to HR							
	<ul> <li>Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions.</li> <li>Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues.</li> </ul>							
02	Organizational Behavior (OB)	7						
	<ul> <li>Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues</li> <li>Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness</li> </ul>							

_						
	• Perception: Attitude and Value, Effect of perception on					
	Individual Decision-making, Attitude and Behavior.					
	• Motivation: Theories of Motivation and their Applications					
	for Behavioral Change (Maslow, Herzberg, McGregor);					
	• Group Behavior and Group Dynamics: Work groups formal					
	and informal groups and stages of group development. Team					
	Effectiveness: High performing teams, Team Roles, cross					
	functional and self-directed team.					
	Case study					
03	Organizational Structure & Design	6				
	• Structure, size, technology, Environment of organization;	Ü				
	Organizational Roles & conflicts: Concept of roles; role					
	dynamics; role conflicts and stress.					
	<ul> <li>Leadership: Concepts and skills of leadership, Leadership and</li> </ul>					
	managerial roles, Leadership styles and contemporary issues					
	in leadership.					
	-					
	Power and Politics: Sources and uses of power; Politics at workplace. Testics and strategies.					
0.4	workplace, Tactics and strategies.	<i>E</i>				
04	Human resource Planning	5				
	• Recruitment and Selection process, Job-enrichment,					
	Empowerment - Job-Satisfaction, employee morale.					
	• Performance Appraisal Systems: Traditional & modern					
	methods, Performance Counseling, Career Planning.					
	• Training & Development: Identification of Training Needs,					
	Training Methods					
05	Emerging Trends in HR	6				
	• Organizational development; Business Process Re-					
	engineering (BPR), BPR as a tool for organizational					
	development, managing processes & transformation in HR.					
	Organizational Change, Culture, Environment					
	• Cross Cultural Leadership and Decision Making: Cross					
	Cultural Communication and diversity at work, Causes of					
	diversity, managing diversity with special reference to					
	handicapped, women and ageing people, intra company					
	cultural difference in employee motivation.					
06	HR & MIS	10				
	Need, purpose, objective and role of information system in HR,					
	Applications in HRD in various industries (e.g. manufacturing					
	R&D, Public Transport, Hospitals, Hotels and service industries					
	Strategic HRM					
	Role of Strategic HRM in the modern business world, Concept					
	of Strategy, Strategic Management Process, Approaches to					
	Strategic Decision Making; Strategic Intent – Corporate					
	Mission, Vision, Objectives and Goals					
	Labor Laws & Industrial Relations					

Evolution of IR, IR issues in organizations, Overview of Labor	i
Laws in India; Industrial Disputes Act, Trade Unions Act, Shops	
and Establishments Act	

# **Internal**

Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

<b>Course Code</b>	Course Name	Credits
ILO8025	Institute Level Optional Subject II- Professional Ethics	03
	and Corporat Social Responsibility (CSR)	

- To understand professional ethics in business
- To recognized corporate social responsibility

# **Outcomes:**

Learner will be able to...

- Understand rights and duties of business
- Distinguish different aspects of corporate social responsibility
- Demonstrate professional ethics
- Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Contact Hours						
01	<b>Professional Ethics and Business:</b> The Nature of Business	04						
	Ethics; Ethical Issues in Business; Moral Responsibility and							
	Blame; Utilitarianism: Weighing Social Costs and Benefits;							
	Rights and Duties of Business							
02	<b>Professional Ethics in the Marketplace:</b> Perfect Competition;	08						
	Monopoly Competition; Oligopolistic Competition; Oligopolies							
	and Public Policy							
	Professional Ethics and the Environment: Dimensions of							
	Pollution and Resource Depletion; Ethics of Pollution Control;							
0.2	Ethics of Conserving Depletable Resources	0.0						
03	Professional Ethics of Consumer Protection: Markets and	06						
	Consumer Protection; Contract View of Business Firm's Duties							
	to Consumers; Due Care Theory; Advertising Ethics; Consumer							
	Privacy <b>Professional Ethics of Job Discrimination:</b> Nature of Job							
	Discrimination; Extent of Discrimination; Reservation of Jobs.							
04	Introduction to Corporate Social Responsibility: Potential							
VŦ	Business Benefits—Triple bottom line, Human resources, Risk	05						
	management, Supplier relations; Criticisms and concerns—							
	Nature of business; Motives; Misdirection.							
	Trajectory of Corporate Social Responsibility in India							
05	Corporate Social Responsibility: Articulation of Gandhian	08						
	Trusteeship							
	Corporate Social Responsibility and Small and Medium							
	Enterprises (SMEs) in India, Corporate Social Responsibility							
	and Public-Private Partnership (PPP) in India							
06	Corporate Social Responsibility in Globalizing India:	08						
	Corporate Social Responsibility Voluntary Guidelines, 2009							
	issued by the Ministry of Corporate Affairs, Government of							

India,	Legal	Aspects	of	Corporate	Social	Responsibility—	
Compa	anies A	et, 2013.					

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

<b>Course Code</b>	Course Name	Credits
ILO8026	Institute Level Optional Subject II- Research	03
	Methodology	

- To understand Research and Research Process
- To acquaint students with identifying problems for research and develop research strategies
- To familiarize students with the techniques of data collection, analysis of data and interpretation

# **Outcomes:**

Learner will be able to...

- Prepare a preliminary research design for projects in their subject matter areas
- Accurately collect, analyze and report data
- Present complex data or situations clearly
- Review and analyze research findings

Module	<b>Detailed Contents</b>	Contact Hours
01	Introduction and Basic Research Concepts	09
	<b>1.1</b> Research – Definition; Concept of Construct, Postulate,	
	Proposition, Thesis, Hypothesis, Law, Principle. Research	
	methods vs Methodology	
	<b>1.2</b> Need of Research in Business and Social Sciences	
	<b>1.3</b> Objectives of Research	
	<b>1.4 Issues</b> and Problems in Research	
	1.5 Characteristics of Research: Systematic, Valid, Verifiable,	
	Empirical and Critical	
02	Types of Research	07
	<b>2.1</b> . Basic Research	
	<b>2.2</b> . Applied Research	
	<b>2.3.</b> Descriptive Research	
	<b>2.4.</b> Analytical Research	
	<b>2.5</b> . Empirical Research	
	<b>2.6</b> Qualitative and Quantitative Approaches	
03	Research Design and Sample Design	07
	<b>3.1</b> Research Design – Meaning, Types and Significance	
	<b>3.2</b> Sample Design – Meaning and Significance Essentials of a	
	good sampling Stages in Sample Design Sampling	
	methods/techniques Sampling Errors	
04	Research Methodology	08
	<b>4.1</b> Meaning of Research Methodology	
	<b>4.2</b> . Stages in Scientific Research Process:	
	a. Identification and Selection of Research Problem	
	<b>b.</b> Formulation of Research Problem	

	<b>c.</b> Review of Literature	
	<b>d.</b> Formulation of Hypothesis	
	e. Formulation of research Design	
	f. Sample Design	
	g. Data Collection	
	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
05	Formulating Research Problem	04
	<b>5.1</b> Considerations: Relevance, Interest, Data Availability, Choice	
	of data, Analysis of data, Generalization and Interpretation of	
	analysis	
06	Outcome of Research	04
	<b>6.1</b> Preparation of the report on conclusion reached	
	<b>6.2</b> Validity Testing & Ethical Issues	
	<b>6.3</b> Suggestions and Recommendation	

# **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

<b>Course Code</b>	Course Name	Credits
ILO8027	Institute Level Optional Subject II- IPR and Patenting	03

- To understand intellectual property rights protection system
- To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- To get acquaintance with Patent search and patent filing procedure and applications

# **Outcomes:**

Learner will be able to...

- understand Intellectual Property assets
- assist individuals and organizations in capacity building
- work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

ntroduction to Intellectual Property Rights (IPR): Meaning of PR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc.	05
Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc.	
Geographical indications, Transfer of technology etc.	
9 1	
-	
<u> </u>	
-	07
	U7
<u>-</u>	
Overview of IP laws in India, Indian IPR, Administrative	
Machinery, Major international treaties signed by India, Procedure	
or submitting patent and Enforcement of IPR at national level etc.	
<b>Emerging Issues in IPR:</b> Challenges for IP in digital economy, e-	05
•	
tc.	
	07
*	
<u> </u>	
	08
	Vo
•	
	mportance of IPR in Modern Global Economic Environment: heories of IPR, Philosophical aspects of IPR laws, Need for IPR, PR as an instrument of development Inforcement of Intellectual Property Rights: Introduction, lagnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International reganizations (e.g. WIPO, WTO) active in IPR enforcement Indian Scenario of IPR: Introduction, History of IPR in India, verview of IP laws in India, Indian IPR, Administrative lachinery, Major international treaties signed by India, Procedure or submitting patent and Enforcement of IPR at national level etc. International IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IP in digital economy, e- merging Issues in IPR: Challenges for IPR: Introduction, IPR:

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 185

	convention etc.)	
06	Procedure for Filing a Patent (National and International):	07
	Legislation and Salient Features, Patent Search, Drafting and	
	Filing Patent Applications, Processing of patent, Patent Litigation,	
	Patent Publication etc, Time frame and cost, Patent Licensing,	
	Patent Infringement	
	Patent databases: Important websites, Searching international	
	databases	

# **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph&Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. LousHarns, 2012, The enforcement of Intellectual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohdIqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting,

- Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

<b>Course Code</b>	Course Name	Credits
ILO8028	Institute Level Optional Subject II - Digital Business	03
	Management	

- To familiarize with digital business concept
- To acquaint with E-commerce
- To give insights into E-business and its strategies

# **Outcomes:**

The learner will be able to .....

- Identify drivers of digital business
- Illustrate various approaches and techniques for E-business and management
- Prepare E-business plan

Module	Detailed content	Contact Hours
1	Introduction to Digital Business-	09
1	Introduction, Background and current status, E-market places,	0,5
	structures, mechanisms, economics and impacts. Difference	
	between physical economy and digital economy.	
	<b>Drivers of digital business</b> - Big Data & Analytics, Mobile, Cloud	
	Computing, Social media, BYOD, and Internet of Things (digitally	
	intelligent machines/services). Opportunities and Challenges in	
	Digital Business,	
2	Overview of E-Commerce	06
4	E-Commerce- Meaning, Retailing in e-commerce-products and	00
	services, consumer behavior, market research and advertisement.	
	B2B-E-commerce-selling and buying in private e-markets, public	
	B2B exchanges and support services, e-supply chains,	
	Collaborative Commerce, Intra business EC and Corporate portals.	
	ther E-C models and applications, innovative EC System-From E-	
	government and learning to C2C, mobile commerce and pervasive	
	computing. EC Strategy and Implementation-EC strategy and	
	global EC, Economics and Justification of EC, Using Affiliate	
	marketing to promote your e-commerce business, Launching a	
	successful online business and EC project, Legal, Ethics and	
	Societal impacts of EC.	
3	<b>Digital Business Support services</b> : ERP as e –business	06
	backbone, knowledge Tope Apps, Information and referral system	
	<b>Application Development:</b> Building Digital business	
	Applications and Infrastructure	
4	Managing E-Business-Managing Knowledge, Management skills	06
•	for e-business, Managing Risks in e –business. Security Threats to	
	e-business -Security Overview, Electronic commerce Threats,	
	Encryption, Cryptography, Public Key and Private Key	
l		l

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

Page 188

	Cryptography, Digital signatures, Digital Certificates, Security	
	Protocols over Public Networks: HTTP, SSL, Firewall as Security	
	Control, Public Key Infrastructure (PKI) for Security, Prominent	
	Cryptographic Applications	
5	E-Business Strategy-E-business Strategic formulation- Analysis	04
	of Company's Internal and external environment, Selection of	
	strategy, E-business strategy into Action, challenges and E-	
	Transition(Process of Digital Transformation)	
6	Materializing e-business: From Idea to Realization-Business	08
	plan preparation.	
	Case Studies and presentations	

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:<u>10.1787/9789264221796-en</u>OECD Publishing

<b>Course Code</b>	Course Name	Credits
ILO8029	Institute Level Optional Subject II- Environmental	03
	Management	

- Understand and identify environmental issues relevant to India and global concerns
- Learn concepts of ecology
- Familiarise environment related legislations

# **Outcomes:**

Learner will be able to...

- Understand the concept of environmental management
- Understand ecosystem and interdependence, food chain etc.
- Understand and interpret environment related legislations

Module	Detailed Contents	Contact Hours
01	Introduction and Definition of Environment: Significance of	10
	Environment Management for contemporary managers, Career opportunities.	
	Environmental issues relevant to India, Sustainable	
	Development, and The Energy scenario.	
02	Global Environmental concerns: Global Warming, Acid Rain,	06
	Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters,	
	Atomic/Biomedical hazards, etc.	
03	Concepts of Ecology: Ecosystems and interdependence between	05
	living organisms, habitats, limiting factors, carrying capacity,	
	food chain, etc.	
04	Scope of Environment Management, Role & functions of	10
	Government as a planning and regulating agency.	
	Environment Quality Management and Corporate Environmental	
	Responsibility	
05	Total Quality Environmental Management, ISO-14000, EMS	05
	certification.	
06	General overview of major legislations like Environment	03
	Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife	
	Protection Act, Forest Act, Factories Act, etc.	

#### Assessment

# **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

• Question paper will comprise of 6 questions each carrying 20 questions.

University of Mumbai

B. E. (Chemical Engineering)

Rev 2016

- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vvasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

<b>Course Code</b>	Course Name	Credits
CHP801	Project-B	06

# **Guidelines:**

- Project groups: Students can form groups with minimum two and not more than 3 (three).
- Students should spend considerable time in applying all the concepts studied, into the Project, hence, eight hours each are allotted in project A and B to the students.
- Students are advised to take up industrial/ experimental/ simulation and/or optimization based topics for their project
- Students should report their guides weekly with work.

# **Exam Guidelines**

# Term Work - 100 Marks:

- Presentation 50 Marks
- Report -50 Marks

Oral – 50 Marks

<b>Course Code</b>	Course Name	Credits
CHL801	Chemical Engineering Lab XI (MSO)	1

# **Concept of Experiment:**

Students should be able to simulate process models using computer program or mathematical and chemical engineering software such as COCOO/DWSIM/Unisim,/CWsim,/Chem CAD,/Hysys/ Aspen Plus / or any simulator.

Minimum TEN experiments must be performed.

- Simulation of pipe and pump network flows
- Simulation of linear and non linear systems
- Simulation of mass transfer processes like distillation, Absorption
- Simulation of Heat Transfer Process like Shell and tube heat exchanger
- Simulation of chemical reactor like batch, Semibatch, Continuous reactor
- Simulation of Multicomponent flash calculation for ideal and non ideal system
- Simulation of flow sheet calculation (Any chemical manufacturing process)
- Optimisation of chemical processes.

## Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks
Attendance: 05 marks
Total: 25 marks

# **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.



# THADOMAL SHAHANI ENGINEERING COLLEGE

# Biomedical Engineering

Sr. No.	Subject Code	Subject Name	Count
1	BML301	Human Anatomy and Physiology for Engineers (HAPE)	1
2	BML302	Medical Sensors Lab	1
3	BML303	Electronic Circuits Analysis and Design Lab	1
4	BML304	Electronics Lab (SBL)	1
5	BMM301	Mini Project – 1 A	1
6	BML401	Integrated Circuit Design Lab	1
7	BML402	Principles of Control Systems Lab	1
8	BML403	Medical Imaging – I Lab	1
9	BML404	Computing Lab (SBL)	1
10	BMM401	Mini Project – 1 B	1
11	BML501	Business Communication and Ethics	1
12	BML502	Diagnostic and Therapeutic Instruments	1
13	BML503	Integrated and Communication Circuit Design	1
14	BML504	Biomedical Digital Signal Processing	1
15	BMDLL501X	Department Level Optional Course Laboratory – I	1
16	BML601	Biomedical Monitoring Equipment	1
17	BML602	Microprocessors and Microcontrollers	1
18	BML603	Digital Image Processing	1
19	BML604	Medical Imaging-I	1
20	BMDLL602X	Department Level Optional Course Laboratory – II	1
21	BML701	Life Saving and Surgical Equipment	1
22	BML702	Basics of VLSI	1
23	BML703	Medical Imaging-II	1
24	BMDLL 703X	Department Level Optional Course Laboratory – III	1
25	BML704	BML704	1
26	BML801	Biomedical Microsystems	1
27	BML802	Hospital Management	1
28	BMDLL804X	Department Level Optional Course Laboratory – IV	1
29	BML803	Project Stage II	1
		Total	29

AC: 23/07/2020

Item No.: <u>139</u>

# **UNIVERSITY OF MUMBAI**



# **Bachelor of Engineering**

in

# **Biomedical Engineering**

Second Year with Effect from AY 2020-21

Third Year with Effect from AY 2021-22

Final Year with Effect from AY 2022-23

(REV- 2019 'C' Scheme) from Academic Year 2019 – 20

Under

# FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

AC: <u>23/07/2020</u> Item No.: <u>139</u>



# **Syllabus for Approval**

Sr. No.	Heading	Particulars
1	Title of the Course	Second Year B.E. Biomedical Engineering
2	Eligibility for Admission	After Passing First Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	Ordinances / Regulations ( if any)	Ordinance 0.6242
5	No. of Years / Semesters	8 semesters
6	Level	P.G. / U.G./-Diploma / Certificate (Strike out which is not applicable)
7	Pattern	Yearly / Semester (Strike out which is not applicable )
8	Status	New / Revised (Strike out which is not applicable)
9	To be implemented from Academic Year	With effect from Academic Year: 2020-2021

Date

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

3

**Preamble** 

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be

addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of

quality assurance in higher education. The major emphasis of accreditation process is to measure the

outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in

particular Engineering)of University of Mumbai has taken a lead in incorporating philosophy of outcome

based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so

that all faculty members in affiliated institutes understand the depth and approach of course to be taught,

which will enhance learner's learning process. Choice based Credit and grading system enables a much-

required shift in focus from teacher-centric to learner-centric education since the workload estimated is

based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation

which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching

learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be

utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and

knowledge across various domains of the said program, which led to heavily loading of students in terms

of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of

contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but

also on building skills, attitude and self learning. Therefore in the present curriculum skill based laboratories and mini

projects are made mandatory across all disciplines of engineering in second and third year of programs, which will

definitely facilitate self learning of students. The overall credits and approach of curriculum proposed in the present

revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-

21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic

years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande

**Associate Dean** 

**Faculty of Science and Technology** 

Member, Academic Council, RRC in Engineering

**University of Mumbai** 

University of Mumbai, Biomedical Engineering, Rev 2020-21

4

Incorporation and implementation of Online Contents from

NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project

based activities. Self learning opportunities are provided to learners. In the revision process this time in

particular Revised syllabus of 'C' scheme wherever possible additional resource links of platforms such

as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and

2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more

appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are

reduced to 171, to provide opportunity of self learning to learner. Learners are now getting sufficient time

for self learning either through online courses or additional projects for enhancing their knowledge and

skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use

additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to

take up online courses, on successful completion they are required to submit certification for the same. This

will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande

Associate Dean

**Faculty of Science and Technology** 

Member, Academic Council, RRC in Engineering

**University of Mumbai** 

University of Mumbai, Biomedical Engineering, Rev 2020-21

# **Preface By BoS**

Engineering is an innovative field, the origin of ideas leading to everything from automobile to aerospace, skyscrapers to sonar. **Biomedical Engineering** focuses on the advances that improve human health and health care at all levels. Biomedical engineering is an interdisciplinary field with application of the principles of Basic Sciences, Mathematics, Engineering fundamentals and Biology for problem-solving.

The curriculum is designed to meet the challenges by include new age courses on Machine Learning, Artificial Intelligence, Data Analytics and other emerging technologies, dismantling the walls between engineering and scientific disciplines. The key to generate a new paradigm shift for careers in Biomedical Engineering for the next generation of talented minds lies in imparting high-quality education in Engineering.

Every course in the curriculum lists the course objectives and course outcomes for the learners to understand the skills that the learner will acquire after completing that course. Program outcomes are the skills and knowledge that a student will acquire during the course of four years of this engineering program. In line with this, Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Biomedical Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for undergraduate program were thoughtfully framed by faculty members from different affiliated institutes of the university. They are Heads of Departments and senior representatives from the Department of Biomedical Engineering.

The Program Educational Objectives for the undergraduate program in Biomedical engineering are listed below:

- 1. To prepare the learner with a sound foundation in the Human Physiology, Mathematics, Electronics, Computer Programming and engineering fundamentals.
- 2. To motivate the learner for self-learning, logical & analytical thinking and use of modern tools for solving real life problems.
- 3. To impart technical knowledge, competency skills, professional and ethical attitude, good leadership qualities to contribute in the field of healthcare.
- 4. To prepare the Learner for a successful career in healthcare industry such as sales & marketing, research & development, hospital administration and also to venture into higher education and entrepreneurship.

# **Board of Studies in Biomedical Engineering**

Dr. Manali J. Godse: Chairman Dr. Prem C. Pandey: Member Dr. Mita Bhowmick: Member Dr. Mrunal R. Rane: Member Dr. Vaibhavi A. Sonetha: Member

# Program Structure for Second Year Engineering Semester III & IV

# **UNIVERSITY OF MUMBAI**

(With Effect from 2020-2021)

# **Semester III**

			<u>Se</u> me	ster 1	11				
Course	Course Name			g Schen t Hour			Credits .	Assigned	
Code		Theor	y Pr	act.	Tut.	Theory	Pract.	Tut.	Total
BMC301	Engineering Mathematics - III	3	-		1	3		1	4
BMC302	Human Anatomy and Physiology for Engineers	3				3			3
BMC303	Medical Sensors	3	-			3			3
BMC304	Electronic Circuits Analysis and Design	4	-			4			4
BMC305	Digital Electronics	3				3			3
BML301	Human Anatomy and Physiology for Engineers Lab			2			1		1
BML302	Medical Sensors Lab			2			1		1
BML303	Electronic Circuits Analysis and Design Lab			2			1		1
BML304	Electronics Lab (SBL)			4			2		2
BMM301	Mini Project – 1 A		2	<b>4</b> \$			2		2
	Total	16	1	14	1	16	07	1	24
			•	•	Exa	mination So	cheme		
<b>C</b>				The	ory	<del>-</del>			
Course Code	Course Name		Interna	Hin		End Exam.		Pract/	Total
Coue		Test	ssessmo Test		Sem.		Work	oral	Total
		1	2	Avg.	Exam	(in Hrs)			
BMC301	Engineering Mathematics - III	20	20	20	80	3	25		125
BMC302	Human Anatomy and Physiology for Engineers	20	20	20	80	3			100
BMC303	Medical Sensors	20	20	20	80	3			100
BMC304	Electronic Circuits Analysis and Design	20	20	20	80	3			100
BMC305	Digital Electronics	20	20	20	80	3			100
BML301	Human Anatomy and Physiology for Engineers Lab						25		25
BML302	Medical Sensors Lab						25	25	50
BML303	Electronic Circuits Analysis and Design Lab						25	25	50
BML304	Electronics Lab (SBL)						25	25	50
DIVILISOT	,								
BMM301	Mini Project – 1 A						25		25

^{\$} indicates work load of Learner (Not Faculty), for Mini Project - 1 A.

Total

150

75

725

Faculty Load: 1 hour per week per 4 mini project groups.

# Program Structure for Second Year Engineering UNIVERSITY OF MUMBAI

(With Effect from 2020-2021)

# **Semester IV**

Course	Course Name			Schem Hours		Credits Assigned				
Code	Course Name	Theor y	Prac	et. T	Γut.	Theory	]	Pract.	Tut.	Total
BMC401	Engineering Mathematics - IV	3			1	3			1	4
BMC402	Integrated Circuit Design	3				3				3
BMC403	Principles of Control Systems	3				3				3
BMC404	Medical Imaging – I	3				3				3
BMC405	Biomaterials and Artificial Organs	3				3				3
BML401	Integrated Circuit Design Lab		2					1		1
BML402	Principles of Control Systems Lab		2					1		1
BML403	Medical Imaging – I Lab		2					1		1
BML404	Computing Lab (SBL)		4					2		2
BMM401	Mini Project – 1 B <b>Total</b>	4 ^{\$}							2	
	15	14		1	15		7	1	23	
Course Code	Course Name				End	End Exam. Sem. Duration		Term Work	Pract/	Total
		Test 1	Test 2	Avg.	Exam					
BMC401	Engineering Mathematics - IV	20	20	20	80	3		25		125
BMC402	Integrated Circuit Design	20	20	20	80	3				100
BMC403	Principles of Control Systems	20	20	20	80	3				100
BMC404	Medical Imaging – I	20	20	20	80	3				100
BMC405	Biomaterials and Artificial Organs	20	20	20	80	3				100
BML401	Integrated Circuit Design Lab							25	25	50
BML402	Principles of Control Systems Lab							25		25
BML403	Medical Imaging – I Lab							25	25	50
BML404	Computing Lab (SBL)							25	25	50
BMM401   Mini Project – 1 B					25	25	50			
	Total			100	400			150	100	750

\$ indicates work load of Learner (Not Faculty), for Mini Project - 1 B.

# Semester – III

Course	Course Name		g Scheme	Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
BMC301	Engineering Mathematics-III	03	-	01	03	-	01	04

		Examination Scheme									
			Tì	neory							
Course	Course Name	Inter	Internal Assessment								
Code	Course runne	Test1	Test2	Avg of Test 1 & 2	End Sem Exam	Term Work	Pract	Oral	Total		
BMC301	Engineering Mathematics-III	20	20	20	80	25	-	-	125		

**Pre-requisite:** Engineering Mathematics-I, Engineering Mathematics-II, Scalar and Vector Product: Scalar and Vector product of three and four vectors.

<b>Course Code</b>	Course Name	Credits
BMC301	Engineering Mathematics - III	04
Course Objectives	<ul> <li>To familiarize with the Laplace Transform, Inverse Laplace of various functions, and its applications.</li> <li>To acquaint with the concept of Fourier Series, its complex enhance the problem solving skills</li> <li>To familiarize the concept of complex variables, C-R harmonic functions, its conjugate and mapping in complex pl</li> <li>To understand the basics of Linear Algebra and its application</li> <li>To use concepts of vector calculus to analyze and model en problems.</li> </ul>	form and equations, ane.
Course Outcomes	<ul> <li>On successful completion of course learner will be able to:</li> <li>Apply the concept of Laplace transform to solve the real ir engineering problems.</li> <li>Apply the concept of inverse Laplace transform of various fur engineering problems.</li> <li>Expand the periodic function by using Fourier series for problems and complex engineering problems.</li> <li>Find orthogonal trajectories and analytic function by using concepts of complex variables.</li> <li>Illustrate the use of matrix algebra to solve the engineering proposed apply the concepts of vector calculus in real life problems.</li> </ul>	r real life

1.1 Definition of Laplace transform 1.2 Laplace Transform (L.) of standard functions like e ^{at} , sin(at), cos(at), sinh(at), cosh(at) and t ⁿ , n ≥ 0.  1.3 Properties of Laplace Transform: Linearity, First Shifting Theorem, Second Shifting Theorem, Change of Scale Property, Multiplication by t, Division by t, Laplace Transform derivatives and integrals (Properties without proof).  1.4 Evaluation of integrals by using Laplace Transformetony.  Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirace Delta Function.  Module: Inverse Laplace Transform  2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform using derivatives.  3.2 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2ℓ.  3.3 Sourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)/Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof), 4.1 Milne-Thomson method to determine analytic function f(z) when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard	Module	Detailed Contents	Hrs.				
1.2 Laplace Transform (L) of standard functions like e ^{αl} , sin(at), cos(at), sinh(at), cosh(at) and t ⁿ , n ≥ 0.  1.3 Properties of Laplace Transform: Linearity, First Shifting Theorem, Second Shifting Theorem, Change of Scale Property, Multiplication by t, Division by t, Laplace Transform derivatives and integrals (Poperties without proof).  1.4 Evaluation of integrals by using Laplace Transformation.  Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.  Module: Inverse Laplace Transform  2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform.  6 2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z) Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z) when real part (u) or Imaginary part (v) or its combination (u) v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points		Module: Laplace Transform					
1.3 Properties of Laplace Transform: Linearity, First Shifting Theorem, Second Shifting Theorem, Change of Scale Property, Multiplication by t, Division by t, Laplace Transform of derivatives and integrals (Properties without proof).  1.4 Evaluation of integrals by using Laplace Transformation.  Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.  Module: Inverse Laplace Transform  2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2. Partial fractions method to find inverse Laplace Transform (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation become Without proof), Examples based on verification of Cayley-Hamilton theorem Mikhout proof. Examples based on verification of Cayley-Ham							
1.3 Properties of Laplace Transform: Linearity, First Shifting Theorem, Change of Scale Property, Multiplication by t, Division by t, Laplace Transform of derivatives and integrals (Properties without proof).  1.4 Evaluation of integrals by using Laplace Transformation.  Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.  Module: Inverse Laplace Transform  2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform using derivatives.  3.1 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Pourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variables:  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z) when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors, Without Proof),  5.2 Cayley-Hamilton theorem (Without proof), E							
Theorem, Change of Scale Property, Multiplication by t, Division by t, Laplace Transform of derivatives and integrals (Properties without proof).  1.4 Evaluation of integrals by using Laplace Transformation.  Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.  Module: Inverse Laplace Transform  2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  02 2.2 Partial fractions method to find inverse Laplace Transform.  6 2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z) Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z) when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors, Without Proof),  5.2 Cayley-Hamilton theorem (Without proof), Exampl							
Transform of derivatives and integrals (Properties without proof).  1.4 Evaluation of integrals by using Laplace Transformation.  Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.  Module: Inverse Laplace Transform  2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform using derivatives.  3.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function /(2) of complex variable, limit, continuity and differentiability of f.2) Analytic function, necessary and sufficient conditions for f/t2) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Miline-Thomson method to determine analytic function f(2)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors (Without Proof).  5.2 Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similar							
1.4 Evaluation of integrals by using Laplace Transformation.  Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.  Module: Inverse Laplace Transform  2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform using derivatives.  3.2 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions, Fourier Transform.  Module: Complex Variables:  4.1 Function / (2) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors (Without Proof).  5.2 Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Mat	01		7				
Self-learning Topics: Heaviside's Unit Step function, Laplace Transform of Periodic functions, Dirac Delta Function.  Module: Inverse Laplace Transform.  2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform using derivatives.  2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+ v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Bigen values and Bigen vectors, Without Proof).  5.2 Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Punctions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithm							
functions, Dirac Delta Function.  Module: Inverse Laplace Transform 2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform using derivatives.  2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series: 3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof). 3.2 Fourier series of periodic function with period 2π and 2l. 3.3 Fourier series of even and odd functions.  7 3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables: 4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof). 4.2 Cauchy-Riemann equations in cartesian coordinates (without proof). 4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors (Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  Self-learning Topics: Opigonalization of matrices, Functions of square matrix.  Self-learning Topics: Application and Integral		1.4 Evaluation of integrals by using Laplace Transformation.					
functions, Dirac Delta Function.  Module: Inverse Laplace Transform 2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform using derivatives.  2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series: 3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof). 3.2 Fourier series of periodic function with period 2π and 2l. 3.3 Fourier series of even and odd functions.  7 3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables: 4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof). 4.2 Cauchy-Riemann equations in cartesian coordinates (without proof). 4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors (Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  Self-learning Topics: Opigonalization of matrices, Functions of square matrix.  Self-learning Topics: Application and Integral		Salf learning Teniege Heaviside's Unit Stan function Lenlege Transform of Pariodic					
Module: Inverse Laplace Transform   2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, Inding Inverse Laplace Transform using derivatives.   2.2 Partial fractions method to find inverse Laplace Transform.   6							
2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform.  3.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors (Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		, ,					
find inverse Laplace Transform, finding Inverse Laplace Transform using derivatives.  2.2 Partial fractions method to find inverse Laplace Transform.  2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z) Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors. (Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.		_					
derivatives.  2.2 Partial fractions method to find inverse Laplace Transform.  2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof),  3.2 Fourier series of periodic function with period 2π and 2l.  03 3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z) when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors, (Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.							
2.2 Partial fractions method to find inverse Laplace Transform.  2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  03 3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z) Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z) when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors, (Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.							
2.3 Inverse Laplace Transform using Convolution theorem (without proof).  Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function /(z) of complex variable, limit, continuity and differentiability of f(z) Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors (Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.	02		6				
Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations.  Module: Fourier Series:  3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors, Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.	02	-	0				
involving ordinary differential equations.  Module: Fourier Series: 3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof). 3.2 Fourier series of periodic function with period 2π and 2l. 3.3 Fourier series of even and odd functions. 3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables: 4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof). 4.2 Cauchy-Riemann equations in cartesian coordinates (without proof). 4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors. (Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		2.3 Inverse Laplace Transform using Convolution theorem (without proof).					
involving ordinary differential equations.  Module: Fourier Series: 3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof). 3.2 Fourier series of periodic function with period 2π and 2l. 3.3 Fourier series of even and odd functions. 3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables: 4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof). 4.2 Cauchy-Riemann equations in cartesian coordinates (without proof). 4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors. (Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral							
<ul> <li>Module: Fourier Series:         <ul> <li>3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).</li> <li>3.2 Fourier series of periodic function with period 2π and 2l.</li> </ul> </li> <li>3.3 Fourier series of even and odd functions.</li> <li>3.4 Half range Sine and Cosine Series.</li> <li>Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.</li> <li>Module: Complex Variables:         <ul> <li>4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).</li> <li>4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).</li> <li>4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.</li> <li>4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.</li> </ul> </li> <li>Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.</li> <li>Module: Linear Algebra: Matrix Theory</li> <li>5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors, (Without Proof).</li> <li>5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem (Without proof), Examples based on verification of Similarity of matrices, Diagonalization of matrices, Functions of square matrix.</li> <li>Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.</li> </ul> <li>Module: Vector Differentiation and Integral</li>							
3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity (without proof).  3.2 Fourier series of periodic function with period 2π and 2l.  3.3 Fourier series of even and odd functions.  3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z) Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z) when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors, Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem (Without proof), Examples based on verification of Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.							
<ul> <li>(without proof).</li> <li>3.2 Fourier series of periodic function with period 2π and 2l.</li> <li>3.3 Fourier series of even and odd functions.</li> <li>3.4 Half range Sine and Cosine Series.</li> <li>Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.</li> <li>Module: Complex Variables: <ul> <li>4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).</li> <li>4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).</li> <li>4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.</li> <li>4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.</li> </ul> </li> <li>Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.</li> <li>Module: Linear Algebra: Matrix Theory</li> <li>5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors (Without Proof).</li> <li>5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem (Without proof), Examples based on verification of Gayley- Hamilton theorem (Mithout proof), Examples based on verification of Cayley- Hamilton theorem (Mithout proof), Examples based on verification of Gayley- Hamilton theorem and compute inverse of Matrix.</li> <li>5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.</li> </ul> <li>Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.</li>							
3.2 Fourier series of periodic function with period 2π and 2l. 3.3 Fourier series of even and odd functions. 3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables: 4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof). 4.2 Cauchy-Riemann equations in cartesian coordinates (without proof). 4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.		•					
3.3 Fourier series of even and odd functions. 3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables: 4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors. (Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.							
3.4 Half range Sine and Cosine Series.  Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley-Hamilton theorem and compute inverse of Matrix.  6  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.	03		7				
Self-learning Topics: Complex form of Fourier Series, Orthogonal and orthonormal set of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z) Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.			,				
of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.							
of functions. Fourier Transform.  Module: Complex Variables:  4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.		<b>Self-learning Topics:</b> Complex form of Fourier Series, Orthogonal and orthonormal set					
4.1 Function f(z) of complex variable, limit, continuity and differentiability of f(z)Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.							
f(z) Analytic function, necessary and sufficient conditions for f(z) to be analytic (without proof).  4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).  4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.		Module: Complex Variables:					
analytic (without proof). 4.2 Cauchy-Riemann equations in cartesian coordinates (without proof). 4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix. 5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		4.1 Function <i>f</i> (z) of complex variable, limit, continuity and differentiability of					
4.2 Cauchy-Riemann equations in cartesian coordinates (without proof). 4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix. 5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		f(z)Analytic function, necessary and sufficient conditions for $f(z)$ to be					
4.3 Milne-Thomson method to determine analytic function f(z)when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given. 4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix. 5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral							
(u) or Imaginary part (v) or its combination (u+v or u-v) is given.  4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		4.2 Cauchy-Riemann equations in cartesian coordinates (without proof).					
4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.  Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.	04		7				
Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations.  Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix. 5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral							
module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors. (Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories.					
module: Linear Algebra: Matrix Theory  5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors. (Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral							
Module: Linear Algebra: Matrix Theory 5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix. 5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral							
5.1 Characteristic equation, Eigen values and Eigen vectors, Example based on properties of Eigen values and Eigen vectors.(Without Proof). 5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix. 5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		A					
properties of Eigen values and Eigen vectors.(Without Proof).  5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		· ·					
5.2 Cayley-Hamilton theorem (Without proof), Examples based on verification of Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral							
Cayley- Hamilton theorem and compute inverse of Matrix.  5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral							
5.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.  Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral	05		6				
Self-learning Topics: Application of Matrix Theory in machine learning and google page rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral	U5	* *	O				
rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		3.3 Similarity of matrices, Diagonalization of matrices, Functions of square matrix.					
rank algorithms, derogatory and non-derogatory matrices.  Module: Vector Differentiation and Integral		Self-learning Tonics: Application of Matrix Theory in machine learning and google page					
Module: Vector Differentiation and Integral							
		· · · · · · · · · · · · · · · · · · ·					
	06		6				

Proof).

- 6.2 **Properties of vector field:** Solenoidal and Irrotational (conservative) vector fields.
- 6.3 **Vector integral:** Line Integral, Green's theorem in a plane (Without Proof), Stokes' theorem (Without Proof) only evaluation.

**Self-learning Topics:** Gauss' divergence Theorem and applications of Vector calculus.

# Term Work:

General Instructions:

- 1. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 2. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of marks for term work shall be as follows:

Class Tutorials on entire syllabus : 10 Marks Mini project : 10 Marks Attendance (Theory and Tutorial) : 5 Marks

# **Assessment:**

## **Internal Assessment Test:**

Assessment consists of two class tests of 20 marks each. The first-class test (Internal Assessment I) is to be conducted when approximately 40% syllabus is completed and second class test (Internal Assessment II) when additional 35% syllabus is completed. Duration of each test shall be one hour.

# **End Semester Theory Examination:**

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein 4 sub-questions of 5 marks each will be asked.
- 4. Remaining questions will be randomly selected from all the modules.
- 5. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

# **References:-**

- 1. Advanced engineering mathematics, H.K. Das, S.Chand, Publications
- 2. Higher Engineering Mathematics, B. V. Ramana, Tata Mc-Graw Hill Publication
- 3. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication
- 4. Advanced Engineering Mathematics, Wylie and Barret, Tata Mc-Graw Hill.
- 5. Theory and Problems of Fourier Analysis with applications to BVP, Murray Spiegel, Schaum's Outline Series
- 6. Vector Analysis Murry R. Spiegel, Schaum's outline series, Mc-Graw Hill Publication
- 7. Beginning Linear Algebra, Seymour Lipschutz, Schaum's outline series, Mc-Graw Hill Publication
- 8. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication

Course Code	Course Name	Tea	nching scher	ne	Credit assigned				
	<b>Human Anatomy</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC302	and Physiology for Engineers (Abbreviated as HAPE)	03			03			03	

					F	Examinat	ion Scher	ne			
Course	Course								Pract.	Total	
Code	Name	Intern	ternal Assessment		End	Dura	Term	Pract.			Oral
	- 100	Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral	
BMC302	Human Anatomy and Physiology for Engineers (Abbreviat ed as HAPE)	20	20	20	80	03					100

Course Code	Course Name	Credits
BMC302	Human Anatomy and Physiology for Engineers	03
Course Objectives	<ul> <li>To understand the anatomical structures of the human bo relationship to each other.</li> <li>To understand the different physiological processes taking pla human body.</li> </ul>	•
Course Outcomes	<ul> <li>Learners will be able to:</li> <li>Explain the organization of the human body, homeostasis and its structure and functions of a cell and basic tissues.</li> <li>Explain the components of blood and their functions.</li> <li>Explain the anatomical parts and physiological processes of the c system and respiratory system.</li> <li>Explain the anatomical parts and physiological processes of the system and renal system.</li> <li>Explain the structure and functions of nervous system, eye and shade the secretions and functions of all endocrine glands.</li> </ul>	cardiovascular

Module	Contents	Hours
1.	<ul> <li>Introduction to the Human Body: Levels of structural organization; Characteristics of living human organism; Homeostasis and its maintenance.</li> <li>Cells and Tissues: Structure and functions of a cell; Transport across the plasma membrane; membrane potentials; Tissues: epithelial, connective, muscle and nervous.</li> </ul>	04
2.	Cardiovascular System: Anatomy of the heart; Heart valves, systemic and pulmonary circulation; Conduction system of the heart; Cardiac action potential, electrocardiogram (ECG); Cardiac cycle; Cardiac output; Blood pressure.	10
	<b>Respiratory System:</b> Anatomy of respiratory system; Pulmonary ventilation, lung volumes and capacities; Gas laws - Dalton's law and Henry's law, external respiration, internal respiration.	
3.	<b>Blood:</b> Composition of Blood, blood cells and their functions, haemoglobin; Blood Grouping; Haemostasis.	04
4.	<b>Alimentary System:</b> Anatomy of the alimentary system; Secretions of different organs of the alimentary system and their main functions.	10
	<b>Renal System:</b> Anatomy of the renal system; Functions of kidney (urine formation, electrolyte balance and $pH$ balance); composition of urine; Micturition.	
5.	<b>Nervous System:</b> Divisions of the nervous system (central and peripheral nervous system); Structure and functions of the brain and spinal cord; Reflex actions and reflex arc; Functions of sympathetic and parasympathetic nervous system; Nerve action potential and nerve conduction.	05
6.	Special Senses: Structure of the eye; Physiology of vision; Structure and functions of the skin.  Endocrine System: All Glands of the endocrine system, their secretions and functions.	06

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Books Recommended:**

# **Text books:**

- 1. Anatomy and Physiology in Health and Illness: Ross and Wilson. (ELBS Publication)
- 2. Essentials of Anatomy and Physiology: Elaine N Marieb. (Pearson Education)

# **Reference Books:**

- 1. Physiology of Human Body: Guyton. (Prism Book)
- 2. Review of Medical Physiology: William Ganong. (Prentice Hall Int.)
- 3. Principles of Anatomy and Physiology: Tortora and Grabowski. (Harper collin Pub.)
- 4. Anatomy and Physiology: Elaine N Marieb. (Pearson Education)

# **NPTEL/Swayam Course:**

Course: Animal Physiology by Prof. Mainak Das - IIT Kanpur

https://nptel.ac.in/courses/102/104/102104058/ https://swayam.gov.in/nd1_noc20_bt42/preview

# **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.

- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	aching sch	eme	Credit assigned			
BMC303	Medical Sensors (Abbreviated as MS)	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		03			03			03

Course Code	Course Name	Examination Scheme										
		Theory										
		Internal Assessment			End	Dur-	Term	Pract.	Oral	Pract.	Total	
		Test 1	Test 2	Avg.	sem	ation (hrs)	work	rract.	Orai	/ Oral	Total	
BMC303	Medical Sensors (Abbreviat ed as MS)	20	20	20	80	03					100	

Course Code	Course Name	Credits				
BMC303	Medical Sensors	03				
Course Objectives	<ul> <li>To provide the knowledge of basic concepts such as generalized medical instrumentation system, input transducer properties, and instrument characteristics.</li> <li>To provide a thorough understanding of principle and working of transducers and sensors used for measuring displacement, motion, force, pressure, temperature, biopotentials, biochemical concentrations.</li> <li>To study the medical applications of the above transducers and sensors.</li> </ul>					
Course Outcomes	<ul> <li>To perform experiments based on some of the above transducers and sensors.</li> <li>The learner will be able to:</li> <li>Explain different components of a generalized medical instrumentation system, input transducer properties, and instrument characteristics.</li> <li>Apply the knowledge of principles of various types of transducers and sensors including motion, displacement, force, pressure sensors to different medical applications.</li> <li>Apply the knowledge of principles of various types of temperature sensors to different medical applications.</li> <li>Apply the knowledge of the various biopotential electrodes for measuring different types of biopotentials.</li> <li>Apply the principles of various chemical sensors for measuring concentration of biochemical analytes.</li> <li>Explain the principles of various biosensors and their medical applications.</li> </ul>					

Module	Contents	Hours
1.	<b>Introduction</b> : Generalized medical instrumentation system; General properties of input transducers; Static characteristics: Accuracy, precision, resolution, reproducibility, sensitivity, drift, hysteresis, linearity, input impedance and output impedance; Dynamic characteristics: Transfer functions, first order and second order systems, time delay; Design criteria.	04
2.	Displacement, Motion, Force and Pressure Sensors and their Medical Applications: Displacement measurement: Potentiometers, strain gauges, bridge circuits, inductive sensor – L.V.D.T., capacitive sensors; Acceleration and force measurement: Piezoelectric sensor, load cell; Pressure sensing elements: Diaphragms, bellows, bourdon tubes.	08
3.	Temperature Sensors and their Medical Applications: Temperature measurement: Thermistor, thermocouple, resistive temperature detector; IC-based temperature measurement; Radiation sensors: Thermal sensors, quantum sensors, and radiation thermometry.	06
4.	<b>Biopotential electrodes</b> : Electrode-electrolyte interface, half-cell potential, polarization, polarizable and non-polarizable electrodes, calomel electrode; Electrode circuit model, electrode-skin interface and motion artefacts; Body surface electrodes; Internal electrodes: Needle and wire electrodes (different types); Microelectrodes: Metal and supported metal micropipette (metal filled glass and glass micropipette) electrodes.	06
5.	Chemical Sensors and their Medical Applications: Blood gas and acid- base physiology; pH, Pco ₂ , Po ₂ electrodes; ISFETs; Transcutaneous arterial O ₂ and CO ₂ tension monitoring.  Fiber optic Sensors and their Medical Applications: Principle of fiber optics; Fiber optic sensor types - Temperature, chemical, and pressure.	07
6.	<b>Biosensors</b> : Types of biosensors - electrochemical biosensors, optical biosensors, piezoelectric biosensors; Biorecognition elements and their immobilization techniques; Medical applications of biosensors.	08

#### **Books Recommended:**

# **Text Books:**

- 1. Medical Instrumentation-Application and Design, John G. Webster, Wiley India Private Limited.
- 2. Instrument Transducers: An Introduction to Their Performance and Design, Hermann K. P. Neubert, Oxford University Press.
- 3. Biomedical Sensors: Fundamentals and Applications, Harry N. Norton, Noves Publications.
- 4. Biomedical Transducers and Instruments, Tatsuo Togawa, Toshiyo Tamura and P. Ake Öberg, CRC Press.
- 5. Electronics in Medicine and Biomedical Instrumentation by Nandini K. Jog, Prentice-Hall of India Pvt. Limited.
- 6. Biosensors: Fundamentals and Applications, Bansi Dhar Malhotra and Chandra Mouli Pandey, Smithers Rapra Technology.

# **Reference Books:**

- 1. Principles of Applied Biomedical Instrumentation, L.A. Geddes and L.E. Baker, Wiley India Pvt Ltd.
- 2. Biomedical Instrumentation and Measurements, Leslie Cromwell, Erich A. Pfeiffer and Fred J. Wiebell, Prentice-Hall of India Pyt. Ltd.

- 3. Principles of Biomedical Instrumentation and Measurement, Richard Aston, Merril Publishing Company.
- 4. Measurement Systems, Application and Design, Ernest O. Doeblin, McGraw Hill Higher Education.
- 5. Handbook of Modern Sensors Physics, Design and Application, Jacob Fraden, Springer Publishing Company.
- 6. Transducers for Biomedical Measurements: Principles and Applications, Richard S. C. Cobbold, John Wiley & Sons.

# **NPTEL/Swayam Course:**

Course: Industrial Instrumentation by Prof. Alok Barua - IIT Kharagpur

https://nptel.ac.in/courses/108/105/108105064/

#### **Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on the entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Teaching scheme			Credit assigned			
BMC304	<b>Electronic circuit</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	analysis and design (Abbreviated as ECAD)	04			04			04

		Examination Scheme											
Course	Course Name	Theory					_						
Code		Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral			
BMC304	Electronic Circuit Analysis and Design (ECAD)	20	20	20	80	03					100		

Course Code	Course Name	Credits
BMC304	Electronic Circuit Analysis and Design	04
Course Objectives	<ul> <li>To understand transfer characteristics of semiconductor devices basic application circuits.</li> <li>To make learners aware about the mathematical models of BJT analysing the circuits.</li> <li>To make the learners aware about different types of coupling armultistage amplifiers.</li> <li>Learners will be able to design power amplifier.</li> <li>To learn types and applications of MOSFET.</li> </ul>	and its use in
Course Outcomes	<ul> <li>Learner will be able to:</li> <li>Explain the transfer characteristics in analysing the electronic condideted, BJT etc.</li> <li>Explain equivalent circuits of BJT and apply them to analyse are based amplifier circuits</li> <li>Apply the knowledge of mathematical model to analyse multist</li> <li>Design and analyse power amplifiers.</li> <li>Apply the concept of transfer characteristics, D.C. load line, A.G. analyse MOSFET amplifiers.</li> </ul>	nd design BJT age amplifiers.

Module	Contents	Hours
1.	Basics of Diodes: Construction, Working, Characteristics, Current Equation &	06
	Equivalent circuits of P-N Junction Diode as well as Zener Diode; Applications of	
	Diode: Clipper & Clamper.	
2.	<b>Basics &amp; DC analysis of BJT:</b> Construction; Working and Characteristics of 3	10
	different configurations of BJT; Quiescent point, DC load line, BJT Biasing techniques	
	(Fixed, Self, Voltage Divider, Collector to base, Collector to base self) and BJT as a	
	switch.	
3.	<b>BJT as an Amplifier:</b> A.C. Equivalent Model: r _e model, h-parameter model (Exact and	10
	Approximate) and Hybrid- $\pi$ model; A.C. Analysis (Using any one model): A.C. load	
	line, A.C. analysis of CE, CB, CC amplifier configurations, Effects of R _S & R _L , Low	
	frequency and High frequency analysis of Single stage amplifiers; Design of single	
	stage amplifier using BJT.	
4.	Multistage Amplifier: Need of cascading; Types of coupling; D.C. and A.C. analysis	08
	of CS-CE cascade configuration, Cascode amplifier, Darlington amplifier.	
5.	Power Amplifiers: Classes of Power amplifiers; Class-A Power Amplifiers (Direct	08
	coupled and Transformer coupled), Class-B Power Amplifiers, Crossover distortion,	00
	Harmonic distortion, Class-AB Push Pull and Complementary Symmetry Power	
	amplifier, Class-C Power Amplifier, Class A and B/AB Power amplifier design, Heat	
	Sinks and its design.	
6.	MOSFET: Comparison of BJT & FET, Classification, Characteristics, Biasing of	10
	MOSFET, MOSFET as an amplifier & MOSFET as a switch.	10

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Books Recommended:**

### **Textbooks:**

- 1. Electronics Circuit. Analysis & Design, 2nd ed., Donald A. Neamen, McGraw Hill, 2001
- 2. Electronics Devices & Circuits Theory, by by Robert L. Boylestad and Louis Nashelsky, Pearson Education.
- 3. Semiconductor Data Manual, BPB Publications.

### **Reference Books:**

- 1. Electronic Principles, by Albert Paul Malvino 6th edition, McGraw Hill
- 2. Electronic Devices and Circuits, by Jacob Milliman McGraw Hill.
- 3. Electronic Design, by Martin Roden, Gordon L.Carpenter, William Wieseman, Fourth edition, Shroff Publishers & Distributors Pvt. Ltd..
- 4. Electronic Circuits Discrete and Integrated, by Donald Schilling & Charles Belove, Third edition, McGraw Hill.

### **NPTEL/Swavam Course:**

Course: Analog Electronic Circuits by Prof. Pradip Mandal - IIT Kharagpur https://nptel.ac.in/courses/108/105/108105158/

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	nching schei	me	Credit assigned			
	Digital	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC305	Electronics (Abbreviated as DE)	03			03			03

	Course Name	Examination Scheme										
Course		Theory										
Code		Internal Assessment			End	Dura	Term	Pract	Oral	Pract.	Total	
		Test 1	Test 2	Avg	sem	tion (hrs)	work			/ Oral		
BMC305	Digital Electronics (DE)	20	20	20	80	03					100	

Course Code	Course Name	Credits						
BMC305	Digital Electronics	03						
Course Objectives	To make learner aware of basics of Digital circuits, logic design, vario Families and Flip-flops.	us Logic						
	<ul> <li>Learner should be able to design various counters, registers and know their applications.</li> </ul>							
	• Learner should be able to design sequential circuits as a state machine.							
<b>Course Outcomes</b>	Learner will be able to:							
	• Describe various number systems, logic gates and logic families.							
	<ul> <li>Apply Boolean algebra, K-maps for Logic reduction and implementati and POS form</li> </ul>	ons in SOP						
	Develop combinational circuits such as code converter circuits, parity generator checker circuits and magnitude comparator circuits. Also, circuits using multiplexers, de-multiplexers, and decoders.							
	Design synchronous sequential circuits and asynchronous counters usi	ng flip flops						
	<ul> <li>Design various registers using flip flops.</li> </ul>							

Module	Contents	Hours				
1.	Fundamentals of Digital Design:	04				
	Introduction: Number system: Binary, Octal, Hexadecimal and other. Conversion	0.				
	from One system to another.					
	Binary Codes: Weighted, Reflective, Sequential, Gray, Error detecting codes, Odd,					
	Even parity, Hamming Codes etc.					
	Logic Gates and Families: AND, OR, NOT, XOR, XNOR, operation NAND, NOR					
	used of the universal gate for performing different operations. TTL and CMOS logic					
	families.					
2.	Combinational Logic Design:					
	<b>Boolean Algebra</b> : Laws of Boolean algebra, De- Morgan's theorems, Relating a Truth	08				
	Table to a Boolean Expression, Multilevel circuits.					
	Logic Reduction Techniques: K-MAPS and their use in specifying Boolean					
	Expressions, Prime-implicant, Minterm, Maxterm, SOP and POS Implementation.					
	Implementation of logic function using universal gates.					
	Application of gray code, Hazards in combinational circuits.					
3.	MSI Combinational Circuits:	11				
	Elementary Designs: Designing code converter circuits e.g. Binary to Gray, BCD to					
	Seven Segments, Parity Generator and Parity Checker (3 bit).					
	Binary Arithmetic Circuits: Binary Addition, Binary Subtraction (ones and twos					
	complement), (Half & Full) Adders, (Half & Full) Subtractors, BCD adder, BCD-					
	Subtractor (9's complement method), Serial adder, Multiplier, Magnitude					
	Comparators, 7485 comparator, Arithmetic Logic Units.					
	Use of Multiplexers in Logic Design: Multiplexer (ULM) Shannon's theorem. De-					
4.	Multiplexers, Line decoders.  Fundamentals of Sequential Logic Circuits:					
4.	Flip-Flops: Comparison of Combinational & Sequential Circuits, Flip-Flops, SR, T,	08				
	D, JK, Master Slave JK, Converting one Flip-Flop to another					
	Counters: Modulus of a counter, Designing of synchronous and asynchronous					
	counter using flip flop, Concept of drawing state transition diagram & state transition					
	table. Minimum cost and minimum risk approach in design.					
5.	Sequential Circuit Designs: State machine analysis, State machine design as Mealy					
5.	and Moore machines, basic design of sequence detector.	04				
6.						
υ.	Sequential Logic Designs:					
	Registers: Serial input serial output, serial input parallel output, Left Right shift					
	register, Bidirectional shift register, Universal shift register. Ring Counter, Twisted					
	Ring Counter, Sequence generator.					

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

# **Text Books:**

- 1. Modern Digital Electronics, by R.P.Jain Tata McGraw Hill, 1984
- 2. Digital Design, by M Morris Mono Prentice Hall International-1984.
- 3. Digital Principal and Applications, by Malvino& Leach, Tata McGraw Hill, 1991.
- 4. Digital Electronics, by Malvino, Tata McGraw Hill, 1997.
- 5. Digital Logic: Applications and Design, by John Yarbourugh Cengage Learning
- 6. Fundamentals of Digital Circuits, by A. Anand Kumar, Prentice-Hall of India Pvt.Ltd;
- 7. Digital Design: Principles & Practices, by John F. Wakerly, Prentice Hall

### **Reference Books:**

- 1. Digital Electronics, by James Bignell& Robert Donovan, Delmar, Thomas Learning,
- 2. Logic Circuits, by Jog N.K, 2nd edition, Nandu Publisher & Printer Pvt .Ltd. 1998.
- 3. Introduction to Logic Design, by Alan b. Marcovitz McGraw Hill International 2002.

## **NPTEL/Swayam Course:**

Course: 1. Digital Circuits by Prof. Santanu Chattopadhyay - IIT Kharagpur

https://nptel.ac.in/courses/108/105/108105113/

https://swayam.gov.in/nd1_noc20_ee70/preview

Course: 2. Switching Circuits and Logic Design by Prof. Indranil Sengupta - IIT Kharagpur

https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-cs67/

https://swayam.gov.in/nd1_noc20_cs67/preview

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules

Course Code	Course Name	Tea	nching Sche	me	Credit Assigned				
	<b>Human Anatomy</b>	·	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML301	and Physiology for Engineers (HAPE)		02			01		01	

	Course Name	Examination Scheme									
Course		Theory				Term	Pract.	Oral	Pract. / Oral	Total	
Code		Internal Assessment End			work						
		Test 1	Test 2	Avg.	sem	WOLK			/ Orai		
	Human										
	Anatomy and										
BML301	Physiology for					25				25	
	Engineers										
	(HAPE)										

Course Code	Course Name	Credits
BML301	Human Anatomy and Physiology for Engineers	01
Course Objective	<ul> <li>To understand the anatomical structures of the human body and the to each other.</li> <li>To gain the knowledge of measurement of various physiological paths the human body.</li> </ul>	•
Course Outcome	<ul> <li>The learner will be able to:</li> <li>Demonstrate measurement of blood pressure using occlusive cuff</li> <li>Apply blood cell counting principles for measuring blood compos</li> <li>Demonstrate the measurement of electrical activity of heart and th parameters.</li> <li>Demonstrate the measurement of various lung volumes and capac</li> <li>Appropriately utilize laboratory equipment, such as microscopes, ware, and virtual simulations.</li> <li>Locate and identify anatomical structures.</li> </ul>	ition. e related ities.

Syllabus: Same as that of BMC302, Human Anatomy and Physiology for Engineers.

## **List of Laboratory Experiments: (Any Seven)**

- 1. To measure blood pressure using sphygmomanometer.
- 2. To find the total red blood cell count using pre-prepared slides.
- 3. To find the total white blood cell count using pre-prepared slides.
- 4. To study the conduction system of the heart.
- 5. To study the twelve lead electrode scheme and operation of the ECG Machine.
- 6. To record ECG and measure its various parameters (amplitude, intervals/segment).
- 7. To record lung volumes and capacities using a spirometer.
- 8. Visit to the anatomy department of a hospital to view specimens (cardiovascular & respiratory systems).
- 9. Visit to the anatomy department of a hospital to view specimen (alimentary & renal systems).
- 10. Visit to the anatomy department of a hospital to view specimen (nervous system).
- 11. Present a case study on a given disease/abnormality that requires medical instruments for diagnosis/treatment.
- 12. Present case a study on a given disease/abnormality that requires medical instruments for diagnosis/treatment.

Any other experiment/visit to the hospital/case study based on syllabus which will help learner to understand a topic/concept.

## **Assessment:**

### **Term Work:**

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

# **Books Recommended:**

# **Text books:**

- 1. Anatomy and Physiology in Health and Illness: Ross and Wilson. (ELBS Pub.)
- 2. Essentials of Anatomy and Physiology: Elaine N Marieb. (Pearson Education)

# **Reference Books:**

- 1. Physiology of Human Body: Guyton. (Prism Book )
- 2. Review of Medical Physiology: William Ganong. (Prentice Hall Int.)
- 3. Principles of Anatomy and Physiology: Tortora and Grabowski. (Harper Collin Pub.)
- 4. Anatomy and Physiology: Elaine N Marieb. (Pearson Education)

### **NPTEL/Swavam Course:**

Course: Animal Physiology by Prof. Mainak Das - IIT Kanpur https://nptel.ac.in/courses/102/104/102104058/

https://swayam.gov.in/nd1_noc20_bt42/preview

Course Code	Course Name	Teac	hing Sch	eme	Credit	Credits Assigned			
	Medical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML302	Sensors (Abbreviated as MS)		02			01		01	

					Exar	nination	Scheme			
			Th	eory						Total
Course	Course Name	Intern	al Asse	ssment	End	Term	Pract.	Oral	Pract.	Total
Code		Test	Test	Avg.	Sem	work			/ Oral	
		1	2							
BML302	Medical Sensors (Abbreviated as MS)					25		25		50

<b>Course Code</b>	Course Name	Credits								
BML302	Medical Sensors	01								
Course Objectives	• To analyse the transient response of a first-order system.									
	To measure displacement using various displacement sensor	ors.								
	To measure pressure using a pressure sensor.									
	To measure force using a force sensor.									
	To measure temperature using various temperature sensors.									
	• To measure pH of a solution using a pH electrode.									
<b>Course Outcomes</b>	The learner will be able to:	The learner will be able to:								
	Analyse step response of a first-order system.									
	Demonstrate the measurement of displacement using various	us displacement								
	sensors.									
	Demonstrate the measurement of force and pressure using a	a force sensor and a								
	pressure sensor respectively.									
	Demonstrate the measurement of temperature using various	s temperature								
	sensors.									
	Distinguish various biopotential electrodes.									
	Demonstrate the measurement of pH of a solution using a p	oH electrode.								

Syllabus: Same as that of BMC303 Medical Sensors.

## **List of Laboratory Experiments: (Any seven)**

- 1. To study the transient response of a first-order system.
- 2. To study the resistance versus temperature characteristics of a thermistor.
- 3. To study the thermistor linearization technique.
- 4. To study the characteristics of a light dependent resister.
- 5. To study the principle and working of a thermocouple.
- 6. To study principle and working of L.V.D.T.
- 7. To study principle and working of a capacitive sensor.
- 8. To study principle and working of a strain gage sensor.
- 9. To study principle and working of a pressure sensor.
- 10. To study the principle and working of a force sensor.
- 11. To study the various biopotential electrodes.
- 12. To study the pH electrode.

Any other experiment/student presentation based on the syllabus which will help the learner to understand a topic/concept.

### **Books Recommended:**

### **Text Books:**

- 1. Medical Instrumentation-Application and Design, John G. Webster, Wiley India Private Limited.
- 2. Instrument Transducers: An Introduction to Their Performance and Design, Hermann K. P. Neubert, Oxford University Press.
- 3. Biomedical Sensors: Fundamentals and Applications, Harry N. Norton, Noyes Publications.
- 4. Biomedical Transducers and Instruments, Tatsuo Togawa, Toshiyo Tamura and P. Ake Öberg, CRC Press.
- 5. Electronics in Medicine and Biomedical Instrumentation by Nandini K. Jog, Prentice-Hall of India Pvt. Limited.
- 6. Biosensors: Fundamentals and Applications, Bansi Dhar Malhotra and Chandra Mouli Pandey, Smithers Rapra Technology.

### **Reference Books:**

- 1. Principles of Applied Biomedical Instrumentation, L.A. Geddes and L.E. Baker, Wiley India Pvt Ltd.
- 2. Biomedical Instrumentation and Measurements, Leslie Cromwell, Erich A. Pfeiffer and Fred J. Wiebell, Prentice-Hall of India Pvt. Ltd.
- 3. Principles of Biomedical Instrumentation and Measurement, Richard Aston, Merril Publishing Company.
- 4. Measurement Systems, Application and Design, Ernest O. Doeblin, McGraw Hill Higher Education.
- 5. Handbook of Modern Sensors Physics, Design and Application, Jacob Fraden, Springer Publishing Company.
- 6. Transducers for Biomedical Measurements: Principles and Applications, Richard S. C. Cobbold, John Wiley & Sons.

### **NPTEL/Swayam Course:**

Course: Industrial Instrumentation by Prof. Alok Barua - IIT Kharagpur

https://nptel.ac.in/courses/108/105/108105064/

## Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks

Laboratory work (Journal) : 10 Marks
Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
BML303	Electronic Circuit	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Analysis and Design Lab (ECAD Lab)		02			01		01	

					Exami	nation S	cheme			Total
Course	Course Name	Theory				Term			Pract.	
Code	Course Name	Intern	al Asses	sment	End	work	Pract. Oral		/ Oral	Total
		Test 1	Test 2	Avg.	sem	WOIK			, Grai	
BML303	Electronic Circuit Analysis and Design Lab (ECAD Lab)					25			25	50

Course Code	Course Name	Credits
BML303	Electronic Circuit Analysis and Design Lab	01
Course Objective	<ul> <li>To practically verify characteristics of different electronic compodiodes, BJT, MOSFET etc</li> <li>To practically verify outputs of few applications of diodes, BJT,</li> <li>To design and implement small signal amplifier.</li> </ul>	
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Explain the transfer characteristics of basic semiconductor devi</li> <li>Design and verify the outputs of various electronic circuits such clampers etc using bread boards and various lab equipments.</li> <li>Design amplifier circuits and plot its frequency response.</li> </ul>	

Syllabus: Same as that of BMC304 Electronic Circuit Analysis and Design.

## **List of Laboratory Experiments: (Any Eight)**

- 1. To verify semiconductor diode and Zener diode characteristics.
- 2. To implement various clipper circuits and verify output.
- 3. To implement various clamper circuits and verify output.
- 4. To study line regulation and load regulation of voltage regulator using Zener diode.
- 5. To verify input and output characteristics of BJT.
- 6. To implement a switch using BJT.
- 7. To implementation different biasing circuit of BJT
- 8. To design and implement CE amplifier.
- 9. To study frequency response of CE amplifier.
- 10. To verify input and output characteristics of MOSFET.
- 11. To implementation different biasing circuit of MOSFET
- 12. To Study frequency response of an MOSFET amplifier.

Any other experiment based on syllabus can be included in the term work which will help learner to understand topic/concept.

### Term Work:

Term work shall consist of minimum 8 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

### **Textbooks:**

- 1. Electronics Circuit. Analysis & Design, 2nd ed., Donald A. Neamen, McGraw Hill, 2001
- 2. Electronics Devices & Circuits Theory, by by Robert L. Boylestad and Louis Nashelsky, Pearson Education.
- 3. Semiconductor Data Manual, BPB Publications.

### **Reference Books:**

- 1. Electronic Principles, by Albert Paul Malvino 6th edition, McGraw Hill
- 2. Electronic Devices and Circuits, by Jacob Milliman McGraw Hill.
- 3. Electronic Design, by Martin Roden, Gordon L.Carpenter, William Wieseman, Fourth edition, Shroff Publishers & Distributors Pvt. Ltd..
- 4. Electronic Circuits Discrete and Integrated, by Donald Schilling & Charles Belove, Third edition, McGraw Hill.

## **NPTEL/Swayam Course:**

Course: Analog Electronic Circuits by Prof. Pradip Mandal - IIT Kharagpur https://nptel.ac.in/courses/108/105/108105158/

Practical exam consists of performance of any one practical from the conducted experiments within the semester and oral based on entire syllabus.

Course Code	Course Name	Tea	aching sche	me	Credit assigned			
BML304		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	(Skill Based Lab)		04			02		02

					Exami	nation Scheme				
Course	Course Name		The	ory		Term			Pract.	
Code	Course Name	Internal Assessment			End	work	Pract.	Oral	/ Oral	Total
		Test 1	Test 2	Avg.	sem	WUIK			/ Of al	
BML304	Electronics Lab (Skill Based Lab)					25			25	50

Course Code	Course Name	Credits
BML304	Electronics Lab (Skill Based Lab)	02
Course Objective	<ul> <li>To design and implement voltage regulator circuits.</li> <li>To design and implement digital circuits.</li> <li>To learn skills of soldering.</li> <li>To learn simulation of circuits using one of the simulation softw</li> </ul>	vare.
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Design and implement analog and digital electronic circuits on verify the outputs.</li> <li>Learn one of the tools for simulating different circuits.</li> <li>Know the limitations of ideal environment of simulations and al simulation in designing the circuits.</li> <li>Learn soldering skills for implementing the circuits on PCB.</li> </ul>	

## List of experiments from Analog electronics:

### Skill 1-Soldering the components on PCB (Any 4)

- 1. Implement diode as full-wave rectifier using centre tap transformer.
- 2. Implement diode as full-wave rectifier using bridge circuit.
- 3. Use of Filter components with rectifier circuit.
- 4. Implement voltage regulators using IC 79XXand/or IC 78XX
- 5. Implement voltage regulators using IC 317/IC 723
- 6. Implement of logic gates using diodes.

# Skill 2-Simulations using simulation software like Multisim, Pspice etc (Any 4)

- 1. Simulate CASCODE amplifier.
- 2. Simulate Darlington amplifier.
- 3. Simulate power Amplifier
- 4. Simulate DIAC for transfer characteristics.
- 5. Simulate TRIAC for transfer characteristics.
- 6. Simulate UJT for transfer characteristics.

# $List\ of\ experiments\ from\ Digital\ Electronics\ (Perform\ using\ Breadboard\ or\ Logisim\ S/W\ etc):$

### (Any 8)

- 1. A step in space vehicle checkout depends on FOUR sensors S1, S2, S3 and S4. Every circuit is working properly if sensor S1 and at least two of the other three sensors are at logic 1. Implement the system using NAND gates only, the output is connected to a red LED which must glow if the circuit is not working properly and the output is connected to a green LED which must glow if the circuit is working properly.
- 2. To design binary to gray code converter and gray to binary converter.

- 3. To design parity generator and parity checker circuits.
- 4. To design adder and subtractor circuits.
- 5. To design various circuits using multiplexers.
- 6. To design various circuits using de-multiplexer.
- 7. To design Asynchronous counter.
- 8. To design decade counter
- 9. To design Synchronous counter.
- 10. To implement shift register and ring counter using MSI shift register.
- 11. To implement Moore/ Mealy machine.
- 12. A given finite state machine has an input W and output Z. During four consecutive clock pulses a sequence of four values of W signal is applied. Design a machine that produces Z = 1 when it detects either of sequence W: 0010 or W: 1110 otherwise Z=0. After the fourth clock pulse the machine has to be again in the reset state ready for next sequence.

Any other experiment based on syllabus can be included in the term work which will help learner to understand topic/concept.

### **Assessment:**

### Term Work:

Term work shall consist of minimum 8 experiments from Analog electronics and 8 experiments from digital electronics.

The distribution of marks for term work shall be as follows:

Laboratory work (Lab work and journal):10 Marks
Soldering skills :05 Marks
Simulation skills :05 marks
Attendance :05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

# **Books Recommended:**

## **Text Books:**

- 1. Op-Amps and linear integrated circuits Ramakant Gayakwad, Prentice Hall
- 2. Electronics Devices & Circuits, by Boylestad Robert L., Louis Nashelsky, Pearson Education.
- 3. Modern Digital Electronics, by R.P.Jain, Tata McGraw Hill, 1984
- 4. Digital Design, M Morris Mono, Prentice Hall International-1984.

# **Reference Books:**

- 1. Electronic Principles, by Albert Paul Malvino, 6/e, McGraw Hill
- 2. Semiconductor Data Manual, BPB Publications.
- 3. Electronic design, by Martin Roden, Gordon L. Carpenter, William Wieseman Fourth edition, Shroff Publishers & Distributors Pvt. Ltd.
- 4. Digital Design, by M Morris Mono Prentice Hall International 1984

Practical exam consists of performance of any one practical from digital electronics experiments conducted within the semester and oral based on digital electronics syllabus.

Course code	Course Name	Credits
BMM301	Mini Project - 1 A	02

Course Code	Course Name	Credits
BMM301	Mini Project – 1 A	02
Course Objective	<ul> <li>To acquaint with the process of identifying the needs and converged problem.</li> <li>To familiarize the process of solving the problem in a group.</li> <li>To acquaint with the process of applying basic engineering from attempt solutions to the problems.</li> <li>To inculcate the process of self-learning and research.</li> </ul>	-
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Identify problems based on societal /research needs.</li> <li>Apply Knowledge and skill to solve societal problems in a group or letter of a group or lette</li></ul>	eader. gh theoretical/ ntal context for ads to life long

# **Guidelines for Mini Project**

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.

- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

# **Guidelines for Assessment of Mini Project:**

### Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of
  each institute. The progress of mini project to be evaluated on continuous basis, minimum two
  reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;

Marks awarded by guide/supervisor based on log book
 Marks awarded by review committee
 Quality of Project report
 10
 50

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

# One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
  - First shall be for finalisation of problem
  - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of
  working prototype, testing and validation of results based on work completed in an earlier
  semester.
  - First review is based on readiness of building working prototype to be conducted.
  - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

# Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
  - o Identification of need/problem
  - o Proposed final solution
  - o Procurement of components/systems

- Building prototype and testing
- Two reviews will be conducted for continuous assessment,
  - First shall be for finalisation of problem and proposed solution
  - Second shall be for implementation and testing of solution.

# Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

# **Guidelines for Assessment of Mini Project Practical/Oral Examination:**

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

## **Mini Project** shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communicate

# Semester - IV

Course Code	Course Name	Teaching Scheme (Contact Hours)  Credits Assigned						
		Theory	Pract.	Tut.	Theory	TW/Pract.	Tut.	Total
BMC401	Engineering Mathematics-IV	03	-	01	03	-	01	04

				E	xamination	amination Scheme					
Course Code		Theory									
	Course Name	Inter	nal Assess	sment	End	Term					
	Course Name	Test 1	Test 2	Avg of Test 1 & 2	Sem Exam	Work	Pract.	Oral	Total		
BMC401	Engineering Mathematics-IV	20	20	20	80	25	-	-	125		

**Pre-requisite:** Engineering Mathematics-I, Engineering Mathematics-II, Engineering Mathematics-III, Binomial Distribution.

Course Code	Course Name	Credits
BMC401	Engineering Mathematics – IV	04
Course Objectives	<ul> <li>To study the line and contour integrals and expansion of confunction in a power series.</li> <li>To understand the basic techniques of statistics for data and Machine learning and AI.</li> <li>To study the probability distributions and expectations.</li> <li>To acquaint with the concepts of vector spaces used in the f machine learning and engineering problems.</li> <li>To familiarize with the concepts of Quadratic forms and Sir decomposition.</li> <li>To learn the concepts of Calculus of Variations.</li> </ul>	lysis, ïeld of
Course Outcomes	<ul> <li>On successful completion of course, learner will be able to:</li> <li>Use the concepts of Complex Integration for evaluating integration residues &amp; evaluate various contour integrals.</li> <li>Demonstrate the use of Correlation and Regression to the engroblems in data science, machine learning and AI.</li> <li>Illustrate understanding of the concepts of probability and egetting the spread of the data and distribution of probabilities.</li> <li>Apply the concept of vector spaces and orthogonalization probabilities.</li> <li>Use the concept of Quadratic forms and Singular value decovarious Engineering applications.</li> <li>Find the extremals of the functional using the concept of Cavariation.</li> </ul>	expectation for es. rocess in composition in

Module	<b>Detailed Contents</b>	Hrs.
	Module: Complex Integration	
01	<ul><li>1.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof).</li><li>1.2 Taylor's and Laurent's series (without proof).</li></ul>	
01	1.3 Definition of Singularity, Zeroes, poles of $f(z)$ , Residues, Cauchy's Residue Theorem (without proof).	7
	<b>Self-learning Topics:</b> Application of Residue Theorem to evaluate real integrations ,Z- Transform.	
	Module: Statistical Techniques	
02	<ul><li>2.1 Karl Pearson's Coefficient of correlation (r).</li><li>2.2 Spearman's Rank correlation coefficient (R) (repeated and non-repeated ranks)</li><li>2.3 Lines of regression.</li></ul>	6
	2.4 Fitting of first and second degree curves.	
	<b>Self-learning Topics:</b> Covariance, fitting of exponential curve.	
	Module: Probability Distributions	
	2.1 Baye's Theorem, Random variable: Probability distribution for discrete and continuous random variables, Density function and distribution function.	
03	3.2 Expectation, mean and variance.	
	3.3 Probability distribution: Poisson & normal distribution.	7
	<b>Self-learning Topics:</b> Moments, Moment Generating Function, Applications of Probability Distributions in Engineering.	
	Module: Linear Algebra: Vector Spaces:-	
	4.1 Vectors in n-dimensional vector space, norm, dot product, The CauchySchwarz	
	inequality (with proof), Unit vector.	
	4.2 Orthogonal projection, Orthonormal basis, Gram-Schmidt process for vectors.	6
04	4.3 Vector spaces over real field, subspaces.	
	<b>Self-Learning Topics</b> :- Linear combinations, linear Dependence and Independence, QR decomposition.	
	Module: Linear Algebra: Quadratic Forms	
05	<ul> <li>5.1 Quadratic forms over real field, Linear Transformation of Quadratic form, Reduction of Quadratic form to diagonal form using congruent transformation.</li> <li>5.2 Rank, Index and Signature of quadratic form, Sylvester's law of inertia, Value-class of a quadratic form-Definite, Semidefinite and Indefinite.</li> <li>5.3 Reduction of Quadratic form to a canonical form using congruent transformations.</li> </ul>	7
	<ul><li>5.4 Singular Value Decomposition.</li><li>Self-learning Topics: Orthogonal Transformations, Applications of Quadratic</li></ul>	
	forms and SVD in Engineering.	
	Module: Calculus of Variations:	
	6.1 Euler- Lagrange equation (Without Proof), When F does not contain y, When F does not contain x, When F contains x, y, y'.	
	6.2 Isoperimetric problems- Lagrange Method.	
06	6.3 Functions involving higher order derivatives: Rayleigh-Ritz Method.	6
	Self-Learning Topics:- Brachistochrone Problem, Variational Problem, Hamilton Principle, Principle of Least action, Several dependent variables.	

## Term Work:

# General Instructions:

- 1. Batch wise tutorials are to be conducted. The number of students per batch should be per University pattern for practicals.
- 2. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 3. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of marks for term work shall be as follows:

Class Tutorials on entire syllabus : 10 Marks
Mini project : 10 Marks
Attendance (Theory and Tutorial) : 5 Marks

# **Assessment:**

### **Internal Assessment Test:**

Assessment consists of two class tests of 20 marks each. The first-class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) when additional 35% syllabus is completed. Duration of each test shall be one hour.

# **End Semester Theory Examination:**

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein 4 sub-questions of 5 marks each will be asked.
- 4. Remaining questions will be randomly selected from all the modules.
- 5. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

## **References:**

- 1. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 2. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 3. Advanced engineering mathematics H.K. Das, S. Chand, Publications.
- 4. Higher Engineering Mathematics B. V. Ramana, Tata Mc-Graw Hill Publication
- 5. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication
- 6. Advanced Engineering Mathematics Wylie and Barret, Tata Mc-Graw Hill.
- 7. Beginning Linear Algebra Seymour Lipschutz Schaum's outline series, Mc-Graw Hill Publication
- 8. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication

Course Code	Course Name	Tea	nching schei	me	Credit assigned			
	Integrated	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC402	Circuit Design (Abbreviated as ICD)	03			03			03

		Examination Scheme									
Course	Course Name		T								
Code		Internal Assessment			End	End Dura		Pract	Oral	Pract.	Total
		Test 1	Test 2	Avg.	sem	tion (hrs)	work	Tract	Oran	/ Oral	Total
BMC402	Integrated Circuit Design (Abbreviate d as ICD)	20	20	20	80	03					100

<b>Course Code</b>	Course Name	Credits								
BMC402	Integrated Circuit Design	03								
Course Objectives	<ul> <li>To provide concepts of operational amplifier (Op-Amp) with their appli design methodology.</li> <li>To cover analysis of circuits using various ICs.</li> </ul>	cations and								
		To design and develop various circuits for biomedical applications and to develop								
<b>Course Outcomes</b>	Learner will be able to:									
	Demonstrate basics of operational amplifiers.									
	Analyse different types of Op-Amp based circuits.									
	Analyse and design operational amplifier to perform mathematical amplifier to	ations.								
	Design operational amplifier based oscillators.									
	• Learn various waveform generation ICs and their applications to use eff	ectively in								
	projects.	1' 1 C								
	<ul> <li>Apply the knowledge of various special function ICs and special purpos designing practical applications.</li> </ul>	se diodes for								

Module	Contents	Hours
1.	<b>Introduction to Operational Amplifier (Op-Amp):</b> Introduction to Differential Amplifier; Introduction to an Ideal Operational Amplifier, Block Diagram, DC & AC Characteristics and Equivalent circuit of Op-amp; Op-amp IC 741 characteristics, frequency response and concept of virtual ground.	05
2.	<b>Linear Application of Op-Amp:</b> Adder, Subtractor /differential Amplifier, Voltage follower, Integrator (Ideal and practical), Differentiator (Ideal and practical), Instrumentation amplifier and Instrumentation amplifier IC (AD620); Voltage to Current and Current to Voltage converters.	05
3.	Non-Linear Applications of operational Amplifier: Voltage comparators, zero crossing detector and Schmitt Trigger (Regenerative comparator); Active Half wave rectifiers, Active Full wave rectifier, Clipper, Clampers, Log and Antilog amplifiers, Sample & hold circuits, Peak detector, Peak to Peak detector and Generalized Impedance Convertor; Introduction to additional Op-Amp ICs and their features: CA3140E, TL081CN, TL061CP, TL071CP, MC33171N, TL0xx, MCP601 and OPA602.	10
4.	Oscillators using Operational Amplifier: Concepts of feedback, types of feedback and various topologies of negative feedback; Concepts of Oscillation and Barkhausen's criteria for an oscillator; Types of oscillators: RC Phase shift Oscillator, Wien Bridge oscillator, Colpitt's Oscillator, Hartley Oscillator, Crystal Oscillator and Clapp Oscillator (For all the above oscillators; working, Frequency of oscillation, condition for sustained oscillation and design of each oscillator).	09
5.	<b>Special Function ICs - 1:</b> IC 555 Functional Block diagram and Circuit diagram; IC 555 in Astable Multivibrator(AMV) functional diagram, circuit diagram with applications; IC 555 in Monostable Multivibrator (MMV) functional diagram, circuit diagram with applications.	05
6.	<b>Special Function ICs – 2:</b> Function Generator (IC 8038 or equivalent) Circuit diagram and its applications; VCO (IC 566) Circuit diagram and applications; F-V convertors and V-F convertors; Circuit diagram and its applications; Introduction to PLL	05

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

## **Textbooks:**

- 1. Integrated Circuits K.R. Botkar
- 2. Design with Operational Amplifiers and Analog Integrated Circuits, by Sergio Franco, McGraw Hill, 2002
- 3. Op-Amps and linear integrated circuits by Ramakant. Gayakwad Prentice Hall
- 4. Linear Integrated Circuits, by D Choudhury Roy, New Age International Publishers

### **Reference Books:**

- 1. Analog Integrated Circuit Design, by, Tony Chan Carusone, David Johns, Kenneth William Martin Wiley, 2012
- 2. Op-amps and linear integrated circuits, Theory and Applications- James Fiore, Delmar Thomson Learning, 2001

### NPTEL/Swayam Link:

Course: Integrated Circuits, MOSFETs, Op-Amps and their Applications by Prof. Hardik Jeetendra Pandya - IISc Bangalore

https://nptel.ac.in/courses/108/108/108108111/

- 5. Question paper will comprise of 6 questions, each carrying 20 marks.
- 6. Total four questions need to be solved.
- 7. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 8. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned			
BMC403	Principles	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Control System (Abbreviated as PCS)	03			03			03

			Examination Scheme									
Course	Course Name		T									
Code		Internal Assessment			End Dura		Term	Pract	Oral	Pract.	Total	
		Test 1	Test 2	Avg.	sem	tion (hrs)	work	Truct		/ Oral	Total	
BMC403	Principles Control System (Abbreviate d as PCS)	20	20	20	80	03	1				100	

Course Code	Course Name	Credits
BMC403	Principles of Control Systems	3
Course Objectives	<ul> <li>To make the learner aware of fundamental concepts of C mathematical modelling of the system.</li> <li>To make learner study the state variable representation of To make learner know the concept of time response and find system.</li> <li>The learner should be able to do stability analysis of the state controllers</li> </ul>	f control system requency response of the
Course Outcomes	<ul> <li>To describe basic concepts of control system such as open feedback and feed forward systems</li> <li>To develop the mathematical model of different type of a to analyze systems using state space techniques</li> <li>To analyse stability in time domain using root locus and</li> <li>To examine correlation between stability analysis of system frequency domain</li> <li>To analyse effect of PID controller in control design</li> </ul>	systems  BIBO stability

Module No.	Contents	Hours
1	Introduction to Control System Analysis:	03
	Open loop and closed loop systems; Feedback and feed forward control structure; Examples of control systems.	
2	Mathematical Modelling of Systems:	08
	Transfer function models of systems, Models of electrical systems, Block diagram reduction; Signal flow graph and the Mason's gain rule. Standard test signals; Transient and steady state behaviour of first and second order systems; Type and order of feedback control systems and steady state error analysis	
3	State Variable Models :	08
	State variable models of systems. Concept of state transition matrix; Properties of state transition matrix; Solution of homogeneous systems. Concept of controllability and observability; Controllability & Observability analysis of LTI systems using Kalman approach.	
4	Stability Analysis in Time Domain:	08
	Concept of absolute, Relative and robust stability; Routh Hurwitz stability criterion; Root-locus concepts; General rules for constructing root-locus; Root locus analysis of control systems.	
5	Stability Analysis in Frequency Domain:	09
	Frequency domain specifications; Response peak and peak resonating frequency; Relationship between time and frequency domain of systems; Stability margins.	
	Magnitude and phase plot; Method of plotting Bode plot; Stability margins on the Bode plots; Stability analysis using Bode plot.	
6	Concept of feedback controllers: Concept of proportional, PI and PID Controllers	03

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Books Recommended:**

### **Text Books:**

- 1. Modern Control Engineering: D.Roy Choudhury, PHI
- 2. Modem Control Engineering: K. Ogata, PHI
- 3. Control Systems Engineering: I.J. Nagrath, M. Gopal, Third Edition, New Age International Publishers.
- 4. Control Systems: Principle and design, by M. Gopal Tata McGraw Hill, First Edition, 1998
- 5. Automatic Control Systems Kuo
- 6. Modern Control System, Pearson, Richard C. Dorf and Robert H. Bishop, Eleventh Edition, 2013.

## **Reference Books:**

- 1. Modern Control Technology, Components & Systems Kilian
- 2. Analog And Digital Control System Design Chen
- 3. Linear Control System Analysis and Design Sheldon
- 4. Schaum's Outline of Theory and Problems Schaum's
- 5. Automated Continuous Process Control and Multivariable Control Smith
- 6. Robust Control System Design State Space Method Tsui

## NPTEL /Swayam Link:

Course 1: Control systems by Prof. C.S.Shankar Ram - IIT Madras

https://nptel.ac.in/courses/107/106/107106081/ https://swayam.gov.in/nd1_noc20_ee90/preview

Course 2: Control Engineering by Prof. Ramkrishna Pasumarthy - IIT Madras

https://nptel.ac.in/courses/108/106/108106098/ https://swayam.gov.in/nd1_noc20_ee62/preview

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules

Course Code	Course Name	Teaching	scheme		Credit assigned			
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC404	Medical Imaging-I (Abbreviated as MI-I)	03			03			03

		Examination Scheme									
	Course Name		T	heory							
Course Code		Internal Assessment			End	Dur a	Term	Pract	Oral	Pract.	Total
		Test 1	Test 2	Avg.	sem	tion (hrs)	work	Fract	Orai	/ Oral	Total
BMC404	Medical Imaging-I (Abbreviate as MI-I)	20	20	20	80	03					100

Course Code	Course Name	Credits
BMC404	Medical Imaging-I	03
Course Objectives	<ul> <li>To familiarize the learners with the various Imaging moda their operating principles and quality control aspects.</li> <li>To keep the learners abreast with the technological develop of Medical Imaging.</li> </ul>	
Course Outcomes	<ul> <li>Learner will be able to:</li> <li>Discuss different parts of a X-Ray Equipment and outline Interaction with matter.</li> <li>Explain concepts of Radiography techniques such as Composition (CR), Digital Radiography (DR) and Mammography with clinical applications.</li> <li>Explain working principle of Fluoroscopic Imaging and D Angiography and outline its clinical applications.</li> <li>Describe system configuration of Computed Tomography, Reconstruction Algorithms and enlist its clinical application</li> <li>Highlight the key advancements in CT Technology and deapplication in area of Clinical angiography and Cardiac CT</li> </ul>	puted Radiography focus on its igital Subtraction Apply CT Image ons.

Module	Contents	Hours
1.	X- Ray Imaging: Properties of X-Rays, Production of X-Rays, X-Ray interaction with matter, Attenuation of X-Rays. Total Radiographic System: X – Ray tubes, Rating of X-Ray tubes, X-Ray generators, Filters, Grids, Beam Restrictors, Control Panel and X-Ray Films.	12
2.	Radiography Techniques & Applications: Principle and working of Computed Radiography, Digital Radiography and Mammography with its clinical applications.	06
3.	<b>Fluoroscopic Imaging:</b> X-Ray Image Intensifier, Principle and Working of C-Arm, Digital Subtraction Angiography and its clinical applications.	04
4.	<b>Principle of Computed Tomography:</b> Scanner Configurations/Generations, CT System: Scanning unit(gantry), Detectors, CT Number, Data Acquisition System. Spiral CT: Technology and clinical applications, CT artifacts and Clinical applications of CT	08
5.	CT Reconstruction Techniques: Radon Transform, Iterative, Filtered Back Projection and Fourier reconstruction.	04
6.	Advancements in CT: Multi-Detector Computed Tomography (MDCT), Flat Panel Detectors, Contrast agents in CT, CT-Angiography & Cardiac CT.	05

### **Internal Assessment:**

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

### **Textbooks:**

- 1. Christensen's Physics of Diagnostic Radiology: Thomas Curry, James Dowdey, Robert Murry (Publisher- Lea & Febiger)
- 2. Medical Imaging Physics: William R. Hendee (Publisher- Wiley-Blackwell)
- 3. The Physics of Diagnostic Imaging: David Dowsett (Publisher- CRC Press)

### **Reference Books:**

- 1. Biomedical Technology and Devices: James Moore, Duncan Maitland (Publisher- CRC Press)
- 2. The Biomedical Engineering Handbook: Ed. Joseph D. Bronzino (Publisher-CRC Press LLC)
- 3. Encyclopedia of Medical Devices and Instrumentation: John G. Webster. Vol. I, II, III, IV (Marcel Dekkar Pub).

### **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

# Links:

Course 1: *Introduction to Biomedical Imaging*

https://www.edx.org/course/introduction-to-biomedical-imaging

*Course 2:* *Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications*

https://www.edx.org/course/fundamentals-of-biomedical-imaging-ultrasounds-x-r

Course Code	Course Name	Tea	nching schei	ne	Credit assigned			
	Biomaterials and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC405	Artificial Organs (Abbreviated as BMAO)	03			03			03

		Examination Scheme										
<b>C</b>	<b>G</b>			Theory	7							
Course Code	Course Name	Internal Assessment			End Dur-		Term work	Pract	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	ation (hrs)						
BMC405	Biomaterials and Artificial Organs (Abbreviated as BMAO)	20	20	20	80	03					100	

Course Code	Course Name	Credits
BMC405	Biomaterials and Artificial Organs	03
Course Objectives	<ul> <li>To understand the fundamentals of biomaterials used for manufacture has wide application in healthcare industry.</li> <li>To understand design considerations and materials used for manufactificial organs.</li> </ul>	
Course Outcomes	<ul> <li>Learners will be able to</li> <li>Classify various biomaterials and select biomaterials for specific</li> <li>Explain biological, mechanical and physio-chemical tests conduct before implantation in the human body.</li> <li>Explain properties and applications of metals and ceramic biomaterials.</li> <li>Explain design aspects and materials used in the fabrication of an explain design aspects and materials used in the fabrication of an explain design aspects.</li> </ul>	aterials. ble and composite

Module	Contents	Hours
1.	Introduction to Biomaterials and Surface Properties of Biomaterials: Introduction of biomaterials: Classification of biomaterials, general applications; Corrosion and wear of biomaterials; Biocompatibility: Definition, interaction of tissues with biomaterials; Surface properties of biomaterials; Surface characterization techniques: Electron spectroscopy for chemical analysis (ESCA), secondary ion mass spectrometry (SIMS), infrared spectroscopy, contact angle method.	06
2.	Testing of Biomaterials:  Mechanical Testing; Physiochemical Testing; Biological Testing: In-vitro testing, In-vivo testing of Biomaterials.	06
3.	<b>Metallic Biomaterials:</b> Properties, applications and biocompatibility of stainless steel, titanium, titanium based alloys and cobalt – chromium alloys in fabrication of bio-devices and implants.	04
4.	<b>Ceramic Biomaterials:</b> Classification of ceramic biomaterials; Properties, applications and biocompatibility of alumina, zirconia, bioglass, calcium phosphate and tricalcium phosphate in fabrication of biodevices and implants.	04
5.	Polymeric Biomaterials: Classification of polymeric biomaterials, Thermoplastic and Thermosetting plastics; Properties and applications of polyurethanes, PTFE, polyethylene, polypropylene, polyacrylates, PMMA, PHEMA, hydrogel, silicone rubber, degradable polymeric biomaterials (PGA and PLA) and biopolymer in fabrication of biodevices and implants.  Composite Biomaterials: Classification, properties, and applications of composite biomaterials in fabrication of biodevices and implants.	09
6.	<b>Artificial Organs:</b> Design considerations and biomaterials involved in development of artificial heart and cardiac assist devices, heart valves, vascular grafts, peritoneal dialysis, artificial lungs, artificial liver, artificial pancreas, artificial blood, artificial skin; 3D bioprinting for manufacturing of artificial skin, cornea, collagen.	10

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

## **Text Books:**

- 1. Biomaterial Science and Engineering: J.V. Park (Plenum Press- New York)
- 2. Fundaments of Biomedical Engineering: G S. Sawhney (New Age International Publication)
- 3. Biomaterial Science: An Introduction to Materials in Medicine: Ratner & Hoffmann (Elsevier Publications)
- 4. The Biomedical Engineering HandBook: Ed. Joseph D. Bronzino (CRC Press LLC)
- 5. Artificial Organs: Gerald E. Miller (Morgan and Claypool)
- 6. 3D Printing in Medicine: Deepak M Kalaskar (Woodhead Publishing)

### **Reference Books:**

- 1. Encyclopedia of Medical Devices and Instrumentation: John G. Webster. Vol. I, II, III, IV (Marcel Dekkar Pub).
- 2. Encyclopedia Handbook of Biomaterials and Bioengineering: Part-A: Materials Vol I, II Part B: Applications Vol. I, II. (Marcel Dekkar Pub)
- 3. Design Engineering on Biomaterials for medical devices: David Hill (John Willey Publication)
- 4. Biological Performance of Materials, 2nd Edition Jonathan Black (Marcel Dekker Inc.)

# NPTEL/Swayam Links:

Course: Medical Biomaterials by Prof. Mukesh Doble - IIT Madras

https://nptel.ac.in/courses/102/106/102106057/

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	aching schei	me	Credit assigned				
	Integrated Circuit	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML401	O		02			01		01	

	Course Name	Examination Scheme									
Course			The	ory		Томм			D 4		
Code		Internal Assessment End			End	Term work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	WOLK			/ Orai		
BML401	Integrated Circuit Design Lab (ICD Lab)					25			25	50	

Course Code	Course Name	Credits
BML401	Integrated Circuit Design Lab	01
Course Objective	<ul> <li>To study op-amp parameters and understand the data sheet.</li> <li>To provide designing methodologies for basic circuits like a oscillators etc. using operational amplifiers.</li> <li>To implement the circuits on bread boards for verifying the or frequency response.</li> </ul>	
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Read the data sheet of different ICs, compare the pararappropriate IC.</li> <li>To design and implement various building blocks of different instruments.</li> </ul>	

# Syllabus: Same as that of BMC403 Linear Integrated Circuits

## **List of Laboratory Experiments: (Any seven)**

- 1. To study op-amp parameters.
- 2. To design and verify outputs of inverting amplifier, noninverting amplifier and voltage follower.
- 3. Design and verify the outputs of adder and subtractor.
- 4. To design and verify output of instrumentation amplifier.
- 5. To study frequency response of an integrator
- 6. To study frequency response of differentiator.
- 7. To study peak detector circuit.
- 8. To study half wave rectifier and full wave rectifier.
- 9. To study RC-phase shift oscillator.
- 10. To study Wein bridge oscillator.
- 11. To study comparators and zero crossing detector.
- 12. To design and study band pass filter using op-amp
- 13. To design and study notch filter.
- 14. To study monostable multivibrator using IC 555
- 15. To study a stable multivibrator using IC555
- 16. To verify outputs of IC 8038

Any other experiment based on syllabus which will help learner to understand topic/concept

### **Assessment:**

### Term Work:

Term work shall consist of minimum 10 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

### **Textbooks:**

- 1. Integrated Circuits K.R. Botkar
- 2. Design with Operational Amplifiers and Analog Integrated Circuits, by Sergio Franco, McGraw Hill, 2002
- 3. Op-Amps and linear integrated circuits by Ramakant. Gayakwad Prentice Hall
- 4. Linear Integrated Circuits, by D Choudhury Roy, New Age International Publishers

### **Reference Books:**

- 1. Analog Integrated Circuit Design, by, Tony Chan Carusone, David Johns, Kenneth William Martin Wiley, 2012
- 2. Op-amps and linear integrated circuits, Theory and Applications- James Fiore, Delmar Thomson Learning, 2001

### **NPTEL/Swayam Link:**

Course: Integrated Circuits, MOSFETs, Op-Amps and their Applications by Prof. Hardik Jeetendra Pandya - IISc Bangalore

https://nptel.ac.in/courses/108/108/108108111/

Practical exam consists of performance of any one practical from the conducted experiments within the semester and oral based on entire syllabus.

Course Code	Course Name	Teaching scheme			Credit assigned			
	Principles of	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BML402	Control Systems Lab		0.4			0.4		0.4
	(PCS)		02			01		01

		Examination Scheme									
Course		Theory									
Code	Course Name	Internal Assessment			End	Term	Pract.	Oral	Pract.	Total	
Code		Test	Test	Avg.	sem	work	Tract.	Orai	/ Oral	Total	
		1	2								
	<b>Principles</b> of										
BML402	<b>Control Systems</b>					25				25	
BML402	Lab									45	
	(PCS)										

Course Code	Course Name	Credits
BML402	Principles of Control Systems Lab	01
Course Objectives	<ul> <li>To make the learner aware of fundamental concepts of Comathematical modelling of the system.</li> <li>To make learner study the state variable representation of To make learner know the concept of time response and fre the system.</li> <li>The learner should be able to do stability analysis of the sypID controllers</li> </ul>	control system quency response of
Course Outcomes	<ul> <li>To describe basic concepts of control system such as open loop, feedback and feed forward systems</li> <li>To develop the mathematical model of different type of sy</li> <li>To analyse systems using state space techniques</li> <li>To analyse stability in time domain using root locus and E</li> <li>To examine correlation between stability analysis of syste frequency domain</li> <li>To analyse effect of PID controller in control design</li> </ul>	stems BIBO stability

List of Experiments: Any 7

- 1. Time response of first and second order RLC Circuits and systems
- 2. Frequency response of first and second order system
- 3. Plotting transient response by varying damping ratio using MATLAB/SCILAB
- 4. Type of a system and error coefficients
- 5. Design of standard test signal generators
- 6. Effect of adding Poles/Zeros in transient response and stability using MATLAB/SCILAB
- 7. Plot of Root locus using MATLAB/SCILAB

- 8. To determine frequency response of a second order system and evaluation of frequency domain specifications.
- 9. Frequency response of Lag and lead compensators
- 10. Bode Plot and stability using MATLAB/SCILAB
- 11. Checking Controllability and observability using MATLAB/SCILAB
- 12. Transient response/Solution of state equation of state space model using MATLAB/SCILAB
- 13. To study the effect of P, PI, PD and PID controller on step response of a feedback control system
- 14. PID Controller using SIMULINK

Students can perform any other experiment/Mini project based on the theory syllabus

#### **Assessment:**

### Term Work:

Term work shall consist of minimum 7experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments performance): 10 Marks

Laboratory work (Journal/Mini project): 10 Marks

Attendance :5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Oral examination will be based on suggested practical list and entire syllabus.

### **Books Recommended:**

### **Text Books:**

- 1. Modern Control Engineering: D.Roy Choudhury, PHI
- 2. Modem Control Engineering: K. Ogata, PHI
- 3. Control Systems Engineering: I.J. Nagrath, M. Gopal, Third Edition, New Age International Publishers.
- 4. Control Systems: Principle and design, by M. Gopal Tata McGraw Hill, First Edition, 1998
- 5. Automatic Control Systems Kuo
- 6. Modern Control System, by Richard C. Dorf and Robert H. Bishop Pearson, Eleventh Edition, 2013.

### **Reference Books:**

- 1. Modern Control Technology, Components & Systems Kilian
- 2. Analog And Digital Control System Design Chen
- 3. Linear Control System Analysis and Design Sheldon
- 4. Schaum's Outline of Theory and Problems Schaum's
- 5. Automated Continuous Process Control and Multivariable Control Smith
- 6. Robust Control System Design State Space Method Tsui

# **NPTEL/Swayam Link:**

Course 1: Control systems by Prof. C.S.Shankar Ram - IIT Madras

https://nptel.ac.in/courses/107/106/107106081/

https://swayam.gov.in/nd1 noc20 ee90/preview

Course 2: Control Engineering by Prof. Ramkrishna Pasumarthy - IIT Madras

https://nptel.ac.in/courses/108/106/108106098/

https://swayam.gov.in/nd1_noc20_ee62/preview

Course Code	Course Name	Teaching scheme			Credit assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML403	Medical Imaging-I (Abbreviated as MI-I)		02			01		01	

Course Code	Course Name	Examination Scheme										
		Theory										
		Internal Assessment				Dur	1 (1111	Pract	Oral	Pract.	Total	
		Test 1	Test 2	Avg.	End sem	tion (hrs)	work	Truct	Orun	/ Oral		
BML403	Medical Imaging-I (Abbreviate d as MI-I)						25		25		50	

Course Code	Course Name	Credits			
BML403	Medical Imaging-I	01			
Course Objectives	<ul> <li>To familiarize the learners with the various Imaging modali their operating principles and quality control aspects.</li> <li>To keep the learners abreast with the technological develop of Medical Imaging.</li> </ul>				
Course Outcomes	<ul> <li>Learner will be able to:</li> <li>Discuss different parts of a X-Ray Equipment and outline process of X-Ray Interaction with matter.</li> <li>Explain concepts of Radiography techniques such as Computed Radiography (CR), Digital Radiography (DR) and Mammography with focus on its clinical applications.</li> <li>Explain working principle of Fluoroscopic Imaging and Digital Subtraction Angiography and outline its clinical applications.</li> <li>Describe system configuration of Computed Tomography, Apply CT Image Reconstruction Algorithms and enlist its clinical applications.</li> <li>Highlight the key advancements in CT Technology and demonstrate its application in area of Clinical angiography and Cardiac CT</li> </ul>				

Syllabus: Same as that of BMC404 Medical Imaging – I (Abbreviated as MI-I)

#### **Suggested List of Laboratory Experiments (Any Seven)**

- 1. Study of X-Ray tube & Tube Housing
- 2. Prototype of X-Ray Generator Circuits
- 3. Design of X-Ray Timer
- 4. Comparative study of modern X-Ray machines manufactured by different companies
- 5. Simulation of Digital Subtraction Angiography using MATLAB
- 6. Comparative study of CT Machines manufactured by different companies
- 7. Case study on any disease/abnormality which require imaging modality for diagnosis
- 8. To perform CT windowing on an Image using MATLAB
- 9. To perform back projection on an Image using MATLAB
- 10. To generate pseudo colour image using MATLAB
- 11. Hospital Visit may be conducted to Radiology Department (Report by student is expected)
- 12. Technical paper review on the advanced topic (Report by student is expected)
- 13. Seminar talk by experts from industries (Report by student is expected)

Any other experiment based on syllabus which will help students to understand topic/concept.

**Mandatory Activity:** Group Presentations on the Latest Technology and Improvements in Medical Imaging (Report by student is expected)

#### **Assessment:**

#### Term Work:

Laboratory work shall consist of minimum 7 experiments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments & Journal): 10 Marks

Assignments: 05 Marks Presentation: 05 Marks Attendance: 05 Marks

Total: 25Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

#### **Textbooks:**

- 1. Christensen's Physics of Diagnostic Radiology: Thomas Curry, James Dowdey, Robert Murry (Publisher- Lea & Febiger)
- 2. Medical Imaging Physics: William R. Hendee (Publisher- Wiley-Blackwell)
- 3. The Physics of Diagnostic Imaging: David Dowsett (Publisher- CRC Press)

#### **Reference Books:**

- 1. Biomedical Technology and Devices: James Moore, Duncan Maitland (Publisher- CRC Press)
- 2. The Biomedical Engineering Handbook: Ed. Joseph D. Bronzino (Publisher-CRC Press LLC)
- 3. Encyclopedia of Medical Devices and Instrumentation: John G. Webster. Vol. I, II, III, IV (Marcel Dekkar Pub).

Course Code	Course Name	Tea	aching schei	me	Credit assigned					
BML404	<b>Computing Lab</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
	(Skill Based Lab)		04			02		02		

		Examination Scheme								
Course	Course Name		The	ory		Term			Pract.	
Code	Course Name	Internal Assessment		End	work	Pract.	Oral	/ Oral	Total	
		Test 1	Test 2	Avg.	sem	WOLK			/ Of al	
<b>BML404</b>	<b>Computing Lab</b>									
	(Skill Based Lab)									
						25			25	50

Course Name	Credits
Computing Lab (Skill Based Lab)	02
<ul> <li>To understand basic concepts of Python programming language</li> <li>To understand decision controls and functions</li> <li>To understand the utilization of various libraries in Python</li> </ul>	e.
<ul> <li>Learner will be able to:</li> <li>Describe Numbers, Strings, Lists, Tuples, Dictionaries, A functions in Python</li> <li>Express different Decision Making statements and Functions</li> <li>Illustrate different file handling operations</li> <li>Interpret object oriented programming in Python</li> <li>Develop proficiency in handling Python libraries</li> </ul>	Array and Math
	<ul> <li>Computing Lab (Skill Based Lab)</li> <li>To understand basic concepts of Python programming language</li> <li>To understand decision controls and functions</li> <li>To understand the utilization of various libraries in Python</li> <li>Learner will be able to:</li> <li>Describe Numbers, Strings, Lists, Tuples, Dictionaries, functions in Python</li> <li>Express different Decision Making statements and Functions</li> <li>Illustrate different file handling operations</li> </ul>

Module	Contents	Hours
1	Introduction to Python Installation and resources; Introduction of the Python object types: Numbers, Strings, Lists, Tuples, Dictionaries, Arrays; Numeric types; Assignments; Expressions; Print statements and formats.	08
2	<b>Decision Control Statements and Functions:</b> if and else statement, if-elif-else statement, Loop Statement: While loops, for loops, Break, Continue, and Pass, Functions: Defining and calling functions, Return statements, Passing the arguments, Lambda Functions, Recursive functions.	10
3	<b>Files Handling:</b> Types of Files in Python, Opening a File, Closing a File. Writing Text Files, Knowing Whether a File Exists or Not, Working with Binary Files, Appending Text to a File, Reading Text Files, File Exceptions, The with Statement	10
4	<b>Object Oriented Programming:</b> Introduction to OOP: Classes and Objects, Public and Private Members, Class Declaration and Object Creation, Object Initialization, Class Variables and methods, Accessing Object and Class Attributes; Inheritance; Constructors; Exception handling.	08
5	Numpy, Matplotlib: Introduction to Numpy: Creating and Printing Ndarray, Class and Attributes of Ndarray, Basic operation, Copy and view, Mathematical Functions of Numpy. Introduction to Matplotlib library: Line properties, Plots and subplots, Types of Plots.	10
6	Pandas, Seaborn: Introduction to Pandas: Understanding Dataframe, View and Select Data, Missing Values, Data Operations, File read and write operation. Introduction to Seaborn.	06

#### List of experiments

- 1. Write python programs to understand expressions, variables, quotes, basic math operation.
- 2. Write a Python program to remove elements from the list.
- 3. Write a Python program to understand concept of tuple and dictionary. (creating, accessing elements and deleting elements)
- 4. Write a Python program to demonstrate if-else, for loop and while loop.
- 5. Write a Python program to demonstrate continue, break and pass statement.
- 6. Write a Python program to read, write and copy write from a file.
- 7. Write a Python program to perform different file handling functions
- 8. Write a Python program to demonstrate working of classes and objects and members.
- 9. Write a Python program to demonstrate class method & static method.
- 10. Write a Python program to demonstrate constructors.
- 11. Write a Python program to demonstrate inheritance.
- 12. Write a Python program to demonstrate sorting in numpy.
- 13. Write a Python program to perform merging, joining and concatenating using Panda.
- 14. Write a Python program to plot the data using matplotlib

Any other experiment based on syllabus which will help students to understand topic/concept

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 12 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks

Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

#### **Text Books:**

- 1. Introduction to computing and problem solving using python, E Balagurusamy, McGraw Hill Education
- 2. Core Python Programming, Dr. R. Nageswara Rao, Dreamtech Press
- 3. John Grayson, "Python and Tkinter Programming", Manning Publications (1 March 1999).
- 4. Dusty Phillips, "Python 3 object-oriented Programming", Second Edition PACKT Publisher August 2015.
- 5. Yashavant Kanetkar, "Let us Python: Python is Future, Embrace it fast", BPB Publications; 1 edition (8 July 2019).
- 6. Beginning Python: Using Python 2.6 and Python 3.1. James Payne, Wrox publication

#### **Reference Books:**

- 1. Python Cookbook: Recipes for Mastering Python 3,by David Beazley, Brian K. Jones O'Reilly Media; 3 edition (10 May 2013).
- 2. Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code, by Zed A. Shaw Addison Wesley; 3 edition (1 October 2013).
- 3. Introduction to Machine Learning with Python, by Andreas C. Mueller O'Reilly; 1 edition (7 October 2016)
- 4. Python Crash Course A hands-on, Project Based Introduction to programming, by Eric Matthes No Starch Press; 1 edition (8 December 2015).
- 5. Tkinter GUI Application Development Blueprints: Master GUI programming in Tkinter as you design, implement, and deliver 10 real world application, by Bhaskar Chaudhary Packt Publishing (November 30, 2015)
- 6. Head First Python, by Paul Barry O'Reilly; 2 edition (16 December 2016)

## **NPTEL/Swayam Links:**

Course: Programming, Data Structures and Algorithms using Python by Prof. Madhavan Mukund -IIT Madras https://nptel.ac.in/courses/106/106/106106145/

Course code	Course Name	Credits
BMM401	Mini Project - 1 B	02

Course Code	Course Name	Credits
BMM401	Mini Project – 1 B	02
Course Objective	<ul> <li>To acquaint with the process of identifying the needs and converged problem.</li> <li>To familiarize the process of solving the problem in a group.</li> <li>To acquaint with the process of applying basic engineering frattempt solutions to the problems.</li> <li>To inculcate the process of self-learning and research.</li> </ul>	-
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Identify problems based on societal /research needs.</li> <li>Apply Knowledge and skill to solve societal problems in a groupor learning.</li> <li>Develop interpersonal skills to work as member of a group or learning.</li> <li>Draw the proper inferences from available results througe experimental/simulations.</li> <li>Analyse the impact of solutions in societal and environment sustainable development.</li> <li>Use standard norms of engineering practices</li> <li>Excel in written and oral communication.</li> <li>Demonstrate capabilities of self-learning in a group, which learning.</li> <li>Demonstrate project management principles during project works.</li> </ul>	eader. gh theoretical/ ntal context for ads to life long

## **Guidelines for Mini Project**

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.

- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

## **Guidelines for Assessment of Mini Project:**

#### Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of
  each institute. The progress of mini project to be evaluated on continuous basis, minimum two
  reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;

Marks awarded by guide/supervisor based on log book
 Marks awarded by review committee
 Quality of Project report
 10
 50

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

## **One-year project:**

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
  - First shall be for finalisation of problem
  - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of
  working prototype, testing and validation of results based on work completed in an earlier
  semester.
  - First review is based on readiness of building working prototype to be conducted.
  - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

#### Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
  - o Identification of need/problem
  - o Proposed final solution
  - o Procurement of components/systems

- o Building prototype and testing
- Two reviews will be conducted for continuous assessment,
  - First shall be for finalisation of problem and proposed solution
  - Second shall be for implementation and testing of solution.

#### Assessment criteria of Mini Project.

#### Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

## **Guidelines for Assessment of Mini Project Practical/Oral Examination:**

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

#### Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

# No. UG/46 of 2018-19

## CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/164 of 2017-18, dated 8th August, 2017 relating to syllabus of the Bachelor of Engineering (B.E.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Electrical Engineering at its meeting held on 9th April, 2018 have been accepted by the Academic Council at its meeting held on 5th May, 2018 vide item No. 4.57 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.E. and B.E. in Electrical Engineering (Bio-Medical Engineering) (Sem - V to VIII) has been brought into force with effect from the academic year 2018-19 and 2019-2020, accordingly. (The same is available on the University's website www.mu.ac.in).

MUMBAI – 400 032 25 June, 2018

To

(Dr. Dinesh Kamble)
I/c REGISTRAR

1 leu ambe

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

## A.C/4.57/05/05/2018

No. UG/ 46 -A of 2018

******

MUMBAI-400 032 25 June, 2018

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Electrical Engineering,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

(Dr. Dinesh Kamble)
I/c REGISTRAR

Mulante

## AC Item No.

# **UNIVERSITY OF MUMBAI**



**Revised Syllabus for the** 

TE Biomedical Engineering
(Third Year - Semester V and VI)

(As per Choice Based Credit and Grading System with effect from the academic year 2018–2019

# Program Structure for TE Biomedical Engineering University of Mumbai (With effect from academic year 2018 - 19)

## **Scheme for Semester V**

Course Code	Course Name	Teaching Sch (Contact Ho			Credits Assigned				
	Course I vanie	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
BMC501	Diagnostic & Therapeutic Instruments	04			04			04	
BMC502	Analog and Digital Circuit Design	04			04			04	
BMC503	Principles of Communication Engineering	04			04			04	
BMC504	Biomedical Digital Signal Processing	04			04			04	
BMDLO501X	Department Level Optional Course – I	04			04			04	
BML501	Business Communication and Ethics		02*+02			02		02	
BML502	Diagnostic and Therapeutic Instruments		02			01		01	
BML503	Integrated and Communication Circuit Design		02			01		01	
BML504	Biomedical Digital Signal Processing		02			01		01	
BMDLL501X	Department Level Optional Course Laboratory – I		02			01		01	
Total		20	12		20	06		26	

^{*2} hrs theory shall be taught to the entire class.

## **Examination Scheme for Semester V**

		Examination Scheme												
		Theory												
Course	Course Name	External (UA)		Internal		Term wo	ork	Practical		Oral		Pract./Oral		Total Marks
Code	Course I varie			(CA)	1		1		1		1		1	
		Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	
	D' 0	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	
BMC501	Diagnostic & Therapeutic	80	32	20	8									100
BMC501	Instruments	80	32	20	0									100
	Analog and Digital				_									
BMC502	Circuit Design	80	32	20	8									100
	Principles of													
BMC503	Communication	80	32	20	8									100
	Engineering													
BMC504	Biomedical Digital	80	32	20	8									100
	Signal Processing													
BMDLO 501X	Department Level Optional Course – I	80	32	20	8									100
301X	Business													
BML501	Communication					50	20							50
Bivillagor	and Ethics						20							
	Diagnostic and													
BML502	Therapeutic					25	10			25	10			50
	Instruments													
	Integrated and													
BML503	Communication					25	10	25	10					50
	Circuit Design													
BML504	Biomedical Digital Signal Processing					25	10					25	10	50
	Department Level													
BMDLL	Optional Course					25	10			25	10			50
501X	Laboratory – I													
Total		400	160	100	40	150	60	25	10	50	20	25	10	750

## **Scheme for Semester VI**

Course Code	Course Name	Teaching So (Contact Ho			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
BMC601	Biomedical Monitoring Equipment	04			04			04	
BMC602	Microprocessors and Microcontrollers	04			04			04	
BMC603	Digital Image Processing	04			04			04	
BMC604	Medical Imaging-I	04			04			04	
BMDLO602X	Department Level Optional Course – II	04			04			04	
BML601	Biomedical Monitoring Equipment		02			01		01	
BML602	Microprocessors and Microcontrollers		02			01		01	
BML603	Digital Image Processing		02			01		01	
BML604	Medical Imaging-I		02			01		01	
BMDLL602X	Department Level Optional Course Laboratory – II		02			01		01	
Total		20	10		20	05		25	

## **Examination Scheme for Semester VI**

		Examina	tion Schen	ne										
		Theory												
Course	Course Name	External		Internal			rk	Practical		Oral		Pract./Oral		Total Marks
Code	Course Name	(UA)		(CA)										
		Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	
		Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	
	Biomedical													
BMC601	Monitoring	80	32	20	8									100
	Equipment													
BMC602	Microprocessors and	80	32	20	8									100
B1/10002	Microcontrollers	00	32	20	Ŭ									100
BMC603	Digital Image	80	32	20	8									100
	Processing													
BMC604	Medical Imaging-I	80	32	20	8									100
BMDLO	Department Level	80	32	20	8									100
602X	Optional Course – II	80	32	20	8									100
	Biomedical													
BML601	Monitoring					25	10					25	10	50
	Equipment													
BML602	Microprocessors and					25	10					25	10	50
DIVIEOUZ	Microcontrollers					23	10					23	10	30
BML603	Digital Image					25	10					25	10	50
DIVIEOUS	Processing					23	10					23	10	50
BML604	Medical Imaging-I					25	10			25	10			50
DMLC004	Wicoicai imaging-i					23	10			23	10			30
BMDLL	Department Level													
602X	Optional Course					25	10			25	10			50
002A	Laboratory – II													
Total		400	160	100	40	125	50			50	20	75	30	750

## **Department Level Optional Courses**

Course Code	Department level Optional Course - I
BMDLO5011	Healthcare Database Management
BMDLO5012	Biostatistics
BMDLO5013	Rehabilitation Engineering

<b>Course Code</b>	Department level Optional Course - II
BMDLO6021	Healthcare Software
BMDLO6022	Lasers and Fibre Optics
BMDLO6023	Biological Modelling and Simulation

Course Code	Course Name	Teaching scheme Credit assigned						
	Diagnostic and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC501	Therapeutic Instruments (Abbreviated as DTI)	04			04			04

		Examination Scheme									
Course	Course	Theory									
Code	Name	Internal Assessment			End	Dura	Term Draget	Pract.	Oral	Pract.	Total
		Test 1	Test 2	Av g.	End sem	tion (hrs)	work	Tract.	Orai	/ Oral	Total
BMC501	Diagnostic and Therapeutic Instruments (DTI)	20	20	20	80	03				-	100

Course Code	Course Name	Credits
BMC501	Diagnostic and Therapeutic Instruments	04
Course Objective	<ul> <li>To understand the basic principles and working of diagnostic and the equipment.</li> <li>To develop skills enabling Biomedical Engineers to serve the health care</li> <li>To develop core competency and skill in the field of Biomedical Engineers and develop new health care systems.</li> </ul>	industry
Course Outcome	<ul> <li>Understand principles of various analytical instruments used in laboratories.</li> <li>Demonstrate the knowledge about various blood cell counting systems gas analyzers.</li> <li>Demonstarte the knowledge about various automated drug delivery syste</li> <li>Understand the basic mechanism of ventilation and analysis of principles and demonstarte the use of ventilation therapy.</li> <li>Unserstand the basic principle and applications of physiotherapy and ele techniques.</li> <li>Understand the basic principle and working of hemodialysis machine.</li> </ul>	and blood ems.

Contents	Hours
Analytical Instruments	
1. Colorimeter	12
2. Spectrophotometer	
3. Auto Analyzer	
4. Electrophoresis apparatus	
5. Chromatography	
6. Chromatography	
7. ELISA concepts (direct and indirect), reader & washer.	
-	
Blood cell counter (Coulter and Pico-scale)	6
Blood gas analyzer principle, pH. pO2 and pCO2 Electrodes and complete	6
block diagram of Blood gas analyzer.	
	4
Ventilators	16
Artificial ventilation, ventilator terms and its types, modes of ventilators,	
classification of ventilators, pressure volume flow and time diagrams.	
	_
	6
l • • • • • • • • • • • • • • • • • • •	
· · · · · · · · · · · · · · · · · · ·	4
membrane, Portable type. Various monitoring circuits.	
	Analytical Instruments  1. Colorimeter  2. Spectrophotometer  3. Auto Analyzer  4. Electrophoresis apparatus  5. Chromatography  6. Chromatography  7. ELISA concepts (direct and indirect), reader & washer.  Blood cell counter and Blood Gas Analyzer  Blood cell counter (Coulter and Pico-scale)  Blood gas analyzer principle, pH. pO2 and pCO2 Electrodes and complete block diagram of Blood gas analyzer.  Automated drug delivery systems  Infusion pumps, components of drug infusion systems, syringe and peristaltic pumps, Implantable infusion system and insulin pumps.  Pulmonary Function Analyzer  Respiration measurement technique: Lung volume and capacities, Spirometry, pneumotachometers, Pulmonary function measurement, measurement of volume  Ventilators  Artificial ventilation, ventilator terms and its types, modes of ventilators, classification of ventilators, pressure volume flow and time diagrams. Microprocessor controlled ventilator  Physiotherapy equipments  Basic principle, working and technical specifications of  1. Shortwave Diathermy  2. Ultrasonic therapy unit  3. Microwave therapy unit  4. Nerve and Muscle Stimulator.  Hemodialysis machine  Basic principle of Dialysis and its type. Different types of dialyzer

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Books Recommended:**

*Text books:* 

- 1. Handbook of Biomedical Instrumentation (Third edition): R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Biomedical Instrumentation and measurements : Leislie Cromwell, Fred J. Weibell, Enrich A. Pfeiffer. (PHI Pub)

## Reference books:

- 1. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)
- 2. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 3. Various Instruments Manuals.
- 4. Various internet websites.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Teaching scheme Credit assigned						
	Analog and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC502	Digital Circuit Design (Abbreviated as ADCD)	04	1		04	1		04

		Examination Scheme									
Course	Course	Theory									
Code	Name	Internal Assessment		End	Dura	Term	Pract.	Oral	Pract.	Total	
		Test 1	Test 2	Av g.	sem	tion (hrs)	work	11act.	Orai	/ Oral	Total
BMC502	Analog and Digital Circuit Design (ADCD)	20	20	20	80	03	-			-	100

Course Code	Course Name	Credits
BMC502	Analog and Digital Circuit Design	04
Course objective	<ul> <li>Students will be able to:</li> <li>To understand and provide knowledge of various Analog And Digital Such as Timer IC 555, PLL IC, VCO, 723 voltage regulator.</li> <li>To understand different types of filters and design them for the given specifications.</li> <li>To understand, learn and analyze fundamentals of Electronics are circuits.</li> <li>To develop analytical aptitude and to understand basic electronic concerelated to engineering profession.</li> <li>To develop competency in terms of logical thinking and application skills.</li> <li>To design and develop various circuits for biomedical applications and develop logical thinking of students.</li> </ul>	nd Digital epts ills.
Course Outcome	<ul> <li>Learner will be able to: <ul> <li>Understand various waveform generation IC's and their applications a in projects.</li> <li>Apply the knowledge of various special function IC's and special purp diodes for designing.</li> <li>Design active filters and their application in biomedical field and elect circuit design</li> <li>Understanding power devices like power diode, SCR, DIAC and TRL and power MOSFET's and their applications in industry</li> <li>Applying the knowledge of voltage regulators, power supplies, and sw</li> <li>Understand different types of ac and dc motors and how to select them project design.</li> </ul> </li> </ul>	oose cronic AC, UJT vitches.

Module	Contents	Hours
1.	Waveform Generation IC's:	12
	<ul> <li>IC 555 Functional Block diagram, Circuit diagram.</li> </ul>	
	• IC 555 in Astable Multivibrator(AMV) functional diagram, circuit diagram	
	with application	
	• IC 555 in Monostable Multivibrator (MMV) functional diagram, circuit	
	diagram with application	
	PLL ( IC 565 or equivalent) circuit diagram and applications	
	<ul> <li>VCO(IC 566) Circuit diagram and applications</li> </ul>	
	Function Generator (IC 8038 or equivalent) Circuit diagram and its applications	
2.	Special Function IC's and Special function diodes:	06
	<ul> <li>F-V convertors and V-F convertors: Circuit diagram and its applications</li> </ul>	
	• Instrumentation Amplifier (AD 624 /AD 620) Circuit diagram and its	
	applications,	
	Monolithic Isolation Amplifier module	
	<ul> <li>Opto-couplers and Opto-isolators</li> </ul>	
	<ul> <li>Diodes (LED, photodiode, varactor, schottky)</li> </ul>	
	PWM (SG 3525 or equivalent) Circuit diagram and its applications	
3.	Active Filters:	08
	• Frequency response, design of first order (Notch, LP, HP, BP) filter and	
	applications.	
	• Frequency response, design of 2 nd order (Chebyshev, Butterworth,	
	Elliptical filters) LP, HP, BP, All pass, Notch, band reject	
	<ul> <li>Capacitor filter, switched capacitor filter.</li> </ul>	
	Generalized Impedance Convertor (GIC)	
4.	Power Devices and Circuits:	06
	• SCR's: Basic structure, characteristics, Two transistor and Operations.	
	series and parallel connections of SCRs.	
	DIAC and TRIAC: Basic Structure and characteristics, applications	
	Power diode	
	UJT: Operation, characteristics, parameters and UJT as a relaxation	
	oscillator	
	Power MOSFET: Device structure, equivalent circuit and characteristics	
5.	Voltage Controllers and Regulators :	10
	<ul> <li>Analog switches, Relays : Basic Types</li> </ul>	
	<ul> <li>Functional block diagram of Voltage Regulators</li> </ul>	
	• Types of voltage regulators: Fixed voltage regulators (78XX and 79XX),	
	Adjustable voltage regulator LM317, linear voltage regulator IC 723,	
	Design of low voltage regulator and high voltage regulator using 723.	
	Switching Mode Power Supply (SMPS)	
6.	Motors And Drivers :	06
	Stepper, Servo, DC/AC Motors drivers and geared motors (Basic operation and	
	application)	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Books Recommended:**

#### *Text books:*

- 1. Op-Amps and linear integrated circuits R. Gayakwad
- 2. Design with operational amplifiers and analog integrated circuits. Sergio Franco,
- 3. Integrated Circuits K.R.Botkar.
- 4. Power Electronics, Ned Mohan.
- 5. Power Electronics, M.H.Rashid.
- 6. Power Electronics, M.D.Singh and K.B.Khanchandani,

#### Reference Books:

- 1. Integrated Electronics Millman & Halkias
- 2. Linear Integrated Circuits: Roy Chaudhary
- 3. Opamps and linear integrated circuits, Theory and Applications- James Fiore.
- 4. Power Electronics, P.C.Sen.
- 5. Power Electronics, Dr.P.S.Bimbhra,

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
	Principles of	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC503	Communication Engineering (Abbreviated as PCE)	04			04			04	

Course Code		Examination Scheme									
	Course	Theory									
	Name	Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total
		Test 1	Test 2	Av g.	sem	tion (hrs)	work	11act.		/ Oral	Total
BMC503	Principles of Communica tion Engineering (PCE)	20	20	20	80	03	-			-	100

Course Code	Course Name	Credits
BMC503	Principles of Communication Engineering	04
Course Objective	<ul> <li>To provide concepts, principles and techniques used in anal digital communications.</li> <li>To cover a range of digital modulation techniques white frequently used in modern communication systems.</li> </ul>	
Course Outcome	<ul> <li>Learner will be able to:         <ul> <li>Demonstrate concept of electronic communication system with of noise and modeling of noise</li> <li>Have in depth knowledge of amplitude modulation and be compare different types of AM transmitters with analysis</li> <li>Analyze efficiently different types of AM receivers characteristics, merits and demerits</li> <li>Exhibit basic operation of FM transmitter and receiver with analysis, advantages and disadvantages</li> <li>Apply sampling theorem and quantization process in dianalog signal with different types of analog and digital modulation</li> <li>Understand and compare different types of digital transmittent echniques and multiplexing techniques</li> </ul> </li> </ul>	able to s with h types, gitizing l pulse

Module	Contents	Time
1	Introduction to communication system and noise:	04
	Elements of communication system, types of communication system	
	<ul> <li>Noise definition, types, Signal to Noise ratio, Noise factor, Noise figure,</li> </ul>	
	Noise Temperature	
2	Amplitude Modulation Transmission:	10
	<ul> <li>Definition, Mathematical analysis of AM wave, Different types of AM,</li> </ul>	
	Spectrum, Bandwidth,	
	AM transmitter: High and low level AM transmitter	
	Generation: DSBFC AM (Grid, plate and collector modulated AM generator,	
	DSBSC AM (Ring and FET balanced modulator) and SSB AM (Filter, phase	
	shift and Third method)	
	Introduction to ISB and VSB transmitter	
3	Amplitude Modulation Receiver:	08
	<ul> <li>Receiver characteristics: sensitivity, selectivity, fidelity, double spotting,</li> </ul>	
	Image frequency and its rejection, dynamic range	
	Types: TRF receiver, superetrodyne receiver, double conversion receiver	
	AM detectors –Simple and Practical Diode detector, Principles and types of	
	tracking and AGC, SSB detector	
4	Frequency Modulation Transmission and Receivers :	10
	<ul> <li>Principles of FM waveform, spectrum, Bandwidth</li> </ul>	
	FM generation: Direct and Indirect FM transmitter	
	• Principles of AFC, Effect of noise in FM, Noise Triangle, Pre-emphasis and	
	De-emphasis	
	FM Receivers: Block diagram	
	Types: Simple Slope detector, Balanced slope detector, Foster Seeley	
	discriminator, Ratio detector, Quadrature detector	
	Capture effect in FM receivers, Difference between AM and FM system	
5	Analog and Digital Pulse Modulation Techniques:	08
	Sampling Theorem for low pass signals and band pass signals, Proof of	
	Sampling theorem, Concept of Aliasing, Quantization, Companding,	
	Analog modulation techniques: PAM, PWM, PPM – Generation, Detection,	
	Advantages, disadvantages	
	Digital pulse modulation techniques: PCM, DPCM, DM and ADM	
	Generation, Detection, Advantages, disadvantages	
6	Digital Transmission Techniques and Multiplexing:	08
	Digital transmission types: ASK, FSK, PSK - Generation, Detection,	
	Advantages Disadvantages	
	Multiplexing techniques: Concept of multiplexing, FDM, TDM, Hierarchy,	
	Applications, Advantages Disadvantages	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Books Recommended:**

#### *Text books:*

- 1. Electronic communication system Wayne Tomasi, Pearson Education
- 2. Electronic communication system Roy Blake, Thomson Learning
- 3. Electronic communication system Kennedy and Devis, TMH

#### Reference Books:

- 1. Digital and Analog communication system Leon W Couch, Pearson Education
- 2. Principles of communication system Taub and Schilling ,TMH

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	nching schei	me	Credit assigned				
	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC504	Digital Signal Processing (Abbreviated as BDSP)	04			04			04	

Course Code		Examination Scheme											
	Course	Theory											
	Name	Interna	al Assessn	nent	End	Dura	Pro		Oral	Pract.	Total		
		Test 1	Test 2	Av g.	sem	tion (hrs)	work	Tract.	Orai	/ Oral	Total		
BMC504	Biomedical Digital Signal Processing (BDSP)	20	20	20	80	03	-			-	100		

Course Code	Course Name	Credits							
BMC504	Biomedical Digital Signal Processing	04							
<b>Course Objective</b>	<ul> <li>To build a strong base for developing algorithms for signal processystems and Imaging systems.</li> </ul>	-							
	<ul> <li>To develop competency in terms of logical thinking, programming application skills.</li> </ul>	To develop competency in terms of logical thinking, programming and application skills.							
		To train and motivate students for pursuing higher education and research							
	for developing cutting edge technologies.								
Course Outcome	Learner will be able to,								
	<ul> <li>Understand the fundamental techniques and applications of digital</li> </ul>	signal							
	<ul> <li>Processing with emphasis on biomedical signals.</li> </ul>								
	• 2. Implement algorithms based on discrete time signals.								
	<ul> <li>3. Understand Circular and linear convolution and their implementusing DFT</li> </ul>	tation							
	<ul> <li>4. Understand efficient computation techniques such as DIT and I algorithms</li> </ul>	OIF FFT							
	• 5. Design FIR filters using window method, digital IIR filters by oprototype analog filters and then applying analog to digital conver								

Module	Contents	Hours
1.	Basic Elements of DSP, Discrete time signals and systems, DTFT, Z Transform(ZT) – Properties of ZT, Inverse ZT, solution of LCCDE with initial conditions – zero input response and zero state response -basic concept of BIBO stability, Application of ZT and IZT	08
2.	Introduction to DFT-Properties of DFT	08
3.	Introduction DIT and DIF FFT algorithms. Use of FFT in linear filtering,	07
4.	Review of Design of analog Butterworth and Chebyshev Filters, Frequency transformation in analog domain, Design of IIR Digital Filters using Impulse invariance method-Design of digital Filters using Bilinear transformation	11
5.	Structure of FIR filters-Linear phase filters –Filter design using window technique-Frequency sampling techniques . Realisation of FIR &IIR filters Direct ,cascade and parallel forms	10
6.	Introduction to Digital signal Processors—Architecture —Features-addressing formats —functional mode-introduction to commercial Processors. Application of DSP in Biomedical Applications	04

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Books Recommended:**

#### *Text books:*

- 1. Digital signal processing Principles Algorithms and Application –Proakis &Manolakis –Third edition PHI
- 2. Digital Signal Processing –Sanjit K. Mithra Tata Mc-graw Hill
- 3. Digital Signal Processing S. Salivahanan, C.Gnanapriya, 2/ed Tata McGraw Hill

#### Reference Books:

- 1. Digital signal processing A.V. Oppenheim and R.W.Schafer- PHI
- 2. Understanding Digital Signal Processing –Richard G. Lyons-3/ed Pearson Publication

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching schei	me	Credit assigned				
	Department Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLO 5011	Optional Course – I Healthcare Database Management (Abbreviated as HCDM)	04			04			04	

Course		Examination Scheme											
	Course	Theory											
Code	Name	Interna	al Assessr	l Assessment End Dura Term Pract.		Oral	Pract.	Total					
Code	Name	Test 1	Test 2	Av g.	End sem	tion (hrs)	work	Tracti	Oran	/ Oral	Total		
BMDLO 5011	Department Level Optional Course – I Healthcare Database Management (HCDM)	20	20	20	80	03					100		

Course Code	Course Name	Credits
BMDLO5011	Healthcare Database Management	04
Course Objective	<ul> <li>Learn and practice data modelling using the entity-relationsh developing database designs.</li> <li>Understand the use of Structured Query Language (SQL) and SQL syntax.</li> <li>To create, display, validate and search XML files</li> <li>To create windows applications using standard .NET control</li> <li>To acquire knowledge of client side scripting language there reduce the load on server and minimize the response time.</li> <li>To create, validate and display web data.</li> </ul>	d learn
Course Outcome	<ul> <li>Learner will be able to,</li> <li>Design data models and schemas in DBMS and apply the feadatabase management systems and Relational database.</li> <li>Construct tables and retrieve data from the database by using the standard language of relational databases.</li> <li>Implement client side scripting and validation.</li> <li>Create XML documents using XML schema and XSL elements.</li> </ul>	g SQL-

•	Using operators, variables, and control structures in JavaScript
•	Designing of windows applications using VB.NET

Module	Contents	Hours
1	Introduction Database Concepts and Entity Relationship Data Model: Introduction, Characteristics of databases, File system V/s Database system, DBMS system architecture, Database Administrator, Types of Models, Phases of Database Modelling, The Entity-Relationship (ER) Model, Generalization, specialization	05
2	Structured Query Language (SQL): Overview of SQL, Data Definition Commands, Set operations, aggregate function, null values, Data Manipulation commands, Data Control commands, Views in SQL, Nested and complex queries	10
3	Transactions Management and Concurrency: Transaction concept, Transaction states, ACID properties	06
4	JavaScript Introduction, Variables and its Scope, Comments, Operators (Arithmetic and Assignment), Data Types, JavaScript language constructs (if, if-else, while, dowhile, for, switch), Functions, Objects (Properties, Methods and Events), Built-in Objects (Array, Number, Date, Math, String, RegEx), Browser Objects (Window, Document, Location, History, Cookies) DOM (Document Object Model), Manipulation, Form Validation	08
5	Web Extensions: XML Documents, XML Elements, Attributes XML Schema, Namespaces, Style Sheets, XPath, Introduction to X-Query	08
6	Programming with VB.Net: Variables, Comments, Constants, Keywords, DataTypes, Conditional Statements, Select Case Statement, Loops (For Loop, while Loop, do Loop, For Each Loop), Arrays, Option Explicit, Option Strict, Standard Controls - Windows Application	11

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Books Recommended:**

#### *Text books:*

- 1. G. K. Gupta: "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5thEdition, PEARSON Education.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition
- 5. Crockford, Douglas, "JavaScript: The Good Parts", Shroff
- 6. Heather Williamson, "XML: The Complete Reference", McGraw Hill Education

7. Imar Spaanjaars, "Beginning ASP.NET 4.5.1 in C# and VB", Wiley

#### Reference Books:

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press
- 2. Mark L. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley
- 3. Sharaman Shah ,"Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 5. Debabrata Sahoo "Database Management Systems" Tata McGraw Hill, Schaum's Outline

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	iching schei	me	Credit assigned				
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLO 5012	Optional Course – I Biostatistics (Abbreviated as BIOSTATS)	04			04			04	

		Examination Scheme											
Course Code	Course	Theory											
	Name _	Interna	al Assessn	nent	End	Dura	Dura Term Pract.		Oral	Pract.	Total		
Couc		Test 1	Test 1 Test 2	Av	sem	tion	work	Tract.	Oran	/ Oral	Total		
		Test 1		g.	5522	(hrs)							
BMDLO 5012	Department Level Optional Course – I Biostatistics (BIOSTATS)	20	20	20	80	03	ŀ			ŀ	100		

Course Code	Course Name	Credits
BMDLO5012	BIOSTATISTICS	04
Course Objective	<ul> <li>To cover basic concepts and theory related to statistics.</li> <li>To focus on various statistical abilities such as analysis of hypothesis testing, estimation, etc.</li> </ul>	variance,
Course Outcome	<ul> <li>A learner will be able to</li> <li>Apply statistical methods to sample data and analyse it.</li> <li>Develop a strong foundation for designing algorithms for computations.</li> </ul>	ation.

Module	Contents	Hours
1.	Descriptive statistics and probability	04
	Frequency distribution, Measures of central tendency, Measures of dispersion	
	Basic probability and Bayes theorem.	
2.	Probability and Sampling Distributions	10
	Discrete probability distributions	
	Continuous probability distributions - Binomial, poisson and normal distributions	
	Sampling distributions – sample mean, difference between two sample means, sample	
	proportions, difference between two sample proportions	
3.	Estimation	07
	t- distribution	
	Confidence intervals for - population mean, difference between two population means,	
	population proportion, difference between two population proportions, variance of normally	

	distributed population, ratio of variances of two normally distributed populations	
	Determination of sample size for estimating mean and proportions	
4.	Hypothesis testing	07
	Hypothesis testing for – Population mean, difference between two population means,	
	population proportions, difference between two population proportions, population variance,	
	ratio of two population variances	
	Type – I and II error and power of test	
5.	Analysis of variance	13
	Completely randomized design, Randomized complete block design, repeated measures	
	design, factorial experiment.	
	Regression and Correlation	
	Simple linear regression, correlation model, correlation coefficient, multiple regression,	
	multiple correlation	
6.	Chi square distribution and analysis of frequency	07
	Chi-square distribution – properties	
	Test of goodness of fit, independence and homogeneity	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Books Recommended:**

*Text books:* 

- 1. Biostatistics A foundation for analysis in health sciences by Wayne W. Daniel, Seventh edition, Wiley India
- 2. Fundamentals of mathematical statistics by S. C. Gupta and V. K. Kapoor, second edition, Sultan Chand Publisher
- 3. Probability and statistics for engineers by J. Ravichandran, Wiley /india

#### Reference Books:

- 1. Biostatistics How it works by Steve selvin, Pearson education
- 2. An Introduction to Biostatistics by Sunder Rao and J. Richard, Third Edition, Prentice Hall of India
- 3. Probability and Statistics by Schaum's series

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Teaching scheme				Credit assigned			
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLO 5013	Optional Course – I Rehabilitation Engineering (Abbreviated as RE)	04			04			04	

		Examination Scheme									
Course			Theory							D	
Code	Course Name	Internal Assessment			End	Dura Te	Term	Pract.	Oral	Prac t./	Total
Coue		Test 1	Test 2	Av g.	sem	tion (hrs)	work	Tract.	Orai	Oral	Total
BMDLO 5013	Department Level Optional Course – I Rehabilitation Engineering (RE)	20	20	20	80	03					100

Course Code	Course Code				
BMDLO5013	Rehabilitation Engineering				
<b>Course Objectives</b>	To introduce learners to basics of Kinetics and Kinematics, Flow properties of				
	blood and give overview of Rehabilitation Engineering.				
<b>Course Outcomes</b>	A learner will be able to				
	Build foundation for learners enabling the learners to pursue higher studies with				
	specialization in Rehabilitation Engineering.				

Module	Contents	Hours
1.	Introduction and socio-legal aspects of Rehabilitation Engineering: Medical	06
	Rehabilitation, Epidemiology of Rehabilitation, preventive Rehabilitation, Impairment Disability and Handicap.	
	Delivery of Rehabilitation Care: The team-Medical, Paramedical, Socio-vocational	
2.	Orthotics, Amputation, and Prosthetics, Activities of Daily Living (ADL):	13
	Orthotics: General Principles of Orthotics, Biomechanics of orthotics,	
	Classification: Upper & Lower Extremity orthotics, spinal Orthotics	
	Amputation & Prosthetics: Causes of Amputation, Types of Amputation, and Levels	
	of Amputation for upper and lower Extremity. Preoperative and post-operative	
	period. Pre-prosthetic stage. Endo & Exo-skeletal Prosthetics. Classification: Upper	
	& lower limb Prosthetics	
	Activities of Daily Living: ADL grouping, Barthel's Index of ADL. Functional	

	Independence, Measures, Environmental control system, communication, ADL training.	
3.	Mechanical principles of Kinematics and Kinetics:  Planar classification of position and motion, Rotary and translatory motion, Degree of freedom, Kinematic Chain Theories of motion, Levers, Torque, Parallel force, Resolution of force, Calculation of muscle and joint forces  Clinical application on weight and center of gravity ,applied weights and resistance, muscle force and leverage, joint forces, Clinical application on stretching versus joint mobilization	08
4.	Flow properties of blood: An outline of Blood Rheology, Constitutive equation of blood based viscometric Data and Casson's equation, laminar flow of blood in a tube, fluid mechanical interaction of RBCs with a solid wall, thrombus formation and dissolution, medical application of Blood Rheology	08
5.	<b>Common deformities and role of surgery in rehabilitation engineering.</b> Types of deformities, Management of 1 st and 2 nd degree deformities. Common deformities of lower limb. Treatment for partial foot deformities. Deformities of the foot. Arm deformities. Torticollis	05
6.	An overview of rehabilitation of muscular dystrophy, paraplegia, and quadriplegia: Muscular Dystrophy, Duchenne Muscular Dystrophy, Rehabilitation, facioscapulohumeral Muscular Dystrophy Paraplegia: Etiology, mechanism of injury, Identification of level of lesion, Management of active spinal cord injury, Rehabilitation, Gait training Quadriplegia: Mobility, Training, Level of injury & outcome, Management	08

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Books Recommended:**

*Text books:* 

- 1. BRUNNSTROM'S CLINICAL KINESIOLOG, By Laura K Smith, Elizabeth Laurance Weiss; Jaypee brothers Publication
- 2. Mechanical properties of living tissues by Y. C. Fung

#### Reference Books:

1. Textbook of Rehabilitation by S. Sundar,3rd edition Jaypee publication

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	aching scher	ne	Credit assigned			
	Business	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BML501	Communication and Ethics (Abbreviated as BCE)		04			02		02

	Course Name	Examination Scheme									
Course			The	ory		Term			D4		
Code		Internal Assessment E				work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	WOLK			, Grai		
BML501	Business Communication and Ethics (BCE)					50				50	

Course Code	Course Name	Credits					
BMC501	Business Communication and Ethics	02					
Course Objective	1. To inculcate professional and ethical attitude at the workplace.	1					
	2. To enhance effective communication and interpersonal skills.						
	3. To build multidisciplinary approach towards all life tasks.						
	4. To hone analytical and logical skills for problem-solving.						
Course Outcome	<ol> <li>A learner will be able to</li> <li>Design a technical document using precise language, suitable and apt style.</li> <li>Develop the life skills/ interpersonal skills to progress profess building stronger relationships.</li> <li>Demonstrate awareness of contemporary issues know professional and ethical responsibilities.</li> <li>Apply the traits of a suitable candidate for a job/higher educate being trained in the techniques of holding a group discussion interviews and writing resume/SOP.</li> <li>Deliver formal presentations effectively implementing the value of the property of the</li></ol>	dionally by vledge of ation, upon on, facing					

Module	<b>Detailed Contents</b>	Hrs.
01	Report Writing	05
1.1	Objectives of Report Writing	
1.2	Language and Style in a report	
1.3	Types: Informative and Interpretative (Analytical, Survey and Feasibility) and Formats of reports (Memo, Letter, Short and Long Report)	
02	Technical Writing	03

2.1	Technical Paper Writing (IEEE Format)	
2.2	Proposal Writing	
03	Introduction to Interpersonal Skills	09
3.1	Emotional Intelligence	
3.2	Leadership and Motivation	
3.3	Team Building	
3.4	Assertiveness	
3.5	Conflict Resolution and Negotiation Skills	
3.6	Time Management	
3.7	Decision Making	
04	Meetings and Documentation	02
4.1	Strategies for conducting effective meetings	
4.2	Notice, Agenda and Minutes of a meeting	
4.3	Business meeting etiquettes	
05	Introduction to Corporate Ethics	02
5.1	Professional and work ethics (responsible use of social media -	
	Facebook, WA, Twitter etc.)	
5.2	Introduction to Intellectual Property Rights	
5.4	Ethical codes of conduct in business and corporate activities (Personal	
	ethics, conflicting values, choosing a moral response and	
	making ethical decisions)	
06	<b>Employment Skills</b>	07
6.1	Group Discussion	
6.2	Resume Writing	
6.3	Interview Skills	
6.4	Presentation Skills	
6.5	Statement of Purpose	
		28

#### **List of Assignments:**

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper )
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

#### Term Work:

Term work shall consist of all assignments from the list. The distribution of marks for term work shall be as follows:

	~ •	
Book Report		.(10) Marks

TOTAL:	(50) Marks
Attendance	(05) Marks
Group Discussion.	(10) Marks
Project Report Presentation	(15) Marks
Assignments	(10) Marks

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

#### References

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education
- 7. Ghosh, B. N., "Managing Soft Skills for Personality Development", Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 9. Bell, Smith, "Management Communication" Wiley India Edition, 3rd edition.
- 10. Dr. Alex, K., "Soft Skills", S Chand and Company
- 11Subramaniam, R., "Professional Ethics" Oxford University Press.
- 12. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 13. <a href="https://grad.ucla.edu/asis/agep/advsopstem.pdf">https://grad.ucla.edu/asis/agep/advsopstem.pdf</a>

Course Code	Course Name	Teaching scheme			Credit assigned			
BML502	Diagnostic and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Therapeutic Instruments							
	Instruments (DTI)		02			01		01

Course Code		Examination Scheme										
	Course Name	Theory				Т.			Due of			
	Course Name	Internal Assessment End			End	Term work	Pract.	Oral	Pract. / Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK			, Grai			
	Diagnostic and											
BML502	Therapeutic					25		25		50		
DIVIL'302	Instruments									30		
	(DTI)											

Course Code	Course Name	Credits
BML502	Diagnostic & Therapeutic Instrumentation	01
Course Objective	<ul> <li>To demonstrate the application technique of diagnostic equipment.</li> <li>To implement the basic circuits used in diagnostic and t equipment.</li> </ul>	
Course Outcome	<ul> <li>Appreciate the importance of wavelength selection for me of various ions present in the sample.</li> <li>Understand principles of various analytical instruments hospital laboratories.</li> <li>Design and Implement power supply of egulated v</li> <li>Understand the basic principle and applications of physiothelectrotherapy techniques.</li> <li>Compare the applications of various types of phy equipments.</li> <li>Understand the basic principle and working of hemodialysis</li> </ul>	s used in nerapy and siotherapy

Syllabus: Same as that of BMC501 Diagnostic and Therapeutic Instruments.

# **List of Experiments: (Any Seven)**

- 1. Selection of wavelength for Colorimeter and spectrophotometer
- 2. Find out the concentration of unknown sample using colorimeter and spectrophotometer.
- 3. Design and Implementation of 6V, 1 Amp regulated power supply
- 4. Design and Implementation of temperature controller circuit for hemodialysis machine.
- 5. Demonstration of shortwave diathermy.
- 6. Demonstration of ultrasonic diathermy.
- 7. Demonstration of nerve and muscle stimulator.
- 8. Industry / Hospital visit to be conducted.

Any other experiment based on syllabus which will help learner to understand topic/concept.

Group Presentation on the latest technology in hospitals based on the topics covered in the syllabus.

#### **Assessment:**

### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks
Laboratory work (Journal) : 05 Marks
Presentation : 05 Marks
Attendance : 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

#### Text books:

- 1. Handbook of Biomedical Instrumentation (Third edition): R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Biomedical Instrumentation and measurements : Leislie Cromwell, Fred J. Weibell, Enrich A. Pfeiffer. (PHI Pub)

### Reference books:

- 1. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)
- 2. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 3. Various Instruments Manuals.
- 4. Various internet websites

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	aching scher	ne	Credit assigned				
	Integrated and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML503	Communication Circuit Design (ICCD)		02			01		01	

Course Code	Course Name	Examination Scheme										
		Theory				Term			Pract.			
		Internal Assessment End			End	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WOLK			/ Oran			
BML503	Integrated and Communication Circuit Design (ICCD)					25	25			50		

Course Code	Course Name	Credits
BMC503	Integrated and Communication Circuit Design	01
Course Objective	<ul> <li>To understand, analyze and design integrated circuits.</li> <li>To analyze various analog modulation techniques.</li> </ul>	
Course Outcome	<ul> <li>Learner will be able to,</li> <li>Apply the knowledge of various special function IC's, filt devices, voltage regulators and motors for designing.</li> <li>Implement and design various analog modulator and demodulato</li> </ul>	_

Syllabus: Same as that of BMC502 Analog and Digital Circuit Design (ADCD)and BMC503 Principles of Communication Engineering (PCE).

# **Suggested Experiments for Integrated Circuit Design (ICD): (Any four)**

- 1. Design AMV and MMV and their applications.
- 2. To design a voltage regulator.
- 3. Function Generator IC 8038
- 4. VCO and PLL ICs and their applications.
- 5. Design for Band pass /Band reject
- 6. Design of Notch filer / Twin T filter
- 7. Design of Low Pass Filter/ High pas Filter
- 8. Experiments on SCR/DIAC/TRIAC/UJT relaxation oscillator.

# **Suggested Experiments for Communication Circuit Design (CCD): (Any four)**

- 1. DSB-SC, DSB-FC, SSB AM generation and detection
- 2. FM generation and detection
- 3. Pre-emphasis and De-emphasis
- 4. Sampling and reconstruction
- 5. PAM generation and detection
- 6. PWM generation and detection
- 7. PPM generation and detection
- 8. Time/Frequency division multiplexing

#### **Assessment:**

## Term Work:

Term work consists of minimum eight experiments based on the syllabus (four experiments on "Integrated Circuit Design" and four experiments on "Communication Circuit Design").

The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal on ICD): 10 marks Laboratory work (Experiments and Journal on CCD): 10 marks Attendance : 05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

## **Books Recommended:**

#### *Text books:*

- 1. Op-Amps and linear integrated circuits R. Gayakwad
- 2. Linear Integrated Circuits: Roy Chaudhary
- 3. Design with operational amplifiers and analog integrated circuits. Sergio Franco,
- 4. Integrated Circuits K.R.Botkar.
- 5. Power Electronics, Ned Mohan.
- 6. Power Electronics, M.H.Rashid.
- 7. Power Electronics, M.D.Singh and K.B.Khanchandani,
- 8. Electronic communication system Wayne Tomasi, Pearson Education
- 9. Electronic communication system Roy Blake, Thomson Learning
- 10. Electronic communication system Kennedy and Devis, TMH

#### Reference Books:

- 1. Integrated Electronics –Millman & Halkias
- 2. Opamps and linear integrated circuits, Theory and Applications- James Fiore.
- 3. Power Electronics, P.C.Sen.
- 4. Power Electronics, Dr.P.S.Bimbhra,
- 5. Digital and Analog communication system Leon W Couch, Pearson Education
- 6. Principles of communication system Taub and Schilling, TMH

# Practical examination will be based on suggested practical list.

Course Code	Course Name	Tea	aching schen	ne	Credit assigned				
	Biomedical Digital	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML504	Signal Processing (BDSP)		02			01		01	

Course Code	Course Name	Examination Scheme										
		Theory				— Term			Dwoot			
		Internal Assessment Er			End	work	Pract.	Oral	Pract. / Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK			/ Oran			
	Biomedical											
BML504	Digital Signal					25			25	50		
DML504	Processing									30		
	(BDSP)											

Course Code	Course Name	Credits
BML504	Biomedical Digital Signal Processing	01
Course Objective	<ul> <li>To build a strong base for developing algorithms for processing systems and Imaging systems.</li> <li>To develop competency in terms of logical thinking, progrand application skills.</li> <li>To train and motivate students for pursuing higher educates arch for developing cutting edge technologies.</li> </ul>	gramming
Course Outcome	<ul> <li>Learner will be able to,</li> <li>Understand the fundamental techniques and applications signal processing with emphasis on biomedical signals.</li> <li>Implement algorithms based on discrete time signals.</li> <li>Understand Circular and linear convolution and their implementary using DFT</li> <li>Understand efficient computation techniques such as DIT FFT algorithms</li> <li>Design FIR filters using window method, digital IIR designing prototype analog filters and then applying analog conversion.</li> </ul>	mentation and DIF

 $Syllabus: Same \ as \ that \ of \ BMC504 \ Biomedical \ Digital \ Signal \ Processing \ (BDSP)$ 

# **Suggested Experiments: (Any Seven)**

- 1. Basics of Programming
- 2. Simulations of standard signals
- 3. Operations on Signals
- 4. Concept of Aliasing
- 5. Linear convolution circular convolution
- 6. Sampling Theorem
- 7. Z-Transform
- 8. Discrete Fourier Transform(DFT)
- 9. Fast Fourier Transform (FFT)
- 10. Design and simulation of FIR filter
- 11. IIR filters using Butterworth approximation
- 12. IIR filter using Chebyshev approximation

# **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

## **Text books:**

- 1. Digital signal processing Principles Algorithms and Application –Proakis &Manolakis –Third edition PHI
- 2. Digital Signal Processing –Sanjit K. Mithra Tata Mc-graw Hill
- 3. Digital Signal Processing S. Salivahanan, C.Gnanapriya, 2/ed Tata McGraw Hill

## **Reference Books:**

- 1. Digital signal processing A.V. Oppenheim and R.W.Schafer- PHI
- 2. Understanding Digital Signal Processing –Richard G. Lyons-3/ed Pearson Publication

Practical and oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	aching scher	ne	Credits assigned				
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLL 5011	Optional Course – I Healthcare Database Management (Abbreviated HCDM)		02			01		01	

Course Code		Examination Scheme										
	Course Name	Theory				Term			Pract.			
	Course Name	Internal Assessment			End	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WOIK			/ Orai			
BMDLL 5011	Department Level Optional Course – I Healthcare Database Management (HCDM)					25		25		50		

Course Code	Course Name	Credits
BMDLL5011	Healthcare Database Management	01
Course Objective	<ul> <li>Learn and practice data modelling using the entity-relation developing database designs.</li> <li>Understand the use of Structured Query Language (SQL) a SQL syntax.</li> <li>To create, display, validate and search XML files</li> <li>To create windows applications using standard .NET continuous control of the /li></ul>	and learn rols. ereby to
	To create, validate and display web data.	
Course Outcome	<ul> <li>Design data models and schemas in DBMS and apply the database management systems and Relational database.</li> <li>Construct tables and retrieve data from the database by using the standard language of relational databases.</li> <li>Implement client side scripting and validation.</li> <li>Create XML documents using XML schema and XSL eler</li> </ul>	ing SQL-
	<ul> <li>Using operators, variables, and control structures in JavaS</li> <li>Designing of windows applications using VB.NET</li> </ul>	

# Syllabus: Same as that of BMDLO5011 Healthcare Database Management

## **List of Experiments:**

- 1. To draw an ER diagram for a selected case study
- 2. Study of Basic SQL commands
- 3. Accessing & Modifying Data in Oracle
- 4. To study and implement Joins and Views
- 5. To study and implement Subqueries
- 6. Develop a simple calculator application in VB.Net using standard controls
- 7. Develop a console based application to demonstrate use of either conditional statements or loops
- 8. Create XML document, Schema and Validate it
- 9. X-Path

Any other experiment/tutorial/Assignment based on syllabus which will help learner to understand topic/concept.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

### *Text books:*

- 1. G. K. Gupta: "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5thEdition, PEARSON Education.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition
- 5. Crockford, Douglas, "JavaScript: The Good Parts", Shroff
- 6. Heather Williamson, "XML: The Complete Reference", McGraw Hill Education
- 7. Imar Spaanjaars, "Beginning ASP.NET 4.5.1 in C# and VB", Wiley

#### Reference Books:

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press
- 2. Mark L. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley
- 3. Sharaman Shah ,"Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 5. Debabrata Sahoo "Database Management Systems" Tata McGraw Hill, Schaum's Outline

### Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	aching scher	ne	Credits assigned				
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
5012	Optional Course – I Biostatistics (BIOSTATS)		02			01		01	

	Course Name	Examination Scheme										
Course			The	ory		Term			Pract.			
Code		Internal Assessment   I			End	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem				, Orai			
BMDLL 5012	Department Level Optional Course – I Biostatistics (BIOSTATS)					25		25		50		

Course Code	Course Name	Credits					
BMDLL5012							
<b>Course Objective</b>	To conduct statistical analysis using Statistical tools.						
<b>Course Outcome</b>	Learner will be able to  • Apply statistical methods to sample data and analyse it using statistical	tools.					

Syllabus: Same as that of BMDLO 5012 Biostatistics (BIOSTATS)

Laboratory experiments may be conducted using SCILAB or any other statistical Software

# **List of Laboratory Experiments: (Any Seven)**

- 1. Descriptive statistics and probability
- 2. Discrete probability distributions
- 3. Continuous probability distributions
- 4. Sampling distributions
- 5. Estimation
- 6. Hypothesis testing
- 7. Analysis of variance
- 8. Regression and Correlation
- 9. Chi square distribution and analysis of frequency

Any other experiment based on syllabus which will help learner to understand topic/concept

#### **Assessment:**

### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

# **Books Recommended:**

#### Text books:

- 1. Biostatistics A foundation for analysis in health sciences by Wayne W. Daniel, Seventh edition, Wiley India
- 2. Fundamentals of mathematical statistics by S. C. Gupta and V. K. Kapoor, second edition, Sultan Chand Publisher
- 3. Probability and statistics for engineers by J. Ravichandran, Wiley /india

## Reference Books:

- 1. Biostatistics How it works by Steve selvin, Pearson education
- 2. An Introduction to Biostatistics by Sunder Rao and J. Richard, Third Edition, Prentice Hall of India
- 3. Probability and Statistics by Schaum's series

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	aching schen	ne	Credits assigned			
BMDLL 5013	Department Level Optional Course – I Rehabilitation Engineering (RE)	Theory 	Pract.	Tut.	Theory 	Pract.	Tut.	Total 01

		Examination Scheme										
Course	Course Name		The	ory		Тотт			Pract.			
Code	Course Name	Internal Assessment			End	Term work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK			/ Of al			
BMDLL 5013	Department Level Optional Course – I Rehabilitation Engineering (RE)					25		25		50		

Course Code	Course Name	Credits					
BMDLL5013	Rehabilitation Engineering	01					
Course Objective	To introduce learners to basics of Kinetics and Kinematics, Flow properties of blood and give overview of Rehabilitation Engineering.						
Course Outcome	A learner will be able to Build foundation for learners enabling the learners to pursue higher st specialization in Rehabilitation Engineering.	udies with					

# Syllabus: Same as that of BMDLO5013 Rehabilitation Engineering (RE)

# **Laboratory work:**

- 1. Demonstrations in hospital / Industry.
- 2. Discussion on research articles and recent developments in the field of medicine.
- 3. Group presentations on the latest technology in hospitals based on the topics covered in the syllabus.
- 4. 5 Assignments based on the entire syllabus.

### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work : 10 Marks
Laboratory work (Documentation) : 5 Marks
Presentation : 5 Marks
Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

### *Text books:*

- 1. Handbook of Biomedical Instrumentation (Third edition): R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)

# Reference books:

- 1. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 2. Various Instruments Manuals.
- 3. Various internet resources.

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	aching schei	ne	Credit assigned			
	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC601	Monitoring Equipment (Abbreviated as BME)	04			04			04

	Course Name	Examination Scheme											
Course Code			T	heory									
		Internal Assessment			End	Dura	Term	erm Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Av g.		tion (hrs)	work	Tract.	Orai	/ Oral	Total		
BMC601	Biomedical Monitoring Equipment (BME)	20	20	20	80	03	-1	-		1	100		

Course Code	Course Name	Credits
BMC601	Biomedical Monitoring Equipment	04
Course Objective	<ul> <li>To understand the basic principles and working of patient monit</li> <li>To develop skills enabling Biomedical Engineers to serve the heat</li> <li>To develop core competency and skill in the field of Biomed design and develop new health care systems.</li> </ul>	alth care industry
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Provide a better understanding about various bioelectrical signation patient safety</li> <li>Demonstrate the principles of electronics used in designing monitoring equipment.</li> <li>Understand the basic princples and working of audiometry equivaids</li> <li>Provide a better understanding about foetal and neonatal monito</li> <li>Acquire the ability to explain the various blood flow a meauremnet devices.</li> <li>Acquire in-depth knowledge about different streams in Biomedia greater emphasis on health care Equipment and the advanced to Telemetry and Telemedicine.</li> </ul>	various biomedical ipments and hearing bring systems. and cardiac output cal Engineering with

Module	Contents	Hours
1	Bioelectrical signals and recorders ECG, EMG and EEG signals, LEAD configurations, 10-20 electrode system Measuring techniques for EOG, ERG and Phonocardiography, Patient Safety: Electric Shock Hazards, Leakage currents, safety codes for electromedical equipment.	10
2	Arrhythmia and Patient monitoring: Cardiac Arrhythmias, waveforms and interpretation from them. Stress test measurement. Ambulatory monitoring instruments-Holter monitor. Measurement of Heart Rate, Pulse rate, Blood pressure, Temperature and Respiration rate, Apnoea Detector. Electrical Safety in Biophysical Measurements. Heart rate variability measurement and applications. Point of care devices and their design considerations for homecare devices: glucometer, lung function test.	16
3	Audiometers and hearing aid  Basic audiometer, Pure tone and Speech audiometer, evoked response Audiometry, Conventional and Digital Hearing Aids, Cochlear Implants.	04
4	Foetal and Neonatal Monitoring System: Cardiotocograph, Methods of monitoring of Foetal Heart rate, Monitoring of labour activity, Incubator and Infant warmer, Non-stress test monitoring.	05
5	Blood flow and Cardiac output Electromagnetic, Ultrasonic, NMR and Laser Doppler flowmetry, Indicator Dilution, Dye Dilution and Thermal Dilution Techniques.	05
6	<b>Bio-Telemetry and Telemedicine</b> General Telemetry System, Single channel and Multi-channel, Landline and Radio-frequency Telemetry, Telemedicine, its essential parameters and delivery modes and its Applications.	08

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

# *Text books:*

- 1. Handbook of Biomedical Instrumentation (Third edition): R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Biomedical Instrumentation and measurements : Leislie Cromwell, Fred J. Weibell, Enrich A. Pfeiffer. (PHI Pub)

# Reference books:

- 1. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)
- 1. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 2. Various Instruments Manuals.
- 3. Various internet websites.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	aching schei	ne	Credit assigned			
	Microprocessors and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC602	Microcontrollers (Abbreviated as MPMC)	04			04			04

	Course		Examination Scheme											
		Theory												
	Name	Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total			
	Traine	Test 1	Test 2	Av g.	sem	tion (hrs)	work	ract.	Oran	/ Oral	Total			
BMC602	Micro- processors and Micro- controllers (MPMC)	20	20	20	80	03				1	100			

Course Code	Course Name	Credits
BMC602	Microprocessors and Microcontrollers	04
Course Objective	To create a strong foundation by studying the basics of Microprocess Microcontroller interfacing to various peripherals which will lead to designed Microprocessor/ Microcontroller System.	
Course Outcome	<ul> <li>Learner will be able to:         <ul> <li>Understand the basic of Microprocessor and Microcontroller based and their architecture.</li> <li>Understand 8086 microprocessor along with its architecture and organization.</li> <li>Understand peripheral controller ICs used in interfacing.</li> <li>Understand 8051 Microcontroller architecture, memory organ Interrupt structure, Port structure, Timers/Counters</li> <li>Understand assembly language and C compilers used to program 805.</li> <li>Design simple interfaces for keyboard LCD, ADC/DAC and Stepper 1</li> </ul> </li> </ul>	memory nization,

Module	Contents	Hours
1.	Introduction to Microprocessor	04
	Introduction to Microprocessor and Microcontroller, Microcomputer based system	
	elements, Generalized block diagram of Microprocessor, RISC & CISC CPU	
	Architectures, Harvard & Von-Neumann CPU architecture, Microprocessor	
	Programming languages, Microcomputer System software, Evolution of	
	Microprocessor ,machine cycle, T states and concepts of read write cycles.	
2.	Architecture of Intel 8086 Microprocessor	04
	Major features of 8086 processor, 8086/88, CPU Architecture and the pipelined	
	operation, Programmer's Model and Memory Segmentation	
3.	Peripheral Controllers for 8086 family and System Design:	08
	Functional Block Diagram and description, Control Word Formats, Operating Modes	
	and Applications of the Peripheral Controller namely 8255-PPI, , 8259- PIC and	
	8237-DMAC, 8279- Display and Keyboard driver, Interfacing of the above Peripheral	
	Controllers. Keyboard and Display Interface.	
4.	MCS-51 Microcontroller	10
	8051 architecture; its variants and comparision, comparision of microprocessor and	
	microcontrollers, CPU timing and machine cycle, memory organisation, SFR's,	
	integrated prepherials such as timers/counters, serial ports, parallel I/O ports, interrupt	
	structure, memory interfacing power saving and power down modes.	
5.	8051programming	12
	Assembly language programming process, programming tools, addressing modes,	
	instruction set and Programming practice using assembly and C compilers	
6.	Microcontroller design and interfacing case studies	10
	Interfacing with external memories, Interfacing with 8255, Interfacing with 7 segment	
	display, Interfacing with keyboard, interfacing with LCD, Interfacing with ADC,	
	DAC and Sensors, Interfacing with stepper motor Interfacing with PC using RS232	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

Text Books:

- 1. "8086/8088 family: "Design, Programming an Interfacing", John Uffenbeck: Prentice Hall, 2nd Edition
- 2. Microcomputer systems 8086/8088 family, Architecture, Programming and Design Yu-Cheng Liu & Glenn A Gibson, 2nd Edition-July 2003, Prentice Hall of India.
- 3. "Advanced Microprocessor and Peripherals Architecture, Programming and Interfacing", A.K.Ray & K.M Bhurchandi, Tata Mc Graw Hill, 2006.
- 4. The 8051 microcontrollers-Kenneth J Ayala

- 5. The 8051 Microcontroller and Embedded Systems Muhammad A Mazidi, , Pearson Education
- 6. Using MCS-51 Microcontroller Han-Way Huang,.
- 7. 8051 microcontroller hardware, software applications. V Udayashankara, M S Mallikarjunaswamy

## Reference Books:

- 1. "Microprocessors and Interfacing: Programming and Hardware", Douglas V.Hall, second edition, Tata Mc Graw Hill, 2006.
- 2. "IBM PC Assembly language and programming" Peter Abel, , fifth edition
- 3. "Pentium Processor System Architecture", Don Anderson, Tom Shanley: MindShare Inc., 2nd Edition.
- 4. Embedded System Design: A unified Hardware/Software Introduction Frank Vahid, Toney Givargis- John Wiley publication
- 5. "Microprocessors and Interfacing: Programming and Hardware", Douglas V.Hall, second edition, Tata Mc Graw Hill, 2006.
- 6. "IBM PC Assembly language and programming" Peter Abel, , fifth edition
- 7. "Pentium Processor System Architecture", Don Anderson, Tom Shanley: MindShare Inc., 2nd Edition.
- 8. Embedded System Design: A unified Hardware/Software Introduction Frank Vahid, Toney Givargis- John Wiley publication.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
BMC603	Digital Image	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Processing	04			04			04	

Course Code	Course Name	Examination Scheme									
			T	heory							
		Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total
		Test 1	Test 2	Av g.	sem	นอก	work	Tract.	Oran	/ Oral	Total
BMC603	Digital Image Processing (DIP)	20	20	20	80	03					100

Course Code	Course Name	Credits						
BMC603	Digital Image Processing	04						
Course Objective	<ul> <li>To introduce the learners the basic theory of digital image processing.</li> <li>To expose learners to various available techniques and possibilities of th</li> <li>To understand the basic image enhancement, transforms, segre compression, morphology, representation, description techniques &amp; algorous algorous approaches to formulate solutions to general image processing proc</li></ul>							
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Acquire the fundamental concepts of a digital image processing systemage acquisition, enhancement, segmentation, transforms, comorphology, representation and description.</li> <li>Analyze images in the spatial domain.</li> <li>Analyze images in the frequency domain through the Fourier transform.</li> <li>Design and implement with MATLAB/C/Labview algorithms for deprocessing operations such as point processing, histogram processing frequency domain filtering, denoising, transforms, compressing morphological processing.</li> </ul>	m. igital image						

Module	Detailed Contents	Hours
1.	<b>Basics of Image Processing</b> : Image acquisition, Processing, Communication, Display; Electromagnetic spectrum; Elements of visual perception - Structure of the human eye, Image formation in the eye, Brightness adaptation and discrimination, Image formation model, Uniform and non-uniform sampling, Quantization, Image formats.	05
2.	<b>Image Enhancement</b> : Spatial domain - Point processing techniques, Histogram processing, Neighbourhood processing, Frequency domain techniques - 2D-DFT, Properties of 2D-DFT, Low pass, High pass, Noise removal, Homomorphic filters,	12
3.	<b>Image Segmentation</b> : Basic relationships between pixels - Neighbours, Adjacency, Connectivity, Regions, Boundaries, Distance measures; Detection of discontinuities, Point, Line, Edge detection, Edge linking, Hough transform, Thresholding-based segmentation, Region-based segmentation.	08
4.	<b>Image Transforms</b> : DFT, FFT, DCT, DST, Hadamard, Walsh, Haar, Slant, K-L Transforms, Basis functions and basis images	08
5.	<b>Image Compression</b> : Fundamentals of image compression models, Lossless compression - RLE, Huffman, LZW, Arithmetic coding techniques. Lossy compression - IGS coding, Predictive coding, Transform coding, JPEG, JPEG 2000.	08
6.	Morphology, Representation and Description: Dilation, Erosion, Open, Close, Hit-or-miss, Boundary extraction, Region filling, Thinning and thickening; Chain Codes, Polygonal approximations, Signatures; Fourier descriptors, Moments.	07

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Books Recommended:**

#### Text Books:

- 1. Digital Image Processing, Gonzalez and Woods- Pearson Education.
- 2. Fundamentals of Digital Image Processing, A.K. Jain –P.H.I.
- 3. Digital Image Processing and Analysis, Chanda Majumder-Prentice Hall India.

# Reference Books:

- 1. Digital Image Processing and Computer Vision, Sonka, Hlavac, Boyle-Cengage learning.
- 2. Digital Image Processing, William Pratt- John Wiley.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	iching schei	ne	Credit assigned				
	Medical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC604	Imaging - I (Abbreviated as MI - I)	04			04			04	

	Course Name	Examination Scheme									
Course			T								
Code		Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total
		Test 1	Test 2	Av g.	sem	tion (hrs)	work	TTact.	Oran	/ Oral	Total
BMC604	Medical Imaging - I (MI - I)	20	20	20	80	03					100

Course Code	Course Name	Credits							
BMC604	Medical Imaging - I	04							
Course Objective	To familiarize the learners with the various Imaging techniques in medicine operating principles and quality control aspects of various imaging modalities.  To keep the learners abreast with the technological developments in the field of Medical Imaging								
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Understand X ray imaging along with X ray tube construction, X ray generate total radiographic system.</li> <li>Understand Fluoroscopic Imaging and Digital Subtraction Angiography.</li> <li>Distinguish between CR and DR. Understand Mammography.</li> <li>Understand the technique of Computed tomography, the CT scanner configurare reconstruction techniques and clinical applications.</li> <li>Apply the knowledge of CT and learn advancements in CT.</li> <li>Understand the applications of X-rays in the field of Radiotherapy.</li> </ul>								

Module	Detailed Contents	Hours
1.	X- ray Imaging:	14
	Properties of X rays, production of X rays, X ray interaction with matter, Attenuation	
	Total radiographic System: X –ray tubes, Rating of X ray tubes,	
	X –ray generators, Filters, Grids, Beam Restrictors, Control Panel, X ray Film	
2.	Fluoroscopic Imaging and X ray Image Intensifier,	05
	Digital subtraction Angiography	
3.	Computed Radiography and Digital Radiography	04
	Mammography	

4.	Principle of Computed tomography	14							
	Scanner configurations/generations, CT system: Scanning unit(gantry), detectors, CT								
	Number ,Data Acquisition System,								
	Spiral CT: technology and applications,								
	Reconstruction Techniques:- Radon Transform, Iterative, Filtered back projection,								
	Fourier reconstruction,								
	CT artefacts,								
	Clinical applications of CT								
5.	Advancements in CT								
	Multi-detector computed tomography (MDCT), Flat panel detectors	05							
	CT-Angiography, Contrast agents in CT								
6.	Linear Accelerators:								
	Production and transport of the RF wave, Major components of linear accelerator,	06							
	Clinical Applications.								

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Books Recommended:**

#### *Text Books:*

- 1. Christensen's Physics of Diagnostic Radiology
- 2. Medical Imaging Physics William .R.Hendee
- 3. Practical Radiotherapy: Physics and equipment: Pam Cherry, Angela Duxbury

# Reference Books:

- 1. Biomedical Technology and Devices by James Moore.
- 2. Biomedical Engineering Handbook by Bronzino
- 3. Physics of Diagnostic images –Dowsett

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	nching sche	me	Credit assigned				
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLO 6021	Optional Course- II Healthcare Software (Abbreviated as HCS)	04			04			04	

	Course Name	Examination Scheme									
Course Code		Theory								Ducc	
		Internal Assessment			End	Dura	Term	Pract.	Oral	Prac t./	Total
		Test 1	Test 2	Av g.	sem	tion (hrs)	work	Tract.	Orai	Oral	Total
BMDLO 6021	Department Level Optional Course - II Healthcare Software (HCS)	20	20	20	80	03	1		-1	1	100

Course Code	Course Name	Credits					
BMDLO6021	Healthcare Software						
Course Objective  Course Outcome	<ul> <li>To setup programming environment for ASP.NET programs</li> <li>To develop modular applications using object oriented methodologies</li> <li>To configure ASP.NET application and creating applications using stand controls</li> <li>To develop data driven web application</li> <li>To connect different data sources and manage them</li> <li>To maintain session and controls related information in multi-user web a Learner will be able to:</li> <li>Understanding of Microsoft .NET Framework and ASP.NET page struct</li> <li>Designing of windows applications using C#.NET</li> <li>Designing of web applications using ASP.NET controls</li> <li>Creating database driven ASP.NET web applications using SQL Server</li> <li>Debugging and deploying ASP.NET web applications.</li> </ul>	pplications					

Module	Contents	Hours						
1	<ul> <li>Introduction to .NET Programming:         <ul> <li>.Net Concepts: Framework, Common Language Runtime, Base Class Library, Common Type System (CTS), Assemblies, Namespaces.</li> <li>Programming with C#: Variables, Comments, Constants, Keywords, Data Types, Control Statements, Conditional Statements, Switch Statement, Loops, Jump, Statements, Goto, break, Continue, Return, Arrays.</li> <li>Exception handling in C#</li> <li>Object Oriented Programming (OOP): Class, Object, Encapsulation, Inheritance, Polymorphism, Constructors.</li> </ul> </li> </ul>							
2	<ul> <li>Developing Windows Forms Applications:</li> <li>Standard Controls - Windows Application: Labels, Textboxes, Rich Text Box, Button, Check Box, Radio Button, Combo Box, Picture Box, List Box, Image List, List View, Tab Control, Menu Strip, Data Grid View, Date Picker</li> <li>Event Handlers: Creating Event Handlers, Default Event Handlers, Associating Event Handlers at Run Time.</li> </ul>	06						
3	<ul> <li>Developing Web Applications using ASP.NET and C#</li> <li>Introduction to ASP.Net: From ASP to ASP.NET, ASP.NET Features, Web Forms Life Cycle, Request/Response Programming.</li> <li>Web Applications Using Visual Studio: Using Visual Web Developer, Using Components, Using the Global.asax file.</li> <li>State Management: Session State, Application State, Cookies.</li> <li>Server Control: HTML Server Controls, Web Forms Server Controls, Rich Controls, Validation Controls.</li> <li>Themes</li> <li>Configuration: Using the machine. config file, Using the web. config file, Globalization and Localization.</li> </ul>	12						
4	Data access and manipulation with ADO.NET using SQL Server Introduction to ADO.NET, Data Providers in .NET, Connected and Disconnected architecture, ADO.NET Architecture, Command Object, Data Adapter and Data Set, Data Tables and Data Views, Updating the Dataset.	10						
5	<ul> <li>Security, Deployment, &amp; Introduction to advanced concepts</li> <li>Security: Authentication, Authorization, Impersonation, Code Access Security</li> <li>Deployment.</li> </ul>	04						
6	Introduction to advanced concepts of .Net framework: Windows Presentation Foundation (WPF), Windows Communication Foundation (WCF), Windows Workflow Foundation (WWF), Windows Card Space (WCS).	04						

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

### Text Books:

- 1. ASP.NET 3.5 Unleashed (Sams) Stephen Walther
- 2. Microsoft ASP.NET Step by Step (Microsoft Press) G. Andrew Duthrie

## Reference Books:

- 1. Designing Microsoft ASP.NET Applications (Microsoft Press) Jonathon Goodyear, Brian Peek, Brad Fox
- 2. Deploying and Managing Microsoft .NET Web Farms (Sams) Barry Bloom

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	aching schei	me	Credit assigned			
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMDLO 6022	Optional Course- II Lasers and Fibre Optics (Abbreviated as LFO)	04			04			04

		Examination Scheme										
Course	Course Name		Tl	neory						Duas		
Code		Internal Assessment			End	Dura	Term	Pract.	Oral	Prac t./	Total	
Couc		Test 1	Test 2	Av	sem	tion (hrs)	work	i i act.	Orai	Oral	Total	
				g.		(/						
BMDLO 6022	Department Level Optional Course - II Lasers and Fibre Optics (LFO)	20	20	20	80	03	1		-	1	100	

Course Code	Course Name						
BMDLO6012	Lasers and Fiber Optics						
<b>Course Objective</b>	To understand the fundamentals in Laser and Fiber Optics.	•					
	• To understand the applications of Laser and Fiber optics in health sec	tor.					
<b>Course Outcome</b>	Learner will be able to:						
	• Understand the fundamentals and clinical applications of Laser and Fib	per Optics.					
	• Correlate the knowledge of medicine and engineering for the wellnes	s of human					
	being.						
	Understand the safety aspects while dealing with Laser and Fiber Option	c Units.					

Module	Contents	Hours
1.	Laser Fundamentals Fundamental wave properties and quantum properties of light, Energy levels and Radiative properties, Absorption and Stimulated Emission, Laser Amplifiers, Laser Oscillation above threshold, Requirements for obtaining Population Inversion, Laser pumping requirements and techniques, Laser Resonators, Cavity modes, Laser	10
	interaction with tissue- Effects and principles, Thermal interaction between laser and tissue.	

2.	Laser Types, construction and working	10
	Laser system involving low density gain medium: He-Ne laser, Argon Ion Laser, He-	
	Cadmium laser, Carbon dioxide Laser, Excimer laser, Nitrogen Laser	
	Laser system involving high density gain medium: Solid State laser like Ruby laser,	
	Nd-YAG Laser, Titanium Sapphire Laser, Fiber Lasers, Semiconductor Diode Laser	
3.	Laser safety:	06
	Practical Laser Safety requirements, Environmental safety, Equipment safety,	
	personnel protection, Education/training for handling laser equipment, Role of Laser	
	Safety officer, Standards of practice for the use of Laser in medicine and Surgery,	
	Recommendation Regarding the Laser safety officer, Hospital Laser Committee	
4.	Optic Fibers Fundamentals	10
	Light transmission in optical fibers- principles, optical properties of optical fibers,	
	Fiber materials, Types of Optical fibers, Modes, Losses, Fabrication of optical fibers,	
	Methods and Principle, Fiber Splicing, Fiber optic imaging, Biomedical Optical	
	fibers, In vivo Applications.	
5.	Laser and Fiber Optics in surgery	06
	Introduction, fiber optic laser systems in cardiovascular disease,	
	gastroenterology, gynecology, neurosurgery, oncology, ophthalmology,	
	orthopedics, otolaryngology (ENT), urology, and flow diagram for laser	
	angioplasty, Laser and Fiber optics used in Skin	
6.	Endoscopy	06
	Basic Principle, System components and functions, Types of endoscopes, Video	
	Endoscopes, Accessories, Maintenance, Endoscopy Processing room requirements,	
	Medical Application, Leakage tester and Trouble shooting	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

#### Text Books:

- 1. Lasers and Optical Fibers in Medicine AbrahimCatzir Academic press 1998
- 2. Optical Fiber Communication by Gerd Keiser

### Reference Books:

- 1. Therapeutic Lasers G David Baxter Churchill Living stone publications
- 2. Medical Laser and their safe use David H Shiny Stiffen and L Trokel Springer Publications
- 3. Element of Fiber optics S. L. Wymer Regents PHI
- 4. Lasers in Urologic Surgery Joseph A.Smith, Jr, Barry S.Stein, Ralph C.Benson Jr, Mosby Pub
- 5. Laser Fundamentals-William T.Silfvast, Cambridge University Press
- 6.Lasers in Medicine, Volume-1, Hans K. Koebner, John Wiley & Sons

- 3. Question paper will comprise of 6 questions, each carrying 20 marks.
- 4. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Department Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLO 6023	Optional Course- II Biological Modelling and Simulation (Abbreviated as BMS)	04			04	1	1	04	

			Examination Scheme										
Course			Tl	heory					Oral	Prac t./ Oral	Total		
Code	Course Name	Interna	al Assessn	nent	End	Dura	Term	Pract.					
Couc		Test 1	Test 2	Av	sem	tion	****	TTact.			Total		
		Test 1	Test 2	g.	SCIII	sem (hrs)							
BMDLO 6023	Department Level Optional Course - II Biological Modelling and Simulation (BMS)	20	20	20	80	03					100		

Course Code	Course Name	Credits							
BMDLO6023	Biological Modelling and Simulation 04								
Course Objective	<ul> <li>To provide in-depth knowledge of modelling of physiological systems.</li> <li>To understand basic concepts of modeling for designing biological model.</li> </ul>								
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Explain the concepts, usage and process of physiological modelling</li> <li>Apply basic biophysical laws for calculation of membrane potent different equilibrium conditions and develop simulation progrunderstanding neuronal functions</li> <li>Understand the function of complex closed loop systems like to control using modelling.</li> <li>Understand the function of neuromuscular system with the help models.</li> <li>Understand the function of open loop system like eye movement structure open loop and closed loop system</li> <li>Understand the usage of, and the assumptions behind biologic (immune response, drug delivery and insulin glucose feedback) in the life.</li> </ul>	grams for emperature of various system and eal models							

Module	Detailed Contents	Hours
1.	Physiological Modelling: Steps in Modelling, Purpose of Modelling, lumped	07
	parameter models, distributed parameter models, compartmental modelling,	
	modelling of circulatory system and respiratory system.	
2.	Model of Neurons: Biophysics tools, Equilibrium in a one ion system, Donnan	14
	Equilibrium, Space-Charge Neutrality, Membrane with no-zero permeability, GHK	
	equation, Active Transport (Pump), Action Potential, Electrical Equivalent model of	
	a biological membrane, The H-H model, The iron-wire model, Channel	
	Characteristics, Simulation of action potential, voltage propagation in a passive axon	
	(cable equation).	
3.	Neuromuscular System: modelling of skeletal muscle, mono and polysynaptic	06
	reflexes, stretch reflex, reciprocal innervations, two control mechanism, Golgi tendon,	
	experimental validation, Parkinson's syndrome.	
4.	Eye Movement Model: Eye movements, quantitative eye movement models,	12
	techniques for validating models, validation of other physiological systems	
5.	Thermoregulatory systems: Thermoregulatory mechanisms, model of	03
	thermoregulatory system, controller model, validation and application.	
6.	Modelling of other physiological systems.	06
	Modelling the Immune response: Behavior of the immune system, linearized model	
	of the immune response.	
	Modelling of Drug delivery systems.	
	Modelling of Insulin Glucose feedback system and Pulsatile Insulin secretion.	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

Text Books:

- 1. Bioengineering, Biomedical, Medical and Clinical Engg.: A.Teri Bahil.
- 2. Signals and systems in Biomedical Engg.: Suresh R Devasahayam.
- 3. Bio-Electricity A quantitative approach by Barr and Ploncey

# Reference Books:

1. Biomedical Engineering Handbook by Bronzino (CRC Press)

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned			
	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BML601	Monitoring Equipment (BME)		02			01		01

	Course Name	Examination Scheme									
Course Code		Theory	7			Term			Pract.		
		Internal Assessment			End	work	Pract.	Oral	/ Oral	Total	
		Test 1	Test 2	Avg.	sem	WULK			/ Of al		
BML601	Biomedical										
	Monitoring					25			25	50	
	Equipment										
	(BME)										

Course Code	Course Name Cred							
BML601	Biomedical Monitoring Equipment	01						
Course Objective	To understand the basic principles and working of patient monitoring system.							
	• To develop skills enabling Biomedical Engineers to serve the health care industry							
	• To develop core competency and skill in the field of Biomedical Engineering, to							
	design and develop new health care systems.							
<b>Course Outcome</b>	Learner will be able to:							
	<ul> <li>Design and Implement filters for filtering of noise from signals.</li> </ul>							
	• Design and Implement Instrumentation amplifier to amplify low amplitude signals.							
	Design and Implment a regulated power supply.							
	• Design and Implement Pulse Width Modulator.							
	Undesrtand the working of ECG machine by recording ECG.							
	Provide a better understanding about foetal monitoring systems.							
	• Test the hearing ability by use of an audiometry.							

 $Syllabus: Same \ as \ that \ of \ BMC601 \ Biomedical \ Monitoring \ Equipment (BME).$ 

# **List of Laboratory Experiments: (Any Seven)**

- 1. Design of Instrumentation amplifier.
- 2. Implementation of notch filter.
- 3. Implementation of Bandpass filter
- 4. Design and implementation of regulated power supply.

- 5. Design and implementation of Pulse width modulator.
- 6. Demonstration of ECG machine / monitor.
- 7. Demonstration of foetal monitor.
- 8. Demonstration of Blood flow measurement.
- 9. Testing of hearing ability using Audiometer.
- 10. Industry / Hospital visit may to be conducted.

Any other experiment based on syllabus which will help learner to understand topic/concept.

Group Presentations on the latest technology in hospitals based on the topics covered in the syllabus.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks
Laboratory work (Journal) : 5 Marks
Presentation : 5 Marks
Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

## Text books:

- 1. Handbook of Biomedical Instrumentation (Third edition): R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Biomedical Instrumentation and measurements : Leislie Cromwell, Fred J. Weibell, Enrich A. Pfeiffer. (PHI Pub)

### Reference books:

- 1. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)
- 2. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 3. Various Instruments Manuals.
- 4. Various internet websites

Practical and Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
BML602	Microprocessors	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	and Microcontrollers (MPMC)		02			01		01	

	Course Name	Examination Scheme									
Course Code		Theory	7			Term			Pract.		
		Internal Assessment End			End	work	Pract.	Oral	/ Oral	Total	
		Test 1	Test 2	Avg.	sem	WUIK			/ Of al		
BML602	Microprocessors and Microcontrollers (MPMC)					25			25	50	

Course Code	Course Name						
BML602	Microprocessors and Microcontrollers	01					
Course Objective	<ul> <li>To apply the theoretical concepts of Microcontroller to design practical circuits.</li> <li>To learn circuit simulation and software simulations and then convert into a working model.</li> </ul>						
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Execute the program using microprocessor and microcontroller kits.</li> <li>Execute assembly and C language programs using simulator.</li> <li>Apply the knowledge of programming to implement a mini project.</li> </ul>						

Syllabus: Same as that of BMC602 Microprocessors and Microcontrollers (MPMC).

# **List of Laboratory Experiments: (Any four and mini project)**

- 1. To study 8031\8086 kit.
- 2. To perform experiment on data transfer.
- 3. To study arithmetic operations.
- 4. To perform experiment on logical instructions.
- 5. To perform experiment on Timers\Counters.
- 6. To study and perform experiment on Square wave generation.
- 7. To implement LCD interfacing.
- 8. Mini Project.

Any other experiment based on syllabus which will help students to understand topic/concept

#### Term Work:

Term work shall consist of minimum 7 experiments. Every year at least 3 experiments should be changed from previous year experiments

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 10 Marks Mini Project (Implementation and Report) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

#### Text Books:

- 2. "8086/8088 family: "Design, Programming an Interfacing", John Uffenbeck: Prentice Hall, 2nd Edition
- 3. Microcomputer systems 8086/8088 family, Architecture, Programming and Design Yu-Cheng Liu & Glenn A Gibson, 2nd Edition- July 2003, Prentice Hall of India.
- 4. "Advanced Microprocessor and Peripherals Architecture, Programming and Interfacing", A.K.Ray & K.M Bhurchandi, Tata Mc Graw Hill, 2006.
- 5. The 8051 microcontrollers-Kenneth J Ayala
- 6. The 8051 Microcontroller and Embedded Systems Muhammad A Mazidi, , Pearson Education
- 7. Using MCS-51 Microcontroller Han-Way Huang,.
- 8. 8051 microcontroller hardware, software applications. V Udayashankara, M S Mallikarjunaswamy

### Reference Books:

- 1. "Microprocessors and Interfacing: Programming and Hardware", Douglas V.Hall, second edition, Tata Mc Graw Hill, 2006.
- 2. "IBM PC Assembly language and programming" Peter Abel, , fifth edition
- 3. "Pentium Processor System Architecture", Don Anderson, Tom Shanley: MindShare Inc., 2nd Edition.
- 4. Embedded System Design: A unified Hardware/Software Introduction Frank Vahid, Toney Givargis- John Wiley publication
- 5. "Microprocessors and Interfacing: Programming and Hardware", Douglas V.Hall, second edition, Tata Mc Graw Hill, 2006.
- 6. "IBM PC Assembly language and programming" Peter Abel, , fifth edition
- 7. "Pentium Processor System Architecture", Don Anderson, Tom Shanley: MindShare Inc., 2nd Edition.
- 8. Embedded System Design: A unified Hardware/Software Introduction Frank Vahid, Toney Givargis- John Wiley publication.

# Practical and Oral examination will be based on mini project.

Course Code	Course Name	Tea	aching schei	ne	Credit assigned				
	Digital Image	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML603	Processing (DIP)		02			01		01	

	Course Name	Examination Scheme										
Course Code		Theory				Tomm			Droot			
		Internal Assessment End			End	Term work	Pract.	Oral	Pract. / Oral	Total		
		Test 1	Test 2	Avg.	sem	WOLK			/ Of al			
	Digital Image											
<b>BML603</b>	Processing					25			25	50		
	(DIP)											

Course Code	Course Name	Credits
BML603	Digital Image Processing	01
Course Objective	<ul> <li>To introduce the learners the basic theory of digital image processin</li> <li>To expose learners to various available techniques and possibilitifield.</li> <li>To understand the basic image enhancement, transforms, segre compression, morphology, representation, description technial algorithms.</li> <li>To prepare learners to formulate solutions to general image problems.</li> <li>To develop hands-on experience in using computers to process image.</li> <li>To familiarize with MATLAB / C/ Labview/ similar software for prodigital images.</li> </ul>	nentation, iques & processing ges.
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Acquire the fundamental concepts of a digital image processing systas image acquisition, enhancement, segmentation, transforms, commorphology, representation and description.</li> <li>Analyze images in the spatial domain.</li> <li>Analyze images in the frequency domain through the Fourier transforms and implement with MATLAB/C/Labview algorithms for image processing operations such as point processing, histogram proportions and morphological processing.</li> </ul>	form. For digital rocessing,

### Syllabus: Same as that of BMC603 Digital Image Processing (DIP).

### **List of Laboratory Experiments (Any Seven)**

- 1. Point Processing techniques (At least 4 experiments).
- 2. Spatial domain Filtering.
- 3. Histogram Processing (Histogram Stretching and Equalisation).
- 4. Frequency Domain Filtering (Plotting 2D-DFT, Low pass and High Pass- Ideal, Butterworth and Gaussian Filters).
- 5. Segmentation-Gradient operators.
- 6. Transforms-DCT.
- 7. Morphology-Dilation Erosion.

Any other experiment based on syllabus which will help students to understand topic/concept

### Term Work:

Term work shall consist of minimum 7 experiments. Every year at least 3 experiments should be changed from previous year experiments

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (programs / journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

### Text Books:

- 1. Digital Image Processing, Gonzalez and Woods- Pearson Education.
- 2. Fundamentals of Digital Image Processing, A.K. Jain –P.H.I.
- 3. Digital Image Processing and Analysis, Chanda Majumder-Prentice Hall India.

### Reference Books:

- 1. Digital Image Processing and Computer Vision, Sonka, Hlavac, Boyle-Cengage learning.
- 2. Digital Image Processing, William Pratt- John Wiley.

Practical and Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
	Medical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML604	Imaging - I (MI – I)		02			01		01	

Course Code	Course Name	Examination Scheme										
		Theory	,			Тотт			Days a4			
		Internal Assessment End			End	Term work	Pract.	Oral	Pract. / Oral	Total		
		Test 1	Test 2	Avg.	sem	WULK			/ Grai			
	Medical											
BML604	Imaging - I					25		25		50		
	(MI – I)											

Course Code	Course Name	Credits
BML604	Medical Imaging – I	01
Course Objective	<ul> <li>To familiarize the learners with the various Imaging techniques in operating principles and quality control aspects of various imaging mode.</li> <li>To keep the learners abreast with the technological developments in the Medical Imaging.</li> </ul>	alities.
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Understand X ray imaging along with X ray tube construction, X ray go and the total radiographic system.</li> <li>Understand Fluoroscopic Imaging and Digital Subtraction Angiography</li> <li>Distinguish between CR and DR. Understand Mammography.</li> <li>Understand the technique of Computed tomography, the CT scanner configuration, reconstruction techniques and clinical applications.</li> <li>Apply the knowledge of CT and learn advancements in CT.</li> </ul>	

Syllabus: Same as that of BMC604 Medical Imaging – I (MI - I).

### **List of Laboratory Experiments (Any Seven)**

- 1. Study of X ray tube
- 2. Study of X ray Tube housing
- 3. To compare technical specifications of different X ray machines
- 4. To compare technical specifications of different CT Scanners
- 5. To generate Sinogram of the image
- 6. To perform CT windowing on an Image

- 7. To perform back projection on an Image
- 8. To generate pseudo colour image
- 9. To study Fluoroscopy Machine
- 10. Hospital Visit may be conducted to Radiology Department
- 11. Presentation on the given topic
- 12. To generate Research article on the advanced topic
- 13. Demonstrations/Experts talk

Any other experiment based on syllabus which will help students to understand topic/concept.

Group Presentations on the latest technology in hospitals based on the topics covered in the syllabus.

#### **Assessment:**

### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

Text Books:

- 1. Christensen's Physics of Diagnostic Radiology
- 2. Medical Imaging Physics William .R.Hendee
- 3. Practical Radiotherapy: Physics and equipment: Pam Cherry, Angela Duxbury

### Reference Books:

- 1. Biomedical Technology and Devices by James Moore.
- 2. Biomedical Engineering Handbook by Bronzino
- 3. Physics of Diagnostic images –Dowsett

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	nching schei	ne	Credits assigned				
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLL 6021	Optional Course – II Healthcare Software (HCS)		02			01		01	

		Examination Scheme										
Course Code	Course Name		The	ory		Term			Pract.			
	Course wante	Internal Assessment   End			End	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WOIK			/ Of all			
BMDLL 6021	Department Level Optional Course – II Healthcare Software (HCS)					25		25		50		

Course Code	Course Name	Credits
BMDLL6021	Healthcare Software	01
Course Objective	<ul> <li>To setup programming environment for ASP.NET programs</li> <li>To develop modular applications using object oriented methodologies</li> <li>To configure ASP.NET application and creating applications using standard st</li></ul>	
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Understanding of Microsoft .NET Framework and ASP.NET page struction.</li> <li>Designing of windows applications using C#.NET</li> <li>Designing of web applications using ASP.NET controls</li> <li>Creating database driven ASP.NET web applications using SQL Server</li> <li>Debugging and deploying ASP.NET web applications</li> </ul>	

Syllabus: Same as that of BMDLO6021 Healthcare Software (HCS).

### **List of Laboratory Experiments (Any Seven)**

- 1. Develop an ASP.NET application to show all page events along with their order of execution.
- 2. Develop an ASP.NET application to demonstrate the use of standard ASP.NET controls (TextBox, CheckBox, RadioButton, Button, Image, ImageButton, etc).
- 3. Develop an ASP.NET application to demonstrate the use of rich ASP.NET controls (use the FileUpload control).
- 4. Develop an application to demonstrate the use of validation controls in ASP.NET (RequiredFieldValidator, RangeValidator, CompareValidator and RegularExpressionValidator).
- 5. Develop an ASP.NET web application to demonstrate page themes and master page.
- 6. Develop an ASP.NET web application to demonstrate session management across application.
- 7. Develop an ASP.NET web application with Databound controls (List, Tabular, and Hierarchical).
- 8. Develop an ASP.NET web application to demonstrate use of SQLDataSource control.
- 9. Develop an ASP.NET web application to demonstrate use of XMLDataSource control.
- 10.Develop any database driven web application using SQL Server (experiment should demonstrate creation, updating and deletion of records from the database).

Any other experiment based on syllabus which will help students to understand topic/concept.

### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

Text Books:

- 1. ASP.NET 3.5 Unleashed (Sams) Stephen Walther
- 2. Microsoft ASP.NET Step by Step (Microsoft Press) G. Andrew Duthrie

### Reference Books:

- Designing Microsoft ASP.NET Applications (Microsoft Press) Jonathon Goodyear, Brian Peek, Brad Fox
- 2. Deploying and Managing Microsoft .NET Web Farms (Sams) Barry Bloom

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	nching schei	me	Credits assigned				
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLL 6022	Optional Course – II Lasers and Fiber optics (LFO)		02			01		01	

		Examination Scheme										
Course Code	Course Name		The	ory		Term			Pract.			
	Course Manie	Internal Assessment   End			End	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK			/ Of all			
BMDLL 6022	Department Level Optional Course – II Lasers and Fiber optics (LFO)					25		25		50		

Course Code	Course Name	Credits
BMDLL6022	Lasers and Fiber Optics	01
<b>Course Objective</b>	To understand the fundamentals in Laser and Fiber Optics.	
	• To understand the applications of Laser and Fiber optics in health secto	r.
<b>Course Outcome</b>	Learner will be able to:	
	Understand the fundamentals and clinical applications of Laser and Fiber	r Optics.
	• Correlate the knowledge of medicine and engineering for the wellness	of human
	being.	
	• Understand the safety aspects while dealing with Laser and Fiber Optic U	Units.

Syllabus: Same as that of BMDLO6022 Lasers and Fibre Optics(LFO).

### **Laboratory work:**

- 1. Demonstrations in hospital / Industry.
- 2. Discussion on research articles and recent developments in the field of medicine.
- 3. Group ppresentations on the latest technology in hospitals based on the topics covered in the syllabus.
- 4. 5 Assignments based on the entire syllabus.

### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work : 10 Marks
Laboratory work (Documentation) : 5 Marks
Presentation : 5 Marks
Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

#### Text Books:

- 1. Lasers and Optical Fibers in Medicine AbrahimCatzir Academic press 1998
- 2. Optical Fiber Communication by Gerd Keiser

### Reference Books:

- 1. Therapeutic Lasers G David Baxter Churchill Living stone publications
- 2. Medical Laser and their safe use David H Shiny Stiffen and L Trokel Springer Publications
- 3. Element of Fiber optics S. L. Wymer Regents PHI
- 4. Lasers in Urologic Surgery Joseph A.Smith, Jr, Barry S.Stein, Ralph C.Benson Jr, Mosby Pub
- 5. Laser Fundamentals-William T.Silfvast, Cambridge University Press
- 6.Lasers in Medicine, Volume-1, Hans K. Koebner, John Wiley & Sons

### Oral examination will be based on entire syllabus

Course Code	Course Name	Tea	iching schei	ne	Credits assigned				
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLL 6023	Optional Course – II Biological Modelling and Simulation (BMS)		02			01		01	

			Examination Scheme										
Course	Course Name		The	ory		Term			Pract. / Oral				
Code	Course Name	Intern	nal Asses	sment	End	work	Pract.	Oral		Total			
		Test 1	Test 2	Avg.	sem								
BMDLL 6023	Department Level Optional Course – II Biological Modelling and Simulation (BMS)					25		25		50			

Course Code	Course Name	Credits
BMDLL6023	Biological Modelling and Simulation	01
Course Objective	<ul> <li>To understand basic approach of modeling for designing biological modeling.</li> <li>To simulate physiological processes for better understanding.</li> <li>To develop competency in terms of logical thinking, programma application skills.</li> <li>To train and motivate students for pursuing higher education and resideveloping cutting edge technologies.</li> </ul>	ning and
Course Outcome	<ul> <li>Learner will be able to:</li> <li>Apply concept of physiological modelling to model thermometer system</li> <li>Virtually understand biophysical laws for calculation of membrane pote under different equilibrium conditions and develop simulation programs understanding neuronal functions.</li> <li>Simulate mathematical model for the eye movement</li> <li>Electrically simulate model of thermoregulatory system</li> <li>Understand the usage of, and the assumptions behind biological models</li> </ul>	ential s for

(immune response, drug delivery and insulin glucose feedback) in the working life.

Syllabus: Same as that of BMDLO6023 Biological Modelling and Simulation (BMS).

### **List of Laboratory Experiments (Any Seven)**

- 1. Simulations thermometer system using MATLAB
- 2. Simulation of Nernst/Goldman Equation using MATLAB
- 3. Simulation of eye movement using MATLAB
- 4. Simulation using HHSim (**Two practicals**)
- **5.** Simulation using Neurons in Action (**Two practicals**)
- 6. Developing a model of a neuron using NEURON
- 7. Electrical simulation of thermoregulatory model

Any other experiment / assignment / presentation based on syllabus which will help students to understand topic/concept.

#### **Assessment:**

### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

Text Books:

- 1. Bioengineering, Biomedical, Medical and Clinical Engg.: A.Teri Bahil.
- 2. Signals and systems in Biomedical Engg.: Suresh R Devasahayam.
- 3. Bio-Electricity A quantitative approach by Barr and Ploncey

### Reference Books:

1. Biomedical Engineering Handbook by Bronzino (CRC Press)

### Oral examination will be based on suggested practical list and entire syllabus

AC Item No.

# **UNIVERSITY OF MUMBAI**



**Revised Syllabus for the** 

Biomedical Engineering
(Final Year – Semester VII and VIII)

(As per Choice Based Credit and Grading System with effect from the academic year 2019–2020)

## Program Structure for B.E. Biomedical Engineering University of Mumbai

## (With effect from academic year 2019 - 20)

### **Scheme for Semester VII**

Course Code	Course Name		Teaching Scher (Contact Hour		Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
BMC701	Life Saving and Surgical Equipment	04			04			04		
BMC702	Basics of VLSI	04			04			04		
BMC703	Medical Imaging-II	04			04			04		
BMDLO703X	Department Level Optional Course – III	04			04			04		
ILO101X	Institute Level Optional Course – I	03			03			03		
BML701	Life Saving and Surgical Equipment		02			01		01		
BML702	Basics of VLSI		02			01		01		
BML703	Medical Imaging-II		02			01		01		
BMDLL703X	Department Level Optional Course Laboratory – III		02			01		01		
BML704	Project Stage I		06			03		03		
	Total	19	14		19	07		26		

### **Examination Scheme for Semester VII**

							Examinati	on Schem	e					
		E 4		eory	-									m
Course		External		Internal		Term work		Practical		Oı	ral	Pract	./Oral	Total Marks
Code	Course Name	(U	(UA)		(CA)									17141115
		Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	
		Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	Marks	
BMC701	Life Saving and Surgical Equipment	80	32	20	8									100
BMC702	Basics of VLSI	80	32	20	8									100
BMC703	Medical Imaging-II	80	32	20	8									100
BMDLO 703X	Department Level Optional Course - III	80	32	20	8									100
ILE101X	Institute Level Optional Course – I	80	32	20	8									100
BML701	Life Saving and Surgical Equipment					25	10			25	10			50
BML702	Basics of VLSI					25	10			25	10			25
BML703	Medical Imaging-II					25	10			25	10			50
BMDLL 703X	Department Level Optional Course Laboratory – III					25	10			25	10			25
BML704	Project Stage I					25	10			25	10			50
	Total	400	160	100	40	125	50			125	50			700

### **Scheme for Semester VIII**

Course Code	Course Name		Teaching Scher (Contact Hour		Credits Assigned					
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
BMC801	Biomedical Microsystems	04			04			04		
BMC802	Hospital Management	04			04			04		
BMDLO804X	Department Level Optional Course – IV	04			04			04		
ILO202X	Institute Level Optional Course – II	03			03			03		
BML801	Biomedical Microsystems		02			01		01		
BML802	Hospital Management		02			01		01		
BMDLL804X	Department Level Optional Course Laboratory – IV		02			01		01		
BML803	Project Stage II		12			06		06		
	Total	15	18		15	09		24		

### **Examination Scheme for Semester VIII**

						]	Examinati	on Schem	e					Total
Course Code	Course Name	Course Name (UA)		Internal (CA)		Term	Term work		Practical		Oral		:./Oral	Marks
Couc		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	
BMC801	Biomedical Microsystems	80	32	20	8									100
BMC802	Hospital Management	80	32	20	8									100
BMDLO 801X	Department Level Optional Course - IV	80	32	20	8									100
ILO202X	Institute Level Optional Course –II	80	32	20	8									100
BML801	Biomedical Microsystems					25	10			25	10			50
BML802	Hospital Management					25	10			25	10			50
BMDLL 801X	Department Level Optional Course Laboratory – IV					25	10			25	10			25
BML803	Project Stage II					50	20					50	20	100
	Total	320	128	80	32	125	50			75	30	50	20	625

<b>Course Code</b>	Department level Optional Course – III
BMDLO7031	Networking and Information in Medical System
BMDLO7032	Advanced Image Processing
BMDLO7033	Embedded Systems

<b>Course Code</b>	Department level Optional Course – IV
BMDLO8041	Health Care Informatics
BMDLO8042	Robotics in Medicine
BMDLO8043	Nuclear Medicine

<b>Course Code</b>	Institute level Optional Course – I
ILO1011	Product Lifecycle Management
ILO1012	Reliability Engineering
ILO1013	Management Information System
ILO1014	Design of Experiments
ILO1015	Operation Research
ILO1016	Cyber Security and Laws
ILO1017	Disaster Management and Mitigation Measures
ILO1018	Energy Audit and Management

<b>Course Code</b>	Institute level Optional Course - II
ILO2021	Project Management
ILO2022	Finance Management
ILO2023	Entrepreneurship Development and Management
ILO2024	Human Resource Management
ILO2025	Professional Ethics and Corporate Social Responsibility (CSR)
ILO2026	Research Methodology
ILO2027	IPR and Patenting
ILO2028	Digital Business Management
ILO2029	Environmental Management

Course Code	Course Name	Tea	nching sche	me	Credit assigned					
	Life Saving and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
BMC701	Surgical Equipment (Abbreviated as LSSE)	04			04			04		

		Examination Scheme										
Course	Course	Theory					Term					
Code	Name	Internal Assessment			End	End Dura		Pract.	Oral	Pract.	Total	
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral		
BMC701	Life Saving and Surgical Equipment (LSSE)	20	20	20	80	03					100	

Course Code	Course Name	Credits
BMC701	Life Saving Equipment	04
Course Objectives	<ul> <li>To understand the basic principles and working Equipment.</li> <li>To develop skills enabling Biomedical Engineers to care industry</li> <li>To develop core competency and skill in the field of Bi Engineering, to design and develop new health care sys</li> </ul>	serve the health
Course Outcomes	<ul> <li>Distinguish between the types of pacemakers on the base code and analyze the various circuits.</li> <li>Apply the knowledge of electronics to analyze defibrillate.</li> <li>Explain the importance of use of Anesthesia machine during Surgery.</li> <li>Explain the basic principle, working and application equipment with safety aspects.</li> <li>Explain the importance of measurement of oxygen satur body and application of heart lung machine during surgeting.</li> <li>Demonstrate the knowledge of lithotripsy technique.</li> </ul>	ator circuits. and Capnograph ons of surgical uration in human

Module	Contents	Hours
1	Cardiac Pacemakers  Need for a pacemaker, modes of operation, Classification codes for pacemaker, External and Implantable Pacemaker, programmable pacemaker, Power sources for pacemakers, leads and electrodes, recent developments of Implantable Pacemakers.	10
2	Cardiac Defibrillator  Need for Defibrillator, DC defibrillator, Modes of operation and electrodes,  Performance aspects of dc-defibrillator, Implantable defibrillator,  cardioverter.	10
3	Anesthesia Need for anesthesia, Anesthesia machine: Gas supply, flow and delivery system Vapor delivery and humidification and patient breathing Capnography.	06
4	Surgical equipment Operation theatre Lights and Table. Surgical Diathermy machine, automated electrosurgical systems, electrodes used with surgical diathermy, safety aspects in electronic surgical units.	10
5	Oximeters + Heart Lung machine Basics of oximeter, In-vitro and In-vivo oximetry, ear oximetry, pulse oximetry, skin reflectance oximeters, intravascular oximeters, Heart Lung Machine and types of oxygenators	08
6	Lithotriptors The stone disease problem, the shock-wave, the first lithotriptor machine, modern lithotriptor system, LASER Lithotripsy	04

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

#### Text books:

- 1. Handbook of Biomedical Instrumentation (Third edition): R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Biomedical Instrumentation and measurements : Leislie Cromwell, Fred J. Weibell, Enrich A. Pfeiffer. (PHI Pub)

### Reference books:

- 1. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)
- 2. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 3. Various Instruments Manuals.
- 4. Various internet websites.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	Teaching scheme Credit assigned					
	Basics of VLSI	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC702	(Abbreviated as BVLSI)	04			04			04

		Examination Scheme											
Course	Course Name		T	heory				Pract.		Pract. / Oral			
Code		Intern	al Assess	ment	End	and Dura	Term work Pract.		Oral		Total		
		Test 1	Test 2	Avg.	sem	tion (hrs)							
BMC702	Basics of VLSI (BVLSI)	20	20	20	80	03					100		

Course Code	Course Name	Credits
BMC702	Basics of VLSI	04
Course Objectives	<ul> <li>To introduce to various fabrication technologies for</li> <li>To expose to hardware description language whic understand and design various tools for the devices</li> </ul>	h will help them to
Course Outcomes	<ul> <li>A Learner will be able to</li> <li>Understand hardware description language used to</li> <li>Implement some basic digital circuits using HDL</li> <li>Understand the physics of MOS devices</li> <li>Understand the implementation of inverter circuits</li> <li>Understand the fabrication technology used in IC system clocking is designed.</li> </ul>	cuits using CMOS fabrication and how
	• Understand the design rules and layouts for various	is digital gates

Module	Contents	Hours
1.	Introduction to VHDL hardware description language, core features of VHDL, data types, concurrent and sequential statements, data flow, behavioral, structural architecture.	04
2.	Combinational and Sequential Logic design using VHDL .Using VHDL combinational circuit design examples- multipliers, decoders and encoders, cascading comparator. VHDL sequential circuit design features.	08

	Implementation of counters and registers in VHDL	
3.	Very Large Scale Integration (VLSI) Technology Physics of NMOS, PMOS, enhancement and depletion mode transistor, MOSFET, threshold voltage, flatband condition, linear and saturated operation, FET capacitance, short channel and hot electron effect.	08
4.	MOS Transistors, MOS transistor switches, Basic MOS inverter and its working, types of MOS invertors viz active load nMOS inverter, MOSFET Inverter with E-nMOS as pull up, MOSFET Inverter with D- nMOS as pull up, MOSFET Inverter with pMOS as pull up, CMOS inverter, voltage transfer characteristics, noise immunity and noise margins, power and area considerations, Parameter measurement in MOS circuits	08
5.	Silicon Semiconductor Technology Wafer processing, mask generation, oxidation, epitaxy growth diffusion, ion implantation, lithography, etching, metalization, basic NMOS and PMOS processes. Latch up in CMOS and CMOS using twin tub process. Scaling of MOS circuits, types of scaling and limitations of scaling.	10
	Introduction to VLSI Clocking and System Design: Clocking: CMOS clocking styles, Clock generation, stabilization and distribution. Low Power CMOS Circuits: Various components of power dissipation in CMOS, Limits on low power design, low power design through voltage scaling.	
6.	Design rules and Layout NMOS and CMOS design rules and layout, Design of NMOS and CMOS inverters, NAND and NOR gates. Interlayer contacts, butting and buried contacts, stick diagrams, layout of inverter, NAND and NOR gates. Design of basic VLSI circuits Design of circuits like multiplexer, decoder, Flip flops, using MOS circuits	10

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

*Text books:* 

- 1. Introduction to VLSI design, E. D. Fabricus, McGraw Hill Publications, first edition, 1990
- 2. Basic VLSI Design D.A. Pucknell and Eshraghian,
- 3. Digital Design Principles and Practises John F Wakerly,
- 4. CMOS Digital Integrated Circuits, Kang, Tata McGraw Hill Publications

### Reference Books:

- 1. VHDL Programming by Examples Douglas Perry, , Tata McGraw Hill Publications, 2002
- 2. Principles of CMOS VLSI Design: ASystems Perspective Neil H.E. Weste, Kamran Eshraghian second edition, Addison Wesley Publications, 1993
- 3. Digital Integrated Circuits: A Desiqn Perspective, Rabaey Jan M., Chandrakasan Anantha, Nikolic Borivoje, second edition, Prentice Hall of India

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
	Medical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC703	Imaging - II (Abbreviated as MI – II)	04			04			04	

		Examination Scheme											
Course	Course	Theory											
Code	Name	Internal Assessment		End Dura		Term	Pract.	Oral	Pract.	Total			
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral			
BMC703	Medical Imaging - II (MI – II)	20	20	20	80	03					100		

Course Name	Credits							
Medical Imaging II 04								
<ul> <li>To familiarize the learners with the various Imaging medicine operating principles and quality control aspects of modalities.</li> <li>To keep the learners abreast with the technological deversield of Medical Imaging</li> </ul>	f various imaging							
<ul> <li>Understand use of Ultrasound in medicine, distinguish various display system, understand the construction and operation of the transducer, understand the clinical applications of Doppler Tec.</li> <li>Apply the basic concepts of physics in understanding Physics of Understand the hardware of MRI Machine, Spin echo Imaging image reconstruction, resolution and SNR, Biological effects a applications</li> <li>To understand the basic principle of Magnetic Resonance Species.</li> <li>To understand nuclear imaging techniques and positron emission and apply the concepts to understand hybrid imaging</li> </ul>	ne ultrasonic chniques of MRI s, Pulse sequence, and clinical							
	<ul> <li>Medical Imaging II</li> <li>To familiarize the learners with the various Imaging medicine operating principles and quality control aspects of modalities.</li> <li>To keep the learners abreast with the technological deversield of Medical Imaging</li> <li>Learner will be able to</li> <li>Understand use of Ultrasound in medicine, distinguish various display system, understand the construction and operation of the transducer, understand the clinical applications of Doppler Tec.</li> <li>Apply the basic concepts of physics in understanding Physics of Understand the hardware of MRI Machine, Spin echo Imaging image reconstruction, resolution and SNR, Biological effects a applications</li> <li>To understand the basic principle of Magnetic Resonance Speceston understand nuclear imaging techniques and positron emissions</li> </ul>							

Module	Contents	Hours
1	Ultrasound in Medicine:	12
	Introduction, Production and Characteristics of Ultrasound	
	Display System: A mode, B mode and M Mode, TM mode display and	
	applications.	
	Ultrasound transducers and Instrumentation.	
	Real time Ultrasound ,Continuous wave and Pulsed Doppler, 2D-Echo	
	Clinical applications	
2	Physics of MRI:	06
	Magnetic Dipole Moments, Relaxation Parameters, Spin Echo, Magnetic Field	
	Gradients, Slice selection, Phase and Frequency Encoding	
3	Magnetic Resonance Imaging	12
	Hardware: Magnets, Gradient coils, RF coils, Spin Echo Imaging, Inversion	
	Recovery Pulse Sequence, Image Reconstruction, Resolution and Factors	
	affecting signal-to-noise. Safety Considerations and Biological Effects of MRI,	
	Clinical applications	0.6
4	Magnetic Resonance Spectroscopy (MRS)	06
	Basic Principle of MRS and localization techniques, Chemical Shift Imaging,	
	Single-voxel and Multivoxel MRS, Water Suppression techniques	00
5	Hybrid Imaging  Letter duction. Dringing and applications of DET and SDECT.	08
	Introduction, Principles and applications of PET and SPECT,	
	Introduction to Hybrid Modalities: PET/CT, SPECT/CT	
	Clinical Applications	
6	Endoscopy	04
U	Equipment, Imaging and its applications	V <del>4</del>
	Equipment, imaging and its applications	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

### Text Books:

- 1. Christensen's Physics of Diagnostic Radiology
- 2. Medical Imaging Physics William .R.Hendee
- 3. The essential physics of Medical Imaging- Jerrold T. Bushberg, J. Anthony Seibert, Edwin L, John Boone

### Reference Books:

- 1. Biomedical Technology and Devices by James Moore .
- 2. Biomedical Engineering Handbook by Bronzino
- 3. Physics of Diagnostic images –Dowsett

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

<b>Course Code</b>	Course Name	Teaching scheme Credit assi					ssigned	
	Department	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMDLO7031	Level Optional Course - III: Networking and Information in Medical Systems (Abbreviated as NIMS)	04			04			04

		Examination Scheme											
Course	Course		Theory										
Code	Name	Intern	nal Assess	ment	End	Pract.   Oral		Pract.	Total				
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral			
BMDLO 7031	Networkin g and Informatio n in Medical Systems (NIMS)	20	20	20	80	03					100		

Course Code	Course Name	Credits
BMDLO7031	Networking and Information in Medical Systems	04
Course Objectives	<ul> <li>To understand the fundamental component of computer to understand the functioning and configuration of varidevices and components.</li> <li>To understand a concept about network security.</li> <li>Understand various Information system used in Healthcate To understand the healthcare IT infrastructure Understand domains</li> </ul>	ous networking are System
Course Outcomes	<ul> <li>Learners will be able to:         <ul> <li>Understand the fundamental components of computer networking protocols.</li> <li>Understand IP addressing, functioning and configurat networking devices and components</li> <li>Understand concepts about network security</li> <li>Understand the PACS components, architecture arradiology</li> </ul> </li> </ul>	tion of various

•	Understand HIS, RIS integration of HIS/RIS/PACS, PACS archive
	and servers
•	Understand IHE and IHE domains

Module	Contents	Hours
	Networking Technology	
1	Performance of network/device parameters: Bandwidth, Throughput, Jitter, Latency	08
	Network Technology, Types of cables and connectors, Crossover and straight through cables, Colour coding of cables, OSI Model, TCP/IP, Addressing types (IP, MAC & Port)	
2	IP V4 addressing, Subnetting, Supernetting, IP V6, Detailed working of networking equipment: HUB, Switch, Router, Modem, Bridge; Packet switching, Circuit switching.	
3	Basic Security Concepts Security Mechanism and security services, Authentication, Authorization, Confidentiality, Integrity, Symmetric and Asymmetric Key cryptography, RSA algorithm	06
	Information Systems in Medicine	
4	PACS Components, Generic workflow, PACS architectures: stand-alone, client-server, and Web-based, PACS and Teleradiology, Enterprise PACS and ePR System with Image Distribution	10
5	Introduction to RIS and HIS, HIS/RIS/PACS integration, PACS Archive Storage: RAID, PACS Server, Fault Tolerant PACS, HIPPA	08
6	Integrating Healthcare Enterprise: IHE Workflow Model, IHE Domains, IHE Patient Information Reconciliation Profile, IHE Radiology Information Integration Profile	08

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

### Text Books:

- 1. PACS and Imaging Informatics by Huang, Second Edition, Wiley and Blackwell
- 2. PACS Guide to Digital Revolution by Keith J. Dreyer (Springer)
- 3. Data Communication and Networking by Behrouz A. Forouzan McGrow Hill
- 4. Computer Networks by A.S. Tanenbaum, Pearson Education

### Reference Books:

1. Governance of Picture Archiving and Communications Systems by Carrison K.S. Tong (Medical

- Information Science Reference)
- 2. Practical Imaging Informatics, By Barton F. Branstetter, Springer
- 3. PACS fundamentals- By Herman Oosterwijk
- 4. Cryptography and Network Security By William Stalling, Pearsons

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4.Remaining questions will be randomly selected from all the modules.

<b>Course Code</b>	Course Name	Teaching scheme Credit assign				ssigned		
	Department	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMDLO7032	Level Optional Course - III: Advanced Image Processing (Abbreviated as AIP)	04	-		04	1		04

	Course Name	Examination Scheme										
Course Code		Theory								_		
		Intern	al Assess	ment	End	Dura			Total			
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral		
BMDLO 7032	Advanced Image Processing (AIP)	20	20	20	80	03					100	

Course Code	Course Name	Credits
BMDLO7032	Advanced Image Processing	04
Course Objectives	<ul> <li>To introduce the learners to advanced theory of digital imag</li> <li>To expose learners to various available techniques and postinistical.</li> <li>To understand the various techniques &amp; algorithms such imaging, Feature extraction, Restoration, Texture and Appli</li> <li>To prepare learners to formulate solutions to Complex image Algorithms</li> <li>To develop programming skills to solve complex Image Proproblems</li> </ul>	ossibilities of ch as Colour cation ge processing
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Acquire the advanced concepts of a digital image processing as Colour imaging, Feature extraction, Restoration, Application</li> <li>Extract feature and classify images.</li> <li>Design Image restoration and segmentation using varial algorithms.</li> <li>Strategize and implement with MATLAB/C/SCILAB algorithms.</li> </ul>	Texture and ous complex

Module	Contents	Hours
1	Colour Image Processing:	08
	Introduction, Physics of Colour, Colour Models, Pseudo Colouring, Colour	
	Histograms, Colour Segmentation	
2	Feature recognition and classification: Object recognition and	10
	classification, Connected components labelling, Features, Object recognition	
	and classification, Statistical classification, Structural/syntactic	
	Classification, Applications in medical image analysis. Three-dimensional:	
	visualization: Image visualization, Surface rendering, Volume rendering,	
3	Image restoration: Image degradation, Noise, Noise-reduction filters,	08
	Blurring, Modeling image degradation, Geometric degradations, Inverse filtering,	
	Wiener Filter, Geometric Mean filter, Geometric Transformation	
4	Advanced Image of Image Segmentation: Canny edge detectors, Clustering	10
	methods, Classifiers, Watershed Algorithm, Top Hat and Bottom Hat Transformation	
5	<b>Texture:</b> Grey Level Co-Occurrence Matrix, Energy, entropy, maximum	06
	probability, Laplacian and Gaussian pyramid, Texels and Texel based descriptors.	
6	Wavelet Transform and Application: Basics of 1-D, 2-D DWT, Wavelet	06
	Pyramids, Computer-aided diagnosis in mammography, Tumour imaging and	
	treatment, Angiography, Bone strength	
	and osteoporosis, Tortuosity	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

Text Books:

- **1.** Digital Image Processing for Medical Applications, GEOFF DOUGHERTY, Cambridge University Press.
- 2. Digital Image Processing, Gonzalez and Woods, Pearson Eduction
- **3.** Image Processing analysis and Machine Vision, Milind Sonka et.al Cengage

### Reference Books:

- 1. Computer Vision, Linda Shapiro et.al Addison-Wesley
- 2. Computer Vision a Modern Approach, David A. Forsyth, Jean Ponce, Pearson

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Department	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLO7033	Level Optional Course - III: Embedded Systems (Abbreviated as ES)	04			04	1	1	04	

		Examination Scheme											
Course Code	Course		Theory										
	Name	Intern	al Assess	ment	End	Dura	Term	Pract. Oral Pract. / Oral	Total				
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Orai			
BMDLO 7033	Embedded Systems (ES)	20	20	20	80	03					100		

Course Code	Course Name	Credits
BMDLO7033	Embedded Systems in Biomedical Engineering	04
Course Objectives	<ul> <li>To provide an introduction to modern embedded systems</li> <li>To understand the design, implementation and programming of time embedded systems.</li> </ul>	modern real
Course Outcomes	<ul> <li>Learner will be able to</li> <li>To become aware of the embedded hardware and software comman embedded system, classification, skills required for an embeddesigner and applications of modern embedded systems.</li> <li>To analyse the design and development process of embedded systems.</li> <li>To understand the I/O devices, communication buses and distributed embedded architecture.</li> <li>To understand the concepts of device drivers and interrupt serving mechanisms</li> <li>To understand RTOS.</li> <li>To understand the basic design and programming using RTOS.</li> </ul>	dded system ystems. buted

Module	Contents	Hours
1	Introduction to Embedded System	05

	Definition, Processor Embedded into a system, Embedded Hardware, Embedded	
	Software, Embedded-system Design, Embedded-system Architecture, Embedded-	
	system Model, Classification, Skills required for an ES designer, Examples of	
	Embedded-system	
2	Embedded System Design & Development Process	10
	Embedded System-On-Chip, Complex System Design and Processors, Build	
	Process, Design Process, Design Challenges and Optimization of Design Metrics,	
	Embedded-Software Development Challenges, Hardware Software Co-Design,	
	Formalism of System Design, Design Process and Design Examples	
3	I/O Devices, Communication Buses and Distributed Networked Embedded	08
	Architecture	
	I/O Types and Examples, Serial Communication Devices, Parallel Device Ports,	
	Sophisticated Interfacing Features, Wireless Devices, Timer and Counting Devices,	
	Distributed Network ES Architecture, Serial Bus Communication Protocols, Parallel	
	Bus Device Protocols- Using ISA, PCI, PCI-X and Advanced Buses, Internet	
	Enabled Systems, Wireless and Mobile System Protocols	
4	Device Drivers and Interrupts Service Mechanism	07
	Port for Device Accesses without Interrupts Servicing Mechanism, Interrupt Driven	
	I/O, Interrupt Service Routine, Interrupt Sources, Hardware and Software Interrupts,	
	Interrupt-servicing Mechanism, Multiple Interrupts, Interrupt Service Threads,	
	Context and Period for Context Switching, Interrupt Latency, Interrupt-Service	
	Deadline, Classification of Interrupt Service Mechanism, Direct Memory Access	
	Driven I/O	
5	Introduction to RTOS	08
	Introduction to Round Robin, Round Robin with Interrupts, Real-Time Operating	
	System Architecture, Selecting an Architecture, Task and Task States and Data,	
	Semaphores and Shared Data	
6	Basic Design using RTOS & Programming	10
	Overview, Principles, Encapsulating Semaphores and Queues, Hard Real-Time	
	Scheduling Considerations, Saving Memory Space, Saving Power, Case Study	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Books Recommended:**

Text Books:

- 1. Embedded System Architecture, Programming & Design (Third Edition)- Raj Kamal
- 2. An Embedded Software Primer- David E. Simon

### Reference Books:

1. Embedded Real time Systems Programming- Sriram V Iyer, Pankaj Gupta

### **Theory Examination:**

1. Question paper will comprise of total 06 questions, each carrying 20 marks.

University of Mumbai, Biomedical Engineering, Rev 2016-17

- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

<b>Course Code</b>	Course Name	Tea	ching sche	me	Credit assigned				
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO1011	Optional Course - I: Product Life Cycle Management	03			03	-		03	

Course	Course	Examination Scheme											
			T										
Code	Name	Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral			
ILO1011	Institute Level optional Course -I: Product Life Cycle Manag- ement	20	20	20	80	03					100		

Course Code	Course Name	Credits
ILO1011	Product Life Cycle Management	03
Course Objectives	<ul> <li>To familiarize the students with the need, benefits and cor PLM</li> <li>To acquaint students with Product Data Management &amp; PLM</li> <li>To give insights into new product development program and for designing and developing a product</li> <li>To familiarize the students with Virtual Product Development</li> </ul>	strategies d guidelines
Course Outcomes	<ul> <li>Gain knowledge about phases of PLM, PLM strategies and not for PLM feasibility study and PDM implementation.</li> <li>Illustrate various approaches and techniques for des developing products.</li> <li>Apply product engineering guidelines / thumb rules in products for moulding, machining, sheet metal working etc.</li> <li>Acquire knowledge in applying virtual product developme components, machining and manufacturing plan</li> </ul>	igning and designing

Module	Contents	Hours
01	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	12
02	<b>Product Design:</b> Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	09
03	Product Data Management (PDM):Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	06
04	<b>Virtual Product Development Tools:</b> For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	06
05	Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design	06
06	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis	06

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **REFERENCES:**

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

### **Theory Examination:**

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	me Teaching scheme Credit assi						
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO1012	Optional Course- I:							
	Reliability	03			03			03
	Engineering							

	Course Name	Examination Scheme											
Course		Theory					Term						
Code		Internal Assessment		End	End Dura		Pract.	Oral	Pract.	Total			
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral			
ILO1012	Institute Level Optional Course -I: Reliability Engineering	20	20	20	80	03					100		

Course Code	Course Name	Credits
ILO1012	Reliability Engineering	03
Course Objectives	<ul> <li>To familiarize the students with various aspects of probability</li> <li>To acquaint the students with reliability and its concepts</li> <li>To introduce the students to methods of estimating the system of simple and complex systems</li> <li>To understand the various aspects of Maintainability, Availance FMEA procedure.</li> </ul>	reliability
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand and apply the concept of Probability to e problems</li> <li>Apply various reliability concepts to calculate different parameters</li> <li>Estimate the system reliability of simple and complex systems</li> <li>Carry out a Failure Mode Effect and Criticality Analysis</li> </ul>	reliability

Module	Contents	Hours
01	Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem.  Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance.  Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	10
02	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve.  Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions.  Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	10
03	System Reliability  System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
04	Reliability Improvement  Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis.  System Reliability Analysis – Enumeration method, Cut-set method, Success  Path method, Decomposition method.	10
05	Maintainability and Availability  System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement.  Availability – qualitative aspects.	05
06	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	05

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **REFERENCES:**

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

## **Theory Examination:**

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

<b>Course Code</b>	Course Name	Tea	ching sche	me	Credit assigned				
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO1013	Optional Course - I: Management Information System	03			03			03	

		Examination Scheme									
Course	Course		T	heory							
Code	Name	<b>Internal Assessment</b>			End	Dura	Term	Pract.	Oral	Pract.	Total
	Name	Test 1	est 1 Test 2	Av	sem	tion	work	1 1 act.	Orai	/ Oral	Total
		1 est 1	1 est 2	g.	SCIII	(hrs)					
	Institute										
	Level										
ILO1013	Optional										
LEGIOIC	Course -I:	20	20	20	80	03					100
	Management										
	Information										
	System										

Course Code	Course Name	Credits
ILO1013	Management Information System	03
Course Objectives	<ul> <li>The course is blend of Management and Technical field.</li> <li>Discuss the roles played by information technology in today's be define various technology architectures on which information system</li> <li>Define and analyze typical functional information systems and id they meet the needs of the firm to deliver efficiency and competitive.</li> <li>Identify the basic steps in systems development</li> <li>Define and analyze various MIS management responsibilities, planning, budgeting, project management, and personnel management</li> <li>Discuss critical ethical and social issues in information systems</li> </ul>	s are built lentify how advantage , including
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Explain how information systems Transform Business</li> <li>Identify the impact information systems have on an organization</li> <li>Describe IT infrastructure and its components and its current trends</li> <li>Understand the principal tools and technologies for accessing information</li> </ul>	nation from
	<ul> <li>databases to improve business performance and decision making</li> <li>Identify the types of systems used for enterprise-wide knowledge n</li> </ul>	nanagement

## and how they provide value for businesses

Module	Detailed Contents	Hours
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	07
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management.  Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	09
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	06
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	07
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	06
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process.  Acquiring Information Systems and Applications: Various System development life cycle models.	10

## **Assessment:**

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **REFERENCES:**

- 1. Management Information Systems: Kelly Rainer, Brad Prince by Wiley
- 2. Management Information Systems: Managing the Digital Firm (10th Edition). K.C. Laudon and J.P. Laudon, Prentice Hall, 2007.

3. Managing Information Systems: Strategy and Organization, D. Boddy, A. Boonstra, Prentice Hall, 2008

## **Theory Examination:**

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO1014	Optional Course - I: Design of Experiments	03	-		03			03	

		Examination Scheme									
Course	Course	Theory									
Code	Name	Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total
		Tost 1	Test 1 Test 2	Av	sem	tion	work	Tract.	Orai	/ Oral	Total
		1 est 1		g.	SCIII	(hrs)					
	Institute										
	Level										
ILO1014	Optional	20	20	20	80	03					100
	Course -I:	20	20	20		0.5					100
	Design of										
	Experiments										

Course Code	Course Name	Credits
ILO1014	Design of Experiments	03
Course Objectives	<ul> <li>To understand the issues and principles of Design of Experiments (Design of Experiments).</li> <li>To list the guidelines for designing experiments.</li> <li>To become familiar with methodologies that can be used in conjunction experimental designs for robustness and optimization</li> </ul>	•
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Plan data collection, to turn data into information and to make decision lead to appropriate action.</li> <li>Apply the methods taught to real life situations.</li> <li>Plan, analyze, and interpret the results of experiments</li> </ul>	ons that

Module	<b>Detailed Contents</b>	Hours
01	<b>Introduction:</b> Strategy of Experimentation, Typical Applications of Experimental Design, Guidelines for Designing Experiments, Response Surface Methodology.	06
02	<b>Fitting Regression Models:</b> Linear Regression Models, Estimation of the Parameters in Linear Regression Models, Hypothesis Testing in	08

	Multiple Regression, Confidence Intervals in Multiple Regression, Prediction of new response observation, Regression model diagnostics, Testing for lack of fit.	
03	<b>Two-Level Factorial Designs:</b> The 2 ² Design, The 2 ³ Design, The General 2 ^k Design, A Single Replicate of the 2 ^k Design, The Addition of Center Points to the 2 ^k Design, Blocking in the 2 ^k Factorial Design, Split-Plot Designs.	07
04	<b>Two-Level Fractional Factorial Designs:</b> The One-Half Fraction of the 2 ^k Design, The One-Quarter Fraction of the 2 ^k Design, The General 2 ^{k-p} Fractional Factorial Design, Resolution III Designs, Resolution IV and V Designs, Fractional Factorial Split-Plot Designs.	07
05	Conducting Tests: Testing Logistics, Statistical aspects of conducting tests, Characteristics of good and bad data sets, Example experiments, Attribute Vs Variable data sets.	07
06	<b>Taguchi Approach:</b> Crossed Array Designs and Signal-to-Noise Ratios, Analysis Methods, Robust design examples.	04

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **REFERENCES:**

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Philip J Ross, "Taguchi Technique for Quality Engineering," McGraw Hill.
- 7. Madhav S Phadake, "Quality Engineering using Robust Design," Prentice Hall.

## **Theory Examination:**

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Teaching scheme Credit assigned						
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO1015	Optional Course - I: Operations Research	03	1		03	1	1	03

		Examination Scheme									
Course	Course		T	heory							
Code	Name	Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total
		Test 1	Test 2	Av	sem	tion	work	Tract.	Orai	/ Oral	Total
		1 CSt 1	1 est 2	g.	SCIII	(hrs)					
	Institute										
	Level										
ILO1015	Optional	20	20	20	80	03					100
	Course -I:	20	20	20		0.5					100
	Operations										
	Research										

Course Code	Course Name	Credits
ILO1015	Operations Research	03
Course Objectives	<ul> <li>Formulate a real-world problem as a mathematical programm model.</li> <li>Understand the mathematical tools that are needed to solve optimization problems.</li> <li>Use mathematical software to solve the proposed models.</li> </ul>	iing
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand the theoretical workings of the simplex method programming and perform iterations of it by hand.</li> <li>Understand the relationship between a linear program and it including strong duality and complementary slackness.</li> <li>Perform sensitivity analysis to determine the direction and r of change of a model's optimal solution as the data change.</li> <li>Solve specialized linear programming problems like the trainand assignment problems.</li> </ul>	ts dual,

- Solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- Understand the applications of, basic methods for, and challenges in integer programming
- Model a dynamic system as a queuing model and compute important performance measures

Module	Detailed Contents	Hours
01	Introduction to Operations Research: Introduction, Historical Background, Scope of Operations Research, Features of Operations Research, Phases of Operations Research, Types of Operations Research Models, Operations Research Methodology, Operations Research Techniques and Tools, Structure of the Mathematical Model, Limitations of Operations Research	02
02	Linear Programming: Introduction, Linear Programming Problem, Requirements of LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty Cost Method or Big Mmethod, Two Phase Method, Revised simplex method, Duality, Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	06
03	Transportation Problem: Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method. Assignment Problem: Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem, Travelling Salesman Problem	06
04	Integer Programming Problem: Introduction, Types of Integer Programming Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to Decomposition algorithms.	06
05	<b>Queuing models</b> : queuing systems and structures, single server and multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	06

06	Simulation: Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	04
07	<b>Dynamic programming</b> . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	04
08	Games Theory. Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	04
09	Inventory Models: Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	04

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **REFERENCES:**

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

## **Theory Examination:**

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks

- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Tea	ching sche	me	Credit assigned			
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO1016	Optional Course - I: Cyber Security and Laws	03			03			03

					J	Examina	ation Sch	eme			
Course	Course		T	heory							
Code	Name	Internal Assessment			End	Dura Dura		Pract.	Oral	Pract.	Total
Couc	To the last two last	tion	work	Tract.	Orai	/ Oral	Total				
		1 cst 1	1 CSt 2	g.	sem	(hrs)					
	Institute										
	Level										
ILO1016	Optional										
ILOIOIO	Course -I:	20	20	20	80	03					100
	Cyber										
	Security and										
	laws										

Course Code	Course Name	Credits
ILO1016	Cyber Security and Laws	03
Course Objectives	<ul> <li>To understand and identify different types cyber crime and cy</li> <li>To recognized Indian IT Act 2008 and its latest amendments</li> <li>To learn various types of security standards compliances</li> </ul>	ber law
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand the concept of cyber crime and its effect on outsing in the concept of cyber crime and its effect on outsing in the concept of cyber law.</li> <li>Distinguish different aspects of cyber law.</li> <li>Apply Information Security Standards compliance during design and development.</li> </ul>	

Module	Detailed Contents	Hours
01	<b>Introduction to Cybercrime:</b> Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	04
02	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	10
03	<b>Tools and Methods Used in Cyberline:</b> Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	06
04	The Concept of Cyberspace: E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law, The Intellectual Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	08
05	Indian IT Act.: Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000,IT Act. 2008 and its Amendments	08
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	06

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **REFERENCES:**

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security &Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on: The Information Technology ACT, 2008-TIFR: https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

**Theory Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. **In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.** 

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Teaching scheme			Credit assigned			
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO1017	Optional Course - I: Disaster Management and Mitigation Measures	03			03	1		03

					]	Examina	ation Sch	eme			
Course	Course		T	heory							
Code	Name	Intern	al Assessi	ment	End	Dura	Term	Pract.	Oral	Pract.	Total
Code	Name	Test 1	Test 2	Av g.	End sem	tion (hrs)	work	Pract.	Orai	/ Oral	Total
ILO1017	Institute Level Optional Course -I: Disaster Management and Mitigation Measures	20	20	20	80	03					100

Course Code	Course Name	Credits
ILO1017	Disaster Management and Mitigation Measures	03
Course Objectives	<ul> <li>To understand the various types of disaster occurring around the To identify extent and damaging capacity of a disaster</li> <li>To study and understand the means of losses and methods to oxyminimize it.</li> <li>To understand role of individual and various organization during disaster</li> <li>To know warning systems, their implementation and based on initiate training to a laymen</li> <li>To understand application of GIS in the field of disaster manages. To understand the emergency government response structures be during and after disaster</li> </ul>	vercome  ag and after  this to  gement
<b>Course Outcomes</b>	<ul> <li>Learner will be able to</li> <li>Understand natural as well as manmade disaster and their extended possible effects on the economy.</li> </ul>	nt and

- Planning of national importance structures based upon the previous history.
- Understand government policies, acts and various organizational structure associated with an emergency.
- Know the simple do's and don'ts in such extreme events and act accordingly

Module	Detailed Contents	Hours
01	Introduction: Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.	03
02	Natural Disaster and Manmade disasters: Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion. Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.	06
03	Disaster Management, Policy and Administration: Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
04	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
05	Financing Relief Measures: Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects	09

	related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events.	
06	Preventive and Mitigation Measures: Pre-disaster, during disaster and post-disaster measures in some events in general, Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication. Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **REFERENCES:**

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards' and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P. Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

## **End Semester Examination:**

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

<b>Course Code</b>	Course Name	Teaching scheme			Credit assigned				
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO1018	Optional Course - I: Energy Audit and Management	03			03	-1		03	

		Examination Scheme											
Course	Course		Theory										
Code	Name	Intern	Internal Assessn		End Dura		Term	Pract.	Oral	Pract.	Total		
Code	Name	Test 1	Test 2	Av	sem	tion	work	1 1 act.	Orai	/ Oral	Total		
		1 est 1	1 est 2	g.	SCIII	(hrs)							
	Institute												
	Level												
ILO1018	Optional												
LOIVIO	Course -I:	20	20	20	80	03					100		
	Energy												
	Audit and												
	Management												

Course Code	Course Name	Credits
ILO1018	Energy Audit and Management	03
Course Objectives	<ul> <li>To understand the importance energy security for sustainable development the fundamentals of energy conservation.</li> <li>To introduce performance evaluation criteria of various electrical installations to facilitate the energy management.</li> </ul>	•
	<ul> <li>installations to facilitate the energy management</li> <li>To relate the data collected during performance evaluation of identification of energy saving opportunities</li> </ul>	systems for
Course Outcomes	<ul> <li>Learner will be able to</li> <li>To identify and describe present state of energy security and its imp</li> <li>To identify and describe the basic principles and methodologie energy audit of an utility.</li> <li>To describe the energy performance evaluation of some comminstallations and identify the energy saving opportunities.</li> <li>To describe the energy performance evaluation of some comminstallations and identify the energy saving opportunities</li> <li>To analyze the data collected during performance evaluation and</li> </ul>	es adopted in non electrical mon thermal

Module	Detailed Contents	Hours					
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance  Energy Audit Principles: Definition Energy audit- need. Types of energy						
02	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08					
03	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	10					
04	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10					
05	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04					
06	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03					

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **REFERENCES:**

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

**Theory Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. **In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.** 

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO1019	Optional Course - I: Development Engineering	03			03			03	

Course Code	Course Name	Credits
ILO1019	Development Engineering	03
Course Objectives	<ul> <li>To understand the characteristics of rural Society and Nature and Constraints of rural</li> <li>To study Implications of 73rd CAA on Planning, Devel Governance of Rural Areas</li> <li>An exploration of human values, which go into makin human being, a 'good' professional, a 'good' society a life' in the context of work life and the personal life of morprofessionals</li> <li>To understand the Nature and Type of Human Values Planning Institutions</li> </ul>	opment and  ng a 'good'  and a 'good  odern Indian
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Apply knowledge for Rural Development</li> <li>Apply knowledge for Management Issues.</li> <li>Apply knowledge for Initiatives and Strategies.</li> <li>Develop acumen for higher education and research.</li> <li>Master the art of working in group of different nature.</li> <li>Develop confidence to take up rural project activities inde</li> </ul>	enendently

Module	Detailed Contents	Hours
01	Introduction to Rural Development Meaning, nature and scope of development; Nature of rural society in India; Hierarchy of settlements; Social, economic and ecological constraints for rural development. Roots of Rural Development in India Rural reconstruction and Sarvodaya programme before independence; Impact of voluntary effort and Sarvodaya Movement on rural development; Constitutional direction, directive principles; Panchayati Raj - beginning of planning and community development; National extension services.	08
02	Post-Independence rural Development Balwant Rai Mehta Committee - three tier system of rural local. Government; Need and scope for people's participation and Panchayati Raj; Ashok Mehta Committee - linkage between Panchayati Raj, participation and rural development.	04

03	Rural Development Initiatives in Five Year Plans Five Year Plans and Rural Development; Planning process at National, State, Regional and District levels; Planning, development, implementing and monitoring organizations and agencies; Urban and rural interface - integrated approach and local plans; Development initiatives and their convergence; Special component plan and sub-plan for the weaker section; Micro-eco zones; Data base for local planning; Need for decentralized planning; Sustainable rural development.	06
04	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule, devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Technology and rural planning; Need for further amendments.	04
05	Values and Science and Technology Material development and its values; the challenge of science and technology; Values in planning profession, research and education. Types of Values Psychological values — integrated personality; mental health; Societal values — the modern search for a good society; justice, democracy, rule of law, values in the Indian constitution; Aesthetic values — perception and enjoyment of beauty; Moral and ethical values; nature of moral judgment; Spiritual values; different concepts; secular spirituality; Relative and absolute values; Human values— humanism and human values; human rights; human values as freedom, creativity, love and wisdom.	10
06	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility; Work ethics; Professional ethics; Ethics in planning profession, research and education	04

Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **REFERENCES:**

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.

- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V. , Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and

Practice, Vol. 4, No.4, pp.395 – 407

**Theory Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. **In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.** 

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

Course Code	Course Name	Tea	nching schei	me	Credit assigned				
	Life Saving and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML701	Surgical Equipment (LSSE)		02			01		01	

		Examination Scheme									
Course	Course Name	Theory				Term work	Pract.	Oral	Pract. / Oral	Total	
Code	Course Name	Internal Assessment End									
		Test 1	Test 2	Avg.	sem	WOLK			/ Olai		
	Life Saving and										
BML701	Surgical					25		25		50	
DMIL/UI	Equipment					23		23		30	
	(LSSE)										

Course Code	Course Name	Credits
BML701	Life Saving and Surgical Equipment	01
Course Objectives	<ul> <li>To understand the basic principles and working Equipment.</li> <li>To develop skills enabling Biomedical Engineer health care industry</li> <li>To develop core competency and skill in the field of Engineering, to design and develop new health care</li> </ul>	rs to serve the
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Design and implement basic Pacemaker circuits.</li> <li>Design and implement basic oscillator circuit Diathermy.</li> <li>Demonstration the knowledge of application physiotherapy machines.</li> <li>Demonstrate the knowledge of application techniques.</li> </ul>	techniques of

Syllabus: Same as that of BMC701 Life Saving and Surgical Equipment (LSSE).

## **List of Experiments: (Any Seven)**

- 1. Implementation and testing of basic circuit of pacemaker.
- 2. Implementation of NAND Gate Oscillator in Surgical Diathermy.
- 3. Implementation of RLC Over damped system.
- 4. Implementation of OT lights.
- 5. Demonstration of Defibrillator.
- 6. Demonstration of Pacemaker.
- 7. Demonstration of Surgical Diathermy.
- 8. Demonstration of Oximeter.
- 9. Industry / Hospital visits may be conducted.

Any other experiment based on syllabus which will help learner to understand topic/concept.

Group Presentation on the latest technology in hospitals based on the topics covered in the syllabus.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

## **Books Recommended:**

## Text books:

- 1. Handbook of Biomedical Instrumentation (Third edition): R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Biomedical Instrumentation and measurements : Leislie Cromwell, Fred J. Weibell, Enrich A. Pfeiffer. (PHI Pub)

## Reference books:

- 1. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)
- 2. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 3. Various Instruments Manuals.
- 4. Various internet websites.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
	Racios of VI SI	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML702	Basics of VLSI (BVLSI)		02			01		01	

Course Code	Course Name	Examination Scheme									
		Theory				Term			Pract.	1	
		Internal Assessment			End	work	Pract.	Oral	/ Oral	Total	
		Test 1	Test 2	Avg.	sem	WOIK			/ Of al		
BML702	Basics of VLSI (BVLSI)					25		25		50	

Course Code	Course Name	Credits
BML702	Basics of VLSI	01
Course Objective	To expose to hardware description language which will understand and design various tools for the devices.	help them to
Course Outcome	<ul> <li>A Learner will be able to</li> <li>Understand hardware description language used to mode</li> <li>Implement some basic digital circuits using HDL</li> <li>Understand the physics of MOS devices</li> <li>Understand the implementation of inverter circuits devices and noise in these circuits</li> <li>Understand the design rules and layouts for various digital</li> </ul>	using CMOS

Syllabus: Same as that of BMC702 Basics of VLSI (BVLSI).

## **List of Experiments: (Any Seven)**

- 1. Study of NMOS CW modulation of NMOS channel (Using ORCAD or similar software)
- 2. Study of CMOS Inverter characteristics (Using ORCAD or similar software)
- 3. Basic Logic gates (using VHDL)
- 4. Binary to gray and Gray to Binary code conversion( using VHDL)
- 5. Binary to Excess-3 code conversion( using VHDL)
- 6. Implementation of 4:1/8:1 Mux( using VHDL)
- 7. Implementation of 3:8 Decoder( using VHDL)
- 8. Implementation of one bit Half Adder a Full adder (using VHDL)
- 9. Implementation of 4 bit full adder using half adder as component( using VHDL)

## 10. Implementation of JK flip flop( using VHDL)

Any other experiment based on syllabus which will help learner to understand topic/concept.

#### **Assessment:**

## Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

#### *Text books:*

- 1. Introduction to VLSI design, E. D. Fabricus, McGraw Hill Publications, first edition, 1990
- 2. Basic VLSI Design D.A. Pucknell and Eshraghian,
- 3. Digital Design Principles and Practises John F Wakerly,
- 4. CMOS Digital Integrated Circuits, Kang, Tata McGraw Hill Publications

## Reference Books:

- 1. VHDL Programming by Examples Douglas Perry, , Tata McGraw Hill Publications, 2002
- 2. Principles of CMOS VLSI Design: ASystems Perspective Neil H.E. Weste, Kamran Eshraghian second edition, Addison Wesley Publications, 1993
- 3. Digital Integrated Circuits: A Desiqn Perspective, Rabaey Jan M., Chandrakasan Anantha, Nikolic Borivoje, second edition, Prentice Hall of India

## Oral examination will be based on entire syllabus.

Course Code	Course Name	Tea	aching schei	ne	Credit assigned				
	Medical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML703	Imaging - II (MI - II)		02			01		01	

Course Code	Course Name		<b>Examination Scheme</b>									
		Theory				Term			Pract.			
		Internal Assessment			End	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WOLK			/ Of al			
	Medical											
BML703	Imaging - II					25		25		50		
	(MI - II)											

Course Code	Course Name	Credits
BML703	Medical Imaging - II	01
Course Objective	<ul> <li>To familiarize the learners with the various Imaging medicine operating principles and quality control aspects of v modalities.</li> <li>To keep the learners abreast with the technological development of Medical Imaging</li> </ul>	various imaging
Course Outcome	<ul> <li>Learner will be able to</li> <li>Understand the construction and working of ultrasound trar</li> <li>Understand the instrumentation and applications of Endosc</li> <li>Apply the knowledge of Image processing in reconstructing images</li> <li>Understand the basic principles of MRI Physics and Nuclea</li> <li>Understand the concept of Hybrid Imaging.</li> </ul>	opy ng the medical

Syllabus: Same as that of BMC703 Medical Imaging – II (MI – II).

## **List of Experiments: (Any Seven)**

- 1. Study experiment of Ultrasound Transducer
- 2. Demonstration on Endoscopy
- 3. MRI reconstruction using Fourier Transform
- 4. Image fusion for Hybrid Imaging
- 5. Calculation of T2 from T2* given  $\Delta B$  and and plot the equations in graph.

- 6. Presentations based on given topics
- 7. Hospital Visits
- 8. Seminars by expert speakers
- 9. Research on advanced topics

Any other experiment based on syllabus which will help learner to understand topic/concept.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

## **Books Recommended:**

#### Text Books:

- 1. Christensen's Physics of Diagnostic Radiology
- 2. Medical Imaging Physics William .R.Hendee
- 3. The essential physics of Medical Imaging- Jerrold T. Bushberg, J. Anthony Seibert, Edwin L, John Boone

## Reference Books:

- 1. Biomedical Technology and Devices by James Moore .
- 2. Biomedical Engineering Handbook by Bronzino
- 3. Physics of Diagnostic images –Dowsett

## Oral examination will be based on entire syllabus.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
	Networking and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLL 7031	Information in Medical Systems (NIMS)		02			01		01	

Course Code		Examination Scheme									
	Course Name	Theory				Тотт			Dwoot		
	Course Name	Internal Assessment E			End	Term work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	WOLK			, oran		
BMDLL 7031	Networking and Information in Medical System (NIMS)					25		25		50	

Course Code	Course Name	Credits
BMDLL 7031	Networking and Information in Medical System	01
Course Objective	<ul> <li>To understand the fundamental component of computer Network</li> <li>Configure various networking devices and components.</li> <li>To understand a concept about network security.</li> <li>Understand various Information system used in Healthcare System used in Healthcare IT infrastructure Understand variations.</li> </ul>	stem
Course Outcome	<ul> <li>Learner will be able to</li> <li>Configure various networking devices and components</li> <li>Design Basic Network using IP addressing and devices</li> <li>Design data flow in Hospital Using IHE Domain.</li> </ul>	

# Syllabus: Same as that of BMDLO7031 Networking and Information in Medical System (NIMS) $\,$

## **List of Experiments: (Any four and mini project)**

- 1. Study of various networking cables, demonstration of crimping of cables and configuring networking parameters for computer.
- 2. Tutorial on IP addressing.
- 3. Introduction and basic commands used in various network simulation software.

## University of Mumbai, Biomedical Engineering, Rev 2016-17

- 4. Internetwork Communcation through Router and Switch, See the Mac Table of each switch and Routing table of Router
- 5. Static routing configuration.
- 6. Case study of IHE domain

Any other experiment based on syllabus which will help learner to understand topic/concept.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Case study) : 10 Marks Laboratory work (Mini Project) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

## **Books Recommended:**

#### Text Books:

- 1. PACS and Imaging Informatics by Huang, Second Edition, Wiley and Blackwell
- 2. PACS Guide to Digital Revolution by Keith J. Dreyer (Springer)
- 3. Data Communication and Networking by Behrouz A. Forouzan McGrow Hill
- 4. Computer Networks by A.S. Tanenbaum, Pearson Education

## Reference Books:

- 1. Governance of Picture Archiving and Communications Systems by Carrison K.S. Tong (Medical Information Science Reference)
- 2. Practical Imaging Informatics, By Barton F. Branstetter, Springer
- 3. PACS fundamentals- By Herman Oosterwijk
- 4. Cryptography and Network Security By William Stalling, Pearsons

## Oral examination will be based on the entire syllabus.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
BMDLL	<b>Advanced Image</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
7032	Processing (AIP)		02			01		01	

Course Code	Course Name	Examination Scheme									
		Theory				Term			Pract.		
		Internal Assessment   End			End	work	Pract.	Oral	/ Oral	Total	
		Test 1	Test 2	Avg.	sem	WOIK			/ Orai		
BMDLL	Advanced Image					25		25		50	
7032	Processing (AIP)					23		23		30	

Course Code	Course Name	Credits
BMDLL7032	Advanced Image Processing	01
Course Objective	<ul> <li>To introduce the learners to advanced theory of digital image pr</li> <li>To understand the various techniques &amp; algorithms such imaging, Feature extraction, Restoration, Texture and Application</li> <li>To prepare learners to formulate solutions to Complex image Algorithms</li> <li>To develop programming skills to solve complex Image Problems.</li> </ul>	as Colour on processing
Course Outcome	<ul> <li>Learner will be able to</li> <li>Acquire the advanced concepts of a digital image processing s as Colour imaging, Feature extraction, Restoration, Te Application</li> <li>Extract feature and classify images.</li> <li>Strategize and implement with MATLAB/C/SCILAB algoradvanced digital image processing operations.</li> </ul>	exture and

Syllabus: Same as that of BMDLO7032 Advanced Image Processing (AIP).

# **List of Experiments: (Any Seven)**

- 1. Transition of Colour Models
- 2. Pseudo Colouring
- 3. Filtering of Colour Images

University of Mumbai, Biomedical Engineering, Rev 2016-17

- 4. Canny Edge Detector
- 5. Watershed Algorithm
- 6. Top Hat Transformation
- 7. Bottom Hat Transformation
- 8. Wavelet Decomposition
- 9. Geometric Mean Filter
- 10.K means clustering

Any other experiment based on syllabus which will help learner to understand topic/concept.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Case study) : 10 Marks Laboratory work (Mini Project) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

## **Books Recommended:**

## Text Books:

- 1. Digital Image Processing for Medical Applications, GEOFF DOUGHERTY, Cambridge University Press.
- 2. Digital Image Processing, Gonzalez and Woods, Pearson Eduction
- 3. Image Processing analysis and Machine Vision, Milind Sonka et.al Cengage

## Reference Books:

- 1. Computer Vision, Linda Shapiro et.al Addison-Wesley
- 2. Computer Vision a Modern Approach, David A. Forsyth, Jean Ponce, Pearson

## Oral examination will be based on the entire syllabus.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
BMDLL 7033	Embedded	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Systems (ES)		02			01		01	

Course Code	Course Name	Examination Scheme									
		Theory				Term			Pract.		
		Internal Assessment			End	work	Pract.	Oral	/ Oral	Total	
		Test 1	Test 2	Avg.	sem	WUIK			, Grai		
BMDLL	Embedded										
7033	Systems (ES)				25		25		50		

Course Code	Course Name					
BMDLL7033	Embedded Systems					
<b>Course Objective</b>	Design, implementation and programming of a basic model embedded system.	rn				
Course Outcome	<ul> <li>Learner will be able to</li> <li>To become aware of embedded hardware and software components an embedded system.</li> <li>To analyze the design and development process of embedded systems.</li> <li>To understand the design, implementation and programming of a reworld embedded system (case study).</li> </ul>					

Syllabus: Same as that of BMDLO7033 Embedded Systems (ES).

# **List of Experiments: (Any four and mini project)**

- 1. Biotelemetry system,
- 2. Portable patient monitoring system (ECG, heart rate, blood pressure, pulse oximeter)
- 3. Glucometer,
- 4. Robotic arm in surgeries
- 5. Automated wheelchair,
- 6. Drug delivery system (syringe pump),
- 7. Fall detection system for elderly,
- 8. CT/MRI bed.
- 9. Embedded system course project.

University of Mumbai, Biomedical Engineering, Rev 2016-17

Any other experiment based on syllabus which will help learner to understand topic/concept.

## **Assessment:**

## Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Case study) : 10 Marks Laboratory work (Mini Project) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

## **Books Recommended:**

Text Books:

- 1. Embedded System Architecture, Programming & Design (Third Edition)- Raj Kamal
- 2. An Embedded Software Primer- David E. Simon

## Reference Books:

1. Embedded Real time Systems Programming- Sriram V Iyer, Pankaj Gupta

Oral examination will be based on mini project.

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
	Project Stage - I	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML704			06			03		03	

	Course Name	Examination Scheme									
Course Code		Theory				Term			Pract.		
		Internal Assessment			End	work	Pract.	Oral	/ Oral	Total	
		Test 1	Test 2	Avg.	sem	WUIK			/ Of al		
BML	Project					25		25		50	
704	Stage - I					23		23		30	

Course Code	Course Name						
BML704	Project Stage-I						
Course objective	<ul> <li>To apply the knowledge gained during Curriculum to develop and design problem statement.</li> <li>Conduct literature survey.</li> <li>Design Circuit/ Flow chart of the statement.</li> <li>Documentation and project report writing.</li> </ul>						
Course Outcome	<ul> <li>Learner will be able to</li> <li>Review literature to define problem statement</li> </ul>						
	<ul> <li>Apply knowledge of the engineering fundamentals acquired durin the curriculum and beyond</li> <li>Develop and create design using appropriate design methodologie</li> </ul>						
	<ul> <li>considering the various health, society and environmental needs.</li> <li>Write problem statement, Design concept in prescribed format.</li> <li>Learn the behavioral science by working in a group.</li> </ul>						

## **Project Guidelines:**

- 1. Learner is allotted 6 hrs per week for the project work
- 2. Learners should carry out literature survey /visit industry / analyze current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor.
- 3. Group of maximum four students will be completing a comprehensive project work.
- 4. Learners should use multiple literatures and understand the problem.
- 5. Learners should attempt solution to the problem by experimental/simulation methods.
- 6. The solution to be validated with proper justification and compile the report in standard format

7. Learner may use this opportunity to learn different computational techniques as well as some model development.

# **Faculty Load:**

- 1. In semester VII 1/2 (half) period of 1/2 hour per week per project group
- 2. Each faculty is permitted to take (guide) maximum 4 (Four) project groups

#### **Assessment:**

### Term Work:

Term Work should be examined by approved internal faculty appointed by the head of the institute based on the following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

## Guidelines for Assessment of Project Stage- I

- 1. Project I should be assessed through a presentation jointly by Internal and External Examiners approved by the University of Mumbai
- 2. Project stage I should be assessed based on following points
  - Quality of problem selected
  - Literature Survey
  - Clarity of Problem definition and Feasibility of problem solution
  - Relevance to the specialization / Industrial trends
  - Clarity of objective and scope
  - Quality of Project Design
  - Compilation of Project Report
  - Quality of Written and Oral Presentation

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
BMC801	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Microsystems (Abbreviated as BM)	04			04			04	

	Course Name	Examination Scheme										
Course		Theory										
Code		Intern	al Assess	ment	End	Dura	Term Pract. Oral		Pract.	Total		
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral		
BMC801	Biomedical Micro- systems (BM)	20	20	20	80	03					100	

Course Code	Course Name	Credits							
BMC801	Biomedical Microsystems	04							
Course Objectives	<ul> <li>To understand various fabrication techniques for MEMS devices.</li> <li>To apply the knowledge of MEMS in Biomedical field.</li> <li>To understand recent advancements in Biomedical Engineering for a successful career in the area of nanotechnology.</li> </ul>								
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand basic property and select appropriate materi application</li> <li>Develop or modify the MEMS processes for a simple M in order to reduce the fabrication time.</li> <li>Understand different microfabrication techniques and chappropriate technique</li> <li>Analyze Micro total analysis system with designing of i components</li> <li>Demonstrate working principles of Bio Nano-sensors and delivery devices with types and fabrication</li> <li>Understand packaging techniques used in MEMS</li> </ul>	IEMS device noose							

Module	Contents	Hours
1	<ul> <li>Introduction to miniaturization and materials</li> <li>Block diagram of MEMS and BIOMEMS, comparison, examples</li> <li>Clean room: definition, classification, air flow system</li> <li>Safety in handling hazardous materials in clean room</li> <li>Scaling Laws in Miniaturization</li> <li>Substrates and Wafers: CZ process, wafer types</li> <li>Materials: Properties and applications of single crystal silicon, SiO2, Si3N4, SiC, Polysilicon, GaAs, Glass, Al, Gold, PMMA, PDMS, SU8, Conducting polymers</li> </ul>	08
2	<ul> <li>MEMS FABRICATION PROCESSES</li> <li>Wafer cleaning processes: RCA, Piranha</li> <li>PVD: definition, Types: Evaporation (Thermal and E-beam) and Sputtering (DC and RF), applicable materials, advantages, disadvantages</li> <li>CVD: definition, reaction steps, types: APCVD, LPCVD, PECVD, and HWCVD, applicable materials, advantages, disadvantages</li> <li>Oxidation: Thermal</li> <li>Polymers coating techniques: spinning, spraying and electrodeposition</li> <li>Doping: definition, Types: Ion implantation and Diffusion, advantages, disadvantages</li> <li>Etching: Types: Dry etching (RIE, DRIE) and wet etching (isotropic and anisotropic), advantages, disadvantages, specific etchants</li> <li>Photolithography: Definition, steps, light sources (UV, DUV, and EUV), positive and negative photoresist, mask, different projection systems</li> <li>X-ray lithography: Synchrotron radiation, X-ray mask</li> <li>Nanolithography: EBL</li> <li>Surface characterization techniques: AFM, SEM, TEM, Ellipsometer, Profilometer</li> </ul>	12
3	<ul> <li>Microfabrication Techniques</li> <li>Bulk micromachining: definition, advantages and disadvantages         Examples: pressure sensor, dissolved wafer process, CO₂ sensor</li> <li>Surface micromachining: definition, advantages and disadvantages         Examples: pressure sensor, cantilever         Non polysilicon surface micromachining: SOI fabrication</li> <li>LIGA: definition, process steps, examples, advantages and         disadvantages,         Molding techniques: Injection, compression, hot embossing</li> <li>Soft lithography: Definition, SAMs, Types: Micro contact Printing,</li> <li>Micro molding techniques: replica molding, microtransfer molding,         micromolding in capillaries and solvent-assisted micromolding</li> </ul>	04
4	MICRO TOTAL ANALYSIS SYSTEMS (μTAS)  • Basic block diagram	08

	• Flow techniques in μ-fluidics: pressure driven force, electro-osmosis, electrophoresis									
	Micropump, microvalves: types and fabrication									
	<ul> <li>Microchannels: Types and fabrication (SU8, glass, silicon)</li> </ul>									
	• Separation techniques: capillary electropherosis,									
	electrochromatography, isoelectric focusing									
	Detection techniques: fluorescence, chemiluminiscence									
5	MICRO/ NANO BIOSENSORS AND DRUG DELIVERY DEVICES									
	Biosensor: definition, block diagram									
	• Classification based on the basis of detection techniques: Electric,									
	Magnetic, Optical, Thermal, Mechanical, and Chemical									
	Basic steps involved in the development of biosensors: surface									
	modification, immobilization, integration with transducer									
	Design, fabrication of cantilever for antibody detection									
	Hypodermic needles, transdermal patches : disadvantages									
	Micro needles: solid, hollow, polymer, silicon (fabrication)									
	Nano particles for drug delivery									
6	MICROSYSTEM PACKAGING	06								
	Packaging materials									
	• Levels of packaging									
	Comparison between IC and MEMS packaging									
	<ul> <li>Packaging technologies: Die preparation, surface bonding, wire bonding, sealing</li> </ul>									
	Pressure sensor packaging									
ĺ	1 100001 Comon Promising									

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Books Recommended:**

Text Books:

- 1. "MEMS & MICROSYSTEMS Design and Manufacture", Tai-Ran Hsu, TATA Mcgraw-HILL.
- 2. "Fundamentals of Microfabrication" Marc Madou, CRC Press.

## Reference Books:

- 1. "Fundamentals of BioMEMS and Medical Microdevices", Steven S. Saliterman, (SPIE Press Monograph Vol. PM153 by Wiley Interscience
- 2. "Microsystem Technology", W. Menz, J. Mohr, 0. Paul, WILEY-VCH, ISBN 3-527-29634-4
- 3. "Electro Mechanical System Design", James J. Allen, Taylor & Francis Group, LLC, ISBN-0-8247-5824-2, 2005
- 4. "MICROSYSTEM DESIGN", Stephen D. Senturia, KLUWER ACADEMIC PUBLISHERS, eBook ISBN: 0-306-47601-0

- 5. "Introduction to Microfabrication", Sami FranssilaJohn Wiley & Sons Ltd, ISBN 0-470-85106-6
- 6. "Microelectromechanical Systems", Nicolae Lobontiu, Ephrahim Garcia, KLUWER ACADEMIC PUBLISHERS, eBook ISBN: 0-387-23037-8
- 7. "BIOMEDICAL NANOTECHNOLOGY", Neelina H. MalschCRC PRESS, Taylor and Francis Group, ISBN 10: 0-8247-2579-4

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
BMC802	Hospital	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Management (Abbreviated as HM)	04			04			04	

		Examination Scheme											
Course	Course	Theory											
Code	Name	Intern	al Assess	Assessment End		Dura	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral			
BMC802	Hospital Manage- ment (HM)	20	20	20	80	03					100		

Course Code	Course Name	Credits
BMC802	Hospital Management	04
Course Objectives	<ul> <li>To understand the basic principles used for designing departments in the hospital.</li> <li>To understand the role of Biomedical Engineer in hospit develop skills enabling to serve Hospitals.</li> <li>Apply modern engineering and management principles to prove quality of hospital care tin the community.</li> </ul>	tal and basic
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand and apply resource management concepts (person and material resources) and the processes and strategies need hospital sectors.</li> <li>Understand the management structure and functions in hospit Communicate effectively and develop their leadership and teabilities.</li> <li>Understand the principles of designing, implementing and conficient services and supportive departments in the hospital.</li> <li>Understand the roles and responsibilities of Biomedical Enginhospital.</li> <li>Understand the functions of other Engineering services and a services</li> </ul>	tal. am building mmissioning l. neer in xillary
Course Outcomes	<ul> <li>Apply modern engineering and management principles to prove quality of hospital care tin the community.</li> <li>Learner will be able to</li> <li>Understand and apply resource management concepts (person and material resources) and the processes and strategies need hospital sectors.</li> <li>Understand the management structure and functions in hospital Communicate effectively and develop their leadership and teabilities.</li> <li>Understand the principles of designing, implementing and coof clinical services and supportive departments in the hospital.</li> <li>Understand the roles and responsibilities of Biomedical Enginhospital.</li> <li>Understand the functions of other Engineering services and an accordinate of the services.</li> </ul>	nnel, fina led in spe tal. am build mmissio l. neer in

Module	Contents	Hours
1	Process of management:	08
	Principles of management, Leadership, Motivation, Time management, ,	
	H.R. management (Recruitment, Performance appraisal, Training and	
	development,), effective communication, Accounting - Types of Budget	
2	Organization of the hospital & Hospital Planning:	06
	Management structure, Types of hospitals, Governing body, Hospital	
	committee and hospital functionaries, Duties and responsibilities of various	
	positions.  Cuiding principles in planning hespital facilities and services and planning	
	Guiding principles in planning hospital facilities and services and planning	
	the hospital building	
3	Clinical and Supportive Services:	14
	Clinical Services: (Location, Layout, equipment And personnel):	
	Emergency, IN patient, OUT patient, Intensive care unit, Operation	
	Theatre, Laboratory, Blood Bank, Radiology	
	Supportive services: Registration Medical record department, Central	
	Sterile Service Dept, Pharmacy, Laundry and Linen Medical social service	
	Dept. Hospital security, Housekeeping, Dietary (Food services)	0.5
4	Biomedical Engineering Department: (Location, Layout, equipment	05
	and personnel and functions)	
	Roles and responsibilities of Biomedical Engineer in hospitals,	
	Maintenance types: Routine(preventive) and breakdown	
	Maintenance contracts (CMC and AMC)	
5	Other Engineering and Auxiliary Services:	08
	A) Engineering Services (Electrical, Mechanical and Civil):	
	Responsibilities and functions,	
	Hospital Ventilation and Air Conditioning, Medical Gas systems,	
	Communication, Hospital information systems	
	B) Auxiliary Services: Waste management, Hospital Infection control,	
	Disaster management	
6	Material Management & Inventory Control	07
	Classification of Materials	
	Purchase Management: Purchase system(Centralized, Decentralized,	
	Local purchase), Purchase Procedures: Selection of Suppliers, Tendering	
	procedures, Analyzing bids, Price negotiations, Issue of purchase orders,	
	Rate Contracts.	
	Store Management: Functions of Store Manager, Materials handling, Flow	
	of goods/FIFO.	
	Inventory Control: Lead-time, Buffer stock, Reorder level, Two Bin	
	System, EOQ	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Books Recommended:**

### Text Books:

- 1. Hospital Management by Dr. Pradyna Pai
- 2. Hospital Planning, Designing and Management: Kunders G D, Gopinath, A katakam (Private Pub Bangalore)

# Reference Books:

- 1. Computers in Medicine: R. D. Lele (TMH Pub)
- 2. Hospital Care and Hospital Management AICTE Journal Vol. 1,2,3 by Dr. Kalanidhi. (AICTE Pub Bangalore
- 3. Careers in Biomedical: Shantanu Thatte.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned			
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMDLO 8041	Optional Course –IV: Healthcare Informatics (Abbreviated as HCI)	04			04			04

	Course Name	Examination Scheme										
Course		Theory										
Code		Intern	al Assess	ment	End	Dura	Term	Pract.	act. Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	tion (hrs)	work					
BMDLO 8041	Healthcare Informatics (HCI)	20	20	20	80	03					100	

Course Code	Course Name	Credits						
BMDLO8041	Healthcare Informatics	04						
Course	To understand the healthcare interoperability semantic and syntage	ctic.						
Objectives	• To understand the standards of healthcare interoperability standards for							
	Medical Images and Medical Messages							
Course	Learner will be able to							
Outcomes	Understand Healthcare interoperability standards							
	Fabricate HL7 Messages							
	Understand and Design UML Diagrams							
	Understand semantic interoperability through DICOM							
	Edit and Compare DICOM file							

Module	Contents							
1.	Healthcare Interoperability Standards In Healthcare System, Categorizing Standards, Standard Development, Various Healthcare Informatics Standards, Need for a Lingua Franca, Electronic Health Records, Interoperability Modelling Basics	04						

2.	HL7 Version 2	08
	Message Syntax, Delimiters, Segment Definition, Message Header MSH,	
	Patient Identification Details (PID), Patent Visit (PV1), Request and	
	Specimen Details (OBR), Result Details (OBX), Z-Segments, Data, Simple	
	Data Types, Complex Data Types, Codes and Identifiers, Names and	
	Addresses, Other Complex Data Types	
3.	Unified Modelling Language (UML): Use Case Diagrams, Activity	12
	Diagrams, Class Diagrams, Sequence Diagrams	
	HL7 Version 3:	
	Main goal of V3, V3 Development Methodology, V3 Messaging	
	Components, Artifacts of the V3 Design Methodology, Dynamic Models,	
	Static Models	
	Clinical Document Architecture: Data Types, Codes and Vocabularies,	
	Header, Body	
4.	DICOM standard:	06.
	Introduction, DICOM Grammar: VRs, DICOM Data Dictionary, DICOM	
	Objects, DICOM Information Hierarchy, Modules, IODs and IEs	
5.	DICOM Communications:	08.
	DICOM SOPs, Unit Identification on n/w, Services and Data, DIMSE	
	Example: C-Echo, Storage, Query: Find, C-Find IOD, C-Find DIMSE, C-	
	Cancel, Modality Worklist, Basic DICOM Retrieval: C-Get, Advanced	
	DICOM Retrieval: C-Move, DICOM: Ping, Push and Pull	
6.	DICOM Associations	10
	Association Establishment, Transfer Syntax, Application Context,	
	DICOM Media: Files, Folders, and DICOMDIRs	
	DICOM File Format, DICOM File Services, Storing DICOM Data in PACS	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Books Recommended:**

Text Books:

- 1. Principles of Health Interoperability HL7 and SNOMED (Health Information Technology Standards), Springer Publication by Tim Benson
- 2. Digital Imaging and Communication in Medicine by Oleg S. Pianykh, Springer Publication CDATM Book, By Keith Boone, Springer Publication

## Reference Books:

1. Informatics in Medical Imaging, George C. Kagadis, Steve G. Langer CRC Press

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Teaching scheme			Credit assigned			
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMDLO 8042	Optional Course –IV: Robotics in Medicine (Abbreviated as RIM)	04			04	-	1	04

	Course Name	Examination Scheme										
Course		Theory										
Code		Intern	al Assess	ment	End tion (hrs)	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg.			work			/ Oral		
BMDLO 8042	Robotics in Medicine (RIM)	20	20	20	80	03					100	

Course Code	Course Name	Credits			
BMDLO8042	Robotics in Medicine	04			
Course Objectives	<ul> <li>To introduce to basics of Robotics, Kinematics, Inverse Kinematics, vision and motion planning.</li> <li>To introduce to various applications of Robots in Medicine.</li> </ul>				
Course Outcomes	<ul> <li>A Learner will be able to</li> <li>Design basic Robotics system and formulate Kinemati Kinematic motion planning solutions for various configurations.</li> <li>Design Robotic systems for Medical application.</li> </ul>				

Module	Contents	Hours
1.	Introduction	06
	Automation and Robots, Classification, Application, Specification, Notations	
2.	Direct Kinematics Dot and cross products, Coordinate frames, Rotations,	08
	Homogeneous coordinates Link coordination arm equation, (Five- axis robot,	
	Four-axis robot, Six-axis robot)	

3.	Inverse Kinematics General properties of solutions tool configuration Five	10
	axis robots, Three-Four axis, Six axis robot(Inverse Kinematics). Workspace	
	analysis and trajectory planning work envelope and examples, workspace	
	fixtures, Pick and place operations, Continuous path motion, Interpolated	
	motion, Straight-line motion.	
4.	Robot Vision Image representation, Template matching, Polyhedral objects, Shane analysis, Segmentation (Thresholding, region labeling, Shrink	10
	operators, Swell operators, Euler numbers, Perspective transformation,	
	Structured illumination, Camera calibration).	
5.	Task Planning Task level programming, Uncertainty, Configuration, Space,	08
	Gross motion, Planning, Grasp Planning, Fine-motion planning, Simulation	
	of planar motion, Source and Goal scenes, Task Planner simulation.	
6.	Applications in Biomedical Engineering Application in rehabilitation,	06
	Clinical and Surgery	

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Books Recommended:**

### *Text books:*

- 1. Fundamentals of Robotics-Analysis and control, Robert Schilling, Prentice Hall of India.
- 2. Robotics, Fu, Gonzales and Lee, McGraw Hill
- 3. Introduction to Robotics, J.J, Craig, Pearson Education

## Reference Books:

- 1. Robotics and AI, Staughard, Prentice Hall Of India.
- 2. Industrial Robotics Grover, Wiess, Nagel, Oderey, , McGraw Hill.
- 3. Robotics and Mechatronics. Walfram Stdder,
- 4. Introduction to Robotics, Niku, Pearson Education.
- 5. Robot Engineering, Klafter, Chmielewski, Negin, Prentice Hall Of India.
- 6. Robotics and Control, Mittal, Nagrath, Tata McGraw Hill publications.

## **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

## University of Mumbai, Biomedical Engineering, Rev 2016-17

Course Code	Course Name	Teaching scheme			Credit assigned			
	<b>Department Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMDLO 8043	Optional Course –IV: Nuclear Medicine (Abbreviated as NM)	04			04	1		04

	Course Name	Examination Scheme										
Course		Theory										
Code		Intern	al Assess	ment	End	Dura tion (hrs)	Term work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem							
BMDLO 8043	Nuclear Medicine (NM)	20	20	20	80	03					100	

Course Code	Course Name	Credits				
BMDLO8043	Nuclear Medicine	04				
Course Objectives	<ul> <li>To enable the students to understand the basic scien medicine, operating principles and quality control aspenuclear medicine equipment.</li> </ul>	cts of various				
	• To keep the students abreast with the technological developments in the field of nuclear medicine.					
<b>Course Outcomes</b>	Learners will be able to					
	• Understand essential physics of nuclear medicine s concepts of radioactivity, its measurement, interaction and radionuclide production.					
	• Understand concepts of radiopharmaceuticals and various radiation safety.	ous aspects of				
	• Apply the principles of physics to understand worki detectors and counting systems.	ng of various				
	• Study principle of operation of different scanning sys quality control function.	tem and their				
	• Understand various Emission Tomography Technique their Clinical Applications.	es along with				
	• Understand concept of radionuclide therapy and the	e function of				

11 .1	• .
radiotherapy	eaunment
radionicially	cquipinciit.

Module	Content	Hours
1.	Basics of Nuclear Physics: Radioactivity, Radioactive Decay Law,	10
	Radioactive Decay Processes, Decay scheme of Mo-99. Units of Radioactivity	
	Measurement, Successive Decay Equations. Statistics of Counting, Interaction	
	of Radiation with Matter	
	Production of Radionuclide:	
	Methods of radionuclide production: Nuclear Reactor, Medical Cyclotron &	
	Radionuclide Generators	
	Spectra of commonly used radio nuclides e.g Tc-99m, Cs-137.  Problems in radiation measurements.	
2.	Radiopharmaceuticals: Ideal Radiopharmaceutical, Methods of Radiolabeling	08
4.	Internal Radiation Dosimetry: Absorbed Dose Calculations to Target & Non-	Vo
	Target Tissues, MIRD Methodology	
	Radiation Safety:	
	Natural & Artificial Radiation Exposure, External & Internal Radiation Hazard,	
	Methods of Minimizing External Exposure, Methods of Preventing Internal	
	Exposure, Evaluation of External & Internal Hazard, Biological Effects of	
	Radiation, Radioactive Waste Management.	
3.	Detectors in Nuclear Medicine & Counting and Measuring System:	10
	Gas filled Detectors, Scintillation Detectors and Solid State Detectors,	
	Scintillation Counting System, Gamma Ray Spectrometry, Radionuclide Dose	
	Calibrator, Properties of Detectors.	
	In Vitro techniques(Brief Description):	
	Introduction, Single and Double Isotope method, Radioimmunoassay, RIA	
4	Counting System, Liquid scintillation Counting system, RIA Applications.	0.7
4.	In Vivo Techniques:	07
	General Principle, Uptake Monitoring System, Rectilinear Scanner, Gamma	
	Camera Fundamentals, Position Circuitry and working, Computer Interface, Performance Parameters, Quality Control Functions	
5.	Emission Tomography Techniques and Clinical Applications:	08
3.	Introduction, Principles and applications of SPECT, Principles and applications	VO
	of PET, System performance parameters and Quality Control Functions.	
	Introduction to Hybrid Modalities:	
	PET/CT, SPECT/CT	
	Clinical Applications	
	Clinical Applications of PET, SPECT and Hybrid Modalities in Cardiology,	
	Neurology and Oncology.	
6.	Radionuclide Therapy	05
	Choice of a Radionuclide in Therapeutic Nuclear Medicine	
	Treatment of Benign & Malignant Diseases	
	Palliative & Curative Procedures	
	Radiotherapy Equipment: Cobalt unit, Gamma knife	ļ

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

## **Books Recommended:**

## Text Books:

- 1. J. Harbert and A.F.G. Rocha, *Textbook of Nuclear medicine*, Second Edition, Lea& Febiger.
- 2. B.R. Bairi, Balvinder Singh, N.C. Rathod and P.V. Narurkar, *Handbook of Nuclear medicine Instruments*, Tata McGraw Hill.
- 3. Gopal B. Saha, Fundamentals of Nuclear Pharmacy, Springer Science+Business Media
- 4. Ramesh Chandra, *Introductory Physics of Nuclear Medicine*, Lea& Febiger.

## References Books:

- 1. William R. Hendee, *Medical Radiation Physics*, Year Book Medical Publishers
- 2. G. Hine, Instrumentation of Nuclear medicine, Academic Press
- 3. Glenn F. Knoll, *Radiation Detection & Measurement*, John Wiley & Sons.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO2021	Optional Course –II: Project Management	03			03			03	

		Examination Scheme											
Course	Course		Т										
Code	Name	Intern	al Assessi	ment	End	Dura	Term Pract. Oral Pract.	Pract.	Total				
Code	Ivanic	Test 1	Test 2	Avg .	sem	tion (hrs)	work	Tract.	Orai	/ Oral	Total		
ILO2021	Institute Level Optional Course – II Project Management	20	20	20	80	03					100		

Course Code	Course Name	Credits
ILO2021	Project Management	03
Course Objectives	<ul> <li>To familiarize the students with the use of a methodology/approach for each and every unique project u including utilizing project management concepts, tools and techr</li> <li>To appraise the students with the project management life cycle them knowledgeable about the various phases from project through closure.</li> </ul>	niques.
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Apply selection criteria and select an appropriate project from options.</li> <li>Write work break down structure for a project and develop a based on it.</li> <li>Identify opportunities and threats to the project and decide an addeal with them strategically.</li> <li>Use Earned value technique and determine &amp; predict status of the Capture lessons learned during project phases and document future reference</li> </ul>	a schedule pproach to e project.

Module	Detailed Contents	Hours
01	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).	05
02	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	06
03	<b>Project Planning and Scheduling:</b> Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart. Introduction to Project Management Information System (PMIS).	08
04	Planning Projects: Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan. Risk Management in projects: Risk management planning, Risk identification and risk register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	06
05	Executing Projects: Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects. Team management, communication and project meetings.  Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit.  Project Contracting Project procurement management, contracting and outsourcing,	08
06	<ul> <li>Project Leadership and Ethics: Introduction to project leadership, ethics in projects. Multicultural and virtual projects.</li> <li>Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration,</li> </ul>	06

Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.

#### **Assessment:**

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	<b>Institute Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO2022	Optional Course –II:	03			0.2			03	
ILO2022	Course –II:			03					
	Finance				03				
	Management								

		Examination Scheme										
Course	Course	Theory										
Code	Course Name	Intern	nal Assessment		End	Dura	Term	Pract.	Oral	Pract.	Total	
Code	Ivaille	Test 1	Test 2	Avg .	End sem	tion (hrs)	work	Tract.	Orai	/ Oral	Total	
ILO2022	Institute Level Optional Course – II Finance Management	20	20	20	80	03					100	

Course Code	Course Name	Credits						
ILO2022	Finance Management							
Course Objectives	<ul> <li>Overview of Indian financial system, instruments and market</li> <li>Basic concepts of value of money, returns and risks, corporation working capital and its management</li> <li>Knowledge about sources of finance, capital structure, divident</li> </ul>							
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand Indian finance system and corporate finance</li> <li>Take investment, finance as well as dividend decisions</li> </ul>							

Module	Detailed Contents							
	Overview of Indian Financial System: Characteristics, Components and							
01	Functions of Financial System. Financial Instruments: Meaning,	06						
	Characteristics and Classification of Basic Financial Instruments — Equity							

	Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills. <b>Financial Markets:</b> Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market. <b>Financial Institutions:</b> Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
02	Concepts of Returns and Risks: Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio.  Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding and Continuous Discounting.	06
03	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.  Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	09
04	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)  Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.	10

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Tea	ching sche	me	Credit assigned			
	<b>Institute Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Optional							
ILO2023	Course –II:							
	Entrepreneurship	03			03			03
	development and							
	Management							

		Examination Scheme										
Course	Course	Theory										
Code	Name	Intern	al Assessi	ment	E Dura		Term	Pract.	Oral	Pract.	Total	
Code	Ivaille	Test 1	Test 2	Avg	End sem	tion (hrs)	work	Tract.	Orai	/ Oral	Total	
ILO2023	Institute Level Optional Course – II Entrepreneur ship Development and Management	20	20	20	80	03					100	

Course Code	Course Name						
ILO2023	Enterpreneurship Development and Management	03					
Course Objectives	<ul> <li>To acquaint with entrepreneurship and management of business</li> <li>Understand Indian environment for entrepreneurship</li> <li>Idea of EDP, MSME</li> </ul>	3					
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand the concept of business plan and ownerships</li> <li>Interpret key regulations and legal aspects of entrepreneurship i</li> <li>Understand government policies for entrepreneurs</li> </ul>	n India					

Module	<b>Detailed Contents</b>									
01	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of	04								
	Entrepreneurship, History of Entrepreneurship Development, Role of									

	Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership  Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship						
02	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur  Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	09					
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises						
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	08					
05	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing						
06	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05					

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO2024	Optional Course –II: Human Resource Management	03			03			03	

		Examination Scheme											
Course	Course		T	heory									
Course Code	Name	Internal Assessment			Dura		Term	Pract.	Onel	Pract.	Total		
	Name	Test 1	Test 2	Avg .	End sem	tion (hrs)	work	TTACE.	Oral	/ Oral	Total		
ILO2024	Institute Level Optional Course – II Human Resource Management	20	20	20	80	03					100		

Course Code	Course Name	Credits					
ILO2024	Human Resource Management 0						
Course Objectives	<ul> <li>To introduce the students with basic concepts, techniques and prahuman resource management.</li> <li>To provide opportunity of learning Human resource Management processes, related with the functions, and challenges in the perspective.</li> <li>To familiarize the students about the latest developments, trends aspects of HRM.</li> <li>To acquaint the student with the importance of behavioral sepersonal, inter-group in an organizational setting.</li> <li>To prepare the students as future organizational change facilitate leaders and managers, using the knowledge and techniques of humanagement.</li> </ul>	ment (HRM) e emerging & different skills, Inter- ators, stable					
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Gain knowledge and understand the concepts about the differenthe human resource management.</li> </ul>	at aspects of					

- Understand and tackle the changes and challenges in today's diverse, dynamic organizational setting and culture.
- Utilize the behavioral skill sets learnt, in working with different people, teams & groups within the national and global environment.
- Apply the acquired techniques, knowledge and integrate it within the engineering/ non engineering working environment emerging as future engineers and managers.

Module	Detailed Contents	Hours
01	<b>Introduction to HR:</b> Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions. Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues.	05
02	Organizational Behavior (OB): Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues, Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness, Perception: Attitude and Value, Effect of perception on Individual Decision-making, Attitude and Behavior. Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor); Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. Case study	07
03	Organizational Structure & Design: Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership. Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.	06
04	Human resource Planning: Recruitment and Selection process, Job-enrichment, Empowerment - Job-Satisfaction, employee morale. Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning. Training & Development: Identification of Training Needs, Training	05

	Methods	
05	Emerging Trends in HR: Organizational development; Business Process Reengineering (BPR), BPR as a tool for organizational development, managing processes & transformation in HR. Organizational Change, Culture, Environment, Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.	06
06	HR & MIS: Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries  Strategic HRM  Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals  Labor Laws & Industrial Relations  Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	10

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

**End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- Stephen Robbins, Organizational Behavior, 16th Ed, 2013
   V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson **Publications**

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Institute Level	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO2025	Optional Course –II: Professional Ethics and Corporate Social Responsibility	03			03	-		03	

			Examination Scheme										
			Th	eory									
Course	Course Name	Interna	l Assessm	nent		Dura	Term			Dwast			
Code	Course wante		A	End	tion	work	Pract.	Oral	Pract. / Oral	Total			
		Test 1	Test 2	vg	sem	(hrs)	WOIK			/ Oran			
				•									
ILO2025	Institute Level Optional Course – II Professional ethics and Corporate Social Responsibility	20	20	20	80	03					100		

Course Code	Code Course Name						
ILO2025	Professional Ethics and Corporate Social Resonsibility (CSR)	03					
Course	To understand professional ethics in business						
Objectives	To recognized corporate social responsibility						
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand rights and duties of business</li> <li>Distinguish different aspects of corporate social responsibility</li> <li>Demonstrate professional ethics</li> <li>Understand legal aspects of corporate social responsibility</li> </ul>						

Module	Detailed Contents	Hours
01	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties of Business	04
02	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition; Oligopolistic Competition; Oligopolies and Public Policy  Professional Ethics and the Environment: Dimensions of Pollution and Resource Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	08
03	Professional Ethics of Consumer Protection: Markets and Consumer Protection; Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising Ethics; Consumer Privacy  Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of Discrimination; Reservation of Jobs.	06
04	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple bottom line, Human resources, Risk management, Supplier relations; Criticisms and concerns—Nature of business; Motives; Misdirection.  Trajectory of Corporate Social Responsibility in India	05
05	Corporate Social Responsibility: Articulation of Gandhian Trusteeship Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India, Corporate Social Responsibility and Public-Private Partnership (PPP) in India	08
06	Corporate Social Responsibility in Globalizing India: Corporate Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs, Government of India, Legal Aspects of Corporate Social Responsibility—Companies Act, 2013.	08

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

**End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.

Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- **4.** Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Course Code	Course Name	Tea	ching sche	me	Credit assigned			
	<b>Institute Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ILO2026	Optional Course –II: Research Methodology	03			03			03

Course Code	Course Name	Examination Scheme											
			T										
		Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg .	sem	tion (hrs)	work	Tract.	Orai	/ Oral	Total		
ILO2026	Institute Level Optional Course – II Research Methodology	20	20	20	80	03					100		

Course Code	Course Code Course Name							
ILO2026	ILO2026 Research Methodology							
Course Objectives	<ul> <li>To understand Research and Research Process</li> <li>To acquaint students with identifying problems for research an research strategies</li> <li>To familiarize students with the techniques of data collection, a data and interpretation</li> </ul>	•						
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Prepare a preliminary research design for projects in their Course matte areas</li> <li>Accurately collect, analyze and report data</li> <li>Present complex data or situations clearly</li> <li>Review and analyze research findings</li> </ul>							

Module	Detailed Contents	Hrs				
01	Introduction and Basic Research Concepts: Research – Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle. Research methods vs Methodology, Need of Research in Business and Social Sciences, Objectives of Research, Issues and Problems in Research, Characteristics of Research: Systematic, Valid, Verifiable, Empirical and Critical	10				
02	<b>Types of Research:</b> Basic Research, Applied Research, Descriptive Research, Analytical Research, Empirical Research, Qualitative and Quantitative Approaches	08				
03	Research Design and Sample Design: Research Design – Meaning, Types and Significance, Sample Design – Meaning and Significance Essentials of a good sampling Stages in Sample Design Sampling methods/techniques Sampling Errors	08				
04	Research Methodology: Meaning of Research Methodology, Stages in Scientific Research Process  a. Identification and Selection of Research Problem  b. Formulation of Research Problem  c. Review of Literature  d. Formulation of Hypothesis  e. Formulation of research Design  f. Sample Design  g. Data Collection  h. Data Analysis  i. Hypothesis testing and Interpretation of Data  j. Preparation of Research Report	08				
05	Formulating Research Problem: Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of data, Generalization and Interpretation of analysis					
06	Outcome of Research: Preparation of the report on conclusion reached,	04				

Validity Testing & Ethical Issues, Suggestions and Recommendation

### **Assessment:**

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	<b>Institute Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO2027	Optional Course –II:	03			03			03	
	IPR and								
	Patenting								

	Course Name	Examination Scheme											
Course		Theory											
Code		Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total		
Code		Test 1	Test 2	Avg .	End sem	tion (hrs)	work	Tract.	Orai	/ Oral	Total		
ILO2027	Institute Level Optional Course – II IPR and Patenting	20	20	20	80	03					100		

Course Code	Course Name	Credits
ILO2027	IPR and Patenting	03
Course Objectives	<ul> <li>To understand intellectual property rights protection system</li> <li>To promote the knowledge of Intellectual Property Laws of Incas International treaty procedures</li> <li>To get acquaintance with Patent search and patent filing proceduapplications</li> </ul>	
Course Outcomes	<ul> <li>Learner will be able to</li> <li>understand Intellectual Property assets</li> <li>assist individuals and organizations in capacity building</li> <li>work for development, promotion, protection, complia enforcement of Intellectual Property and Patenting</li> </ul>	nce, and

Module	Detailed Contents	Hours
01	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc.  Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development	05
02	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active IPR enforcement  Indian Scenario of IPR: Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc.	07
03	<b>Emerging Issues in IPR:</b> Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	06
04	<b>Basics of Patents:</b> Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	07
05	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
06	Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement  Patent databases: Important websites, Searching international databases	07

#### **Assessment:**

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

#### **REFERENCE BOOKS:**

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield,2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph&Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. PrabhuddhaGanguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar andmohdIqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. KompalBansal and PraishitBansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,

- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting,Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	<b>Institute Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO2028	Optional Course –II:								
11.02020	Course –II:	0.2			03			02	
	<b>Digital Business</b>	03						03	
	Management								

		Examination Scheme										
Course	Course		T	heory								
Code	Name	Internal Assessment			End	Dura Dura		Pract.	Oral	Pract.	Total	
Code	Name	Test 1	Test 2	Avg .	sem	tion (hrs)	work	i i act.	Oral	/ Oral	Total	
ILO2028	Institute Level Optional Course – II Digital Business Management	20	20	20	80	03					100	

Course Code	Course Name	Credits
ILO2028	Digital Business Management	03
Course Objectives	<ul> <li>To familiarize with digital business concept</li> <li>To acquaint with E-commerce</li> <li>To give insights into E-business and its strategies</li> </ul>	
Course Outcomes	<ul> <li>The learner will be able to</li> <li>Identify drivers of digital business</li> <li>Illustrate various approaches and techniques for E-business management</li> <li>Prepare E-business plan</li> </ul>	iness and

Module	Detailed content								
1	Introduction to Digital Business: Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy,  Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business,	09							

2	Overview of E-Commerce: E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC	06
3	<b>Digital Business Support services</b> : ERP as e –business backbone, knowledge Tope Apps, Information and referral system, <b>Application Development:</b> Building Digital business Applications and Infrastructure	06
4	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –business, Security Threats to e-business - Security Overview, Electronic Commerce Threats, Encryption, ryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06
5	<b>E-Business Strategy</b> -E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)	04
6	M Materializing e-business: From Idea to Realization-Business plan preparation Case Studies and presentations	08

## **Assessment:**

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks

- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

#### **REFERENCES:**

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI: 10.1787/9789264221796-en OECD Publishing

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	<b>Institute Level</b>	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ILO2029	Optional Course –II: Environmental Management	03			03			03	

		Examination Scheme										
			Theory									
Course	Course Name	Internal Assessment			Dura		T.,,,,,,			Pract.		
Code	Course Name	Test 1	Test 2	A vg	End sem	tion (hrs)	Term work	Pract.	Oral	/ Oral	Total	
ILO2029	Institute Level Optional Course – II Environmental Management	20	20	20	80	03					100	

Course Code	Course Name							
ILO2029	Environmental Management	03						
Course Objectives	<ul> <li>Understand and identify environmental issues relevant to global concerns</li> <li>Learn concepts of ecology</li> <li>Familiarise environment related legislations</li> </ul>	India and						
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand the concept of environmental management</li> <li>Understand ecosystem and interdependence, food chain etc.</li> <li>Understand and interpret environment related legislations</li> </ul>							

Module	Detailed Contents	Hours
01	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities.	10
	Environmental issues relevant to India, Sustainable Development, The Energy	

	scenario.	
02	Global Environmental concerns: Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical hazards, etc.	06
03	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
04	Scope of Environment Management, Role & functions of Government as a planning and regulating agency.  Environment Quality Management and Corporate Environmental Responsibility	10
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05
06	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

#### **Assessment:**

**Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

#### **REFERENCES:**

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Course Code	Course Name	Tea	nching schei	ne		Credit	assigned	
	Project Stage - II	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BML803			12			06		06

	Course Name	Examination Scheme									
Course Code		Theory				Term			Pract.		
		Internal Assessment			End	work	Pract.	Oral	/ Oral	Total	
		Test 1	Test 2	Avg.	sem	WUIK			/ Orai		
BML 803	Project Stage - II					50			100	150	

Course Code	Course Name	Credits
BML803	Project Stage-II	06
Course objective	<ul> <li>Implement the concept of Project Stage-I</li> <li>Use advanced tools for Implementation</li> <li>Rectify/ Debug the design and Submit project report.</li> </ul>	
Course Outcome	<ul> <li>Learner will be able to</li> <li>Debug/ Rectify the design incurred during implementation</li> <li>Write Analysis, Results, Design in prescribed format</li> <li>Learn the behavioral science by working in a group</li> </ul>	

## **Project Guidelines:**

- 1. The students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I and should attempt solution to the problem.
- 2. Learner is allotted 12 hrs per week for the project work
- 3. Report should be prepared as per the guidelines issued by the University of Mumbai
- 4. Learners should be motivated to publish a paper based on the work in Conferences/students competitions
- 5. Project Groups: Learners can form groups not more than 4 (Four)

## **Faculty Load:**

- 1. In semester VIII 1 (One) periods of 1 hour each per week per project group
- 2. Each faculty is permitted to take (guide) maximum 4 (Four) project groups.

University of Mumbai, Biomedical Engineering, Rev 2016-17

#### **Assessment:**

#### Term Work:

The Term Work should be examined by approved internal faculty appointed by the head of the institute based on following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

## **Guidelines for Assessment of Project Stage- II**

- 1. Project II should be assessed through a presentation jointly by Internal and External Examiners approved by the University of Mumbai
- 2. Project stage II should be assessed based on following points
  - Quality of problem selected
  - Clarity of Problem definition and Feasibility of problem solution
  - Relevance to the specialization / Industrial trends
  - Clarity of objective and scope
  - Quality of work attempted
  - Validation of results
  - Compilation of Project Report
  - Quality of Written and Oral Presentation

Course Code	Course Name	Tea	nching schei	me	Credit assigned				
	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML801	Microsystems (BM)		02			01		01	

Course Code	Course Name	Examination Scheme									
		Theory				Term			D4		
		Internal Assessment			End	work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	WOIK			/ Grai		
	Biomedical										
BML801	Microsystems					25		25		50	
	( <b>BM</b> )										

Course Code	Course Name	Credits					
BML801	Biomedical Microsystems	01					
Course Objectives	To understand various fabrication techniques for MEMS devices and applying them for fabricating biomedical devices.						
Course Outcomes	Learner will be able to						
	<ul> <li>Select appropriate material, fabrication technique and technique for given application</li> <li>Simulate given microsystems to evaluate its performa</li> </ul>						

Syllabus: Same as that of BMC801 Biomedical Microsystems(BM).

# **List of Experiments: (Any Three)**

- 1. Simulation of scaling law
- 2. Crystal structure
- 3. Biosensors
- 4. Simulation of pressure sensors
- 5. Simulation of cantilever
- 6. Simulation of Microchannel
- 7. Simulation of Microvalve

#### 8. Simulation of Micropump

## **List of Tutorials (Any Four)**

- 1. Scaling Laws
- 2. Materials for MEMS
- 3. MEMS deposition techniques
- 4. MEMS etching techniques
- 5. Lithography
- 6. Surface characterization techniques
- 7. Micromachining
- 8. Softlithography
- 9. Micro Total Analysis systems
- 10. Drug delivery devices
- 11. MEMS packaging

Any other experiment based on syllabus which will help learner to understand topic/concept.

Presentation based on the topics covered in the syllabus.

### **Assessment:**

#### Term Work:

Term work shall consist of minimum 3 experiments and 4 Tutorials.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Tutorials) : 10 Marks
Presentation : 10 Marks
Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

Text Books:

- 1. "MEMS & MICROSYSTEMS Design and Manufacture", Tai-Ran Hsu, TATA Mcgraw-HILL
- 2. "Fundamentals of Microfabrication" Marc Madou, CRC Press.

#### Reference Books:

- 1. "Fundamentals of BioMEMS and Medical Microdevices", Steven S. Saliterman, (SPIE Press Monograph Vol. PM153 by Wiley Interscience
- 2. "Microsystem Technology", W. Menz, J. Mohr, O. Paul, WILEY-VCH, ISBN 3-527-29634-4
- 3. "Electro Mechanical System Design", James J. Allen, Taylor & Francis Group, LLC, ISBN-0-8247-5824-2, 2005
- 4. "MICROSYSTEM DESIGN", Stephen D. Senturia, KLUWER ACADEMIC PUBLISHERS,

- eBook ISBN: 0-306-47601-0
- 5. "Introduction to Microfabrication", Sami FranssilaJohn Wiley & Sons Ltd, ISBN 0-470-85106-6
- 6. "Microelectromechanical Systems", Nicolae Lobontiu, Ephrahim Garcia, KLUWER ACADEMIC PUBLISHERS, eBook ISBN: 0-387-23037-8
- 7. "BIOMEDICAL NANOTECHNOLOGY", Neelina H. MalschCRC PRESS, Taylor and Francis Group, ISBN 10: 0-8247-2579-4

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
	Hospital	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML802	Management (HM)		02			01		01	

Course Code	Course Name	Examination Scheme										
		Theory				Term			Dwoot			
		Internal Assessment			End	work	Pract.	Oral	Pract. / Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK			/ Oran			
BML802	Hospital Management (HM)					25		25		50		

Course Code	Course Name	Credits
BML802	Hospital Management	01
Course Objectives	<ul> <li>To understand the basic principles used for design departments in the hospital.</li> <li>To understand the role of Biomedical Engineer in hos develop skills enabling to serve Hospitals.</li> <li>Apply modern engineering and management princip high quality of hospital care tin the community.</li> </ul>	spital and basic
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Understand and apply finance management comprocesses and strategies needed in specific hospital se</li> <li>Understand the management structure and function Communicate effectively and develop their leader building abilities.</li> <li>Design the layout of clinical services and supportive</li> </ul>	ns in hospital.

the hospital.
Understand the roles and responsibilities of Biomedical Engineer in hospital.
Understand the functions of other Engineering services and axillary services
Understand and apply materials management and the purchase procedure in industry

Syllabus: Same as that of BMC802 Hospital Management (HM).

### **List of Experiments and Assignments: (Any Four Experiments and Any Four Assignments)**

- 1. Design of Registration form of hospital.
- 2. Prepare budget using EXCEL sheet for purchase of hospital equipment.
- 3. Preparation of Comparative Statement of Equipment for purchase (Any Two)
- 4. Negotiations of the equipment in the comparative statement.
- 5. Design the layout of Out Patient Department in hospital.
- 6. Design the layout of In Patient Department in hospital.
- 7. Design the layout of Surgical Operation Theatre Complex in hospital.
- 8. Design the layout of Radiology Department in hospital.
- 9. Design the layout of Pathology Laboratory and Blood Bank Department in hospital.
- 10. Design the layout of Physiotherapy Department in hospital.
- 11. Design the layout of Central Sterile Supply Department in hospital.

Any other experiment based on syllabus which will help learner to understand topic/concept.

Group Presentation based on the assigned topic by visiting a hospital.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 4 experiments, 4 assignments and presentation.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks
Laboratory work (Assignments) : 05 Marks
Presentations : 05 Marks
Attendance : 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

### **Books Recommended:**

#### Text Books:

- 1. Hospital Management by Dr. Pradyna Pai
- 2. Hospital Planning, Designing and Management: Kunders G D, Gopinath, A katakam (Private Pub Bangalore)

# Reference Books:

- 1. Computers in Medicine: R. D. Lele (TMH Pub)
- 2. Hospital Care and Hospital Management AICTE Journal Vol. 1,2,3 by Dr. Kalanidhi. (AICTE Pub Bangalore
- 3. Careers in Biomedical: Shantanu Thatte.

Course Code	Course Name	Tea	aching schei	ne	Credit assigned				
	Ugalthaana	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLL 8041	Healthcare Informatics (HCI)		02	1		01	1	01	

Course Code	Course Name	Examination Scheme										
		Theory				Term			Dwaat			
		Internal Assessment			End	work	Pract.	Oral	Pract. / Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK			, Orai			
DMDLI	Healthcare											
8041	Informatics					25		25		50		
	(HCI)											

Course Code	Course Name	Credits
BMDLL8041	Healthcare Informatics	01
Course Objectives	<ul> <li>To understand the healthcare interoperability semantic</li> <li>To understand the standards of healthcare interoperability for Medical Images and Medical Messages</li> </ul>	•
Course Outcomes	<ul> <li>Learner will be able to</li> <li>Fabricate HL7 Messages</li> <li>Edit and Compare DICOM file</li> </ul>	

Syllabus: Same as that of BMDLO8041 Healthcare Informatics (HCI).

**List of Experiments: (Any Seven)** 

1. To find term/ Concept and ID or Vocabulary codes

University of Mumbai, Biomedical Engineering, Rev 2016-17

- 2. Identifying and Chapters of Health Level 7 for trigger Event and message types and message
- 3. Structure should be sent to cover each requirement
- 4. Reading and editing segment
- 5. Create Health Level 7 Message
- 6. Create Patient Information Database from Health Level 7 Messages
- 7. To Study DICOM Validation Tool (DVTK)
- 8. Edit DICOM File using hex-Editor\
- 9. Creating Database of a patient
- 10.Comparing DICOM file

Any other experiment based on syllabus which will help learner to understand topic/concept.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

## **Books Recommended:**

Text Books:

- 1. Principles of Health Interoperability HL7 and SNOMED (Health Information Technology Standards), Springer Publication by Tim Benson
- 2. Digital Imaging and Communication in Medicine by Oleg S. Pianykh, Springer Publication CDATM Book, By Keith Boone, Springer Publication

## Reference Books:

1. Informatics in Medical Imaging, George C. Kagadis, Steve G. Langer CRC Press

Course Code	Course Name	Tea	nching schei	ne	Credit assigned				
	D 1 4: :	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMDLL 8042	Robotics in Medicine (RIM)		02			01		01	

	Course Name		Examination Scheme									
Course Code		Theory				Term	Pract.	Oral	Pract. / Oral	Total		
		Internal Assessment End				work						
		Test 1	Test 2	Avg.	sem	WOIK			/ Oran			
BMDLL	Robotics in											
8042	Medicine					25		25		50		
0072	(RIM)											

Course Code	Course Name	Credits
BMDLL8042	Robotics in Medicine	01
Course Objectives	<ul> <li>To introduce to basics of Robotics, Kinematics, Invervision and motion planning.</li> <li>To introduce to various applications of Robots in Medical</li> </ul>	ŕ
Course Outcomes	<ul> <li>A Learner will be able to</li> <li>Design basic Robotics system and formulate Kine Kinematic motion planning solutions for var configurations.</li> <li>Design Robotic systems for Medical application.</li> </ul>	

Syllabus: Same as that of BMDLO8042 Robotics in Medicine (RIM).

# **List of Tutorials: (Any Seven)**

- 1. Automation and Robots Classification
- 2. Specification, Notations
- 3. Direct Kinematics Dot and cross products
- 4. Five- axis robot, Four-axis robot, Six-axis robot(Direct Kinematics)
- 5. Five axis robots, Three-Four axis, Six axis robot(Inverse Kinematics)
- 6. Robot Vision Image representation
- 7. Segmentation
- 8. Applications in Biomedical Engineering , Application in rehabilitation, Clinical and Surgery

University of Mumbai, Biomedical Engineering, Rev 2016-17

### 9. Task Planning, Task level programming

Any other experiment based on syllabus which will help learner to understand topic/concept.

Group Presentation on the latest technology in hospitals based on the topics covered in the syllabus. Learners are supposed carryout thorough literature survey, collect data and prepare their presentation.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

#### *Text books:*

- 1. Fundamentals of Robotics-Analysis and control, Robert Schilling, Prentice Hall of India.
- 2. Robotics, Fu, Gonzales and Lee, McGraw Hill
- 3. Introduction to Robotics, J.J, Craig, Pearson Education

## Reference Books:

- 1. Robotics and AI, Staughard, Prentice Hall Of India.
- 2. Industrial Robotics Grover, Wiess, Nagel, Oderey, , McGraw Hill.
- 3. Robotics and Mechatronics. Walfram Stdder,
- 4. Introduction to Robotics, Niku, Pearson Education.
- 5. Robot Engineering, Klafter, Chmielewski, Negin, Prentice Hall Of India.
- 6. Robotics and Control, Mittal, Nagrath, Tata McGraw Hill publications.

Course Code	Course Name	Tea	ching schei	ne		Credit	assigned	
BMDLL	Nuclear	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total

8043	Medicine (NM)	 02	 	01	 01	
						1

Course Code		Examination Scheme										
	Course Name		The	ory		Term		Oral	Pract.			
	Course Hame	Interr	al Asses	sment	End	work	Pract.		/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WOIK						
BMDLL	Nuclear											
8043	Medicine					25		25		50		
0043	(NM)											

	Course Name	Credits
BMDLL8043	Nuclear Medicine	01
Course Objectives  •	To enable the students to understand the basic scie medicine, operating principles and quality control asp nuclear medicine equipment.  To keep the students abreast with the technological dethe field of nuclear medicine.	pects of various
	<ul> <li>Learners will be able to</li> <li>Understand essential physics of nuclear medicine concepts of radioactivity, its measurement, interaction and radionuclide production.</li> <li>Understand concepts of radiopharmaceuticals and variadiation safety.</li> <li>Apply the principles of physics to understand work detectors and counting systems.</li> <li>Study principle of operation of different scanning syquality control function.</li> <li>Understand various Emission Tomography Technique their Clinical Applications.</li> <li>Understand concept of radionuclide therapy and the concept of radionuclide therapy and the concept of radionuclide therapy.</li> </ul>	on with matter rious aspects of king of various extem and their ues along with

Syllabus: Same as that of BMDLL8043 Nuclear Medicine (NM).

# List of Experiments and Tutorials: (Any Seven)

1. Interaction of Radiations with Matter

University of Mumbai, Biomedical Engineering, Rev 2016-17

- 2. Classification of Detectors
- 3. Gas Filled Detectors
- 4. Scintillation and Solid State Detectors
- 5. Gamma Camera
- 6. Liquid Scintillation Technique
- 7. Tracers in Uptake Studies
- 8. Uptake Studies
- 9. Radiation Safety

Industry / Hospital Visits may be conducted.

Any other experiment and tutorials based on syllabus which will help learner to understand topic/concept.

Group Presentation on the latest technology in hospitals based on the topics covered in the syllabus.

#### **Assessment:**

#### Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Tutorials) : 10 Marks
Presentation : 10 Marks
Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

#### **Books Recommended:**

*Text Books:* 

- 1. J. Harbert and A.F.G. Rocha, *Textbook of Nuclear medicine*, Second Edition, Lea& Febiger.
- 2. B.R. Bairi, Balvinder Singh, N.C. Rathod and P.V. Narurkar, *Handbook of Nuclear medicine Instruments*, Tata McGraw Hill.
- 3. Gopal B. Saha, Fundamentals of Nuclear Pharmacy, Springer Science+Business Media
- 4. Ramesh Chandra, Introductory Physics of Nuclear Medicine, Lea& Febiger.

#### References Books:

- 1. William R. Hendee, *Medical Radiation Physics*, Year Book Medical Publishers
- 2. G. Hine, Instrumentation of Nuclear medicine, Academic Press
- 3. Glenn F. Knoll, *Radiation Detection & Measurement*, John Wiley & Sons.



# THADOMAL SHAHANI ENGINEERING COLLEGE

# Biotechnology Engineering

Sr. No.	Subject Code	Subject Name	Count
1	BTL501	Bioinformatics Lab	1
2	BTL502	Genetic Engineering Lab	1
3	BTL503	Lab I	1
4	BTL601	Lab-II	1
5	BTL602	Lab-III	1
6	BTL701	Lab - IV	1
7	BTL702	Lab - V	1
8	BTL801	Lab - VI	1
9	BTL802	Lab - VII	1
		Total	9

# **UNIVERSITY OF MUMBAI**



Revised syllabus (Rev- 2016) from Academic Year 2016 -17

# **Biotechnology**

Second Year with Effect from AY 2017-18
Third Year with Effect from AY 2018-19
Final Year with Effect from AY 2019-20

Under

# FACULTY OF TECHNOLOGY

As per **Choice Based Credit and Grading System**With effect from the AY 2016–17

# From Coordinator's Desk

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) give freedom to affiliated Institutes to add few (PEO's) course objectives course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. Choice Based Credit and grading based system is implemented for Second Year of B.E. in Biotechnology Engineering from the academic year 2017-2018. This system will be carried forward for Third Year of B.E. in Biotechnology Engineering in the academic year 2018-2019 and for Fourth Year B.E. in the year 2019-2020 respectively.

Dr. S. K. Ukarande
Co-ordinator,
Faculty of Technology,
Member - Academic Council
University of Mumbai, Mumbai

## Preamble to the Revision of Syllabus in Biotechnology Engineering

The onset of nineties brought about some paradigm shifts. One was in the sphere of market economics. Suddenly the Indian manufacturing sector started jostling for a place with international competition in the arena. The presence of International products at competitive rates and quality forced some small and medium scale units to close their operations. The larger industry players realized the importance of R&D and accordingly set up separate cells to optimize production and improve quality. The second major impact was in the sphere of knowledge. With the advent of World Wide Web in the early nineties and its subsequent growth, the latest research trends have become accessible from drawing rooms across the globe. This acted as a positive feedback mechanism in increasing the pace of research in all fields including Biotechnology. This was the motivation for an in depth analysis of what is actually required for today's technology. It is also important to take advantage of the freely available software to enhance the quality and quantity of material that can be covered in the class room.

With this scenario as the backdrop, the first meeting was conducted by Board of Studies in Biotechnology at Thadomal Shahani College of Engineering Bandra on 3rd February 2017. It was attended by the various heads of departments of Biotechnology engineering as well as experts from industry. The academic scheme and exam scheme of the program was discussed along with the program objectives and outcomes. The core structure of the syllabus was formulated keeping in mind **choice based credit and grading system** curriculum to be introduced in this revised syllabus for B.E. (Biotechnology) for all semesters. A second meeting was held in Datta Meghe College of Engineering Airoli on 20th February 2017 and detailed syllabus of Semesters III and IV was finalised. Subsequently another meeting was held in Thadomal Shahani Engineering College Bandra on 11th April 2017 to finalise the detail syllabus of subjects pertaining to semester V, VI, VII and VIII.

Dr. Kalpana S. Deshmukh, Chairman, Board of Studies in Chemical Engineering (Adhoc), University of Mumbai, Mumbai.

## **General Guidelines**

#### **Tutorials**

- The number of tutorial batches can be decided based on facilities available in the institution.
- Tutorials can be creative assignments in the form of models, charts, projects, etc.

#### **Term Work**

- Term work will be an evaluation of the tutorial/practical done over the entire semester.
- It is suggested that each tutorial/practical be graded immediately and an average be taken at the end.
- A minimum of eight tutorials/ten practical will form the basis for final evaluation.
- The total 25 marks for term work (except project and seminar) will be awarded as follows:

Tutorial / Practical Journal – 20 marks

Overall Attendance – 05

Further, while calculating marks for attendance, the following guidelines shall be adhered to:

75% to 80%. - 03 marks

81% to 90% - 04 marks

91% onwards – 05 marks

## **Theory Examination**

- In general all theory examinations will be of 3 hours duration.
- Question paper will comprise of total six questions, each of 20 Marks.
- Only four questions need to be solved.
- Question one will be compulsory and based on maximum part of the syllabus.

#### Note:

In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus as far as possible.

#### **Practical Examination:**

- Duration for practical examination would be the same as assigned to the respective Lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

# **Project and Seminar Guidelines**

- Project Groups: Students can form groups with minimum 2 (Two) and not more than 3 (Three)
- The load for projects may be calculated proportional to the number of groups, not exceeding two hours per week.
- The load for projects may be calculated as:

Sem VII: ½ hr for teacher per group.

Sem VIII: 1 hr for teacher per group.

- Each teacher should have ideally a maximum of three groups and only in exceptional cases four groups can be allotted to the faculty.
- Seminar topics will be the consensus of the project guide and the students. Each student will work on a unique topic.
- The load for seminar will be calculated as one hour per week irrespective of the number of students
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, eight hours each were allotted in Project A, B and three hours for Seminar to the students.

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) S.E. Semester III (w.e.f 2017-2018)

Course	Course Name	Т	Ceaching Schemo (Contact Hours		Credits Assigned					
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
BTC301	Applied Mathematics-III	3	-	1	3	-	1	4		
<b>BTC302</b>	Microbiology	4	-	-	4	-	-	4		
<b>BTC303</b>	Cell Biology	3	-	1	3	-	1	4		
<b>BTC304</b>	Biochemistry	4	-	-	4	-	-	4		
BTC305	Unit Operations-I	3	-	-	3	-	-	3		
BTC306	<b>Process Calculations</b>	3	-	1	3	-	1	4		
BTL301	Microbiology Lab	-	3	-		1.5	-	1.5		
BTL302	Biochemistry Lab	-	3	-		1.5	-	1.5		
BTL303	Unit Operations-I Lab	-	2	-	-	1	-	1		
	Total	20	8	3	20	4	3	27		

					Exam	ination Sch	eme			
				Theor	y		Term Work	Pract/ Oral	Oral	Total
Course code	Course Name	Internal Assessment			End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC301	Applied Mathematics-III	20	20	20	80	3	25	-	-	125
BTC302	Microbiology	20	20	20	80	3	-		-	100
BTC303	Cell Biology	20	20	20	80	3	25	-	-	125
BTC304	Biochemistry	20	20	20	80	3	-		-	100
BTC305	Unit Operations-I	20	20	20	80	3		-	-	100
BTC306	<b>Process Calculations</b>	20	20	20	80	3	25	-	-	125
BTL301	Microbiology Lab							25		25
BTL302	Biochemistry Lab							25		25
BTL303	Unit Operations-I Lab							•	25	25
	Total			120	480	-	75	50	25	750

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) S.E. Semester IV (w.e.f 2017-2018)

Course	Course Name		aching Sch Contact Ho		Credits Assigned					
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
BTC401	Applied Mathematics-IV	3	-	1	3	-	1	4		
BTC402	Molecular Genetics	3	-	1	3		1	4		
BTC403	Fermentation Technology	4		-	4		-	4		
BTC404	Analytical Methods in Biotechnology	4		•	4	-	-	4		
BTC405	Immunology and Immunotechnology	3	-	1	3	-	1	4		
<b>BTC406</b>	Unit Operations -II	3		-	3		-	3		
BTL401	Fermentation Technology Lab	-	3	-		1.5	-	1.5		
BTL402	Analytical Methods in Biotechnology Lab	-	3	-		1.5	-	1.5		
BTL403	Unit Operations –II Lab	-	2	-		1	-	1		
	Total	20	8	3	20	4	3	27		

					Exam	ination Schei	me			
				Theo	ry		Term Work	Pract/ Oral	Oral	Total
Course code	Course Name		Intern Assessr		End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC401	Applied Mathematics-IV	20	20	20	80	3	25	-	-	125
BTC402	Molecular Genetics	20	20	20	80	3	25	-	-	125
BTC403	Fermentation Technology	20	20	20	80	3	-		-	100
BTC404	Analytical Methods in Biotechnology	20	20	20	80	3	-	-	-	100
BTC405	Immunology and Immunotechnology	20	20	20	80	3	25	-	-	125
<b>BTC406</b>	Unit Operations -II	20	20	20	80	3	-	-	-	100
BTL401	Fermentation Technology Lab		1	•	•	3	-	25		25
BTL402	Analytical Methods in Biotechnology Lab	-	•	•	-	3	-	25	-	25
BTL403	Unit Operations –II Lab	-		-	-	-	-	-	25	25
	Total			120	480	-	75	50	25	750

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) T.E. Semester V (w.e.f 2018-2019)

Course	Course Name		aching Sch Contact Ho		Cro	gned		
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC501	Bioinformatics	4	-	-	4	-	-	4
BTC502	Genetic Engineering	4	-	-	4	-	-	4
BTC503	Thermodynamics and Biochemical Engineering	3	-	1	3	-	1	4
BTC504	Bioreactor Analysis and Technology	3	-	1	3	-	1	4
BTC505	<b>Business Communication</b> and Ethics	2	-	2	-	-	2	2
BTE501X	Elective I	3	-	1	3	-	1	4
BTL501	Bioinformatics Lab	-	2	-	-	1	-	1
BTL502	<b>Genetic Engineering Lab</b>		3			1.5		1.5
BTL503	Lab I		3			1.5	-	1.5
	Total	17	12	3	17	6	3	26

					Examir	nation Sche	eme			
				Theo	ry		Term Work	Pract/ Oral	Oral	Total
Course	Course Name	Internal Assessment			End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC501	Bioinformatics	20	20	20	80	3	-		-	100
BTC502	Genetic Engineering	20	20	20	80	3			-	100
BTC503	Thermodynamics and Biochemical Engineering	20	20	20	80	3	25	-	-	125
BTC504	Bioreactor Analysis and Technology	20	20	20	80	3	25	_	-	125
RTC505	Business Communication and Ethics	-	-		-	-	50	-		50
BTE501X	Department Elective I	20	20	20	80	3	25	-	-	125
BTL501	Bioinformatics Lab					2		25		25
BTL502	Genetic Engineering Lab					3		25		25
BTL503	Lab I	-	-	-	-	3		25	-	25
	Total			100	400	-	125	75	-	700

Department Elective I (Sem V)								
Engineering Stream	Advanced Science Stream	Technology Stream						
1. Biosensors and Diagnosis (BTE5011)	1.Biophysics (BTE5012) 2.Biostatistics (BTE5013)	1. Pharmaceutical Technology (BTE5014)						

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) T.E. Semester VI (w.e.f 2018-2019)

Course code	Course Name		Teaching Scho		Cı	ned		
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC601	Food Technology	3	-	1	3	-	1	4
BTC602	Cell & Tissue Culture	4	-	_	4	-	-	4
BTC603	Enzyme Engineering	4	-		4		-	4
BTC604	IPR, Bioethics and Bio safety	3	-	1	3	-	1	4
BTC605	Process Control & Instrumentation	3	-	1	3	-	1	4
BTE602X	Elective-II	3	-	1	3	-	1	4
BTL601	Lab-II	-	3	-	-	1.5	-	1.5
BTL602	Lab-III	-	3	-	-	1.5	-	1.5
	Total	20	6	4	20	3	4	27

					Exa	mination S	cheme			
				Theo	ry		Term Work	Pract/ Oral	Oral	Total
Course code	Course Name		Inter Assess		End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC601	Food Technology	20	20	20	80	3	25	-	-	125
	Cell & Tissue									
<b>BTC602</b>	Culture	20	20	20	80	3	-	-	-	100
BTC603	<b>Enzyme Engineering</b>	20	20	20	80	3	-	-	-	100
	IPR, Bioethics and									
BTC604	Bio safety	20	20	20	80	3	25	-	-	125
	<b>Process Control &amp;</b>									
BTC605	Instrumentation	20	20	20	80	3	25	-	-	125
BTE602X	Elective-II	20	20	20	80	3	25	-	-	125
BTL601	Lab-II	-	-	-	-	3	-	25		25
BTL602	Lab-III	•	-	-	-	3	-	25	-	25
	Total			120	480	-	100	50		750

Department Elective II (Sem VI)								
Engineering Stream Advanced Science Stream Technology Stream								
1. Computational Fluid Dynamics	1. Protein Engineering	1. Green technology						
(BTE6021)	(BTE6022)	(BTE6024)						
	2. Cancer Biology(BTE6023)							

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) B.E. Semester VII (w.e.f 2019-2020)

Course	Course Name		eaching Scho		Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC701	Bioseperation & Downstream	4	-	1	4	-	1	5
	Processing Technology-I							
BTC702	Bioprocess Modelling and							
	Simulation	4	•	1	4	-	1	5
BTC703	Agriculture Biotechnology	3	-	1	3	-	1	4
BTE703X	Department Elective III	3		1	3		1	4
ILO701X	Institute Level optional							
	Subject I	3	•	-	3	-	-	3
BTP701	Project A	-	•	6	-	•	3	3
BTL701	Lab - IV	-	3	-	-	1.5	•	1.5
BTL702	Lab - V	-	3	-	-	1.5	•	1.5
	Total	17	6	10	17	3	7	27

					Exan	nination Sc	heme			
				The	ory		Term Work	Pract/ Oral	Oral	Total
Course code	Course Name	Internal Assessment			End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC701	Bioseperation & Downstream									
	Processing Technology-I	20	20	20	80	3	25	-	-	125
BTC702	Bioprocess Modelling and									
	Simulation	20	20	20	80	3	25	-	-	125
BTC703	Agriculture Biotechnology	20	20	20	80	3	25	-	-	125
BTE703X	Department Elective III	20	20	20	80	3	25	-	-	125
ILO701X	Institute Level optional Subject I	20	20	20	80	3		-	-	100
BTP701	Project A	-	-	-	-	-	100		50	150
BTL701	Lab - IV	-	-	-	-	-	-	25	-	25
BTL702	Lab - V	-	-	-	-	-	-	25	-	25
	Total			100	400	-	200	50	50	800

	Department Elective III (Sem VII)								
Engineering Stream	Advanced Science Stream	Technology Stream							
1. Stem Cell & Tissue Engineering	1. Operation research in Biotechnology	1. Nanotechnology							
(BTE7031)	(BTE7032)	(BTE7034)							
	2. Project Management (BTE7033)								

Ins	titute Level Optional Subject I (Sem VII	I)
1. Product Lifecycle Management	4. Design of Experiments (ILO7014)	7. Disaster Management and
(ILO7011)		<b>Mitigation Measures (ILO7017)</b>
2. Reliability Engineering	5. Operation Research (ILO7015)	8. Energy Audit and
(ILO7012)		Management (ILO7018)
3. Management Information	6. Cyber Security and Laws	9. Development Engineering
System (ILO7013)	(ILO7016)	(ILO7019)

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) B.E. Semester VIII (w.e.f 2019-2020)

Course code	Course Name		eaching Sch ontact Ho		Cr			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC801	Environmental Biotechnology	4	-	•	4	ı	-	4
	Bioseperation & Downstream							
BTC802	Processing technology-II	4	-	-	4	-	-	4
	Bioprocess Plant & Equipment							
BTC803	design	3	-	1	3	-	1	4
BTE804X	Department Elective IV	3	-	1	3		1	4
ILO802X	Institute Level optional Subject II	3	-	-	3	-	-	3
BTP801	Project B	-	-	8	-	-	6	6
BTL801	Lab - VI	-	3	-	•	1.5	-	1.5
BTL802	Lab - VII	-	3	-	-	1.5	-	1.5
	Total	17	6	10	17	3	8	28

	Course Name				Exan	ination Sc	heme			
C				The	ory		Term Work		Oral	Total
Course code			Internal Assessment		End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC801	Environmental Biotechnology	20	20	20	80	3	•	-	-	100
BTC802	Bioseperation& Downstream Processing technology-II	20	20	20	80	3		-	-	100
BTC803	Bioprocess Plant & Equipment design	20	20	20	80	3	25	-	-	125
BTE804X	Department Elective IV	20	20	20	80	3	25	-		125
ILO802X	Institute Level optional Subject II	20	20	20	80	3	-	-	_	100
BTP801	Project B	-	-	-	-	-	100	-	50	150
BTL801	Lab - VI	-	-	-	-	3	-	25	-	25
BTL802	Lab - VII	-	-	-	-	3	-	25	-	25
	Total			100	400	-	150	50	50	750

Department Elective IV (Sem VIII)									
Engineering Stream Advanced Science Stream Technology Stream									
1. Non-conventional Sources of Energy	1.	Total	Quality	1. Advanced	Bioinformatics				
(BTE8041)		(BTE80	42)	(BTE8044)					
	2. Entrepreneurship (BTE8043)								

Institute Level Optional Subject II (Sem VIII)						
1. Project Management (ILO8021)	4. Human Resource	7. IPR and Patenting				
	Management (ILO8024)	(ILO8027)				
2. Finance Management (ILO8022)	5. Professional Ethics and CSR	8. Digital Business				
	(ILO8025)	Management (ILO8028)				
3. Entrepreneurship Development and	6. Research Methodology	9. Environmental				
Management (ILO8023)	(ILO8026)	Management (ILO8029)				

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) S.E. Semester III (w.e.f 2017-2018)

Course	Course Name		eaching Sche Contact Hou		Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC301	Applied Mathematics- III	3	-	1	3	-	1	4
BTC302	Microbiology I	4	-	-	4	-	-	4
BTC303	Cell Biology	3	-	1	3	-	1	4
BTC304	Biochemistry	4	-	-	4	-	-	4
BTC305	Unit Operations-I	3	-	-	3	-	-	3
BTC306	<b>Process Calculations</b>	3	-	1	3	-	1	4
BTL301	Microbiology Lab	-	3	-	-	1.5	-	1.5
BTL302	Biochemistry Lab	-	3	-	-	1.5	-	1.5
BTL303	Unit Operations-I Lab	-	2	-	-	1	-	1
	Total	20	8	3	20	4	3	27

	Course Name	Examination Scheme								
Course		Theory					Term	Pract/		
code		Intern	al Assessı	nent	End	Exam	Work	Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	.,, 9===			
BTC301	Applied Mathematics-III	20	20	20	80	3	25	-	-	125
BTC302	Microbiology I	20	20	20	80	3	-	-	-	100
BTC303	Cell Biology	20	20	20	80	3	25	-	-	125
BTC304	Biochemistry	20	20	20	80	3	-	-	-	100
BTC305	Unit Operations-I	20	20	20	80	3		-	-	100
BTC306	<b>Process Calculations</b>	20	20	20	80	3	25	-	-	125
BTL301	Microbiology Lab	-	-	-	-	3		25	-	25
BTL302	Biochemistry Lab	-	-	-	-	3		25	-	25
BTL303	Unit Operations-I Lab	-	-	-	-	-		-	25	25
	Total			120	480	-	75	50	25	750

<b>Course Code</b>	Name of Subject	Credits
BTC301	Applied Mathematics III	04

## **Pre-requisites:**

• Basics of complex numbers: modulus, argument; equation of a circle, roots of unity, Euler's formula; hyperbolic functions; matrices: symmetric, orthogonal and unitary matrices, rank, normal form, solutions of systems of linear equations; basics of LPP: graphical method; calculus: partial derivatives, Hessian, maxima/minima of functions of 1 and 2 real variables.

## **Course Objectives:**

- To introduce students to the basic methods of Laplace transforms.
- Laplace transforms and inverse Laplace transforms of all the standard functions.
- To enable students to solve initial value ODE problems using L-transforms.
- To study eigen values and eigen spaces of matrices.
- Orthogonal and congruent reduction of quadratic forms.
- Complex analysis: C-R equations, Milne-Thomson method.
- Bilinear transformations and cross-ratios.
- Introduction to statistics.
- Lagrange multiplier method for 2 and 3 variables with no more than two constraints.
- To introduce the basics of optimization using Kuhn-Tucker conditions.

#### **Course outcomes:**

- The student will be able to solve initial value ODE problems.
- The student will have a good understanding of real and complex analysis.
- The student will have a thorough grounding in matrix algebra.
- The student will be ready for any further courses on optimization.

Module	Contents	Contact
		Hours
01	The Laplace transform: Definition and properties (without proofs); all standard transform methods for elementary functions including hyperbolic functions; Heaviside unit step function, Dirac delta function; the error function; evaluation of integrals using Laplace transforms; inverse Laplace transforms using partial fractions and H(t-a); convolution (no proof).	07
02	Matrices: Eigen values and eigens paces of 2x2 and 3x3 matrices; existence of a basis and finding the dimension of the eigen space (no proofs); non- diagonalisable matrices; minimal polynomial; Cayley - Hamilton theorem (no proof); quadratic forms; orthogonal and congruent reduction of a quadratic form in 2 or 3 variables; rank, index, signature; definite and indefinite forms.	07
03	Complex analysis: Cauchy-Riemann equations (only in Cartesian co- ordinates) for an analytic function (no proof); harmonic function; Laplace's equation; harmonic conjugates and orthogonal trajectories (Cartesian co- ordinates); to find f(z) when u+v or u -	07

	v are given; Milne-Thomson method; cross-ratio (no proofs); conformal mappings; images of straight lines and circles.	
04	Complex Integration Cauchy's integral formula; poles and residues; Cauchy's residue theorem; applications to evaluate real integrals of trigonometric functions; integrals in the upper half plane; the argument principle.	
05	Statistics: (No theory questions expected in this module) Mean, median, variance, standard deviation; binomial, Poisson and normal distributions; correlation and regression between 2 variables.	
06	Optimization (No theory). Non-linear programming: Lagrange multiplier method for 2 or 3 variables with at most 2 constraints; conditions on the Hessian matrix (no proof); Kuhn-Tucker conditions with at most 2 constraints.	

#### Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks Attendance: 05 marks **Total:** 25 marks

#### Assessment

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Mathematical Methods in Chemical Engineering, V.G. Jenson and G.V. Jeffreys, Academic Press, 1970
- 2. Laplace transforms, Murray Spiegel, Schaum's Outline Series, 1974
- 3. Complex variables, Murray Spiegel, Schaum's Outline Series, 1964
- 4. Linear Algebra, Murray Spiegel, Schaum's Outline Series, 1964
- 5. Probability and Statistics: Murray R. Spiegel, Schaum's Outline Series, 1965
- 6. Advanced Engineering Mathematics by *Erwin Kreyszig*, 9TH Edition, Wiley India.

<b>Course Code</b>	Course/Subject Name	Credits
BTC302	Microbiology	4

Basic Knowledge of Living Cells

## **Course Objectives:**

- The course aims to develop skills of the Students in the area of Microbiology particularly to identify microbes, their structure, their metabolism and their industrial applications.
- They will study various sterilization techniques and their effects.
- This will be a prerequisite for all courses offered in Bioprocess Technology

#### **Course outcomes:**

- Students will be able to carry out various microbiological techniques like staining and isolation very well.
- They would be able to identify microbes.
- They would have detailed knowledge of various sterilization techniques, which would be useful for other courses.

Module	Contents	Contact
		Hours.
1	History and Scope of Industrial Microbiology:	03
	Introduction: Discovery of Microbial world	i
	• The experiments of Pasteur; The discovery of Anaerobic Life	
	<ul> <li>Physiological significance of Fermentation; Pasteur and Fermentation</li> </ul>	
	• The Era of discovery of Antibiotics; Growth of Industrial fermentation	
2	Classification of Microorganisms:	08
	Types and general characteristics of microorganisms:	i
	1) Bacteria- Archaebacteria, Actinomycetes, Rickettsia,	i
	Mycoplasma, Chlamydia	l
	2) Fungi – Molds and yeasts	l
	3) Algae 4) Protozoa 5) Viruses	l
	• The classification of bacteria Species: The unit of	l
	classification, New approaches to bacterial taxonomy,	l
	Bacterial taxonomy the problems of taxonomic	l
	arrangements, Bacterial phylogeny.	l
	Aerobic and Anaerobic cultures	l
	Microbial Pathogenesis:	İ
	• Epidemiology of infectious diseases, Bacterial, Fungal,	İ
	Protozoal, Viral Diseases;	İ
	Bacterial invasion and colonization	i
	Bacterial toxins- types and mode of action	<u> </u>

3	Microbial Nutrition:	05
	Nutritional requirements of microorganisms	
	Different types of media- Synthetic media, complex media	
	Selective media, differential media, enrichment media.	
4	Microbial Growth:	05
	<ul> <li>Introduction: phases of growth</li> </ul>	
	Growth curve	
	Kinetics of growth	
	<ul> <li>Measurement of growth</li> </ul>	
	Continuous &batch culture	
	<ul> <li>Synchrony</li> </ul>	
	Chemostat & turbidostat	
	• Effects of solutes, temperature, ion concentration, oxygen,	
	hydrostatic pressure, heavy metal ions, and UV light on	
	microbial growth	
5	Microbiological Techniques:	09
	<ul> <li>Sterilization and disinfection techniques,</li> </ul>	
	<ul> <li>Principles and methods of sterilization.</li> </ul>	
	• Physical methods - autoclave, hot-air oven, pressure	
	cooker, laminar airflow, filter sterilization.	
	• Radiation methods – UV rays, gamma rays, ultrasonic	
	methods.	
	• Chemical methods - Use of alcohols, aldehydes, fumigants,	
	phenols, halogens and hypochlorites. Phenol coefficient.	
	• Isolation of pure culture techniques - Enrichment culturing,	
	dilution plating, streak- plate, spread-plate and	
	micromanipulator.	
	• Preservation of microbial cultures - sub culturing,	
	overlaying cultures with mineral oils, lyophilization, sand	
	cultures, storage at low temperature.	
6	Antimicrobial Therapy:	07
	<ul> <li>Antimicrobial sensitivity tests.</li> </ul>	
	• Agents used in treating infection: Antibacterial, antiviral,	
	antiretroviral, antifungal, anti-protozoan & anti helminthes.	
	Resistance mechanism.	
7	Water & Soil Microbiology:	07
	Microbiological analysis of water purity-sanitary tests for	
	coliforms (presumptive test, confirmed test, competed	
	test), MPN test, defined substrate test, IMVIC test.	
	• Soil microbiology- soil as a habitat for microorganisms,	
	physico-chemical properties of soil, microbial community	
	in soil, role of microorganisms in organic matter	
	decomposition.	

# Assessment Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
   Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Textbook of Microbiology ;R. Ananthnarayan, C. K. J. Panicker, Orient Longman 6th Edition (2003)
- 2. General Microbiology, R.Y. Stanier, J.L. Ingraham, M.L.Wheelis and P.R. Painter, Macmillian
- 3. Microbiology VI Edition, M.J. Pelczar, E.C.S. Chan and N.R. Kreig, Tata McGraw Hill Microbiology by Prescott
- 4. Microbiology: An Introduction (9th Ed.) by Tortora GJ, Funke BR, and Case CL, Pearson Education, 2008.
- 5. Industrial Microbiology, Casida, New Age International
- 6. Industrial Microbiology, Prescott and Dunn, C.B.S. Publishers Principles of Microbiology, R.M. Atlas, WMC. Brown Publisher.
- 7. Microbiology Fundamentals and Application, 6th Ed. Purohit, S.S. (Agrobios)
- 8. Textbook of Microbiology, P.Charkborthy
- 9. General Microbiology Vol. II by Powar and Daginawala Himalaya Publ. House 8th edition (2004)

<b>Course Code</b>	Course/Subject Name	Credits
BTC303	Cell Biology	4

- Knowledge of basic terminology of cell and cell organelles
- Knowledge of structure and function of prokaryotic and eukaryotic cell
- Knowledge of different compartments of cell organelle.
- Knowledge of cell division
- Basic knowledge of cell events like photosynthesis, respiration

## **Course Objectives:**

- In this course, Students will explore the great diversity of all cellular form and function.
- Course emphasis is placed on the molecular mechanisms of cell metabolism, growth, division, and communication.
- This course is central to the cell biology and serves as the bridge between foundational courses in the cell and advanced courses in the complexity of sorting in the cell.

#### **Course Outcome:**

- By the end of the course students should be able to grasp the fundamentals in Understanding the molecular organization of the cells, function and structure of The different organelles including transport mechanisms for processes like; Protein sorting, cell communication and flow of information and transport across the unit membrane, cell signaling.
- Students will have good knowledge of cancer, its types and etiology. Students will be able to appreciate all basic concepts which he may encounter in future courses in biotechnology engineering.
- Students will be ready for application of these concepts in the field of research in biotechnology.

Module	Contents	Contact
		Hours
1	Cytology:	05
	• Developmental history of cytology: Origin of cell, Robert	
	Hooke's Experiment, Cell theory, Miller's Experiment	
	Properties & Types of cells: Prokaryotic & Eukaryotic cell	
	• Structure and function of cells such as Viruses, Bacteria,	
	Animal cells, Plant cells.	
2	Cell cycle & cell death:	05
	• Cell cycle and its regulation: Cyclins, CDKs, Checkpoints	
	Cell division: Mitosis & Meiosis	
	Programmed cell death: Apoptosis, Extrinsic & Intrinsic	
	pathway	
	Apoptosis vs. Necrosis	
3	Structural organization of cell and role of cell organelles in	08
	sorting and intracellular transport:	

-		
	<ul> <li>Cell membrane: Function, Composition, Membrane proteins, Fluid Mosaic model, Electrical properties of membrane, Neurotransmission</li> </ul>	
	<ul> <li>Nucleus: Nuclear Envelop, Nuclear Pore Complex &amp; its role in nucleocytoplasmic exchange</li> </ul>	
	<ul> <li>Overview of endomembrane system: secretory and endocytic pathway</li> </ul>	
	• Endoplasmic Reticulum: SER & RER, Protein synthesis on membrane bound and free ribosomes, Protein Glycosylation in ER & Golgi complex, Membrane biosynthesis in the ER	
	• Golgi bodies: Movement of materials through the Golgi complex	
	<ul> <li>Structure &amp; function of Cell wall, Mitochondria, Lysosomes</li> <li>Structure and function of cytoskeleton:</li> </ul>	
	(i)Microtubules – Structure & composition, MAPs, MTOCs, Dynamic properties of microtubules, Overview of motor proteins.	
	(ii)Microfilaments – Structure, Assembly & disassembly. (iii)Intermediate filaments – Structure, Assembly & disassembly, Types and functions.	
4	Transport across cell:	05
-	Bulk transport: Exocytosis, Phagocytosis,	
	Endocytosis – Pinocytosis & Receptor mediated endocytosis	
	• Mechanism of transport of substances through membrane:	
	(i) Active Transport – Ion pumps	
	(ii) Passive Transport – Diffusion, Osmosis, Facilitated	
	diffusion, Ion channels	
5	Cellular communication:	07
	• General principles of cell communication: Types of adhesion,	07
	CAMs	
	• Extracellular matrix: Components – Collagen, Proteoglycans, Fibronectin, Laminin	
	• Interactions of cells with extracellular materials: Integrins, Focal Adhesions & Hemidesmosomes	
	• Interactions of cells with other cells: Selectins, IgSF, Cadherins, Adherens junction, Desmosomes	
	• Tight junctions	
	Gap junctions and plasmodesmata	
6	Cell Signaling:	05
	• Types of intercellular signaling: Auto, Para & Endocrine	
	<ul> <li>Overview of cellular signaling pathway</li> </ul>	
	<ul> <li>Various extracellular messengers and their receptors</li> </ul>	
	• Signal transduction by RTKs: Receptor dimerization, Protein	
	kinase activation, Activation of downstream signaling pathways, Ending the response. Signaling by Insulin receptor	

#### Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks
Attendance: 05 marks **Total:** 25 marks

#### **Assessment**

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Cell and Molecular biology: Concepts and Experiments, Gerald Karp, John Wiley and sons Inc, 6th Edition (2010)
- 2. Molecular Cell Biology, H. Lodish et. al., W.H. Freeman & Co Ltd, 5th Edition (2003)
- 3. Cell and Molecular Biology, DeRobertis; Lippincott Williams & Wilkins 8th Edition (2001)
- 4. Molecular Biology of the Cell and the Hypercell with CDROM; Alberts, Bray; Garland Publishing 1st Edition (1999)
- 5. Molecular Biology of the Cell with CDROM Alberts, Bruce; Johnson, Alexander; Lewis, Julian 4th Edition (2005).

<b>Course Code</b>	Course/Subject Name	Credits
BTC304	Biochemistry	4

- Knowledge of organic chemistry: functional groups and their reactions
- Knowledge of living cell and its components

## **Course Objectives:**

- The major objective is to provide complete understanding of all the chemical processes associated with living cells at the molecular level.
- To ensure students have a strong grounding in structures and reactions of biomolecules.
- To introduce them to the metabolic pathways of the major biomolecules.
- To correlate biochemical processes with biotechnological applications.

## **Course outcomes:**

• The students will be able to understand and analyze the correlation between biomolecules, their associated pathways and various biological processes underlying the living systems.

Module	Contents	Contact Hours
1	Introduction, aims and scope	05
	• Chemical foundations of Biology- Properties of water, acids,	
	bases and buffers, covalent bonds, Non-covalent interactions	
	in biological systems.	
2	Biomolecules:	10
	Classification, Structure and Functions of :	
	Carbohydrates:	
	• Lipids	
	• Proteins	
	Nucleic acids	
3	Enzymes:	05
	Working of Enzymes	
	<ul> <li>Concept of Activation energy and transition state</li> </ul>	
	• Factors affecting enzyme activity- pH, Temperature,	
	Substrate & Enzyme Concentration	
4	Vitamins and Hormones:	05
	• Vitamins: Classification, functions, role in metabolism,	
	vitamins as cofactors.	
	Hormones: Classification, endocrine glands, function and	
	mechanism of action of hormones.	
5	Metabolism:	15
	Carbohydrates- Glycolysis, TCA cycle	
	Lipids- Digestion by GI enzymes and breakdown of	
	Triglycerides: $\alpha$ , $\beta$ , $\omega$ oxidation of fatty acids	

	<ul> <li>Amino acids- decarboxylation, deamination &amp; transamination. Urea cycle; fate of amino acids (connection to TCA)</li> <li>Electron Transport Chain</li> <li>Photophosphorylation- Photosystems, reaction centers, pigments, cyclic and non-cyclic photophosphorylation, Z pathway</li> </ul>	
6	Bioenergetics:	05
	<ul> <li>Laws of Thermodynamics</li> </ul>	
	<ul> <li>Concept of Enthalpy, Entropy</li> </ul>	
	<ul> <li>Energy rich compounds – ATP as energy currency</li> </ul>	

#### **Assessment**

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. Nelson, D.L. and M.M. Cox, "Lehninger's Principles of Biochemsitry", 4th Edition, W.H. Freemen & Co., 2005.
- 2. Murray, R.K., et al "Harper's Biochemistry", 23rd Edition, Prentice Hall International, 1993
- 3. Lubert Stryer. 2007. Principles of Biochemistry. Freeman.
- 4. Voet and Voet. 2005. Biochemistry. Wiley.
- 5. D. Skoog, D. West, F.Holler, S. Crouch "Fundamentals of Analytical Chemistry" 8th Edition, 2004. Thomson Brooks/ Cole
- 6. David T. Plummer, An Introduction to practical biochemistry, Tata McGraw Publishing Company Ltd.

<b>Course Code</b>	Course/Subject Name	Credits
BTC305	Unit Operations – I	3

Basic knowledge in physics, units and dimensions and thermodynamics

## **Course Objectives:**

- To impart the basic concepts of fluid statics and dynamics
- To study the basic equations of fluid flow.
- They should be comfortable with measurement of pressure or pressure drop.
- To enable students to determine viscosity using method such as Stokes Law.
- To study the different types of size reduction equipment used in Industries.
- To study about the metering and pumping of fluids.

## **Course Outcomes:**

- The student will have a thorough grounding on measurement of pressure drop, velocity, flow rates etc. of fluids.
- They can select pumps and would be able to calculate power requirement for pumping as well as agitation operations.
- They will be able to operate certain flow measurement devices and size reduction equipment.

Module	Content	Contact
		Hours
1	<b>Introduction:</b> Classification of fluids, Rheological behavior of	05
	fluids & Newton's Law of viscosity. Effect of temperature &	
	pressure on viscosity of fluids.	
	Fluid statics: Pascal's law ,Hydrostatic equilibrium,	
	Barometric equation and pressure measurement (problems)	
2	Fluid Dynamics: Continuity Equation, Equation of motion,	07
	Euler's equation of motion, Bernoulli's equation (problems),	
	Bernoulli's equation for compressible fluids (isothermal and	
	adiabatic process) concept of Reynold's number, Laminar flow	
	in pipes, Turbulent flow in pipes, velocity and shear stress	
	distribution across pipe, Boundary layer formation and	
	separation of boundary layer.	
3	Flow of Incompressible fluids: Relationship between skin	08
	friction and wall shear, Fanning friction factor, friction factor	
	law for smooth pipes, Form friction, effect of roughness,	
	energy relationships, pipe fittings, major and minor losses in	
	pipe flow. (problems)	
	Flow measurements: Venturimeter, Orificemeter, Pitot tube,	
	Rotameter. (problems)	
	<b>Pumping:</b> Reciprocating pumps, Rotary pumps, centrifugal	
	pumps (Characteristics, NPSH, and Cavitation) and blowers.	
4	Particle Size distribution: Importance of particle size in	07
	reactions, particle size, shape and mass distributions,	

	measurement and analysis, concept of average diameter.	
	(problems)	
	<b>Screening:</b> Screening equipment, capacity and effectiveness	
	of screen, effect of mesh size on capacity of screen. Particle	
	size analysis - mean diameter, derived diameter. Sieving -	
	cumulative method and differential method.	
	Transportation and storage of solids: Studies performance	
	and operation of different conveyor systems like Belt, Screw,	
	Apron, Flight, pneumatic conveyor and elevators; Storage of	
	solids and discharge pattern from storage bin.	
5	<b>Size Reduction:</b> Factors affecting size reduction, comminution laws – Kick's law, Rittinger's law and Bond's	04
	law and their limitations. Crushing efficiency & power	
	consumption (problems)	
	consumption (problems)	
	consumption (problems)  Size reduction equipment: Grinder – Construction and	
6	consumption (problems)  Size reduction equipment: Grinder – Construction and operation of Hammer mill, Ball mill (problems), Ultrafine	04
6	consumption (problems)  Size reduction equipment: Grinder – Construction and operation of Hammer mill, Ball mill (problems), Ultrafine grinder – Fluid energy mill, Cutting machines: knife cutters.	04
6	consumption (problems)  Size reduction equipment: Grinder – Construction and operation of Hammer mill, Ball mill (problems), Ultrafine grinder – Fluid energy mill, Cutting machines: knife cutters.  Sedimentation: Free settling and Hindered settling, Stoke's	04

#### **Assessment**

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### **Text books**

- 1. Dr. R. K. Bansal, "A Textbook of Fluid Mechanics & Hydraulic Machines", Laxmi Publications, 9th Edition, 2010.
- 2. R. S. Hiremath & A. Kulkarni. Mechanical Operations Vol. I.
- 3. McCabe, W.L, Smith J.C and Harriot, P., "Unit Operations in Chemical Engineering", McGraw Hill, Fourth Edition, 1984.
- **4.** Narayanan C.M. & Bhattacharya B.C. "Mechanical operations for chemical engineers", Khanna.

#### References

- 1. Coulson, J.M., Richardson, J.F., "Chemical Engineering", Volume 2, Third Edition, Pergamon Press, 1977.
- 2. Badger and Bencharo, "Introduction to Chemical Engineering". TMH,
- 3. Fluid Mechanics and Hydraulics by Suresh Ukarande, Ane Books, 2012.

<b>Course Code</b>	Course/Subject Name	Credits
BTC306	<b>Process Calculations</b>	4

- Linear Algebra
- Differential Equation

## **Course Objectives:**

- To study the laws regarding gas, liquid and vapor
- To develop understanding about material balance and energy balances
- To study the stoichiometry and thermodynamics of microbial growth and product formation

#### **Course outcomes:**

- The student will be able to understand basic application of various unit operations & unit processes to industrial &theoretical problems
- They will have a clear understanding of the various systems of units will be able to do the conversion of units of one system to another.
- They will be able to do basic calculations for biological systems & access the property data from appropriate sources.

Module	Content	Contact Hours
1	Units and dimensions: Systems of units, fundamental and derived units, unit conversions, dimensional homogeneity and dimensional analysis problems. Conversion of units Chemical arithmetic: Mole concept, atomic weight, molecular weight and equivalent weight- methods of determination. Chemical composition: Methods of expressing compositions of mixtures and solutions- mole percent, mass percent, volume percent, molarity, molality, normality etc. P-V-T behavior of pure liquids- Gas laws, real and ideal gases, equation of state, critical properties, properties of gas mixtures- Dalton's laws, Amagat's law-Average molecular weight and density problems.  Biochemical stoichiometry: Limiting and excess reactants-conversion, degree of completion, selectivity, yield problems.	07
2	Fundamentals of material balances- Law of conservation of mass- Types of material balances, material balance with recycle bypass and purge streams	07
3	Material Balance for process involving chemical reaction, Calculations using Psychrometric chart; Humidity and saturation	07
4	Fundamentals of energy balances, Law of conservation of energy, Heat capacity, sensible heat, latent heat, calculation of enthalpy changes. General energy balance equation; Energy balance calculations with and without reactions, Energy	07

	balance for fermentation and downstream processing	
	problems.	
5	Stoichiometry of microbial growth and product formation,	07
	Growth, Stoichiometry and elemental balances, respiratory	
	quotient, degree of reduction, Yield and maintenance	
	coefficients, Oxygen consumption in aerobic microbial	
	cultures. Theoretical Oxygen demand- problems.	
	Biochemical energetics: Metabolic reaction coupling,	
	energetics of metabolic processes (respiration and	
	biosynthesis). Transport across cell membranes,	
	Thermodynamics of microbial growth, Heat generation in	
	microbial cultures problems.	

#### Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks
Attendance: 05 marks **Total:** 25 marks

#### Assessment

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

#### References

- 1. David M. Himmelblau. 1989. Basic Principles and Calculations in Chemical Engineering. Prentice Hall of India (P) Ltd.
- 2. Hougen, K. M. Watson and R. A. Ragatz. 1970. Chemical Process Principles, Part I, John Wiley and Asia Publishing Co.
- 3. Bhat B.I and S. M. Vora, 2005. Stoichiometry. Tata McGraw Hill.
- 4. Richard Felder and Ronald W. Rausseau. 1986. Elementary Principles of Chemical Processes. John Wiley & Sons.
- 5. Doran P.M, Bioprocess Engineering Principles, Academic Press
- 6. Bailey G.E and Ollis D.F, Bioprocess Engineering Fundamentals McGraw Hill
- 7. Shuler M.L and Kargi F, Bioprocess Engineering- Basic Concepts, Pearson Education
- 8. Segel I.H, Biochemical Calculations, John Wiley
- 9. Blanch H.W and Clark D.S, Biochemical Engineering Marcel Dekker Inc.

Course Code	Course/Subject Name	Credits
BTL301	Microbiology Lab	1.5

- Study of different equipments- Bunsen burner, water bath, Autoclave, Laminar air flow, Incubator, Hot air oven, Centrifuge, and Refrigerator.
- Study of Microscope- Compound Microscope & its parts. Use of oil Immersion objective.
- Preparation of medium -nutrients broth, nutrient agar, agar slant.
- Staining: Simple, Differential staining methods, Capsule, Endospore; Study of shape and arrangement of bacterial cells
- Isolation of microorganism by Pure Culture Techniques.
- Effect of disinfectants on microbial flora
- Isolation and identification of microorganisms from different sources soil, water and milk
- Antibiotic sensitivity assay
- Effect of different parameters on bacterial growth (pH, temperature & UV irradiation)
- Culture of aerobic & anaerobic bacteria
- Effect of TDP & TDT on bacterial growth
- Filter paper disc methods for evaluation of antiseptics
- Study of growth curve of *E. coli*
- Bacterial colony counting using Haemocytometer

#### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
BTL302	Biochemistry Lab	1.5

- Preparations of solutions –molar, normal, ppm, percent
- Study of pH meter and preparation of buffers
- Study of Beer and Lambert's Law and absorption maxima
- Glucose estimation by DNSA method
- Protein estimation by Biurette Test
- DNA estimation by DPA method
- RNA estimation by Orcinol method
- Estimation of Vitamin C by Iodometry
- Extraction and separation of plant pigment by paper chromatography
- TLC of Fatty acids
- Study of Enzyme Activity
- Estimation of Lipids

#### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
BTL303	Unit Operations - I Lab	1.0

- Viscosity by Stoke's Law
- Venturimeter
- Orificemeter
- Flow through Helical coil
- Reynold's Apparatus.
- Bernoulli's apparatus
- Sieve analysis
- Screen effectiveness
- Major and Minor losses
- Ball mill
- Hammer mill
- Sedimentation
- Centrifugal pumps

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) S.E. Semester IV (w.e.f 2017-2018)

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC401	Applied Mathematics-IV	3	-	1	3	-	1	4
BTC402	Molecular Genetics	3	-	1	3	-	1	4
BTC403	Fermentation Technology	4	-	-	4	-	-	4
BTC404	Analytical Methods in Biotechnology	4	-	-	4	-	-	4
BTC405	Immunology and Immunotechnology	3	-	1	3	-	1	4
BTC406	Unit Operations-II	3	-	-	3	-	-	3
BTL401	Fermentation Technology Lab	-	3	-	-	1.5	-	1.5
BTL402	Analytical Methods in Biotechnology Lab	-	3	-	-	1.5	-	1.5
BTL403	Unit Operations-II Lab	-	2	-	-	1	-	1
	Total	20	8	3	20	4	3	27

		Examination Scheme								
Course	Course Name	Theory				Term	Pract/			
code		Intern	al Assessı	nent	End	Exam	Work	Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
BTC401	Applied Mathematics-IV	20	20	20	80	3	25	-	-	125
BTC402	Molecular Genetics	20	20	20	80	3	25	-	-	125
BTC403	Fermentation Technology	20	20	20	80	3	-	-	-	100
BTC404	Analytical Methods in Biotechnology	20	20	20	80	3	-	-	-	100
BTC405	Immunology and Immunotechnology	20	20	20	80	3	25	-	-	125
BTC406	Unit Operations-II	20	20	20	80	3		-	-	100
BTL401	Fermentation Technology Lab	-	-	-	-	3		25	-	25
BTL402	Analytical Methods in Biotechnology Lab	-	-	-	-	3		25	-	25
BTL403	Unit Operations-II Lab	-	-	-	-	-		-	25	25
	Total			120	480	-	75	50	25	750

<b>Course Code</b>	Course/Subject Name	Credits
BTC401	Applied Mathematics IV	4

- **Vector Calculus**:- Multiple Integral, Partial differentiation, basic knowledge of vectors and their products, Knowledge of spherical and cylindrical coordinate system.
- Partial Differential Equation: Integration, Know2ledge of partial derivatives.

## **Course Objectives:**

- The syllabus/module aims to introduce the above topics (to the Learner) so as to equip the learner with mathematic tools to effectively model, analyze and find the solution of various problems in Chemical Engineering and Biotechnology processes.
- One can use vector formation and calculus together to describe and solve many problems in two/three dimension. The Fourier Transform and PDE module does the ground work for the techniques required to solve and find the answer for various physiochemical problems.

## **Course Outcomes:**

• It is expected that the learner will develop the proactive approach towards the selection of methods to a solution of Chemical Engineering and Biotechnology problems coming across while studying higher level of the Course. (Example: Flow of Liquid through Pipes/Gases etc.)

Module	Contents	Contact Hours
01	Fourier Series Expansion of functions in any interval (a, b). Half range expansion; Complex form; Parseval's identity theorem; Orthogonal and Orthonormal functions. NO PROOFS REQUIRED.	09
02	Fourier Integrals and Fourier Transform; sine & cosine Integrals, sine & cosine transforms, complex transforms. NO PROOFS REQUIRED.	10
03	Partial Differential Equations Elliptic, Parabolic & Hyperbolic Equations; Laplace's equation; One dimensional Heat & Wave Equation, Two Dimensional wave equation. (ONLY NUMERICAL PROBLEMS. NO PROOFS REQUIRED).	10
04	Vector Integration Green's Theorem in the plain; Conservative & Solenoidal Fields. Green's Theorem in the plain; Conservative, Gauss Divergence Theorem, Stokes' Theorem. (ONLY NUMERICAL PROBLEMS. NO PROOFS REQUIRED).	10

#### Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks Attendance: 05 marks **Total:** 25 marks

#### Assessment

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules. Weightage of marks should be proportional to number of hours assigned to each Module

#### References

- 1. Advanced Engineering Mathematics by *Erwin Kreyszig*, 9TH Edition, Wiley India.
- 2. Schuam's outline series in Fourier series.
- 3. Schuam's outline series in partial differential equations.
- 4. Partial differential equations Vol 1 by Rutherford Aris.

<b>Course Code</b>	Course/Subject Name	Credits
BTC402	<b>Molecular Genetics</b>	4

- Knowledge of Cell and its components
- Knowledge of Biomolecules and their functions
- Knowledge of Cellular Metabolism

## **Course Objective:**

- Understand the Central Dogma of gene expression
- Explain the foundations of Mendelian genetics and chromosomal theory and apply these, with appropriate terminology, to contemporary concepts in genetics.
- Understand the redundant and universal qualities of the genetic code and how it is used to determine the amino acid sequence of a polypeptide.
- Describe the processes of transcription and translation in both prokaryotes and eukaryotes at the molecular level.
- Describe how prokaryotes control their gene expression through positive and negative regulatory mechanisms.

#### **Course outcome:**

- Students will get knowledge of molecular biology and genetics of Prokaryotic and eukaryotic organisms.
- Students will get insight on Replication, Transcription and translation processes in prokaryotes and eukaryotes, various mutations, their Repair mechanisms. Genetic syndromes.

		Contact
Module	Contents	Hours
01	Structure of Nucleic Acid:	04
	• DNA, RNA: mRNA,tRNA, rRNA,	
	<ul> <li>Denaturation and Renaturation of DNA,</li> </ul>	
	• Tm, GC content from Tm,	
	Complexity of DNA, Cot curves	
	Satellite DNA: Repetitive DNA, SNP, STR	
	, , ,	
02	Mendelism and its extensions	06
	<ul> <li>Mendel's Laws, problems based on his laws</li> </ul>	
	Linkage and Crossing Over	
	Multiple allelism	
	ABO blood group inheritance	
03	Cytogenetics	04
	• International System for Human Chromosome Nomenclature	
	<ul> <li>Mechanisms of numerical and structural chromosomal</li> </ul>	
	aberrations	
	• Chromosomal and non-chromosomal basis of sex determination	
	• Syndromes – Down's, Turner, Cri Du Chat, Klinfelter	
	Transposons	
	• Fluorescence in-situ hybridization technique and applications	
I	r ruorescence in-situ nyonuization technique and applications	

04	DNA Replication and Repair:	06
	<ul> <li>Prokaryotic and Eukaryotic DNA replication mechanism -</li> </ul>	
	Enzymes and accessory proteins involved in DNA replication,	
	DNA Mutations: Types of Mutations and Mutagens	
	• DNA Repair Mechanism – Excision, recombinational, SOS,	
	Photo reactivation, Mis-match repair	
05	Transcription	05
	<ul> <li>Relationship between Genes and Proteins</li> </ul>	
	Prokaryotic transcription	
	<ul> <li>Eukaryotic transcription: Eukaryotic RNA Polymerases,</li> </ul>	
	Transcription of protein coding genes, Production of mature	
	mRNAs in Eukaryotes- 5' Modification, 3' Modification,	
	Intron splicing, RNA Editing	
06	Translation	05
	The nature of Genetic Code	
	Synthesis of aminoacyl-tRNA, Ribosomal RNA genes	
	<ul> <li>Mechanism of initiation, elongation and termination of</li> </ul>	
	Translation in bacteria	
	Co-and post-translational modifications of proteins	
07	Regulation of gene expression	05
	Operon theory	
	• lac Operon: Structure, Regulation of Lac genes, Positive	
	control of Lac Operon	
	• trp Operon: Gene organization of the tryptophan biosynthetic	
	genes, Regulation of the trp operon, attenuation	
	ara operon: structure and regulation of ara operon	

## Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks Attendance: 05 marks **Total:** 25 marks

#### Assessment

## **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
   Weightage of marks should be proportional to number of hours assigned to each Module

#### References

- 1. Molecular Biology; David Freifelder, Narosa Publishing House, 2nd edition
- 2. Microbial Genetics; David Freifelder, Narosa Publishing House, 2nd edition (2004).
- 3. Principles of Gene Manipulations; S. B. Primrose, R. M. Twyman, R. W. old, Blackwell Science,6th Edition (2003)
  4. Genetics: A molecular Approach, 2nd edition; Peter J Russell
- 5. Gene VIII; Benjamin Lewin; Oxford Univ. Press, 8th edition (2004)
- 6. Cell and Molecular biology: Concepts and Experiments, Gerald Karp, John Wiley and sons Inc, 6th Edition (2010)

Course Code	Course/Subject Name	Credits
BTC403	Fermentation Technology	4

• Knowledge of microbiology

## Course Objectives: To gain broad knowledge on

- Role of microorganisms in fermentation
- The various fermentation technologies used
- Production of important products through fermentation

#### **Course Outcomes:**

- Appreciate the use of microorganisms for the production of value added commodities.
- Understand the working of a fermentation system.
- To describe key industrial bioprocesses, from the traditional to the recently evolved.
- Integrate biological and engineering principles involved in the production and recovery of commercial products.
- Develop critical thinking skills and learn to employ a quantitative, scientific approach towards conversion of biological materials to value added products.

Module	Contents	Contact Hours
01	Introduction to fermentation	04
	History and development of fermentation, general	
	requirements of the fermentation, range of fermentation	
	processes, parts of a fermentation process- upstream and	
	downstream processing, aerobic and anaerobic fermentation,	
	solid state and submerged fermentation.	
02	Introduction to Microbial Growth Kinetics	05
	Batch culture (Quantifying cell concentration, Growth patterns	
	and Kinetics), Continuous culture, Comparison of batch and	
	continuous cultures in industrial processes, Fed batch culture,	
	Examples of use of fed batch cultures.	
03	Isolation, preservation and improvement of industrial	07
	microorganisms	
	<ul> <li>Isolation methods utilizing selection of the desired characteristics</li> </ul>	
	<ul> <li>Isolation methods not utilizing selection of the desired</li> </ul>	
	characteristics	
	• The preservation of industrially important	
	microorganisms	
	<ul> <li>Improvement of industrial microorganisms</li> </ul>	
	The selection of induced mutants synthesizing	
	improved levels of products	
	The use of rDNA techniques	
04	Regulatory Mechanisms controlling the catabolic and	03

	anabolic pathways of microbes Induction, carbon catabolite	
	repression, crab tree effect, feedback inhibition and repression	
05	Media for industrial fermentations & sterilization	06
	Introduction, Typical media, Energy sources, Carbon sources,	
	Nitrogen sources, Buffers, Oxygen requirements, Antifoams,	
	Medium optimization, Medium sterilization: The design of	
	batch sterilization processes, The design of continuous	
	sterilization processes, Sterilization of the fermenter, feeds and	
	air, Filter sterilization	
<b>06</b>	The development of inocula for industrial fermentations	04
	The development of inocula for yeast, bacterial and fungal	
	processes, The aseptic inoculation of plant fermenters	
07	Aeration and agitation	04
	The oxygen requirements and supply of industrial	
	fermentations, Determination of KLa, Factors affecting KLa	
	values, The balance between oxygen supply and demand	
<b>08</b>	Design of fermenter	04
	Basic function of a fermenter for microbial or animal cell	
	culture, body construction, various parts of a fermenter	
09	Important products through Fermentation	08
	Organic acids: citric and acetic acid; enzymes : amylase,	
	protease, lipase; antibiotics: penicillin; vitamins: vitB12;	
	aminoacids: lysine, Glutamic acid; organic solvents: ethanol,	
	acetone butanol; alcoholic breverages: wine, beer; biomass:	
	bakers yeast; biofertilizers; biopesticides; biosurfactant;	
	steroid transformation; biopolymers	

## Assessment

#### **Internal:**

 Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
   Weightage of marks should be proportional to number of hours assigned to each Module

#### References

- 1. Principles of Fermentation Technology Stanbury P.F., Whitaker A, Hall S. J.
- 2. Bioprocess Engineering: Basic concepts Shuler M.L., Kargi F. (PHI)
- 3. Bioprocess Engineering Principles Doran Pauline M. (Elsevier Pub.)
- 4. Biotechnology: A textbook of Industrial Microbiology- Cruger, W. and A. Cruger
- 5. Introduction to Biochemical Engineering DG Rao, 2005, Tata McGraw-Hill, New Delhi

<b>Course Code</b>	Course/Subject Name	Credits
BTC404	Analytical Methods In Biotechnology	4

- Basic knowledge of Physical and Analytical Chemistry
- Knowledge of various types of spectra
- Knowledge of Biomolecules and their properties

## **Course Objective:**

• To study the various analytical techniques used in Biotechnology.

## **Course outcomes:**

- The students will be capable of handling different instruments in the laboratory.
- They would be able to compare different separation techniques and use them effectively in research work

Module	Contents	Contact Hours
01	Centrifugation:  ☐ General principle- sedimentation velocity, sedimentation equilibrium  ☐ Types of centrifuges, preparative and analytical centrifugation, differential centrifugation, density gradient methods  ☐ Applications	08
02	Chromatographic Techniques:  ☐ Introduction to chromatography, General principles ☐ Planar Chromatography: Thin layer chromatography, paper chromatography ☐ Column chromatography—columns, stationary phases. Packing of columns, application of sample, column development, fraction collection and analysis. ☐ Partition chromatography, Adsorption chromatography Affinity Chromatography, Ion Exchange Chromatography, Chromato focussing, Size exclusion chromatography. ☐ Gas Chromatography, HPLC: Principle & Components: pumping systems, detectors systems ☐ Applications	12
03	Electro kinetic methods of separation:  □ Electrophoresis: General principle and application, factors affecting electrophoresis — voltage, current, resistance, buffer, composition, concentration, pH.  □ Agarose Gel electrophoresis □ SDS-PAGE — Native and denaturing gels, gradient gels, discontinuous buffer system □ Two dimensional gel electrophoresis □ Isoelectric focusing □ Capillary electrophoresis	09

	☐ Immuno electrophoresis	
04	Spectroscopy:  □ Spectroscopic Techniques; Beers Lamberts law, molar and extinction coefficient, limitations of Beers Lamberts law  □ Visible and UV Spectrophotometry; Principles, Instrumentation and applications	08
05	Radio isotopic techniques:  ☐ Use of radioisotopes in life sciences, radioactive labelling, principle and application of tracer techniques  ☐ Detection and measurement of radioactivity using ionization chamber, proportional chamber, Geiger-Muller and Scintillation counters, Autoradiography  ☐ Applications	

#### Assessment

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
   Weightage of marks should be proportional to number of hours assigned to each Module

#### References

- 1. Wilson K and Goulding K.H., A biologist's guide to Principles and Techniques of Practical Biochemistry.
- 2. Willard and Merrit, Instrumental Methods and Analysis
- 3. Ewing GW, Instrumental Methods of Chemical analysis.
- 4. Robert. M. Silverstein et al, Spectrometric identification of Organic Compounds, 7th Edition, 1981.
- 5. Vogel's, Text Book of Quantitative Chemical Analysis, 6th Edition, 2004.
- 6. John A. Adamovic, Chromatographic Analysis of Pharmaceuticals, 2nd Edition.
- 7. Raymond P. W. Scott, Techniques and Practice of Chromatography –Vol. 70.
- 8. Sethi P.D, Dilip Charegaonkar, Chromatography –2nd Edition.
- 9. Niessen W. M. A., Van Der Greef J, Liquid Chromatography– Mass Spectrometry, Vol. 58.
- 10. Kalsi. P.K, Spectroscopy of Organic Compounds.
- 11. Hanes, Gel Electrophoresis of Proteins- A Practical Approach,
- 12. Hamilton R. J. and Sewell P. A, Introduction to High Performance Liquid Chromatography
- 13. Gordon M. Message, Practical aspects of Gas Chromatography and Mass Spectrometry, John Wiley and Sons, New York. 1984
- 14. Chapman J.M and G. Ayrey, The use of radioactive isotopes in the life sciences, George Allen and Unwin Ltd., London.
- 15. Biophysical chemistry by Upadhyay, Upadhyay and Nath, Himalaya publication house.

<b>Course Code</b>	Course/Subject Name	Credits
BTC405	Immunology and Immunotechnology	4

- Knowledge of anatomy and physiology of human body
- Knowledge of blood components and blood cells
- Knowledge of lymphatic system
- Knowledge of principle of immune response and vaccine
- Knowledge of history and basic terminology in immunology

## **Objectives**

- To learn about various basic terminology in immunology
- To have knowledge of immune system in detail
- To describe the interaction of antigens and antibodies in antibody mediated and cell-mediated immune responses.
- To make familiar with the techniques involved in antigen and antibody reactions
- To understand the concepts and principle of immunoassay techniques in routine diagnosis, research
- To learn principle and types of vaccines

#### **Outcomes:**

- Student can define innate and adaptive immunity
- Student can define the characteristics of antigens
- Student can define the characteristics of antibodies
- Student can describe cellular cooperation in antibody and cell mediated immune responses
- Student can define antigen antibody interaction
- Student can describe Production of Monoclonal Antibodies and Recombinant Vaccines.

Module	Contents	Contact Hours
01	Introduction to immune system	06
	☐ Innate and adaptive immunity	
	☐ Cells and organs of the immune system	
	☐ Primary and secondary immune responses;	
	☐ Cell mediated and humoral response	
02	Antigens & Antibodies	04
	☐ Antigens	
	☐ Antibodies and T cell receptors: Antigens, Structure and	
	function of immunoglobulin,	
	☐ B and T cell receptors	
03	Generation and regulation of immune responses	08
	☐ Antigen processing and presentation	
	☐ MHC-restriction; Cytokines	
	☐ T Cell Maturation, activation and Differentiation B Cell	
	Generation, activation and differentiation	

	☐ Clonal selection and immunological memory	
	☐ Complement system, classical, alternative and MBL	
	pathway	
	☐ Cell mediated cytotoxic responses	
	☐ Regulation of immune responses; Immunological tolerance	
04	Antigen-antibody Reactions	07
	☐ Strength of Antigen-Antibody Reactions	
	In Vivo Antigen-Antibody Reactions, In Vitro Antigen-  ☐ Antibody Reactions	
	☐ Precipitation (In Fluid and In Gel Immuno electrophoresis),	
	☐ Agglutination (Heamagglutination, Bacterial agglutination, Passive agglutination and Agglutination Inhibition).	
	☐ Radio immuno Assay (RIA)	
	☐ Enzyme Linked Immunosorbant Assay (ELISA),	
	□ Western Blot	
	Immune Fluorescence	
	☐ Immunoprecipitation	
05	Disorders of Human Immune System	06
	Primary and secondary immunodeficiency; Autoimmune	
	disorders; Hypersensitive reactions; Cytokine related	
	diseases	
06	Production of Monoclonal Antibodies and Recombinant Vaccines.	05
	☐ Monoclonal antibody, polyclonal antibody. Production of	
	Monoclonal antibodies - Definition, production, applications.	
	☐ Vaccines - Definition, recombinant vector vaccines, DNA vaccines ,Multivalent subunit vaccines, minicell vaccines, conjugate vaccines	

## Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks Attendance: 05 marks **Total:** 25 marks

#### Assessment

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.

Remaining questions will be randomly selected from all the modules.
 Weightage of marks should be proportional to number of hours assigned to each Module

## References

- 1. Essential Immunology: Ivan Roitt.
- 2. Kuby Immunology: Golds by, Kindt and Osborne.
- 3. Immunology: Roitt, Brostoff, Mole.
- 4. Introductory Immunology: Huw Davies

<b>Course Code</b>	Course/Subject Name	Credits
BTC406	Unit Operation - II	3

• An understanding of differential equations and basic physical concepts, units and dimensions

## **Course Objectives:**

- To study the basics of Heat and Mass Transfer
- To develop understanding about the application of Heat and Mass transfer in Bio processing.
- To calculate the size of heat transfer equipments, for a known quantity of raw material.
- To apply energy balance.
- To understand the role of diffusion, drying &distillation in the processes. To apply material balance.
- To design equipments in which heat &mass transfer occurs.

#### **Course outcomes:**

- The student will be able to understand basic application of various unit operations &unit processes to industrial &theoretical problems
- They will have a clear understanding of the theories of Heat and Mass transfer which are used for modeling.
- They will be able to do design the fermenter and Bioreactors using the models developed.

Module	Contents	Contact
		Hours
01	Introduction: Various modes of heat transfer Viz. Conduction,	07
	Convection and Radiation.	
	Conduction: Fouriers law, Steady state unidirectional heat flow	
	through single and multiple layer slabs, Cylinders and spheres	
	for constant and variable thermal conductivity.	
	Insulation: Properties of insulation materials, Types of	
	insulation, Critical and Optimum thickness of insulation	
	Extended Surfaces: Fins - Types of fins, Derivation of fin	
	efficiency for longitudinal fins, Fin effectiveness. Elementary	
	treatment of unsteady state heat conduction. Problems	
02	Convection: Individual and overall heat transfer coefficient,	08
	LMTD, LMTD correction factor.	
	Dimensionless numbers, - Dimensional analysis, Empirical	
	correlation for forced and natural convection.	
	Analogy between momentum and heat transfer - Reynolds,	
	Coulburn and Prandtl analogies. Problems	
	Heat Transfer with Phase Change: Boiling phenomena,	
	Nucleate and film boiling, Condensation – Film and Drop wise	
	condensation, Nusselts equations.	
03	Radiation: Properties and definitions, Absorptivity, Reflectivity,	08
	Emissive power and intensity of radiation, Black body radiation,	

	Gray body radiation,	
	Stefen - Boltzmann law, Wien's displacement law, Kirchoffs	
	law, View factors, Radiation between surfaces- different shapes,	
	Radiation involving gases and vapours, Radiation shields.	
	Heat Transfer Equipment: Double pipe heat exchangers, Shell	
	and tube heat exchangers - Types of shell and tube heat	
	exchangers, Condenser – types of condensers. Design of heat	
	exchanger.	
	Evaporators: Types of evaporators, performance of tubular	
	evaporator – Evaporator capacity, Evaporator economy,	
	Multiple effect evaporator	
04	Diffusion: Molecular diffusion in fluids, Diffusion coefficient,	07
	Flick's Law of diffusion, Dependence of diffusion coefficient	
	on temperature, pressure and composition, Diffusion in multi-	
	component gas mixtures. Diffusion in solids: Molecular,	
	Knudsen &surface diffusion Inter- phase mass transfer, Mass	
	transfer coefficients ,Diffusion between phases , Equilibrium	
	solubility of gases in liquids, Mass Transfer theories, Mass	
	transfer in fluidized beds, flow past solids and boundary layers,	
	Simultaneous heat and mass transfer.	
05	Mass Transfer in Bioprocess Operations: Role of Diffusion in	05
0.5	Bio processing, Oxygen Uptake in Cell Culture, Factors	
	affecting cellular oxygen demand, oxygen transfer from gas	
	bubble to cell, oxygen transfer in fermenters, sparging stirring	
	and medium properties, anti foaming agents, temperature, gas	
	pressure and oxygen partial pressure, presence of cells,	
	measuring dissolved oxygen concentration, estimating oxygen	
	solubility, effect of oxygen partial pressure, effect of	
	temperature, effect of solutes, mass transfer correlations,	
	measurement of kLa, oxygen balance method, dynamic method,	
	sulphite oxidation method, oxygen transfer in large vessels.	

#### Assessment

#### **Internal:**

• Assessment consists of average of two tests which should be conducted at proper interval.

## **End Semester Theory Examination:**

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
   Weightage of marks should be proportional to number of hours assigned to each Module

#### References

- 1. Robert E Treybal, Mass Transfer Operations, McGraw Hill Third Edition
- 2. Diffusion: Mass Transfer in Fluid System (Cambridge series in Chemical Engineering) by E.L.Cussler"

- 3. McCabe & Smith, Unit Operations in Chemical Engineering, 6th Edition, McGraw Hall, 2001.
- 4. Coulson and Richardson, Chemical Engineering Vol I, 4th Edition, Pergmon
- 5. Press, 1998.
- 6. Badger & Banchero, Introduction to Chemical Engineering, TMH 6th Reprint, 1998.
- 7. Doran P.M, Bioprocess Engineering Principles, Academic Press
- 8. Bailey G.E and Ollis D.F, Bioprocess Engineering Fundamentals McGraw Hill
- 9. Shuler M.L and Kargi F, Bioprocess Engineering- Basic Concepts, Pearson Education
- 10. Blanch H.W and Clark D.S, Biochemical Engineering Marcel Dekker Inc.

<b>Course Code</b>	Course/Subject Name	Credits
BTL401	Fermentation Technology Lab	1.5

- Alcohol production by baker's yeast
- Isolation and preservation of microorganism of commercial importance
- Cell immobilization technique by immobilizing yeast cells in calcium alginate beads.
- Production of citric acid by A.niger
- Hydrolysis of sucrose by immobilized yeast cells
- Determination of cell mass by different methods ( dry weight method, density method and haemocytometer method)
- Estimation of carbohydrates from fermentation media.
- Production of amylase
- Isolation of auxotrophic mutants of industrially important microorganisms
- Study of substrate utilization kinetics of the organism
- Study the set up of various types of bioreactors
- Introduction to fermentor.

#### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
BTL402	Analytical Methods In Biotechnology Lab	1.5

- Chromatography of amino acids and sugars
- Agarose gel electrophoresis
- SDS-PAGE, Native PAGE
- Iso-electric Focussing
- Centrifugation
- Density gradient Centrifugation
- Affinity chromatography
- Ion exchange chromatography
- Gel filtration chromatography
- UV-Visible spectrophotometer
- Thin Layer Chromatography
- Paper Chromatography

## **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
BTL403	Unit Operations - II Lab	1

- Plate type H.E
- Natural convection
- Forced convection
- Critical Heat flux
- Emissivity
- Heat transfer through composite wall
- Shell & Tube H.E
- k of insulating material
- Vapor-liquid equilibrium
- Diffusivity of a liquid
- Diffusion through porous solids
- Determination of Mass transfer coefficients in Gas Liquid sysytem by evaporation
- Determination of Mass transfer coefficients in Liquid Liquid system.

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) T.E. Semester V (w.e.f 2018-2019)

Course code	Course Name		Teaching Scheme (Contact Hours)		Credits Assigned		gned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC501	Bioinformatics	4	-	-	4	-	-	4
BTC502	Genetic Engineering	4	-	-	4	-	-	4
BTC503	Thermodynamics and Biochemical Engineering	3	-	1	3	-	1	4
BTC504	Bioreactor Analysis and Technology	3	-	1	3	-	1	4
BTC505	Business Communication and Ethics	2	-	2	-	-	2	2
BTE501X	Elective I	3	-	1	3	-	1	4
BTL501	Bioinformatics Lab	-	2	-	-	1	-	1
BTL502	Genetic Engineering Lab		3			1.5		1.5
BTL503	Lab I		3			1.5		1.5
	Total	17	12	3	17	6	3	26

Course	Course Name	Examination Scheme								
code		Theory				Pract/	Oral	Total		
							Work	Oral		
			Interna	al	End	Exam				
		Assessment		Sem						
					Exam	(in hrs)				
		Test 1	Test 2	Avg						
BTC501	Bioinformatics	20	20	20	80	3	•		-	100
BTC502	Genetic Engineering	20	20	20	80	3			-	100
BTC503	Thermodynamics and Biochemical Engineering	-	20	20	80	3	25	-	-	125
BTC504	Bioreactor Analysis and Technology	20	20	20	80	3	25	-	-	125
BTC505	Business		-	-	-	-	50	-		50
	Communication and									
	Ethics									
BTE501X	Department Elective I	20	20	20	80	3	25	-	-	125
BTL501	Bioinformatics Lab					2		25		25
BTL502	Genetic Engineering Lab					3		25		25
BTL503	Lab I	-	-	-	-	3		25	-	25
	Total			100	400	-	125	75	-	700

Department Elective I (Sem V)					
Engineering Stream	Advanced Science Stream	Technology Stream			
1. Biosensors and Diagnosis	1.Biophysics (BTE5012)	1. Pharmaceutical Technology			
(BTE5011)	2.Biostatistics (BTE5013)	(BTE5014)			

Course Code	Course/Subject Name	Credits
BTC501	Bioinformatics	4

• Basic knowledge of computers, Biochemistry: Structures of DNA, RNA & Proteins.

## **Course Objectives:**

- To develop skills of the Students in the area of Bioinformatics particularly to make them to learn all the techniques used with biological data.
- To study various databases of DNA & Proteins along with current bioinformatics concepts & their implementation.
- To help students easily handle proteins by studying in detail about protein structure.
- To become knowledgeable about the storage, retrieval, sharing and use of biological data, information, and tools.

#### **Course outcomes:**

By learning this course the students will be able to:

- Cast a molecular biology problem as a bioinformatics problem.
- Select relevant tools, optimize their settings and build pipelines to solve the set problem.
- Easily extract the required data from a given set of data & similarly be able to store it.
- Use conventional softwares and web-based applications.
- Analyze processed data with the support of analytical and visualization tools.

Module	Contents	Contact
		Hours
01	Introduction to bioinformatics: Types of biological data,	06
	Sequencing Methods: DNA (Maxim Gilbert Method, Sangers	
	Method) & Protein (MS-MSAnalysis), Genomic Sequencing,	
	ESTs and SNPs, Applications of bioinformatics.	
02	Types of databases: Based on storage techniques( Flat,	08
	Relational, Object Oriented); Based on data (Primary,	
	Secondary, Specialized)	
	Search engines: Entrez& SRS Sequence databases: NCBI,	
	EMBL, DDBJ Structural Databases: PDB Protein Databases:	
	PIR, SWISS PROT Other Databases: KEGG, TrEMBL, EBI.	
03	Alignment: Global Alignment, Local Alignment Pair Wise	10
	Sequence Alignment: Dot Matrix Alignment. Dynamic	
	programming Methods: Needleman Wunch Algorithm, Smith	
	Waterman Algorithm. Heuristic Method: BLAST, FASTA	
	Amino Acid Substitution Matrices: PAM, BLOSSUM	
	Multiple Alignment: CLUSTAL WPhylogenetic Analysis	
04	Visualization: Methods for representing biological data,	04
	Rasmol, Swiss PDB, 3D Structure Viewers.	
05	Proteins: Structure, Classification, Classification databases.	07
	Protein Structure prediction: Primary Structure Prediction,	

	Secondary Structure Prediction, Tertiary Structure Prediction, Homology Modelling, Chao-Fasman Algorithm, Neural	
	Networks, Ab-Initio Modelling, Fold recognition (Threading)	
06	Interactions: Protein ligand interactions, Torsionangle,	10
	Ramchandran plot, Protein folding & Chaperones. Cartesian	
	coordinates	

#### Assessment

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Oreilly, Developing bioinformatics computer skills, Shroff publishers, 1st Indian edition
- 2. David mount, Bioinformatics sequence and genome analysis, CBS publishers, 2nd edition
- 3. N. Gautam, Bioinformatics databases & algorithm, Narosa publication
- 4. S. Ignacimuthu S.J, Basic bioinformatics, Narosa publications
- 5. T. K. Attwood, Introduction to bioinformatics, Pearson education, 8th reprint
- 6. S. C. Rastogi, Bioinformatics concepts, skills & applications, CBS publishers, 1st edition

<b>Course Code</b>	Course/Subject Name	Credits
BTC502	Genetic Engineering	4

• Knowledge of Biochemistry, Microbiology, Molecular Biology, Genetics.

## **Course Objectives:**

- Give insight into the functioning of Recombinant DNA molecules, their constructions, analysis and fine tuning.
- To engineer such molecules for making of difficult bio-molecules.
- This course also gives various ideas and approaches by different schools of thoughts.

#### **Course outcomes:**

By learning this course the students will be able to:

- Understand how recombinant molecules are created analysed with respect to DNA, RNA, and Protein.
- They also will be familiar with the problems they could encounter and how to trouble shoot them.
- They will be able to monitor both in-vitro and in-vivo activity.
- They will be able to suggest more rational approach to solve problem of a living system at a molecular level.

Module	Contents	Contact Hours
01	Basics of genetic material:  DNA structure, topology, Super helical and relaxed molecules.  Plasmids- Basic features classification, size and copy number, conjugation & compatibility.  Total cell DNA preparation, different methods of plasmid DNA preparation.	06
02	Enzymes for Recombinant Technology: Cutting enzymes- Restriction Endonucleases (Classification, blunt end, sticky end, mode of action).Introduction to other enzymes-DNA polymerases, Reverse Transcriptase, Polynucleotide Kinase, Terminal Transferase, Alkaline Phosphatase,S1-Nuclease, Bal-31, DNA Ligase.	07
03	Cloning vectors: Vectors used for Gene-cloning: Plasmids (e.g pUC type, conjugative, Ti etc.), Phages (Lambda and M13 type), Cosmids and Phagemids.	07
04	Library construction and recombinant gene expression: Library construction (Genomic and C-DNA type) and Screening for the clone. Foreign gene expression in E. coli, Fusion proteins	06
05	DNA transfer in to cells: Transformation and Transfection, Membrane Fusion and Electroporation, Gene-Gun and Micro-injection	05

06	DNA and Protein Analysis:	08
	DNA: Southern and Northern Hybridization. PCR	
	Amplification, DNA Sequence Analysis (e.g Sangers	
	Method), Automated Sequencing, RFLP and RAPD. Protein:	
	Western Blotting, ELISA and its variations	
07	Antisense and RNA interference Technology and their	06
	applications.	
	R-DNA in medicine, e.g. Insulin and Blood clotting factor	
	VIII.	

#### **Assessment**

#### **Internal**

 Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Molecular Biology of the Cell: Alberts et al.5th. Ed. Garland Publications.
- 2. Genes VIII: Benjamin Levine, Oxford University Press.
- 3. Principle of Gene Manipulations (2004): S.B. Primrose, R.M. Twyman & R. W. Old. Sixth edition. Blackwell Science.
- 4. Gene Cloning and DNA analysis: An Introduction.(2006).T. A. Brown. Blackwell Publishing.

<b>Course Code</b>	Course/Subject Name	Credits
BTC503	Thermodynamics and Biochemical Engineering	4

• Knowledge of phase rule, knowledge of differentiation & Integration

## **Course Objectives:**

- To study the basic concepts of the energy flow in and out of the system.
- To apply the thermodynamic principles to the biochemical reactions.
- To check the feasibility of the reaction.

## **Course outcomes:**

• The student will be able to check the feasibility of a reaction.

Module	Contents	Contact
01	D · C	Hours
01	Basic Concepts: System, Surrounding & Processes, Closed and Open systems,	02
	State and Properties, Intensive & Extensive Properties, State	
	and Path functions, Equilibrium state and Phase rule, Zeroth	
	law of Thermodynamics, Heat reservoir and Heat engines,	
	Reversible and Irreversible processes.	
02	Laws of Thermodynamics:	05
	General statement of First law of Thermodynamics, First	
	law for Cyclic Process, Non-Flow Process, Flow process,	
	Heat capacity.	
	General statements of the second law, Concept of entropy,	
	The Carnot principle, Calculation of entropy changes,	
	Clausius inequality, Entropy and Irreversibility.	
0.2	Third law of Thermodynamics.	0.4
03	PVT Behaviour:	04
	PVT behaviour of pure fluids, equations of state and	
	ideal gas law, Processes involving ideal gas law: Constant	
	volume, constant pressure, constant temperature, adiabatic and polytrophic processes.	
	Equations of state for real gases: Van-der Waals equation,	
	Redlich- Kwong equation, Peng-Robinson equation, virial	
	equation.	
04	Biochemical Energetics:	05
	Coupled reactions and energy rich compounds, Reaction	
	Stoichiometry, criteria of biochemical reaction equilibrium,	
	equilibrium constant and standard free energy change, effect	
	of temperature, pressure onfree energy change, effect of	
	temperature, pressure on equilibrium constants and other	
	factors affecting equilibrium conversion. Le Chateliers	
	principle, liquid phase reactions, heterogeneous bioreaction	
	equilibria, phase rule for reacting systems.	
05	Properties of Pure Fluids:	06
	Principles of corresponding states, Generalized	
	compressibility charts. Reference properties, energy	

	<del>,</del>	
	properties, Derived properties, Helmholtz free energy, Gibbs free energy, Relationships among thermodynamic Properties: Exact differential equations, fundamental property relations, Maxwell's equations, Clapeyron equations, Entropy heat capacity relations, modified equations for internal energy (U)&enthalpy(H),Effect of temperature on U, H & Entropy(S), Relationships between Cp & Cv, Gibbs-Helmholtz equation.	
06	Fugacity and Activity: Fugacity: Fugacity, Fugacity coefficient, effect of temperature and pressure on fugacity, Determination of fugacity of pure gases, Fugacities of solids and liquids, Activity: Effect of temperature and pressure on activity. Departure functions and generalized charts, thermodynamic diagram types of diagrams and construction of thermodynamic diagrams.	04
07	Properties of Solutions: Partial molar properties- Partial molar properties of solutions, determination of partial molar properties, chemical potential effect of temperature and pressure, Lewis randall rule, Raoults law for ideal solutions, Henry's law and dilute solutions ideal behavior of real solutions and Henrys law, Activity in solutions, Activity coefficients effect of temperature and pressure, Gibbs - Duhem equation, Property changes of mixing, excess properties, excess Gibbs free energy.	06
08	Phase Equilibria: Criteria of phase Equilibria, criterion of stability, Duhem's theorem, Vapour-Liquid Equilibria, VLE in ideal solutions, Non-Ideal solutions -azeotropes, VLE at low pressures activity coefficient equation, bubble point and dew point equilibria, Consistency test for VLE data using slope of lncurves, using partial pressure data, calculation of activity coefficients using Gibbs-Duhem equation, Liquid-Liquid Equilibrium diagrams binary liquid Equilibrium diagrams.	04

## **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

## **Assessment**

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub

- questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Smith, J.M., Van Ness, H.C., and Abbott, M.M. Introduction to Chemical Engineering Thermodynamics, McGraw Hill, Inc..
- 2. Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, Inc.
- 3. Hougen, O.A., Watson, K.M., and Ragatz, R.A., Chemical Process Principles Part II, John Wiley & Sons, (CBS Publishers & Distributors, New Delhi).
- 4. YVC Rao, "An Introduction to Thermodynamics", University Press, Second Edition.
- 5. K V Narayanan, "Textbook of Chemical Engineering Thermodynamics", PHI Learning Second Edition.

<b>Course Code</b>	Course/Subject Name	Credits
BTC504	Bioreactor Analysis and Technology	04

Knowledge of chemical reaction kinetics, Knowledge of differentiation and integration

# **Course Objectives:**

- To understand the basic concepts of Bioreactor design.
- To select the relevant principles and data for practical process engineering purposes.

## **Course outcomes:**

- Student will be able to understand the different types of ideal and non-ideal reactors.
- Student will be able to design the reactors required for a particular processes.

Module	Contents	Contact Hours
01	Basic Reaction Kinetics:	06
U1	Reaction thermodynamics, order and molecularity of reaction,	00
	homogeneous and heterogeneous reactions, elementary and	
	non-elementary reactions, reaction yield, reaction rate,	
	calculation of reaction rates from experimental data, general	
	reaction kinetics for biological system, production kinetics in	
	cell culture, kinetics of substrate uptake in cell culture, growth	
	kinetics with plasmid instability	
02	Ideal Reactors:	07
	Constant volume and variable reactors, batch operation of a	
	well-mixed enzyme and cell culture reactor, fed batch	
	operation of a well-mixed enzyme and cell culture reactor,	
	continuous operation of well mixed enzyme and cell culture	
	reactor, continuous operation of plug flow enzyme and cell	
	culture reactor, autocatalytic reactions, recycle reactors-plug	
	flow reactor and continuous stirred tank reactor, comparison	
	between major modes of reactor operation.	
03	Multiple Reactors and Reaction Systems:	07
	Continuous stirred tank reactors of equal size in series,	
	continuous stirred tank reactors of unequal size in series,	
	finding conversion in given system, determining the best	
	system for a given conversion, plug flow reactors in series and	
	parallel, reactors of different types in series. Simple reactions,	
	step wise reactions, parallel reactions, series reactions,	
	maximizing R in batch reactor, plug flow reactor and	
	continuous stirred tank reactor, reactor choice for series	
	reactions and series parallel reactions, concepts of reversible	
0.4	reactions.	0.6
04	Heterogeneous Reactions:	06

	Heterogeneous reactions in Bioprocessing, Concentration gradients and reaction rates in solid catalysts, Internal mass transfer and reactions, steady state mass balance (spherical geometry), Concentration profile for first order kinetics, Concentration profile for zero order kinetics, Concentration profile for Michaelis- Menten kinetics, Effectiveness factor and Thiele Modulus, External mass transfer	
05	Deviations from ideal reactors:	05
	Concept of nonideality, reasons of non ideality, RTD studies,	
	F curve, C curve, E curve, diagnosis of ills of flow reactors,	
	modelling of nonideal behaviour-dispersion model, tanks in	
	series model.	
06	Working principle of unconventional reactors:	04
	Selection criterion for bioreactors, Bubble column, Airlift	
	reactor, Fluidizedbed reactor, perfusion reactors, membrane	
	reactors	

#### **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

#### **Internal**

 Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## References

- 1. D.G. Rao, Introduction to Biochemical Engg, Tata McGraw Hill Edu. Pvt. Ltd., Second edition.
- 2. P.M. Doran, Bioprocesses Engg. Principles, Academic Press, London, Second edition.
- 3. E.H. Perry 7 D.W. Green, Perrys Chemical Engineering Handbook, Seventh edition.
- 4. Octave Levenspiel, Chemical Reaction Engineering, John Wiley Publication, Third Edn
- 5. H Scott Fogler "Elements of Chemical Reaction engineering" Prentice Hall, 2006

<b>Course Code</b>	Course/Subject Name	Credits
BTC505	<b>Business Communication and Ethics</b>	2

• Students should have basic knowledge of English and general engineering.

## **Course Objectives**

- To inculcate in students professional and ethical attitude, effective communication skills, teamwork, multidisciplinary approach, and an ability to understand Engineers' social responsibilities
- To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career
- To inculcate professional ethics and codes of professional practice
- To prepare students for successful careers that meets the global Industrial and Corporate requirement

#### **Course Outcomes:**

- Students will be able to
- Communicate effectively in both oral and written form and equip to demonstrate knowledge of professional and ethical responsibilities.
- participate and succeed in campus placements and competitive examinations like GATE, TOFEL
- Possess entrepreneurial approach and ability for life-long learning
- Have education necessary for understanding the impact of engineering solutions on Society, and demonstrate awareness of contemporary issues Detailed Syllabus.
- Design a technical document using precise language, suitable vocabulary and apt style.
- Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships.
- Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities.
- Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
- Deliver formal presentations effectively implementing the verbal and non-verbal skills.

Module	Contents	Contact
		Hours
1	Report Writing	05
	Objectives of Report Writing	
	Language and Style in a report	
	Types: Informative and Interpretative (Analytical, Survey and	
	Feasibility) and Formats of reports (Memo, Letter, Short and	
	Long Report)	
2	Technical Writing	03
	Technical Paper Writing (IEEE Format)	
	Proposal Writing	

3	Introduction to Interpersonal Skills	09
	Emotional Intelligence	
	Leadership and Motivation	
	Team Building	
	Assertiveness	
	Conflict Resolution and Negotiation Skills	
	Time Management	
	Decision Making	
4	Meetings and Documentation	02
	Strategies for conducting effective meetings	
	Notice, Agenda and Minutes of a meeting	
	Business meeting etiquettes	
5	Introduction to Corporate Ethics	02
	Professional and work ethics (responsible use of social media -	
	Facebook, WA, Twitter etc.)	
	Introduction to Intellectual Property Rights	
	Ethical codes of conduct in business and corporate	
	activities(Personal ethics, conflicting values, choosing a moral	
	response and	
	making ethical decisions)	
6	Employment Skills	07
	Group Discussion	
	Resume Writing	
	Interview Skills	
	Presentation Skills	
	Statement of Purpose	

## **Term Work**

The term work shall be comprised of the neatly written Journal comprising below mentioned assignments.

Assignment 1- Interpersonal Skills (Group activity Role play)

Assignment 2- Interpersonal Skills (Documentation in the form of soft copy or hard copy)

Assignment 3- Cover Letter Resume

Assignment 4- Report Writing

Assignment 5- Technical Proposal (document of the proposal)

Assignment 6- Technical Paper Writing

Assignment7 -Meetings Documentation (Notice, Agenda, Minutes of Mock Meetings)

Assignment 6- Corporate Ethics (Case study, Role play)

Assignment 8- Printout of the PowerPoint presentation

#### **Term-work Marks: 50 Marks**

The marks of term-work shall be judiciously awarded depending upon the quality of the term work including that of the report on experiments assignments. The final certification acceptance of Term work warrants the satisfactory the appropriate completion of the assignments, presentation, book report, group discussion and internal oral the minimum passing marks to be obtained by the students. The following weightage of marks shall be given for different components of the term work.

Attendance: 05 Marks Assignments: 20 Marks

Internal Oral: 25 Marks comprising of:

Presentation of the Project Report: 10 Marks Book Report (one copy per group): 05 Marks

Group discussion: 10 Marks

#### References

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", McGraw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education
- 7. Ghosh,B. N., "Managing Soft Skills for Personality Development", Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, "BCOM", Cengage Learning, 2ndedition
- 9. Bell, Smith, "Management Communication" Wiley India Edition, 3rdedition.
- 10. Dr. Alex, K., "Soft Skills", S Chand and Company
- 11Subramaniam, R., "Professional Ethics" Oxford University Press.
- 12. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 13. https://grad.ucla.edu/asis/agep/advsopstem.pdf

Course Code	Course/Subject Name	Credits
BTE5011	Department Elective I – Biosensors and Diagnostics	4

• Biochemistry, Analytical methods in Biotechnology, Principles of basic instruments used in a Biotechnology laboratory.

## **Course Objectives:**

The objectives of this course is that the students will be able to:

- Explain the role of biological macromolecules as recognition elements & biosensors.
- Describe the biomedical aspects of these sensors.
- Analyse the interplay between materials, components and systems in the field of bio sensing.
- Design an advanced biosensor for medical applications, using the current state of the art of biosensors.
- Describe what challenges are shared among and what challenges are unique to the major biosensor application areas.

#### **Course outcomes:**

By learning this course the students will be able to:

- Apply the principles of engineering to the development ofbioanalytical devices and the design of biosensors
- Explain the principles of linking cell components and biological pathways with energy transduction, sensing and detection.
- Differentiate among various biosensor systems.
- Design a biosensor in response to agricultural, bioenvironmental, food safety, and biosecurity applications.
- Apply engineering and biological approaches to solve problems in diagnosis of diseases, such as diabetes, cancer or detection of other analytes/biomarkers.

Module	Contents	Contact
		Hours
01	Biosensors: Principles, Characteristics of Ideal Biosensors,	08
	Basic measuring procedure, Components of biosensors,	
	Advantages & Limitations	
02	Bio catalysis based biosensors, Bioaffnity based biosensors	09
	&Microorganisms based biosensors, Biologically active	
	material and analyte. Types of membranes used in biosensor	
	constructions.	
03	Various types of transducers, Principles and applications	05
	Calorimetric, Optical, Potentiometric/ Amperometric,	
	Conductrometric/ resistormetric.	
04	Piezoelectric, Semiconductor, Impedimetric, Mechanical and	05
	molecular electronics based transducers, Chemiluminiscene-	
	based biosensors.	
05	Biosensors in clinical chemistry, Medicine and health care,	08
	Biosensors for veterinary, Agriculture and food, Low cost	
	biosensor for industrial processes for online monitoring,	

Biosensors for environmental monitoring.

#### Term Work

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### **References:**

- 1. Roger, K.R. and Gerlach, C.L. 199. Update on environmental for biosensors. Env. Sci. Techno! 33 500A 506A.
- 2. Bilitewski, U. Turner, A.P.F. 2000 Biosensors for environmental monitoring Harwood, Amsterdam.
- 3. Moses, V and Cape, R.E. 1991, Biotechnology the science and business, Harwood, Academic Publisher London
- 4. Rogers, K.R. and Mascini, M. 2001. Biosensors for analytical monitoring EPA biosensors group.
- 5. Aboul Enein, H. V., Stefan, R. and Van Staden, (1999) Chemiluminiscence based biosensors An overview crit Rev. Anal. Chem. 29, 323-331.
- 6. Pearson, J.E. Gill, A., and Vadgama, P. (2000) Analytical aspects of biosensors, Ann Clin Biochem 37, 119-145.
- 7. Biosensors: Fundamentals and applications, Oxford, U.K: Oxford University Press by Turner, A.P.F., Karube, I. & Wilson, GS.

<b>Course Code</b>	Course/Subject Name	Credits
BTE5012	Department Elective I – Biophysics	4

• Knowledge of Chemistry, Physics, Atomic physics, Biochemistry, Molecular Biology.

## **Course Objectives:**

• The objective of this course is to give insight into the structure of various macro-molecules, their constructions, analysis and interactions.

#### **Course outcomes:**

By learning this course the students will be able to:

- Understand how molecules are created and studied.
- They will be able to monitor both in-vitro and in-vivo activity and interactions.

Module	Contents	Contact Hours
01	Introduction to Biophysical Techniques:	10
VI.	Electron Microscopy, Atomic Force Microscopy, X ray	10
	Crystallography, NMR Spectroscopy, Infrared Spectroscopy,	
	Circular Dichroism	
02	Nucleic Acid interactions:	06
	Carrier RNA, Interactions between DNA & protein, Zinc	
	finger proteins, various nucleic acid binding proteins, Nuclear	
	transport.	
03	Membrane Structure & Properties:	06
	The principles governing the structures of biological	
	membrane, Two-dimensional fluids, Assembly of membrane	
	components.	
04	Protein Structural study:	07
	Intra and inter-molecular forces, helix-coil transitions and	
	protein folding in a thermodynamical context, Secondary	
	Motifs, Tertiary Architecture and Quaternary Organization,	
	crystallization, diffraction theory.	
05	Lipids & their Interaction:	06
	Details of Lipid Structures, Lipoproteins and Glycolipids.	
	High density (HDL) and low density (LDL) lipoprotein.	
	Disorder caused by saturated fat and cholesterol,	
	Arteriosclerosis.	

## **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

# **Assessment Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Cantor R, Samual P. R. (1985). Biophysical Chemistry. W. H. Freeman & Co.
- 2. Vasantha Pattabhi, N. Gautham. Biophysics. Narosa Publishing House Ltd.
- 3. Van Holde Johnson and Ho. (2006) Principles of Physical Biochemistry. Second Edition, Pearson Prentice Hall.
- 4. Igor N. Serdyuk, Nathan R. Zaccai, & Joseph Zac. Methods in Molecular Biophysics: Structure, dynamics and Function. Cambridge University Press.
- 5. Physical Biochemistry: Principles and applications by David Sheehan, Jon Wiley & Sons.

<b>Course Code</b>	Course/Subject Name	Credits
BTE5013	Department Elective I – Biostatistics	4

• Knowledge of basic statistical methods

## **Course Objectives:**

- To understand statistics basic theory, philosophy and application of statistics
- To Understand why biologists need a background in statistics in conducting research
- To help students know the role of statistics as a tool for scientists

## **Course outcomes:**

By learning this course the students will be able to:

- Identify and implement statistical techniques and models for analysis of biological data.
- To enable them interpret research.

<ul> <li>01 Descriptive statistics and Probability: Frequency distribution, Measures of Central tendancy, Measures of Dispersion, Basic probability and Bayes theorem.</li> <li>02 Probability and sampling distributions; Discrete probability</li> </ul>	
Measures of Central tendancy, Measures of Dispersion, Basic probability and Bayes theorem.	3
probability and Bayes theorem.	
02 Probability and sampling distributions; Discrete probability 08	
	8
distributions; Continuous probability distributions- Binomial,	
Poisson and normal distributions; Sampling Distributions-	
sample mean, difference between two sample means, Sample	
proportions, difference between two sample proportions.	
03 Estimation; t-distribution; Confidence intervals for 05	5
population mean, difference between two population means,	
population proportion, difference between two population	
proportions, Variance of normally distributed population,	
ratio of variances of two normally distributed populations.	
Determination of sample size for estimating mean and	
proportions.	
04 Hypothesis Testing: Hypothesis testing for - population mean, 05	5
difference between two population means, population	
proportion, difference between two population proportions,	
population variance, ratio of two population variances,	
Type I and II error and Power of test	
05 Analysis of Variance: Completely randomized design, 09	9
Randomized complete block design, repeated measures	
design, factorial experiment. Regression and Correlation:	
Simple linear regression, correlation model, correlation	
coefficient, multiple regression, multiple correlation	
06 Chi square distribution and analysis of frequency, Chi-square 05	<del></del> 5
distribution properties, Test of goodness of fit, independence	
and homogeneity	

#### **List of Tutorials:**

- Descriptive statistics and probability
- Discrete probability distributions
- Continuous probability distributions
- Sampling distributions
- Estimation
- Hypothesis testing
- Analysis of Variance
- Regression and correlation
- Chi square distribution and analysis of frequency

## **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

#### **Internal**

 Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## **Textbooks**

- 1. Biostatistics A foundation for analysis in health sciences by Wayne W. Daniel, Seventh edition, Wiley India
- 2. Fundamentals of Mathematical statistics by S.C.Gupta and V.K. Kapoor, second edition, Sultan Chand Publishers
- 3. Probability and statistics for engineers by J. Ravichandran, Wiley India
- 4. Biostatistics- How it works by Steve Selvin, Pearson Education
- 5. An introduction to Biostatistics by Sunder Rao and J. Richard, third edition, Prentice Hall of India
- 6. Probability and Statistics by Schaum's series

<b>Course Code</b>	Course/Subject Name	Credits
BTE5014	Department Elective I – Pharmaceutical Technology	4

- Knowledge about biochemistry and biochemical pathways in biological systems.
- Knowledge about cell biology and metabolism

## **Course Objectives:**

- To understand the basic aspects of pharmacokinetics and pharmacodynamics.
- To give an insight about the pre-clinical and clinical trials and different classes of drugs.

## **Course outcomes:**

- Students will be able to tell factors affecting the bioavailability and stability of dosage form. They also know the parameters for the disposition, absorption and Michaelis-Menton constants for non-linear kinetics.
- Students will know the fabrication, design, evaluation and application of drug delivery systems.

Module	Contents	Contact
		Hours
01	Introduction To Pharmaceuticals: History & Definition of	04
	Drugs. Sources of Drugs - Plant, Animals, Microbes and	
	Minerals. Drug targets, Intermolecular bonding forces.	
	Classification of Drugs. Naming of Drugs and medicines	
02	Pharmacodynamics and Pharmaco kinetics: Molecules acting	08
	as drug targets: Enzymes, Receptors, Nucleic acid Drug	
	Absorption, Distribution, Metabolism and Excretion	
	(ADME). Modes of drug administration Drug dosing (half-	
	life, steady state concentration, drug tolerance,	
	Bioavailability). Drug delivery system	
03	Finalstages of drug development-trials: Preclinical and	04
	clinical trials, Patenting and regulatory affairs	
04	Medicinal Chemistry: Antibacterial, Anticancer, Antiviral	12
	drugs, Opioid analgesics	
05	Biopharmaceuticals: Production of Therapeutic Proteins,	06
	Hormones, Nucleic acids, Role of Biopharmaceuticals in	
	treatment of various health disorders	

## **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

# **Assessment Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Biopharmaceuticals: Biochemistry & Biotechnology, Gary Walsh (1998), John Wiley &Sons Ltd.
- 2. Medicinal Chemistry by Graham L. Patrick, Oxford University Press
- 3. Remingtons Pharmaceutical sciences, (Mark Publications & Company eston PA) 1980.
- 4. Medicinal Chemistry: an introduction by Gareth Thomas, Wiley Publications
- 5. Theory & Practice of Industrial Pharmacy, (3rd ed.)Leon Lachman, Lea & Febiger (1986)

<b>Course Code</b>	Course/Subject Name	Credits
BTL501	Bioinformatics Lab	1

# **Concept of Experiments:**

Ten experiments must be performed

- Access & use of different databases using NCBI metadatabase.
- To study use of ORF finder to find the correct reading frame.
- To study the characteristics of protein using PROT SCALE.
- To study prediction of coding sequence (CDS) of a gene using NCBI & Genemark and compare the results for percentage accuracy.
- To access & use different online gene & protein alignment softwares.
- Protein structure visualization using 'RASMOL' graphical user interface.
- Protein structure visualization using 'RASMOL' command line interface.
- Secondary structure prediction for amino acid sequences of a given protein.
- Homology modelling of protein using SWISS-PDB modeller.
- To study chemical structure of drugs using Chemsketch & Marvinsketch.
- To find & study phylogenetic relationships among different given species using CLUSTAL OMEGA.
- To study multiple sequence alignment (MSA) tools & compare the results.
- To study BLOCKS using Interpro.
- To study EXPASY tool for protein structure analysis.
- To find and study gene using MAP-VIEWER.

#### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments

<b>Course Code</b>	Course/Subject Name	Credits
BTL502	Genetic Engineering Lab	1.5

## **Concept of Experiments:**

Ten experiments must be performed

- Isolation of Genomic DNA
- Purification and quantification of isolated DNA.
- Separation of DNA by Agarose gel electrophoresis.
- PCR analysis of DNA fragments by agarose gel electrophoresis
- Making the bacterial cells competent
- Transformation of E.coli.
- Isolation of plasmid DNA by boiling lysis method.
- Isolation plasmid DNA by Alkaline lysis method.
- Southern blotting
- Southern Hybridization
- In vitro DNA ligation
- RFLP technique
- Protein Analysis by SDS-PAGE
- Bacterial conjugation
- Bacterial survival against UV irradiation and mutagenesis
- Isolation of mutants, e.g.auxotrophs, by chemical mutagenesis. (Acridineorange/Ethydium bromide)
- β-galactosidase activity of lac+ & lac- mutant of E.coli.
- Primary screening of antibiotic producers from soil

## **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments

<b>Course Code</b>	Course/Subject Name	Credits
BTL503	Lab I	1.5

# **Concept of Experiments:**

Ten experiments must be performed

- Physical method of microbial control.
- Chemical method of microbial control.
- Isolation of bioluminescent organisms.
- Diauxic growth curve of E.Coli.
- Biochemical characterization of microbes (IMVIC test, Catalase, Oxidase test).
- Detection of Amino acid producer from soil.
- Acid fast staining for mycobacteria.
- Study of air microflora& determination of sedimentation rate.
- Blood film preparation and identification of cells.
- Antibiotic susceptibility test.
- E Test
- Blood group typing using haemagglutination tests.
- To detect the antigen/antibody using Enzyme Linked Immuno Sorbent Assay (ELISA)
- To test the pattern of antigen-antibody interaction through Ouchterlony double diffusion assay
- RID
- Lymphoid organs and their microscopic organization
- Separation of mononuclear cells by Ficoll-Hypaque
- VDRL test (Demonstration)
- Immunodiagnostics (demonstration using commercial kits)
- Determination of MIC of antibacterial drugs.
- Identification of AgAb complex by Slide agglutination test

#### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) T.E. Semester VI (w.e.f 2018-2019)

Course code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC601	Food Technology	3	-	1	3	-	1	4
BTC602	Cell & Tissue Culture	4	-	-	4	-	-	4
BTC603	Enzyme Engineering	4	-		4	-	-	4
	IPR, Bioethics and Bio							
BTC604	safety	3	-	1	3	-	1	4
	Process Control &							
BTC605	Instrumentation	3	-	1	3	-	1	4
BTE602X	Elective-II	3	-	1	3	•	1	4
BTL601	Lab-II	-	3		-	1.5	-	1.5
BTL602	Lab-III	-	3	-	-	1.5	-	1.5
	Total	20	6	4	20	3	4	27

		Examination Scheme								
		Theory					Term Work	Pract/ Oral	Oral	Total
Course code	Course Name	Internal Assessment		End Sem Exam	Exam Duratio n (in hrs)					
		Test 1	Test 2	Avg						
BTC601	Food Technology	20	20	20	80	3	25	-	-	125
BTC602	Cell & Tissue Culture	20	20	20	80	3	-	-	-	100
BTC603	Enzyme Engineering	20	20	20	80	3	-	-	-	100
BTC604	IPR, Bioethics and Bio safety	20	20	20	80	3	25	-	-	125
	Process Control &									
BTC605	Instrumentation	20	20	20	80	3	25	-	-	125
BTE602X	Elective-II	20	20	20	80	3	25	-	-	125
BTL601	Lab-II	-	-	-	-	3	-	25		25
BTL602	Lab-III	-	-	-	•	3	-	25	-	25
	Total			120	480	-	100	50		750

Department Elective II (Sem VI)						
Engineering Stream	Advanced Scienc	e Stream	Tech	mology St	ream	
1. Computational Fluid Dynamics	1.Protein	Engineering	1.	Green	technology	
(BTE6021) (BTE6022) (BTE6024)						
	2. Cancer Biology	y (BTE6023)				

<b>Course Code</b>	Course/Subject Name	Credits
BTC601	Food Technology	4

• Basic concepts of Microbiology and Fermentation Technology

## **Course Objectives:**

- To impart knowledge of various areas related to Food science and technology
- To enable the students to understand food composition and its physiochemical, nutritional and microbiological aspects
- To familiarize the students about the processing and preservation techniques of Food products

## **Course outcomes:**

- Students will know the principles of preservation.
- Students will understand the principles of food processing techniques and will be able to apply these principles to specific food commodities.

Module	Contents	Contact
		Hours
01	Introduction to food technology, Constituents of food,	06
	contribution to texture, flavour and organoleptic properties of	
	food; food additives coloring agents, emulsifiers,	
	preservatives, flavours, vitamins, organic acids and their	
	functions; enzymes in food processing	
02	Sources and activity of microorganisms associated with food;	07
	Factors affecting the growth and survival of micro-organisms	
	in foods-intrinsic and extrinsic; Food borne diseases,	
	infections and intoxications, food spoil agecauses. Microbial	
	food- yeasts, bacteria and production of new protein foods -	
	SCP, mushroom, algal proteins	
03	Microbial fermentation and production of food and beverages	07
	using microorganisms. Pickling, Sauerkraut, vinegar, bread.	
	Dairyproduct-Yogurt, cheese production by microbial and	
	enzymatic (proteases) method. Alcoholic beverages-Beer	
	(deoxygenating and desugaring by glucose oxidase of beer,	
	beer mashing and chill proofing), Wine (red, white, sparkling)	
04	Fermentation methods for preserving foods, Preparation of	05
	various food additives like coloring agents, emulsifiers,	
	vitamins, flavours and organic acids	
05	Post Harvest technology for food crops. Food preservation-	05
	high temperature methods, low temperature methods,	
	irradiation, high pressure method and chemical preservatives.	
	Production of Fruit juices and types of Fruit juices	
06	Food Packaging methods:	05
	Materials used for food packaging of various food products	
	like cheese, eggs, bread, alcoholic beverages, milk and juices	

## **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which

are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

#### Internal

 Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Frazier, Food Microbiology, Tl-IM Publications.
- 2. Heller, Genetic Engineering of Food: Detection of Genetic Modifications-Wiley Publications.
- 3. Le.A. et.al., Microorganism & Fermentations- N.Y. Chemical
- 4. Rehm, Biotechnology Set Wiley Publications
- 5. M. R. Adams and M. O. Moss, Food Microbiology, Royal society of chemistry
- 6. James M. Jay, Modern food microbiology, An Aspen Publications
- 7. Prescott and Dunn, Industrial Microbiology, CBS Publications.

<b>Course Code</b>	Course/Subject Name	Credits
BTC602	Cell and Tissue Culture	4

 Basic knowledge of Cell Biology, Microbiology and Plant and Animal Physiology

## **Course Objectives:**

- To examine and analyse practical and theoretical principles of cell culture
- To explain the conditions under which cells can be cultured outside the body.
- To explain the advantages and limitations of cell culture in biomedical research and applications.

#### **Course outcomes:**

By learning this course the students will be able to:

- Plan experiments using cultured cells.
- Carry out cell culture, and associated laboratory techniques.
- Carry out the most common analysis techniques associated with cell culture.
- Perform adequate statistical processing of data generated by cell culture.
- Present and analyse literature which covers cell culture.

Module	Contents	Contact Hours
01	Plant tissue culture Introduction:	08
01	Internal organization of plant, Plant Tissue Culture Media,	00
	Plant growth hormones, Concept of Totipotency, Study of	
	various types of Organ Culture, Organogenesis,	
	Micropropagation	
02	Plant Cell Culture And its Applications:	08
	Plant Cell Suspension Culture, Single Cell Culture, Somatic	
	Embryogenesis, Artificial Seeds, Protoplast Culture & Somatic Hy	
	bridization, Scale-up and Automation of Plant Cell Culture	
03	Transformation of Plants:	06
	Agrobacterium mediated Gene transfer, Chemical Methods,	
	Virus Mediated Gene Transfer, Transgenic Plants,	
	Applications of Plant Biotechnology for Production of	
	Quality Oil, Industrial Enzymes and Plantibodies	
04	Introduction to Animal Cell Culture: Advantages and	08
	limitations of Animal Tissue Culture, Laboratory Design &	
	Layout of ATC laboratory, Equipments and Materials of a	
	Tissue Culture Laboratory, Media Preparation and	
0.5	Sterilization techniques,	0.7
05	Primary and secondary cell Culture:	05
	Establishment and maintenance of primary cell cultures of	
	adherent and non-adherent cell lines, Establishment and	
06	maintenance of seconary and continuous cell cultures.	0.5
06	Characterization of cell lines:	05
	Cell morphology, Chromosome preparation and analysis,	
	karyotyping, chromosome banding, Chromosome painting, Spectral karyotyping (SKY). DNA analysis- DNA	
	Spectral karyotyping (SKY). DNA analysis- DNA	

	hybridization, DNA fingerprinting	
07	Application of cell culture:	05
	Vaccine production, Antibody Engineering and large scale	
	production of pharmaceutical products, Production of	
	cytokines and therapeutic recombinant glycoproteins.	

#### **Assessment**

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Plant Tissue Culture: Theory and Practice :Theory and Practice By S.S. Bhojwani, M.K. Razdan; Elsevier Publishers
- 2. Plant Tissue Culture by Kalyan Kumar De; Published by New Central Book Agency, 1997
- 3. Plant Tissue and Cell Culture; Volume11 of Botanical monographs, by Herbert Edward Street; Publisher: University of California Press, 1973
- 4. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications By R. Ian Freshney; Wiley Publishers
- 5. Animal Cell Culture (Introduction to Biotechniques): Sara j.Morgan, David C. Darling; Published by BIOS Scientific Publishers Ltd., 1993
- 6. Principles and Practice of Animal Tissue Culture Sudha Gangal.
- 7. Basic Cell Culture Vol. 290 Protocols by Cheryl D Helgason, Cindy L Miller. Humanan Press. 2005.
- 8. Basic Cell Culture 2nd Edition by JM Davis Oxford University Press.2002.
- 9. Biotechnology by B. D. Singh: Expanding horizons. Kalyani Publishing. 2008.
- 10. Animal Cell Culture & Technology by M. Butler, Published by Taylor & Francis publishers.

<b>Course Code</b>	Course/Subject Name	Credits
BTC603	Enzyme Engineering	4

• Knowledge of Biochemistry, Microbiology & Molecular Biology.

## **Course Objectives:**

The objectives of this course are to:

- Give insight into the functioning of Enzyme molecules (Biological Catalyst), their constructions, Structure, interactions with other cellular molecules, and the process of catalysis.
- Students will learn to use such molecules for making of difficult biomolecules.
- They will also be able to understand Industrial uses and applications of Enzymes.

#### **Course outcomes:**

By learning this course the students will be able to:

- Understand how Enzymes are created as functional bio-catalysts, analysed with respect to their effciencies, their lability, and ways to make them durable.
- They also will be familiar with the problems they could encounter and how to trouble shoot them.
- They will be able to monitor both in-vitro and in-vivo activity.

Module	Contents	Contact
01	Enzymes as Biological Catalysts, Chemical nature & Structure of Enzymes, Properties of enzymes, Enzyme Units, Nomenclature & Classification, Catalytic and Allosteric site, Models of Enzyme-substrate interactions, Activation Energy and catalysis, Effect of pH, Temperature and Salts on Enzyme activity	Hours 08
02	Enzyme Kinetics: Henri & Michaelis-Menten Equation & its significance, Briggs Haldane modification, Line weaver-Burke, Eadie-Hofstee & Hanes plot, Problems. Enzyme Inhibition: Irreversible & Reversible (Competitive, Uncompetitive, Noncompetitive, Mixed, Partial), Substrate Inhibition, Allosteric Inhibition.	11
03	Enzyme Assay: Kinetic determination of catalytic activity, Coupled kinetic assay, Radioimmunoassay. Instrumental techniques for Enzymatic Analysis: Manometry, Spectrophotometry, Spectrofluorimetry, Electrochemical methods (Potentiometric & Conductometry) Enthalpimetry, Radiochemical methods, Dry reagent techniques.	06
04	Working with Enzyme: Isolation & Extraction of Enzymes from various sources and locations in cell.  Purification of Enzymes: Preliminary purification, further purification using chromatography & electrophoresis Criteria of Purity: Specific Activity, Electrophoresis, And	08

	Ultracentrifugation. Immobilization of Enzyme for repeat use.	
05	Solid-liquid reactors for enzymes: Types of heterogeneous reactors and its design criteria (CSTR, PFR, PBR, FBR etc.), Operational problems, Decline and loss of enzyme efficiency, Remedies.	07
06	Application of Enzyme in Industries: Food, Leather, Beverage, Detergents, Pharmaceuticals and Medicines, Analytical/ Diagnostics and Biosensors, Therapeutics.	05

#### Assessment

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Enzymes-Palmer; T, (Affliated East West Press Pvt. Ltd.), 2004.
- 2. Biochemistry- Stryer, Berg, 6thEdition, (W.H. Freeman and Co.), 2007.
- 3. Biochemistry-Metzler; DE, 2nd Edn., (Academic press) 2001.
- 4. Lehninger Principles of biochemistry-Nesson, Cox, 4th Edn., (W.H. Freeman and Co.), 2005.
- 5. Biochemistry Voet & Voet; J, 3rd Edn. (John Wiley and sons Inc.), 2004.
- 6. Outlines of Biochemistry-Conn; E,Stumpf, 5thEdn.(Tata-McGraw Hill), 1988.
- 7. Enzyme Biotechnology- Tripathi; G, (ABD Publishers), 2003.
- 8. Enzyme Technology, M.F. Chaplin and C. Bucke. Cambridge University Press
- 9. Industrial Enzymes & their applications, H. Uhlig, (John Wiley and Sons Inc.)

<b>Course Code</b>	Course/Subject Name	Credits
BTC604	IPR, Bioethics and Biosafety	4

• Knowledge of materials to be classified as biohazard, knowledge about current scenario of biotechnological issues.

## **Course Objectives:**

- Tounderstandthelawsgoverningbiotechnologyandrelatedfieldatnationalandint ernational level.
- To gain knowledge about safety precautions necessary during biotechnological work.
- To understand the ethical perspective of handling biomaterials

#### **Course outcomes:**

- To be aware of rules and regulations setup at international level for various biotechnology related work so that any further research can be formulated accordingly.
- Toknowthesocialandlegalstateofthesocietywithrespecttogeneticallyengineere dproducts or other outcomes of biotechnology.
- Work according to the safety precautions set up by international bodies while handling bio hazardous material.

Module	Contents	Contact Hours
01	Introduction to Intellectual Property:	10015
V1	Concept of Intellectual Property, Kinds of Intellectual	10
	Property: Patents, Copyrights, Designs, Trademarks,	
	Geographical Indication. Infringement of IPR, its protection	
	and remedies. Licensing and its types.	
02	International Scenario:	05
	Introduction to the leading international instruments	
	concerning intellectual property rights: The Berne	
	Convention, GATT, WTO, Indian Patent Act, Universal	
	Copyright Convention, The Paris Convention, TRIPS, The	
	World Intellectual Property Rights Organization (WIPO),	
	Budapest treaty	
03	Patents:	06
	Requirement of patentable novelty, inventive step, prior art	
	Classifying products as patentable and non-patentable	
	Procedure for applying for patent, Patent Infringement and	
	related case studies, Biological Patentability.	
04	IPR and Biotechnology:	04
	Biopiracy and Bioprospecting, Farmers Rights and Plant	
	breeders rights, Biodiversity, CBD	
05	Biosafety:	06
	Good Lab Practices, Introduction to Biological Safety	
	Cabinets, Primary Containment for Biohazards, Biosafety	
	Levels, GMOs, LMOs and their environmental impact, Roles	
	of Institutional Bio safety Committees: RCGM, GEAC etc.	
	for GMO applications in food and agriculture, Risk analysis,	

	assessment and management.	
06	Bioethics:	04
	Bioethical issues related to Healthcare & medicine, Food&	
	agriculture, Genetic engineering. The Human Genome Project	
	and Genetic Testing, Environmental problems.	

#### **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

## Assessment

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. IPR, Bio safety and Bioethics by Deepa Goel and Shomini Parasha
- 2. Intellectual property rights by Dr. Reddy

<b>Course Code</b>	Course/Subject Name	Credits
BTC605	<b>Process Control and Instrumentation</b>	4

 Knowledge of Laplace Transforms, Knowledge of differentiation and Integration

# **Course Objectives:**

- To understand the basic concepts of process parameter control
- To understand the closed loop and open loop control system
- To carry out the stability analysis for a given process

## **Course outcomes:**

- Student will be able to design the process control of a parameter.
- Student will be able to carry out the stability analysis for a process.

Contents	Contact
	Hours
	05
•	
• •	
•	
	05
· · · · · · · · · · · · · · · · · · ·	0.0
pulse, impulse and sinusoidal changes in input, conceptual	
numericals.	
Firs torder systems in series:	04
Interacting and non-interacting systems and their dynamic	
· · · · · · · · · · · · · · · · · · ·	05
· · · · · · · · · · · · · · · · · · ·	
	05
	US
Closed loop control systems:	04
Block diagrams for servo and regulatory problems. Transient	
response of first and second order processes for set point	
	Instrumentation: Instrumentation principles, Introduction to temperature and liquid level measurements, measurement of important physico-chemical and biochemical parameters, methods of on-line and off-line biomass estimation, flow injection analysis for measurement of substrates, products and other metabolites.  First order systems: Process characteristics, Laplace transforms, first order systems examples, mercury in glass thermometer, liquid level system, linearization, response of first order system for step, pulse, impulse and sinusoidal changes in input, conceptual numericals.  First order systems in series: Interacting and non-interacting systems and their dynamic response to step, pulse and impulse inputs; conceptual numericals.  Second order systems: Second order systems with transfer functions (spring-damper, control valve, U-tube manometer), response of second order system to step, pulse/ impulse and sinusoidal input Overdamped, underdamped and critically damped condition of second order system, transportation lag.  Controllers and final control elements: Actuators, Positioners, Valve body, Valve plugs, Characteristics of final control elements, controllers two position control, proportional control, derivative control, integral control, P-I (proportional-integral) control, P-D(proportional-derivative) control, P-I-D (proportional-integral) control, P-D(proportional-derivative) control, conceptual numericals.  Closed loop control systems: Block diagrams for servo and regulatory problems. Transient

	changes and load changes with proportional and PI	
	controllers, conceptual numericals.	
07	Controller design ands tability:	05
	Criteria for stability, Routhtest; Root locus analysis,	
	Introduction to frequency response, Qualitative discussion	
	about Bode criteria and Nyquist criteria, Controller tuning-	
	Gain & Phase margin; Conceptual numerical on Routh test,	
	Root locus and Bode plot.	
08	Bioprocesses dynamics and control:	03
	Dynamics and control of bioreactors & sterilizers. On-line	
	data analysis for state and parameter estimation, techniques	
	for biochemical processes, Complex control strategies such as	
	feed forward, cascade, adapter, supervisory, multivariable	
	controls and their application for optimum controls.	

## Term Work

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Coughnanowr, Process Systems Analysis and Control.
- 2. Stephanopoulos, G., Chemical Process Control, Prentice Hall of India., 1990.
- 3. Richardson, J. F., Peacock, D. G., Coulson & Richardson's Chemical Engineering, Vo. 3., ed. 3., Asian Books Pvt. Ltd, New Delhi, 1994.
- 4. William L. Luyben, Process Modeling Simulation and Control for Chemical Engineers, McGraw Hill International Edition. 1990.
- 5. B.Wayne Bequette Process Control Modeling, Design and Simulation, Prentice Hall of India Pvt. Ltd.

<b>Course Code</b>	Course/Subject Name	Credits
BTE6021	<b>Department Elective II- Computational Fluid</b>	4
	Dynamics	

- Linear Algebra
- Partial Differential Equations
- Scilab or Python

# **Course Objectives:**

- To understand the formulation of CFD problems
- To discretize the problems
- To solve the set of equations in simple cases using Scilab routines.
- To understand and use software in CFD

## **Course Outcomes:**

- The student will be able to obtain flow profiles for some simple applications using Scilab.
- The student will be able to use appropriate software for solving realistic problems.

Module	Contents	Contact
		Hours
1	Module: Introduction	02
	Contents: Advantages of Computational Fluid Dynamics	
	Typical Practical Applications	
	Equation Structure	
	Overview of CFD	
2	Module: Preliminary Computational Techniques	04
	Contents: Discretisation	
	Approximation to Derivatives	
	Accuracy of the Discretisation Process	
	Wave Representation	
	Finite Difference Method	
3	Module: Theoretical Background	06
	Contents: Convergence	
	Consistency	
	Stability	
	Solution Accuracy	
	Computational Efficiency	
4	Module: Weighted Residual Methods	08
	Contents: General Formulation	
	Least Squares, Galerkin and Subdomain Formulations.	
	Weak form of Galerkin Method	
5	Module: Finite Element Method	08
	Contents: Piece-wise Continuous Trial Functions	
	One Dimensional Linear and Quadratic Elements	

	One Dimensional Heat Transfer	
	Tri-diagonal Matrix Algorithm	
6	Module: Two Dimensional Elements	08
	Quadrilateral Elements	
	Steady State Heat Transfer in Two Dimensions	
	Alternating Direction Implicit Method	
	Potential Flow in Two Dimensions	
7	Module: Finite Volume Method	06
	One Dimensional Diffusion	
	Two Dimensional Diffusion	
	Diffusion With Convection and The Upwind Scheme	
8	Module: Pressure Velocity Coupling in Steady Flows	06
	The Staggered Grid	
	The Momentum Equation	
	The Simple Algorithm	

## **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### **Assessment**

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## **Text Books**

- 1. C.A.J. Fletcher; Computational Techniques for Fluid Dynamics 1; Springer-Verlag Berlin Heidelberg GmbH
- 2. P. Seshu; Textbook of Finite Element Analysis; PHI Learning Private Limited, New Delhi
- 3. H.K. Versteeg and W. Malalasekera; An Introduction To Computational Fluid Dynamics; Longman Scientific & Technical

#### References

1. John D. Anderson; Computational Fluid Dynamics; McGraw Hill Education Private Limited

Course Code	Course/Subject Name	Credits
BTE6022	Department Elective II- Protein Engineering	4

 Knowledge of Biochemistry, Recombinant DNA Technology and Enzyme Engineering

## **Course Objectives:**

- Imparting knowledge about structure function relationships of proteins
- Studying the problem of protein folding and methods of characterization folded proteins
- Aspects of Protein Engineering in the industry

#### **Course outcomes:**

- At the end the student would have learned:
- Structure and Function relationship in proteins and its application in designing proteins
- Process of engineering proteins to increase its value by assisting folding, purification
- Protein engineering of therapeutic proteins, industrially important enzymes and antibodies.

Module	Contents	Contact Hours
01	Primary, Secondary, Tertiary and Quaternary Structure of Proteins,	06
	Bonds that stabilize a protein molecule,	
	Ramchandran Plot.	
	Protein folding pathways and Energy Status of a Protein	
	Molecule, Protein Degradation in the cell	
02	Techniques involved in studying protein structure:	07
	Methods of protein crystallization.	
	Methods to study the quaternary structures of proteins: X-	
	ray Crystallography, NMR Spectroscopy.	
	MALDI-TOF, ESI-MS	
03	Structure Function Relationships in Proteins:	06
	Helix-turn-Helix motif in DNA binding and homeo	
	domain protein, Zinc fingers, Leucine zippers.	
	Membrane proteins: General characteristics,	
	Transmembrane segments, bacteriorhodopsin and	
	Photosynthetic reaction center	
04	Concepts of designing a new Protein Molecule:	06
	Chemical synthesis of peptides.	
	Target molecules for Protein Engineering.	
	The protein cycle and steps involved in Engineering a new	
	Protein.	
	De novo protein design	
05	Applications of Protein Engineering:	10
	Protein Engineering to enhance the solubility and assist	

folding of expressed proteins.

Protein Engineering to assist purification of expressed proteins.

Role in Vaccine Development.

Engineering blood clotting factors:f actor VIII.

Engineering enzymes: tyrosyl- t RNA synthase.

Engineering therapuetic hormones: insulin.

Engineering humanized antibodies

## **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

## **Assessment**

#### Internal

 Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## References

- 1. Lilia Arbenghina; Protein Engineering in Industrial Biotechnology; Harwood Academic Publishers
- 2. Creghton TE; Proteins Function, A Practical Approach; Freeman WH, Second Ed, 1993
- 3. Branden C. And Tooze J.; Introduction to Protein Structure; Second Edition, Garland Publishing, NY, USA, 1999
- 4. Moody PCE, and A.J. Wilkinson; Protein Engineering; IRL Press, Oxford, 1990
- 5. Walsh.G; Protein Biotechnology and Biochemistry; 2nd ed.; Wiley Publications
- 6. Klaus Demobowsky, Novel Therapeutic Proteins; Wiley Publications
- 7. Voet D. and Voet G.; Biochemistry' Third Edn. John Wiley and Sons, 2001

<b>Course Code</b>	Course/Subject Name	Credits
BTE6023	Elective II- Cancer Biology	4

 Knowledge of Biochemistry, Cell biology, Immunology, Molecular biology, Genetic Engineering

# **Course Objectives:**

- Studying cellular and molecular mechanisms that are deregulated in cancerous cells.
- Contribution of Genetic mutation in the development of cancer
- Environmental factors influencing susceptibility of cancer
- Treatment modalities i.e traditional chemotherapies and novel targeted therapeutic approaches
- Genetic Engineering technologies to understand cancer prevention, diagnosis, and treatment

## **Course outcomes:**

- By the end of the course, students should be able to describe the:
- Process of tumorigenesis at the molecular and cellular level.
- Cell cycle regulatory mechanisms in normal and tumor cells
- Role of oncogenes and tumor suppressor genes and their genetic alterations in cancer formation.
- Importance of apoptosis in normal and tumor cells
- Tumorigenesis, angiogenesis, and metastasis.

Module	Contents	Contact			
		Hours			
01	Control of Cell proliferation, Cell Cycle and Cell Death:				
	Process of Cell cycle, tumor suppressor genes, Cell cycle				
	control and pRb tumor suppressor. Apoptosis and p53 tumor				
	suppressor gene. Introduction to different forms of cancers.				
02	Mutagens, carcinogens, and mutations:	08			
	Chemical Carcinogenesis, Metabolism of Carcinogenesis,				
	targets of Chemical Carcinogenesis,				
	Physical carcinogens - X-Ray radiation - Mechanism of				
	radiation Carcinogenesis.				
	DNA repair mechanisms – DNA repair defects and their				
	relationship to cancer.				
	Gene mutations and deregulation in cell signal pathway				
03	Oncogenes, growth factors, receptors and cancer:	08			
	Identification of Oncogenes, Retroviruses and Oncogenes,				
	detection of Oncogenes,				
	Role of growth factors and receptors in carcinogenesis, RAS,				
	NFkB, Wnt signaling in cancer.				
04	Tumor Invasion and Metastasis:	07			
	Metastatic cascade, Basement membrane disruption, Three				
	step theory of invasion, Proteinases and tumour cell invasion.				
	Multi-step tumorigenesis and the evolution of cancer.				

05	Cancer treatment modalities:	06		
	Different forms of therapy- Chemotherapy, Radiation Therapy,			
	Immunotherapy, commonly used cancer diagnostic and			
	prognostic molecular markers,			
	Novel targeted therapeutic approaches.			

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

## **Assessment**

## Internal

 Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. King R.J.B., "Cancer Biology", Addision Wesley Longmann Ltd, U.K., 1996
- 2. Ruddon. R.W, "Cancer Biology", Oxford University Press, Oxford, 1995, 2007.
- 3. Robert Allan Weinberg, "The Biology of Cancer", Volume 2, Garland Science, 2007.

<b>Course Code</b>	Course/Subject Name	Credits
BTE6024	Department Elective II- Green Technology	4

• Basics of physics, chemistry, biochemistry, and microbiology

# **Course Objectives:**

- Green Technologies is a highly interdisciplinary degree program that emphasizes green systems and the environment, energy technology and efficiency, and sustainability and society. The objective of this course is to:
- Seek opportunities for alternative sourcing, conservation, efficiency and repurposing through an understanding of product life cycles from origins to recycling or inevitable disposal.
- To design products, processes and complex infrastructure systems to promote sustainable attributes of importance to the environment and the global community.
- To combine technical and scientific skills with an understanding of the environment, renewable energy management, waste utilization, resource management and land based industries who can contribute to the national and global development.

# **Course outcomes:**

- To understand the principles of green chemistry and engineering.
- To design processes those are benign and environmentally viable.
- To design processes and products those are safe and hazard free.
- To learn to modify chemical processes making hazardous products and make them green safe and economically acceptable by using biotechnology.

Module	Contents				
		Hours			
01	Fundamentals of Green Chemistry and Technology- Principles	05			
	of Green Chemistry and technology, green chemistry metrics				
	(atom economy, atom efficiency, E-factor, and other green				
	chemistry metrics)				
02	Catalysis- Introduction to catalysis, Catalytic cycle, TON, TOF,	03			
	bio-catalysis				
03	Industrial Safety and Hazard analysis- Introduction to ISO	10			
	standards, hazard identification, life cycle analysis, and safety				
	aspects related to transport, handling and storage of hazardous				
	chemicals. green technologies for addressing the problems of				
	Water, Energy, Health, Agriculture and Biodiversity- WEHAB				
	(eco-restoration/ phyto-remediation, ecological sanitation,				
	renewable energy technologies, industrial ecology, agro ecology				
	and other appropriate green technologies, global warming;				
	greenhouse gas emissions, impacts, mitigation and adaptation				
04	Green processes- Microwave assisted reactions, ultra-sonication	04			
	assisted reactions, ionic liquids as solvent, water as a reaction				
	medium, solvent free reactions, supercritical solvents, safe				
	product and process design, case studies				
05	Advances in separation process- Adsorption, Distillation,	04			

	filtration, membrane separation, precipitation, crystallization	
06	Green Biotechnology- Green concepts in biotechnology, organic synthesis using supported microbes and enzymes in biopharmaceuticals/ bio refineries, bioreactor designs, downstream processing.	04
07	Green Nanotechnology - Nanomaterials for water treatment, nanotechnology for renewable energy, nanotechnology for environmental remediation and waste Management, nanotechnology products as potential substitutes for harmful chemicals, environmental concerns with nanotechnology	05

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

### Assessment

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Green Chemistry An introductory text M. Lancaster, RSC
- 2. Industrial catalysis optimizing catalysts and processes R J Wijngarden Wiley VCH
- 3. Safety and Reliability of Industrial Products, Systems and Structures C. Guedes Soares (Eds), CRC Press
- 4. Green separation processes- C. A. M. Afonso, J. G. Crespo (Ed)- Wiley VCH
- 5. Industrial biotechnology- sustainable growth and economic success- Wilm Soetaert Reic J Wandamme- Wiley VCH
- 6. Energy, Ecology and the Environment, Academic Press Inc, B. R Wilson & W J Jones, 2005

<b>Course Code</b>	Course/Subject Name	Credits
BTL601	Lab-II	1.5

## **Concept for Experiments**

A minimum of TEN experiments must be performed

- Maintenance of asceptic condition in PTC Lab
- Medium Preparations
- Callus induction and Regenerations
- Callus propagation
- Organogenesis
- Haploid Culture
- Embryo Culture
- Somatic Embryogenesis
- Suspension Culture
- Anther culture for production of haploid plants
- In vitro seed germination
- Inoculate the tissue culture raised shoots on suitable medium for in vitro rooting
- Hardening and acclimatization of in vitro raised rooted shoots
- Hairy root induction by Agrobacterium tumefaciens
- seed anti-mitotic assay
- Meristem culture for obtaining Virus free plants
- Effect of plant growth regulators on callus induction : effect of hormone variation
- Encapsulate the shoot buds, seeds to demonstrate the production of synthetic seeds
- Sterilization procedures and media preparation for Animal Cell cultures
- Establishment of Primary cell culture from chick embryo
- Animal cell culture: viable cell counting by Haemocytometer

## **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
BTL602	Lab-III	1.5

# **Concept for Experiments**

A minimum of TEN experiments must be performed

- Isolation of enzyme from a plant source
- Isolation of enzyme from an animal source
- Isolation of intracellular enzyme
- Determination of specific activity of enzyme
- Determination of the optimum pH & temperature of enzyme
- Determine the stability of enzyme
- Immobilization of enzyme
- Determination of kinetic parameters (Km and Vmax)
- Purification of enzymes
- Studies of various enzyme reactors
- Bacteriological testing of milk (MBRT)
- Estimation of Calcium by EDTA method
- Isolation and separation of chloroplast by sucrose density gradient centrifugation
- Production of Grape wine and is biochemical analysis
- Determination of starch and sugar in plant tissue
- Clarification of fruit juices
- Study of pectinase activity
- Primary screening of Amylase producing bacteria and fungi from soil

### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) B.E. Semester VII (w.e.f 2019-2020)

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	Bioseperation & Downstream Processing Technology-I	4	-	1	4	-	1	5
	Bioprocess Modelling and Simulation	4	-	1	4	-	1	5
BTC703	Agriculture Biotechnology	3	-	1	3	-	1	4
	Department Elective III	3	-	1	3	-	1	4
ILO701X	Institute Level optional Subject I	3	-	-	3	-	-	3
BTP701	Project A	-	-	6	-	-	3	3
BTL701	Lab - IV	-	3	-	-	1.5	-	1.5
BTL702	Lab - V	-	3	-	-	1.5	-	1.5
	Total	17	6	10	17	3	7	27

		<b>Examination Scheme</b>								
			Theory				Term Work	Pract/ Oral	Oral	Total
Course code	Course Name		Internal Assessment		End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
	Bioseperation& Downstream Processing Technology-I	20	20	20	80	3	25	_	-	125
	Bioprocess Modelling and Simulation	20	20	20	80	3	25		_	125
BTC703	Agriculture Biotechnology	20	20	20	80	3	25	-	-	125
BTE703X	Department Elective III	20	20	20	80	3	25	-	-	125
ILO701X	Institute Level optional Subject I	20	20	20	80	3	-	1	-	100
BTP701	Project A	-	-	-	-	-	100		50	150
BTL701	Lab - IV	ı	-	•	-	-	-	25	-	25
BTL702	Lab - V		-	•	-	-	-	25	-	25
	Total			100	400	-	200	50	50	800

Department Elective III (Sem VII)							
Engineering Stream Advanced Science Stream Technology Stream							
1. Stem Cell & Tissue	Stem Cell & Tissue 1. Operation research in						
Engineering (BTE7031)							
	2. Project Management (BTE7033)						

Institute Level Optional Subject I (Sem VII)							
1. Product Lifecycle	4. Design of Experiments	7. Disaster Management and					
Management (ILO7011)	(ILO7014)	Mitigation Measures (ILO7017)					
2. Reliability Engineering	5. Operation Research	8. Energy Audit and Management					
(ILO7012)	(ILO7015)	(ILO7018)					
3. Management Information	6. Cyber Security and Laws	9. Development Engineering					
System (ILO7013)	(ILO7016)	(ILO7019)					

Course Code	Course/Subject Name	Credits
BTC701	Bio separation and Downstream Processing	5
	Technology-I	

- Basics of Bioprocesses and Unit Operations
- Basic knowledge of mass balance
- Concepts of molecular diffusion and diffusion coefficients

# **Course Objectives:**

• To cover the fundamentals, and design concepts of various downstream purification steps (unit operations) involved in a biochemical process.

## **Course outcomes:**

• Students will be able to describe theory, principle, design, application and possible integrations of unit operations in bioprocessing.

Module	Contents	Contact
01	Introduction to Dy products and Die concretions	Hours 04
01	Introduction to By-products and Bio separation:	04
	Range and characteristics of bio products, Characteristics of	
	Fermentation Broth, Selection of unit operation with due	
	consideration of physical, chemical and biochemical aspect	
02	of biomolecules. Stages of Downstream Processing	0.7
02	Product release and recovery processes:	05
	Fundamental principles of obtaining the product from cell	
	cultures: intracellular vs. extracellular product.	
	Cell disruption-Physical, Chemical and Enzymatic methods	
	of cell disruption, Mechanical Cell disruption methods: High	
	pressure Cell Homogenizer, Bead Mill, Sonication	
03	Primary Separation:	09
	Removal of insolubles and Biomass (and particulate debris)	
	separation techniques, Flocculation and sedimentation,	
	Centrifugation-Ultracentrifugation, Gradient centrifugation,	
	Filtration: Theory of Filtration, Pre-treatment of	
	Fermentation Broth, Filter Media and Equipment,	
	Conventional and Cross-flow Filtration, Continuous	
	Filtration, Filter cake resistance, specific cake resistance,	
	Washing and dewatering of filter cakes	
04	Gas Absorption:	10
	Solubility of gases in liquids, Effect of temperature and	
	pressure on solubility, Ideal and Non-ideal solutions, Choice	
	of solvent for gas absorption, absorption factor, stripping	
	factor, minimum gas liq ratio, Single stage gas absorption-	
	Cross Current, Co- current, Countercurrent, Multistage	
	Counter current Operation, Absorption with Chemical	
	Reactions,	
	Related problems	
05	Liquid-Liquid Separation Process:	10
	Introduction to Liquid-Liquid Extraction, Choice of Solvent	
	for Liquid-Liquid Extraction, Binodal solubility curve,	

	Single Stage Operation, Equipments for liquid-liquid	
	extraction.	
	Types of extraction processes: Reactive extraction, Aqueous	
	two phase systems, Reverse micellar extraction, Liquid-	
	liquid and solid-liquid extraction, Supercritical fluid	
	Extraction.	
	Design of extraction equipment. Different types of extractors	
	and designing of extractors.	
	Distillation: Simple, Steam and Equilibrium distillation,	
	Fractionation, Mccabe Thiele method, azotropes, numericals	
06	Leaching and Precipitation:	07
	Leaching: Representation of equilibria, single stage leaching,	
	and multistage cross current leaching, multistage counter	
	current leaching, equipments for leaching.	
	Precipitation: Protein Precipitation methods: Isoelectric	
	precipitation, Salting out, Organic solvent addition, Non-	
	ionic polymers, Polyelectrolyte Addition, Selective	
	denaturation of unwanted proteins, Large scale precipitation,	
	Applications	

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

## Assessment

## Internal

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Treybal R.E., Mass transfer operation, 3 Ed., McGraw Hill New York, 1980
- 2. McCabe W. L.and Smith J.C., Unit operation in chemical engineering, 5Ed., McGraw Hill New York 1993.
- 3. Geankoplis C.J., Transport processed and unit operations, Prentice Hall, New Delhi 1997.
- 4. Roger G. Harrison, Paul Todd, ScottR. Rudge, Demetri P. Petrides, Bioseparations Science and Engineering, Oxford University Press
- 5. B.Shivshankar, Bioseparations: Principles and Techniques, Eastern Economy

- Edition, PHI Learning Pvt. Ltd., Publishing House, New Delhi, 2012
- 6. Bioseparation & bioprocessing (2nd Ed.) 2-Volume set, Ed SUBRAMANIAN Ganapathy, Wiley-VCH, (09-2007)
- 7. P.A. Belter, E.L. Cussler and Wei-Shou Hu., Bioseparations-Downstream Processing for Biotechnology, Wiley Interscience Publication, 1988.
- 8. J.E. Baileyand D.F. Ollis, Biochemical Engineering Fundamentals, 2nd Edition, McGraw Hill, Inc., 1986.
- 9. R. K. Scopes, Berlin, Protein Purification: Principles and Practice, Springer, 1982.
- 10. Scopes Ak, Protein Purification, IRL Press, 1993
- 11. Biotechnology: Bioprocessing, Rhem and Reed, Vol. 3, 1993
- 12. Separation and purification techniques in biotechnology, Fredreich Dechow, 1989
- 13. Asenjo J.A. and J.Hong (Eds), Separation Processes in Biotechnolgy, Taylor and Francis
- 14. T. Schepler et al, Biotreatment, Downstream Processing and Modeling (Advances in Biochemical Engineering /Biotechnology, Vol 56) by Springer Verlag

<b>Course Code</b>	Course/Subject Name	Credits
BTC702	<b>Bioprocess Modelling and Simulation</b>	5

- Knowledge of Fundamental Laws of Physics
- Knowledge of basic Mathematics
- Knowledge of Reactors and its types
- Knowledge of production of various fermentation products

# **Course Objectives:**

- To understand the mathematical models in Biochemical Engineering systems
- To learn about different apects of modelling in Bioprocess system
- To learn various techniques to solve and simulate various bioprocess models

# **Course outcomes:**

- Students will be able to formulate model for biochemical System.
- Students will be able to solve Biochemical models

Module	Contents	Contact
		Hours
01	Basic Modelling Principles: Introduction, definetion of Modelling and simulation, different types of models, application of mathematical modelling. Fundamental laws: continuity equation, energy equation, equation of motion, transport equation, equation of state, Phase and chemical equilibrium, chemical kinetics with examples	08
02	Mathematical Models for Biochemical Engineering Systems: Batch Reactor, CSTR isothermal with cooling/heating jacket or coil, Continuous Stirred Tank Bioreactor, Fed Batch reactor, Batch distillation	08
03	Numerical Methods: Solution of linear algebraic equations by Cramer's rule, Gauss elimination, Gauss siedel iterative method. Solution of Non algebraic equations by Bisection method, Newton Raphson, Secant Method. Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, Euler's method, Runga Kutta method, Basic data analysis-curve fitting	10
04	Modelling approaches for Biological systems Growth kinetic Models - structured and unstructured systems; Compartment models; Deterministic and stochastic approaches for modelling structured systems. Thermal death kinetics models, Stochastic Model for thermal sterilization of medium.	10
05	Modelling for activated sludge process, Model for anaerobic digestion, Model for lactic acid fermentation, antibiotic production, Ethanol fermentation	09

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

### **Internal**

 Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. J.E. Baileyand, D.F. Ollis, Biochemical Engg Fundamentals, 1986, McGraw Hill Book Company
- 2. Said S.E.H. Elnashaie, Parag Garhyan, Conservation Equations and Modeling of Chemical and Biochemical Processes, 2003, Marcel Dekker
- 3. B. Wayne Bequette, Process Dynamics: Modeling, Analysis and Simulation, 1998, Prentice Hall
- Michael Shuler and Fikret Kargi, Bioprocess Engineering: Basic Concepts,2nd Edition, Prentice Hall, Englewood Cliffs, NJ, 2002
- 5. Process Modelling, Simulation and Control for Chemical Engineers, by William Luyben, McGraw Hill, Second Edition.
- 6. Numerical Methods and Modelling for Chemical Engineers, Davis M.E., Wiley, New York 1984
- 7. Numerical Methods for Engineers, Santosh Kumar Gupta, Tata McGraw hill, 1995
- 8. Numerical Methods, M. K. Jain, S. R. K. Iyengar, and R. K. Jain Sixth Edition. New Age International Publishers, New Delhi, 2012
- 9. Introduction to Chemical Engineering Computing by Bruce A. Finlayson Wiley-International, 2005.

<b>Course Code</b>	Course/Subject Name	Credits
BTC703	Agriculture Biotechnology	4

- Knowledge about plant tissue culture methods and applications.
- Knowledge aboutgeneticengineeringmethodsfore.g.genetransfertechniques,plant vectors and basics of transgenic plants.
- Knowledge about traditionally used herbicides, pesticides, its advantages and drawbacks
- Knowledgeaboutethicalandbiosafetyissuesandintellectualpropertyrulesassoci
- with plants

# **Course Objectives:**

- To understand basic plant biology and breeding methods.
- To gain knowledge about transgenic plant analysis, principle behind generation of herbicide and pest tolerant plants.
- To understand the stress condition in plants and methods to overcome it.
- To design methods for crop improvement.
- To analyse applications based on molecular farming.

## **Course outcomes:**

- Students will be able to:
- Apply the transgenic methods to develop better quality crops.
- Understand the advantages and drawbacks of engineered plants and modify them accordingly.
- Harness the plants for improved quality biomaterials.

Module	Contents	Contact
		Hours
01	Agricultural Microbiology:	05
	Microbial groups in soil, Plant and Microbe interactions.	
	Plant pathogens, Biological nitrogen fixation, Microflora of	
	Rhizosphere and Phyllo sphere microflora, microbes in	
	composting, Beneficial microorganisms in Agriculture:	
	Biofertilizer (Bacterial Cyanobacterial and Fungal), microbial	
	insecticides, Microbial agents for control of Plant diseases	
02	Plant Breeding:	05
	Historical milestones in plant breeding, Aims and objectives	
	of plant breeding, Significance of plant breeding in crop	
	development. Concepts in plant breeding – Simple versus	
	Complex Inheritance, Mating Systems, Varieties, and Pure	
	Lines. Methods of Plant Breeding. Plant Hormone Signal	
	Transduction - Auxin and GA Signaling, Cytokinin and	
	Ethylene Signaling	
03	Transgenic Plants:	05
	Transgenic Plant Analysis: screening on selection media,	
	PCR, Intact Transgene Integration characterization, Real time	
	PCR, Transgene expression, western blot analysis.	

	Regulations and Biosafety. Field Testing of Transgenic	
	Plants- Environmental Risk Assessment (ERA) process, e.g.	
	the case of Bt Maize, Agronomic Performance, Risk analysis.	
	Clean-gene technology.	
04	Genetic manipulation of herbicide tolerance:	03
0.7	The use of herbicides in modern agriculture,	00
	types of compounds used as herbicides,	
	Strategies for engineering herbicide tolerance - Glyphosate	
	tolerance, Phosphinothricin,	
	Prospects for plant detoxification systems,	
	Commercialization of herbicide-tolerant plants to date,	
	The environmental impact of herbicide-tolerant crops,	
	Development of Superweeds.	
05	Biotic and Abioticstress:	06
05		06
	Abiotic stress: Acclimatization and crop adaptation to water	
	stress, salinity stress, temperature stress, heat and cold, Photo	
	oxidative stress, nutrient stress, heavy metal stress, metabolite	
	engineering for abiotic stress tolerance Biotic stress: plant	
	response to pathogens and herbivores, biochemical and	
	molecular basis of host plant resistance, toxins of fungi and	
	bacteria, systemic and induced resistance, pathogen derived	
0.6	resistance, genetic engineering for biotic stress resistance	0.5
06	Genetic manipulation of pest resistance:	03
	The nature and scale of insect pest damage to crops.	
	GM strategies for insect resistance: the Bacillus thuringiensis	
	approach. The use of Bacillus thuringiensisas a biopesticide.	
	Bt-based genetic modification of plants. Problem of insect	
	resistance to Bt, environmental impact of Bt crops.	
	Copy Nature strategy	
07	Improvement of crop yield and quality:	04
	Genetic manipulation of fruit ripening, softening, genetic	
	modification of ethylene biosynthesis. Golden rice and	
	Biofortified rice. Engineering plant protein composition for	
	improved nutrition. The genetic manipulation of crop yield by	
	enhancement of photosynthesis	
08	Molecular farming:	04
	Farming of carbohydrates (e.g.starch, polyfructans) Metabolic	
	engineering of Lipids (e.g. Bioplastics) Molecular farming of	
	proteins (e.g.oleosin system:hirudinand insulin production).	
	Medically related proteins (e.g.custom made antibodies,	
	Edible vaccines)	

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

## **Assessment**

## **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Plant biotechnology-The genetic manipulations of plants by Slater, A., Scott, N. and Fowler, M., Oxford University press
- 2. Principles of Plant Breeding by Allard R W 1960 .Kalyani Publishers, New Delhi.
- 3. Plant Biotechnology and Genetics: Principles, Techniques, and Applications Edited by C. Neal Stewart, Jr.
- 4. Stress biology, by U.Chakraborty, Bishwanath Chakraborty, 2005. Narosa Publishing House.
- 5. Agricultural Microbiology by D. J. Bagyaraj, G. Rangaswami, Prentice Hall of India Pvt Ltd.

<b>Course Code</b>	Course/Subject Name	Credits
BTE7031	Department Elective-III: Stem Cell & Tissue	4
	Engineering	

• Cell Biology, Developmental Biology, Biochemistry, Molecular Biology and Genetics.

# **Course Objectives:**

- To understand the developmental processes in a complex living system.
- To manipulate the cells to change and perform tasks in a carefully directed fashion.
- To understand the possibilities this technology offers in a medical field

#### **Course outcomes:**

- This course gives an overview about the application of stem cells for regenerative medicine.
- It explains advantages and disadvantages of stem cells as therapeutics.
- The students obtain knowledge in medical applications of biomaterials as well as about basic concepts regarding design and mechanical properties of selected natural and synthetic biomaterials
- The Tissue Engineering and Regenerative Medicine educate students in two new, interdisciplinary fields in the biomedical sciences that aim to replace damaged tissue in the human body and to stimulate the body's own regenerative processes.
- International research and development of new therapies in these areas is currently booming

Module	Contents	Contact Hours
01	Development of multicellular organisms: Universal mechanisms of animaldevelopment, Basic anatomical features, Role of proteins and regulatory DNA in development, Approaches to understand developmental processes, Cell fate, Positional value of cell, Inductive signalling, Asymmetric cell division, Positive feedback, Morphogens and their gradients, Intrinsic programming, Patterning by sequential induction	06
02	Stem cells: Definition, Properties & Types of stem cells, Maintaining population of stem cells, Transit amplifying cells. Embryonic stem cells: Properties, Pluripotent stem cells and methods of generating them. Adult stem cells and their sources.	04
03	Epidermal renewal by stem cells: The multilayered structure of epidermis, Role of stem cells and transit amplifying cells in epidermis renewal. Renewal by multipotent stem cells: Blood cell formation, Bone marrow and Hemopoietic Stem Cells, Hematopoiesis, Contact Signals From Stromal Cells. Osteogenesis: Formation of bone & cartilage from Mesenchymal Stem Cells.	05

04	Applications of stem cells in regenerative medicine: Repairing Nervous system, Liver cell proliferation and	05
	repair, Cardiac repair, Diabetes treatment, GM stem cells and	
	Gene therapy. Ethical issues associated with stem cells	
05	Tissue Engineering: Introduction to biomaterials and tissue	10
	engineering, Elements of biomaterials, Self-assembly and	
	growth, Mechanical concepts in biomaterials, Different	
	protein fibers: collagen, silk, keratin. Characterization of	
	biomaterials, Methods for the determination of	
	biocompatibility, Biological composite materials e.g. fibers,	
	Hierarchical design bone, wound care und suture materials,	
	vascular implants, biomimetic and bio-inspired materials,	
	Basic techniques to manufacture scaffolds from raw	
	biomaterials and different prerequisites for the biomaterials	
06	Tissue engineering examples: Bone & Cartilage tissue	05
	engineering, skin tissue engineering, vascular tissue	
	engineering, heart valves tissue engineering	

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

## Assessment

## Internal

• Assessment consists of two tests which should be conducted at proper intervals

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Molecular biology of Cell: Alberts et al.2014.(Chapter 22 and 23)
- 2. Gordana Vunjak- Novakovic, R. Ian Freshney (2006): Culture of Cells for Tissue Engineering, Wiley
- 3. Ulrich Meyer, Thomas Meyer, Jörg Handschel, Hans Peter Wiesmann (2009): Fundamentals of Tissue Engineering and Regenerative Medicine, Springer
- 4. Lanza RP, Langer R, Vacanti J. Principles of Tissue Engineering. Third edition. Academic Press. 2007

<b>Course Code</b>	Course/Subject Name	Credits
BTE7032	Department Elective-III: Operation Research in	4
	Biotechnology	

- Linear Algebra
- Computer Programming

# **Course Objectives:**

- To understand Linear Programming and its applications to OR models.
- To understand and solve network models in OR.
- To understand Game theory and its applications.
- To study and design Queuing systems.

## **Course Outcomes:**

- The student will be able to solve typical OR models using linear integer and dynamic programming techniques.
- The student will be able to model and solve network flow problems in OR.
- The student will be able to make decisions under various scenarios.
- The student will be able to design Queuing Systems

Module	Contents	Contact
		Hours
1	Module: Linear Programming	10
	Contents: Introduction	
	Graphical Method of Solution	
	Simplex Method	
	Two-Phase Method	
	Duality	
	Dual Simplex	
	Revised Simplex	
2	Module: Transportation Models	06
	Contents: Examples of Transportation Models	
	The Transportation Algorithm	
	The Assignment Model	
	The Trans shipment Model	
3	Module: Network Models	06
	Contents: Scope and Definition of Network Models	
	Minimal Spanning Tree Algorithm	
	Shortest Route Problem	
	Maximal Flow Model	
4	Module: Integer and Dynamic Programming	06
	Contents: Branch and Bound Method	
	Travelling Salesman Problem	
	Introduction to Dynamic Programming	
	Forward and Backward Recursion	
	Selected Applications	

5	Module: Deterministic Inventory Models	06
	Contents: Classic EOQ Model	
	EOQ with Price Breaks	
	Dynamic EOQ Models	
	No-Setup Model	
	Setup Model	
6	Module: Decision Analysis and Game Theory	06
	Contents: Decision Making under Certainty	
	Decision Making under Risk	
	Decision Under Uncertainty	
	Game Theory	
7	Module: Queuing Systems	08
	Contents: Elements of a Queuing Model	
	Role of Exponential Distribution	
	Pure Birth and Death Models	
	Generalized Poisson Queuing Model	
	Measures of Performance	

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

# Assessment

## **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

# **Text Books**

1. Operations Research; Hamdy A. Taha; Eighth Edition; Prentice Hall India

## References

1. Hillier and Lieberman; Introduction to Operations Research

<b>Course Code</b>	Course/Subject Name	Credits
BTE7033	Department Elective-III: Project Management	4

• Knowledge of Fundamentals of project

## **Course Objectives:**

- To get acquainted with various aspects of project management.
- To study different scheduling and planning techniques used in the industry.
- To study various applications of inventory and project management with respect to the Bioprocess Industry.
- To study Life-cycle of the project.
- To develop and strengthen entrepreneurial quality in students.
- To impart basic entrepreneurial skills and understandings to run a business efficiently and effectively.

### **Course outcomes:**

At the end of the course, learners should be able to;

- Describe the fundamental concepts in Project management
- Analyse the various scheduling and planning techniques
- Understand and apply suitable strategy for any specific project
- Apply project management principles in business situations to optimize resource utilization and time.

Module	Contents	Contact Hours
01	Introduction to Project Management:	08
	Management, Definition, Goal, Lifecycles.	
	Project Selection Methods. Project Portfolio Process,	
	Project Formulation.	
	Project Manager – Roles, Responsibilities and Selection,	
	Project Teams.	
02	Planning and Budgeting:	09
	The Planning Process – Work Break down Structure	
	Role of Multidisciplinary teams.	
	Budget the Project – Methods.	
	Estimating and Improvement.	
	Budget uncertainty and risk management.	
03	Scheduling and Resource allocation:	09
	GANTT Chart, PERT & CPM Networks, GERT, Crashing	
	Project Uncertainty and Risk Management - Simulation -	
	Gantt Charts.	
	Algorithms for solving sequencing problems – Processing	
	of N jobs through K machines,	
	Assignments and transportation algorithms -Expediting a	
	project –Resource loading and leveling. Allocating scarce	
	resources –Goldratt's Critical Chain.	
04	Project control and conclusion:	09
	The Plan-Monitor-Control cycle – Data Collecting and	
	reporting	

Project Control – Designing the control system.	
Project Evaluation,	
Auditing and Termination.	

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

## **Assessment**

## Internal

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## References

- 1. John M. Nicholas, "Project management for business/Technology", Pearson
- 2. Uddesh Kohli, K.K Chitkara, "Project Management Handbook", Tata McGraw Hill
- 3. Samuel J. Mantel et al, "Project management", Wiley India
- 4. S. Choudhury, "Project Management", Tata McGraw Hill
- 5. P K Joy, "Total Project Management –The Indian context", Macmillan
- 6. Hisrich, Entrepreneurship, Tata McGraw Hill, New Delhi, 2001
- 7. S.S. Khanka, Entrepreneurial Development, S. Chand and Company Limited

<b>Course Code</b>	Course/Subject Name	Credits
BTE7034	Department Elective-III: Nanotechnology	4

• Knowledge of Biophysics, Biochemistry, Molecular Biology, Immunology and Analytical Methods in Biotechnology

# **Course Objectives:**

- To develop the skills of the student in the area of Nanotechnology and its application.
- Tofamiliarizestudentwithdifferenttechniquesforsynthesizingandcharacterizin gof various nanoparticles.

## **Course outcomes:**

- Students will have an in depth understanding of the components of Nanotechnology and the instruments used in Nanotechnology.
- Students will be able to apply the concepts of Nanotechnology in various fields.

Module	Contents	Contact Hours
01	Basics and Scale of Nanotechnology: Introduction, Scientific revolutions, Time and length scale in structures, Definition of a nanosystem, Dimensionality and size dependent phenomena, Surface to volume ratio-Fraction of surface atoms, surface energy and surface stress, surfaced efects, Properties at nanoscale (optical, mechanical, electronic and magnetic)	06
02	Different Classes of Nanomaterials: Classification based on dimensionality, Quantum Dots, Wells and Wires, Carbon-based nano materials (buckyballs, nanotubes, graphene), Metal based nanomaterials (nanogold, nanosilver and metal oxides), Nanocomposites, Nanopolymers, Nanoglasses, Nano ceramics, Biological nanomaterials	07
03	DNA and Protein based Nanostructures:  DNA-gold particle conjugates, Polymer nanocontainers, Nanopores and nanomembranes for biochemical sensing, Micro and nanofluidic devices in biological studies, Peptide nanotubes and their applications in electronics, antibacterial agents; protein self-assembly, nanochips, nanopolymers	07
04	Nano-bioanalytics: Luminescent Quantum Dots for Biological Labeling, Nanoparticle Molecular Labels Surface Biology: Analysis of Biomolecular Structure by Atomic Force Microscopy and Molecular Pulling-Force Spectroscopy, Biofunctionalized Nanoparticles for Surface Enhanced Raman Scattering and Surface Plasmon Resonance, Bioconjugated Silica Nanoparticles for Bioanalytical Applications	06

05	Nanotechnology in Food, Medicine and Health Sciences: Nanocomposites for food packaging, nanomaterials in cosmetics, Regenerative medicine - Nanostructured collagen mimics in tissue engineering, synthesis of nanodrugs, polymeric nanoparticle for Drug and gene delivery, Micelles	09
	for drug delivery, Nanotechnology in cancer research, Preparation of nanobiomaterials-Polymeric scaffolds collagen, Elastins, Mucopolysaccharides, proteoglycans, cellulose and derivates, Dextrans, Alginates, Pectins, Chitin Toxicity and Environmental Risks of Nanomaterial	

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

### Assessment

### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Pradeep T., A textbook of nanoscience and nanotechnology, Tata McGraw Hill Education Pvt. Ltd., 2012.
- 2. Hari Singh Nalwa, Nanostructured Material and Nanotechnology, Academic Press, 2002
- 3. Niemeyer C. M., Bionanotechnology: Concepts, Application and Perspectives Wiley VCH, 2006

<b>Course Code</b>	Course Name	Credits
ILO7011	<b>Institute Level Optional Subject I- Product Life Cycle</b>	03
	Management	

# **Objectives:**

- To familiarize the students with the need, benefits and components of PLM
- To acquaint students with Product Data Management & PLM strategies
- To give insights into new product development program and guidelines for designing and developing a product
- To familiarize the students with Virtual Product Development

### **Outcomes:**

Learner will be able to...

- Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- Illustrate various approaches and techniques for designing and developing products.
- Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Detailed Contents	Contact Hours
01	Introduction to Product Lifecycle Management (PLM):Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM.	10
02	Product Design: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process.	09
03	Product Data Management (PDM):Product and Product Data,	05

	PDM systems and importance, Components of PDM, Reason	
	for implementing a PDM system, financial justification of	
	PDM, barriers to PDM implementation.	
04	Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies.	05
05	Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design.	05
06	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis.	05

### **Assessment**

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## References

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

<b>Course Code</b>	Course Name	Credits
ILO7012	Institute Level Optional Subject I- Reliability	03
	Engineering	

# **Objectives:**

- To familiarize the students with various aspects of probability theory
- To acquaint the students with reliability and its concepts
- To introduce the students to methods of estimating the system reliability of simple and complex systems
- To understand the various aspects of Maintainability, Availability and FMEA procedure

## **Outcomes:**

Learner will be able to...

- Understand and apply the concept of Probability to engineering problems
- Apply various reliability concepts to calculate different reliability parameters
- Estimate the system reliability of simple and complex systems
- Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Contact Hours
01	Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance. Measures of Dispersion: Mean Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	08
02	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve. Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions. Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	08
03	System Reliability: System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
04	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis.  System Reliability Analysis – Enumeration method, Cut-set method, Success Path method, Decomposition method.	08
05	Maintainability and Availability: System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts	05

	standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement.  Availability – qualitative aspects.	
06	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fau1t tree analysis and Event tree Analysis	05

### **Assessment**

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg." John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

<b>Course Code</b>	Course Name	Credits
ILO7013	<b>Institute Level Optional Subject I- Management</b>	03
	Information System	

## **Objectives:**

- The course is blend of Management and Technical field.
- Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- Identify the basic steps in systems development

## **Outcomes:**

Learner will be able to...

- Explain how information systems Transform Business
- Identify the impact information systems have on an organization
- Describe IT infrastructure and its components and its current trends
- Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Contact Hours
01	Introduction To Information Systems (IS): Computer Based	4
	Information Systems, Impact of IT on organizations, and	
	Importance of IS to Society. Organizational Strategy,	
	Competitive Advantages and IS.	
02	Data and Knowledge Management: Database Approach, Big	7
	Data, Data warehouse and Data Marts, Knowledge	
	Management.	
	Business intelligence (BI): Managers and Decision Making,	
	BI for Data analysis and Presenting Results	
03	Ethical issues and Privacy: Information Security. Threat to	7
	IS, and Security Controls	
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-	7
	shopping, Marketing, Operational and Analytic CRM, E-	
	business and E-commerce – B2B B2C. Mobile commerce.	
05	Computer Networks Wired and Wireless technology,	6
	Pervasive computing, Cloud computing model.	
06	Information System within Organization: Transaction	8
	Processing Systems, Functional Area Information System,	
	ERP and ERP support of Business Process.	
	Acquiring Information Systems and Applications: Various	
	System development life cycle models.	

# Assessment Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

<b>Course Code</b>	Course Name	Credits
ILO7014	Institute Level Optional Subject I- Design of	03
	Experiments	

# **Objectives:**

- To understand the issues and principles of Design of Experiments (DOE)
- To list the guidelines for designing experiments
- To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

## **Outcomes:**

Learner will be able to...

- Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- Apply the methods taught to real life situations
- Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Contact Hours
01	Introduction	06
	1.1 Strategy of Experimentation	
	1.2 Typical Applications of Experimental Design	
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
02	Fitting Regression Models	08
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
	2.3 Hypothesis Testing in Multiple Regression	
	2.4 Confidence Intervals in Multiple Regression	
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
03	Two-Level Factorial Designs and Analysis	07
	3.1 The 22 Design	
	3.2 The 23 Design	
	3.3 The General2k Design	
	3.4 A Single Replicate of the 2k Design	
	3.5 The Addition of Center Points to the 2k Design,	
	3.6 Blocking in the 2k Factorial Design	
	3.7 Split-Plot Designs	
04	Two-Level Fractional Factorial Designs and Analysis	07
	4.1 The One-Half Fraction of the 2k Design	
	4.2 The One-Quarter Fraction of the 2k Design	
	4.3 The General 2k-p Fractional Factorial Design	
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
05	Conducting Tests	07
	5.1 Testing Logistics	

	5.2 Statistical aspects of conducting tests	
	5.3 Characteristics of good and bad data sets	
	5.4 Example experiments	
	5.5 Attribute Vs Variable data sets	
06	Taguchi Approach	04
	6.1 Crossed Array Designs and Signal-to-Noise Ratios	
	0.1 Clossed Milay Designs and Signal-to-Noise Ratios	
	6.2 Analysis Methods	

#### Assessment

### **Internal**

 Assessment consists of two tests which should be conducted at proper intervals.

## **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Practical Experiment Designs for Engineers and Scientists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T. Voss
- 6. Phillip J Ross, "Taguchi Technique for Quality Engineering," McGraw Hill
- 7. Madhav S Phadke, "Quality Engineering using Robust Design," Prentice Hall

Course Code	Course Name	Credits
ILO7015	Institute Level Optional Subject I- Operations	03
	Research	

## **Objectives:**

- Formulate a real-world problem as a mathematical programming model.
- Understand the mathematical tools that are needed to solve optimization problems.
- Use mathematical software to solve the proposed models.

## **Outcomes:**

Learner will be able to...

- Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- Solve specialized linear programming problems like the transportation and assignment problems; solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Contact Hours
01	Introduction to Operations Research: Introduction, ,	14
	Structure of the Mathematical Model, Limitations of	
	Operations Research	
	Linear Programming: Introduction, Linear Programming	
	Problem, Requirements of LPP, Mathematical Formulation	
	of LPP, Graphical method, Simplex Method Penalty Cost	
	Method or Big M-method, Two Phase Method, Revised	
	simplex method, Duality, Primal - Dual construction,	
	Symmetric and Asymmetric Dual, Weak Duality Theorem,	
	Complimentary Slackness Theorem, Main Duality Theorem,	
	Dual Simplex Method, Sensitivity Analysis	
	Transportation Problem: Formulation, solution, unbalanced	
	Transportation problem. Finding basic feasible solutions –	
	Northwest corner rule, least cost method and Vogel's	
	approximation method. Optimality test: the stepping stone	
	method and MODI method.	
	Assignment Problem: Introduction, Mathematical	
	Formulation of the Problem, Hungarian Method	
	Algorithm, Processing of n Jobs Through Two Machines	
	and m Machines, Graphical Method of Two Jobs m	
	Machines Problem Routing Problem, Travelling Salesman	
	Problem	
	Integer Programming Problem: Introduction, Types of	
	Integer Programming Problems, Gomory's cutting plane	
	Algorithm, Branch and Bound Technique. Introduction to	

	Decomposition algorithms.	
02	Queuing models: queuing systems and structures, single server and multi-server models, Poisson input, exponential	05
	service, constant rate service, finite and infinite population	
03	Simulation: Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	05
04	Dynamic programming. Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05
05	Game Theory. Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
06	Inventory Models: Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	05

### Assessment

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

## References

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, Kedar Nath Ram Nath-Meerut.
- 5. Operations Research, Kanti Swarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

<b>Course Code</b>	Course Name	Credits
ILO7016	Institute Level Optional Subject I- Cyber Security	03
	and Laws	

# **Objectives:**

- To understand and identify different types cybercrime and cyber law
- To recognized Indian IT Act 2008 and its latest amendments
- To learn various types of security standards compliances

## **Outcomes:**

Learner will be able to...

- Understand the concept of cybercrime and its effect on outside world
- Interpret and apply IT law in various legal issues
- Distinguish different aspects of cyber law
- Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Contact Hours
1	Introduction to Cybercrime: Cybercrime definition and origins	4
	of the world, Cybercrime and information security,	
	Classifications of cybercrime, Cybercrime and the	
	Indian ITA 2000, A global Perspective on cybercrimes.	
2	Cyber offenses & Cybercrime: How criminal plan the attacks,	9
	Social Engg, Cyber stalking, Cyber café and Cybercrimes,	
	Botnets, Attack vector, Cloud computing, Proliferation of	
	Mobile and Wireless Devices, Trends in Mobility, Credit Card	
	Frauds in	
	Mobile and Wireless Computing Era, Security Challenges	
	Posed by Mobile Devices, Registry Settings for Mobile	
	Devices, Authentication Service Security, Attacks on	
	Mobile/Cell Phones, Mobile Devices: Security Implications for	
	Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security	
	Policies and Measures in Mobile Computing Era, Laptops	
3	Tools and Methods Used in Cyberline	6
	Phishing, Password Cracking, Keyloggers and Spywares, Virus	U
	and Worms, Steganography, DoS and DDoS Attacks, SQL	
	Injection, Buffer Over Flow, Attacks on Wireless Networks,	
	Phishing, Identity Theft (ID Theft)	
4	The Concept of Cyberspace	8
	E-Commerce, The Contract Aspects in Cyber Law, The	
	Security Aspect of Cyber Law ,The Intellectual Property	
	Aspect in Cyber Law	
	, The Evidence Aspect in Cyber Law , The Criminal Aspect in	
	Cyber Law, Global Trends in Cyber Law, Legal Framework	
	for Electronic Data Interchange Law Relating to Electronic	
	Banking, The Need for an Indian Cyber Law	
5	Indian IT Act.	6
	Cyber Crime and Criminal Justice: Penalties, Adjudication and	

	Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	
6	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

#### **Assessment**

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security &Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on: The Information Technology ACT, 2008- TIFR: https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

<b>Course Code</b>	Course Name	Credits
ILO7017	Institute Level Optional Subject I- Disaster	03
	Management and Mitigation Measures	

### **Objectives:**

- To understand physics and various types of disaster occurring around the world
- To identify extent and damaging capacity of a disaster
- To study and understand the means of losses and methods to overcome /minimize it.
- To understand role of individual and various organization during and after disaster
- To understand application of GIS in the field of disaster management
- To understand the emergency government response structures before, during and after disaster

#### **Outcomes:**

Learner will be able to...

- Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- Plan of national importance structures based upon the previous history.
- Get acquainted with government policies, acts and various organizational structures associated with an emergency.
- Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Contact Hours
01	Introduction:	03
	Definition of Disaster, hazard, global and Indian scenario,	
	general perspective, importance of study in human life, Direct	
	and indirect effects of disasters, long term effects of disasters.	
	Introduction to global warming and climate change.	
02	Natural Disaster and Manmade disasters:	09
	Natural Disaster: Meaning and nature of natural disaster,	
	Flood, Flash flood, drought, cloud burst, Earthquake,	
	Landslides, Avalanches, Volcanic eruptions, Mudflow,	
	Cyclone, Storm, Storm Surge, climate change, global	
	warming, sea level rise, ozone depletion	
	Manmade Disasters: Chemical, Industrial, Nuclear and Fire	
	Hazards. Role of growing population and subsequent	
	industrialization, urbanization and changing lifestyle of human	
	beings in frequent occurrences of manmade disasters.	
03	Disaster Management, Policy and Administration:	06
	Disaster management: meaning, concept, importance, objective	
	of disaster management policy, disaster risks in India,	
	Paradigm shift in disaster management.	
	Policy and administration: Importance and principles of	
	disaster management policies, command and co-ordination of	
	in disaster management, rescue operations-how to start with	

	and how to proceed in due course of time, study of flowchart	
	showing the entire process.	
04	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations.  Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
05	Financing Relief Measures:  Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events.	09
06	Preventive and Mitigation Measures:  Pre-disaster, during disaster and post-disaster measures in some events in general structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication  Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

# References

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S. Dagur, published by Centre for land warfare studies, New Delhi, 2011.

- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep, Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards' and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.
- 8. (Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

<b>Course Code</b>	Course Name	Credits
ILO7018	Institute Level Optional Subject I- Energy Audit and	03
	Management	

### **Objectives:**

- To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

#### **Outcomes:**

Learner will be able to...

- To identify and describe present state of energy security and its importance.
- To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Contact Hours
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
2	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
3	Energy Management and Energy Conservation in Electrical System:  Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings.  Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers.	10

	Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	
4	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10
5	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
6	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B. Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

<b>Course Code</b>	Course Name	Credits
ILO7019	Institute Level Optional Subject I- Development	03
	Engineering	

# **Pre-requisite:**

• Interest in societal development.

# **Course Objective:**

- To understand the characteristics of rural Society and the Scope and Nature and Constraints of rural Development.
- To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
- The objective of the course is an exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life'. The context is the work life and the personal life of modern Indian professionals.
- To understand the Nature and Type of Human Values relevant to Planning Institutions.

#### **Course Outcome:**

- Students will be able to apply knowledge for Rural Development.
- Students will be able to apply knowledge for Management Issues.
- Students will be able to apply knowledge for Initiatives and Strategies
- Students will be able to develop acumen for higher education and research.
- Students will master the art of working in group of different nature.
- Students will develop confidence to take up rural project activities independently.

Module	Contents	Contact
		Hours
1	Introduction to Rural Development Meaning, nature and scope	04
	of development; Nature of rural society in India; Hierarchy of	
	settlements; Social, economic and ecological constraints for	
	rural development.	
2	Roots of Rural Development in India Rural reconstruction and	04
	Sarvodaya programme before independence; Impact of	
	voluntary effort and Sarvodaya Movement on rural	
	development; Constitutional direction, directive principles;	
	Panchayati Raj - beginning of planning and community	
	development; National extension services.	
3	Post-Independence rural Development Balwant Rai Mehta	04
	Committee - three tier system of rural local Government; Need	
	and scope for people's participation and Panchayati Raj;	
	Ashok Mehta Committee - linkage between Panchayati Raj,	
	participation and rural development.	
4	Rural Development Initiatives in Five Year Plans Five Year	06
	Plans and Rural Development; Planning process at National,	
	State, Regional and District levels; Planning, development,	
	implementing and monitoring organizations and agencies;	

	Urban and rural interface - integrated approach and local plans; Development initiatives and their convergence; Special component plan and sub-plan for the weaker section; Micro- eco zones; Data base for local planning; Need for decentralized planning; Sustainable rural development.	
5	Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule, devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages; Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization; resource mapping, resource mobilization including social mobilization; Information Technology and rural planning; Need for further amendments.	04
6	Values and Science and Technology Material development and its values; the challenge of science and technology; Values in planning profession, research and education.	04
7	Types of Values Psychological values — integrated personality; mental health; Societal values — the modern search for a good society; justice, democracy, rule of law, values in the Indian constitution; Aesthetic values — perception and enjoyment of beauty; Moral and ethical values; nature of moral judgment; Spiritual values; different concepts; secular spirituality; Relative and absolute values; Human values— humanism and human values; human rights; human values as freedom, creativity, love and wisdom.	06
8	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of responsibility; Work ethics; Professional ethics; Ethics in planning profession, research and education	04

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

### **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### Reference

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rdGoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners

- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V., Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395 407

<b>Course Code</b>	Course Name	Credits
BTP701	Project-A	03

### **Guidelines:**

- Project groups: Students can form groups with not more than 3 (three).
- Students should spend considerable time in applying all the concepts studied, into the Project, hence, eight hours each are allotted in project A and B to the students.
- Students are advised to take up industrial/ experimental/ simulation and/or optimization based topics for their project
- Students should report their guides weekly with their work.

### **Exam Guidelines**

### Term Work - 100 Marks:

- Presentation 50 Marks
- Report -50 Marks

Oral – 50 Marks

<b>Course Code</b>	Course/Subject Name	Credits
BTL701	Lab IV	1.5

# **Concepts for experiments:**

A minimum of 10 experiments must be performed based on the following concepts:

- Viscometer
- Cell disruption
- Conventional filtration
- Distribution coefficient in Liq-liq extraction
- Solid-liquid extraction of natural product and subsequent purification
- Leaching
- Protein precipitation by various methods and its recovery
- Separation of Plant Pigments using Column Chromatography
- Steam Distillation
- Simple Distillation
- Vacuum Filtration
- Extraction of Phytochemicals using different extraction methods

### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
BTL702	Lab V	1.5

# **Concepts for experiments:**

A minimum of 10 experiments must be performed based on the following:

- Material Balance without Reaction
- Material Balance with Reaction
- Energy Balance equations
- Solving Linear equations
- Solving Non-linear algebraic equations
- Parameter Estimation in kinetics
- Modelling of Batch, Fed Batch and Continuous
- Simulation of Batch Reactor
- Simulation of Continuous Reactor
- Solving Numerical integrations
- Solving Algebraic equations
- Solving Differential Equations

### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

# University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) B.E Semester VIII (w.e.f 2019-2020)

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC801	Environmental Biotechnology	4	-	-	4	-	_	4
	Bioseperation& Downstream							
BTC802	Processing technology-II	4	-	-	4	-	-	4
	Bioprocess Plant & Equipment							
BTC803	design	3	-	1	3	-	1	4
BTE804X	Department Elective IV	3	-	1	3		1	4
ILO802X	Institute Level optional Subject II	3	-	-	3	-	-	3
BTP801	Project B	-	-	8	-	-	6	6
BTL801	Lab - VI	-	3	-	-	1.5	-	1.5
BTL802	Lab - VII	-	3	-	-	1.5	-	1.5
	Total	17	6	10	17	3	8	28

		Examination Scheme								
	Course Name		Theory					Pract/ Oral	Oral	Total
Course code			Internal Se		End Sem Exam	Exam Duration (in hrs)				
			Test 2	Avg						
BTC801	Environmental Biotechnology	20	20	20	80	3	-	-	-	100
	Bioseperation& Downstream Processing technology-II	20	20	20	80	3			-	100
	Bioprocess Plant & Equipment design	20	20	20	80	3	25	-	-	125
BTE804X	Department Elective IV	20	20	20	80	3	25	-		125
ILO802X	Institute Level optional Subject II	20	20	20	80	3	-	-	-	100
BTP801	Project B			-	-	-	100	-	50	150
BTL801	Lab - VI		-	ı	-	3	-	25	-	25
BTL802	Lab - VII	-	-	-	-	3	-	25	•	25
	Total			100	400	-	150	50	50	750

Department Elective IV (Sem VIII)							
Engineering Stream Advanced Science Stream Technology Stream							
1. Non-conventional Sources of	1. Total Quality Management	1. Advanced Bioinformatics					
Energy (BTE8041) (BTE8042) (BTE8044)							
	2. Entrepreneurship (BTE8043)						

Institute Level Optional Subject II (Sem VIII)						
1. Project Management (ILO8021)	4. Human	Resource	7.	IPR	and	Patenting
	Management (ILC	8024)	(IL	O8027)		
2. Finance Management (ILO8022)	5. Professional E	thics and CSR	8.	Dig	ital	Business
_	(ILO8025)			Management (ILO8028)		
3. Entrepreneurship Development and	6. Research	Methodology	9.		Env	vironmental
Management (ILO8023)	(ILO8026)			nageme	nt (ILC	O8029)

<b>Course Code</b>	Course/Subject Name	Credits
BTC801	Environmental Biotechnology	4

# **Pre-requisites:**

• Knowledge of Biotechnological aspects and molecular genetics

# **Course Objectives:**

• The main objective of this course is to introduce to the students the current biotechnological approaches and technologies in the use of microbes and/or other organisms and their processes to improve environmental quality, clean up contaminated environment, renew resources and generate valuable products for human society.

### **Course outcomes:**

- Apply their knowledge of environmental science and biological systems to improve the quality of life in individual context.
- Recognize key environmental problems and to apply the operating principles and biotic systems for remediation.
- Design, improve and apply biotechnological systems and processes to meet practical needs of different environmental problems.

Module	Contents	Contact
		Hours
1	Introduction:	03
	Environmental Degradation, types of environmental	
	degradation, factors affecting environmental degradation,	
	Environmental monitoring- sampling (land, air, water),	
	analysis- physical, chemical, biological, pollution monitoring-	
	bio indicators, biosensors, biomarkers, pollution control	
	aspects.	
2	Pollution control:	06
	Atmospheric stability, atmospheric dispersion- (Gausian	
	plume model), air pollution control- Particulate and gaseous	
	control, source correction methods, natural pathways of	
	exchange of air pollutants from atmosphere to earth (wet	
	precipitation- rain out, washout)	
3	Water Pollution Control:	07
	Measurement of organic and inorganic pollutants, DO	
	depletion, modelling of BOD reaction, problems on BOD,	
	Methods of waste water treatment, Microbiology and design	
	(activated sludge process, trickling process), Rotating	
	Biological contactors, Fluidized bed reactors, anaerobic	
	sludge digestion, Methanogenesis, methanogenic, acetogenic,	
	fermentative bacteria- technical process and condition, waste	
	water treatment using aquatic plants, heavy metal removal by	
	hairy roots.	
4	Soil Pollution Control:	05
	Bioremediation of contaminated soil, types of bioremediation,	
	factors affecting bioremediation, phyto fremediation, role of	
	genetic engineering	

5	Solid waste management:	06
	Types of solid waste, sources, effects, methods of collection,	
	disposal methods, potential methods of disposal, disposal of	
	hazardous waste, Biological conversion process (aerobic,	
	anaerobic, bioventing), biotechnology applications to	
	hazardous waste management	
6	Special topics in Bioremediation technology:	04
	Nanotechnology for bioremediation of heavy metals, sulphate	
	and sulphur reducing bacteria, bioremediation of petroleum	
	sludge using bacterial consortium and bio surfactants	
7	Downstream Processing:	04
	Downstream processing in biological treatment process,	
	effluent disposal and reuse, bio filtration of waste gas,	
	treatment and purification of biogas	
8	Effuent treatment:	05
	Need of ETP in industry, Components of ETP, general design	
	procedure for ETP, ETP studies of industries like dairy,	
	metal, food etc.	
9	Environmental Legislations:	02
	Water Prevention and Control Pollution Act, Water pollution	
	act, Air pollution and prevention act, The environment	
	Protection Act, Forest Conservation Act, Municipal Solid	
	Waste Rules, Biomedical Waste Rules, Hazardous Wastef	
	Rules, Environmental Clearance, Environmental Legislation	
	and Pollution Control Acts in India, Central Pollution Control	
	Board, its functions and powers, Procedure to operate an	
	industry	
10	Environmental Standards:	03
	Need and Use of environmental standards, Agencies and	
	Bodies setting environmental standards, classification of	
	environmental standards, National and International	
	Standards for waste water	

# Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Environmental Biotechnology- Allen Scragg, Oxford University Press, Second edition
- 2. Environmental Biotechnology, 1995 S.N. Jogdand, Himalaya Publishing

- House.
- 3. Bioremediation, 1994 Barker, K.H. and Herson, D.S., Mcgraw Hill, Inc. New York
- 4. Waste water Engineering, Metcalf & Eddy, Tata McGraw Hill Publication, Fourth edition
- 5. Environmental Science, Richard T. Wright, PHI Pvt. Ltd., Ninth edition
- 6. EnvironmentalPollutionHealthandToxicology,S.V.S.Rana,NarosaPublishing House Pvt.Ltd., First edition

<b>Course Code</b>	Course/Subject Name	Credit
BTC802	Bioseperation and Downstream Processing technology-	4
	II	

# **Pre-requisites:**

- Basics of Bioprocesses and Unit Operations.
- Basic knowledge of mass balance.
- Concepts of molecular diffusion and diffusion coefficients.

# **Course Objectives:**

• To cover the fundamentals, and design concepts of various downstream purification steps (unit operations) involved in a biochemical process.

# **Course outcomes:**

• Students will be able to describe theory, principle, design, application and possible integrations of unit operations in bioprocessing

Module	Contents	Contact
		Hours
01	Adsorption and Ion Exchange:	10
	Introduction to Adsorption, Types of Adsorption, Adsorption	
	Isotherms, Single Stage Adsorption, Multistage Cross Current	
	Adsorption, Multistage Counter Current Adsorption,	
	Equipments for Adsorption, Ion Exchange Equilibria, Ion	
	Exchange Equipments Design and Construction of	
	Chromatographic Columns for Bioseparations	
02	Membrane Separation Techniques:	08
	Membrane separation processes: Reverse Osmosis,	
	Ultrafiltration, Microfiltration, Nanofiltration, Dialysis,	
	Electrodialysis, Gas Permeation, Pervaporation. Types of	
	Membranes, Membrane Modules and design. Retention	
	coefficient, Concentration Polarization, Membrane fouling	
	Factors affecting membrane filtration. Advantages of	
	membrane separation processes over conventional separation	
	techniques, Industrial Applications	
03	Equipments for Gas-Liquid Contacting applicable for	06
	Bioprocesses:	
	Classification of equipments for gas-liquid contacting, Gas	
	dispersed and liquid continuous phase-Sparged Vessels	
	(Bubble Columns), Mechanically Agitated Vessels, Tray	
	Towers, Spray Towers and Spray Chambers, Packed Towers	
	Comparison of Packed Towers with Tray Towers.	
04	Crystallization:	08
	Solubility curve, Super saturation, Method of obtaining	
	supersaturationEffectofheatonsizeandgrowthofcrystal,RateofC	
	rystalgrowth and Delta-L law of crystal growth, Material and	
	energy balance for crystallizers Crystallization equipment-	
	description	
04	Drying:	06
	Introduction to drying, Equilibrium, Different types of	
	moisture contents, Rate of Drying and drying curve, Batch	

	Drying and calculation of time of drying, types of driers,	
	Lyophilisation,	
	Formulation	
	Mixing and agitation: Principles of agitation, agitation equipment, Solid solid mixing equipment, Mixing effectiveness and Mixing index, Flow patterns in Agitated vessels, Impellers, Types of impellers, power consumption of impellers	
05	Case Studies of downstream processing:	07
	Baker's yeast, Ethanol, Citric acid, Penicillin, Insulin,	
	interferon, Monoclonal antibodies, Tissue plasminogen	
	activator, Taq polymerase	

#### **Internal**

 Assessment consists of two tests which should be conducted at proper intervals.

### **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Treybal R.E., Mass transfer operation, 3 Ed., McGraw Hill New York, 1980.
- 2. McCabe W.L. and Smith J.C., Unit operation in chemical engineering, 5Ed. McGraw Hill New York 1993.
- 3. Geankoplis C.J., Transport processed and unit operations, Prentice Hall, New Delhi 1997.
- 4. RogerG.Harrison,PaulTodd,ScottR.Rudge,DemetriP.Petrides,Bioseparations Science and Engineering, Oxford University Press
- 5. B. Shivshankar, Bioseparations: Priniples and Techniques, Eastern Economy Edition, PHI Learning Pvt. Ltd., Publishing House, New Delhi, 2012
- 6. Bioseparation & bioprocessing (2nd Ed.)2-Volume set, Ed SUBRAMANIAN Ganapathy, Wiley-VCH, (09-2007)
- 7. P.A. Belter, E.L. Cussler and Wei-ShouHu., Bioseparations- Downstream Processing for Biotechnology, Wiley Interscience Publication, 1988.
- 8. J.E. Bailey and D.F. Ollis, Biochemical Engineering Fundamentals, 2nd Edition, McGraw Hill, Inc., 1986.
- 9. R. K. Scopes, Berlin, Protein Purification: Principles and Practice, Springer, 1982.
- 10. Scopes Ak, Protein Purification, IRL Press, 1993
- 11. Biotechnology: Bioprocessing, Rhem and Reed, Vol.3, 1993
- 12. Separation and purification techniques in biotechnology, Fredreich Dechow, 1989
- 13. Asenjo J.A. and J.Hong (Eds), Separation Processes in Biotechnolgy, Taylor and Francis

- 14. T. Schepler et al, Biotreatment, Downstream Processing and Modeling (Advances in Biochemical Engineering /Biotechnology, Vol 56) by Springer Verlag
- 15. Nooralbettu Krishna Prasad, Downstream Process Technology, PHI Learning, Pvt. Ltd., Eastern Economy Edition.

<b>Course Code</b>	Course/Subject Name	Credits
BTC803	Bioprocess Plant & Equipment Design	4

# **Pre-requisites:**

- Process Calculation
- Unit operation I and II

# **Course Objectives:**

- To impart basic concepts of mechanical and process design of process plant.
- To impart design principles for bioreactor.

# **Course outcomes:**

- This course makes the students to learn the methods and practices followed in the design of Bioprocess equipments.
- This course makes the students to draw the designed equipments to scale.
- Thecourseimpartsadvancedknowledgeonbioreactordesignforefficientutilizatio nof the principles in bioprocess technology

Module	Contents	Contact
		Hours
1	Material of construction for process and bioprocess plants. Mechanical design of process equipment. Design of cylindrical and spherical vessel under internal and external pressure. Selection and design of enclosures- flat plate, formed heads, torispherical and hemispherical heads, standard flanges and nozzles- classification of flanges, flange thickness calculation, gasket selection and design, bolt selection and calculation (Numerical problems are not needed for design of flanges, gasket and nozzles) Design of heat exchange equipments for upstream and downstream operations in bioprocessing industries: Heat exchangers process design (TEMA and IS 4503 standards) of double pipe, single pipe and multipass shell and tube heat exchangers.	06
2	Introduction to Indian Standards for storage tanks and their use in design of process vessel. Storage vessels for volatile andnon-volatile liquids including unfired pressure vessels. Design of supports- Bracket, leg, saddle and skirt support and fixed roof and open roof tanks.	06
3	Introduction to general design information for Bioprocess plants: Development of flowsheet, piping and instrumentation diagram and its description. General design consideration, optimum design	06
4	Design of Distillation column:  Detailed design and drawing of perforated plate distillation column.  Absorption columns: Detailed design and drawing of perforated plate and packed towers.	06
5	Design of fermenters:  Design considerations for maintaining sterility of process streams and process equipments. Design of mechanically	06

	agitated fermenters and non- mechanically agitated (bubble	
	column and air lift) fermenters.	
6	Design of various types of evaporators employed in	06
	bioprocess operation:	
	Evaporators-Standard vertical tube evaporator, single and	
	multiple effect evaporators and forced circulation evaporator.	
	Thermal sterilization systems in fermentation processes: batch	
	and continuous thermal sterilizers.	

#### **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Sinnott, R.K., Coulson & Richardson's 'Chemical Engineering', Volume 6, 3rd Edn., Butterworth Heinemann, New Delhi, 1999.
- 2. Perry, R.H., etal., Perry's' Chemical Engineers Handbook',7th Edn., McGraw Hill, New York, 1997.
- 3. Joshi, M.V., and Mahajani, V.V., "Process Equipment Design", 3rd Edn., Macmillan India Limited, New Delhi, 1996.
- 4. Bownell, L.E., and Young, E.M., 'Process Equipment Design', Wiley Eastern, 1968.
- 5. Peters and Timmerhause, 'Plant Design and Economics for Chemical Engineers'
- 6. S.B.Thakore, B.I.Bhatt, "Introduction to Process Engineering and Design", McGraw Hill Companies
- 7. Michael L Schuler and Fikret Kargi, 'Bioprocess Engineering' Printice Hall of India Pvt. Ltd.
- 8. Pauline M Doran, 'Bioprocess Engineering Principles' Academic Press
- 9. Pressure vessel code-IS Code 2825, B.I.S., New Delhi, 1969
- 10. Heat Exchanger Design Code IS 4503, B.I.S., New Delhi, 1969
- 11. Process Equipment Design and Drawing by Kiran Ghadyalji, Nandu publication

<b>Course Code</b>	Course/Subject Name	Credits
BTE8041	<b>Department Elective IV: Non-conventional Sources of</b>	4
	Energy	

### **Pre-requisites:**

• Knowledge of conventional sources of energy and energy utilization.

# **Course Objectives:**

• The main objective of this course is to introduce to the students the current approaches and technologies in the development of non-conventional sources of energy their processes to improve environmental quality and energy requirement, clean and abundant energy, renewable resources and generate cost efficient methods to harness energy for human society.

### **Course outcomes:**

- Apply their knowledge of energy generation and its conservation to improve the quality of life in individual context.
- Recognize key energy problems and to apply the operating principles and biotic systems for remediation.
- Design, improve and apply biotechnological systems and processes to meet practical needs of different problems of energy requirement.

Module	Contents	Contact
01	Introduction:	Hours 03
01		03
	Traditional energy systems: fossil fuel, firewood, coal;	
	Fossil fuel based systems, Impact of fossil fuel based	
	systems; renewable and non-renewable sources of energy;	
	global and national energy crisis, Prospects of renewable energy sources.	
02	Solar energy:	08
02	Solar radiation spectrum, radiation measurements,	VO
	applications (heating, cooling, drying, distillation); flat plate	
	collectors, concentrating collectors, Solar air heaters- types,	
	solar driers, storage of solar energy-thermal storage, solar	
	pond, solar water heaters, solar distillation, solar still, solar	
	cooker, solar heating & cooling of buildings, photovoltaics -	
02	solar cells & its applications	02
03	Wind Energy:	03
	Principle of wind energy conversion; analysis of	
	aerodynamic forces acting on wind mill blades and	
	estimation of power output; wind patterns and wind data;	
0.4	types of wind mills, components of wind mill, site selection.	0.2
04	Geothermal energy:	03
	Estimation and nature of geothermal energy, geothermal	
	sources and resources: hydrothermal, geo-pressured hot dry	
	rock, magma; Advantages, disadvantages and application of	
_	geothermal energy; prospects of geothermal energy in India.	
05	Energy from the Ocean:	05
	Ocean Thermal Electric Conversion (OTEC) systems: open	
	cycle, closed cycle, Hybrid cycle, prospects of OTEC in	

	India. Energy from tides, basic principle of tidal power,	
	single basin and double basin tidal power plants,	
	advantages, limitation and scope of tidal energy. Wave	
	energy and power from wave, wave energy conversion	
	devices, advantages and disadvantages of wave energy.	
06	Energy from Biomass:	05
00	Biomass conversion principle: combustion and	0.5
	fermentation; Biogas generation plants: classification,	
	advantages and disadvantages, constructional details, site	
	selection, digester design consideration, filling a digester for	
	starting, maintaining biogas production, Fuel properties of	
	bio gas, utilization of biogas.	
0.5	Biodiesel: principle, production, efficiency, scope in India.	0.4
07	Fuel cells:	04
	Introduction, Design principle, operation of fuel cell, Types	
	of fuel cells, conversion efficiency of fuel cell, and	
	application of fuel cells.	
	Microbial Fuel cells: Principle, construction, working,	
	efficiency and scope in India.	
08	Hydrogen energy:	04
	Introduction, Hydrogen Production methods, Hydrogen	
	storage, hydrogen transportation, utilization of hydrogen	
	gas, hydrogen as alternative fuel for vehicles. Nuclear	
	energy: nuclear reactors, fission and fusion reactions;	
	advantages and disadvantages of nuclear energy.	

#### **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

### Assessment

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

# References

- 1. Non-conventional energy sources by G.D. Rai, Khanna Publishers
- 2. Solar Energy: Fundamentals and Applications by H.P. Garg & Jai Prakash, Tata McGraw Hill

- 3. Solar Engineering of Thermal Processes by Duc and Beckman, John Wiley
- 4. Solar Energy: Principles of Thermal Collection and Storage by S,P Sukhatme, Tata McGraw Hill
- 5. Non-Conventional Energy Resources, B H Khan, Tata McGraw-Hill Education, Jan-2006
- 6. Non-Conventional Energy Resources by S.Hasan Saeed and D.K.Sharma
- 7. Fuel Cells by Bockris and Srinivasan; McGraw Hill

<b>Course Code</b>	Course/Subject Name	Credits
BTE8042	Department Elective IV: Total Quality Management	4

# **Prerequisites:**

• Knowledge of Basic Engineering and Science.

# **Course Objectives:**

- To acquaint with the significance and features of TQM philosophy.
- To familiarize with various quality tools and their uses in problem solving.
- To appraise on the modern productivity improvement approaches and their interface with TQM
- To familiarize with various quality standards, quality auditing and certification methodology.
- To give and an insight into the ongoing global trends in quality approach and practices with special forms to the customer relationship

#### **Course Outcomes:**

Learner will be able to:

- Appreciate the importance of quality and its dimensions in striving for excellence
- Understand the conscious compromise between cost and quality
- Develop competency in the selection in various manufacturing and service functions
- Develop competency in the use of appropriate quality tools in various manufacturing and service functions
- Integrate quality approaches for productivity improvement.
- Acquire knowledge base and develop skills for conducting quality audits

Module	Contents	Contact
		Hours
1	Introduction:	8
	Definition of Quality, principles and dimensions of TQM	
	Quality in manufacturing and service segments. Approach in	
	implementation of TQM, barriers in implementation. Cost of	
	quality prevention, appraisal and failure costs, hidden costs,	
	trade-o between quality and cost.	
2	Planning for quality and Quality improvement:	8
	Planning for quality: Need for quality policies and objective.	
	Significance of top management commitment, strategic	
	planning for quality. Quality improvement: Management of	
	controllable defects, operator controllable defects, sporadic	
	and chronic problems of operator controllable defects,	
	sporadic and chronic problems of quality, Pareto's principle.	
	Bench marking: Definition and significance, data collection	
	for bench marking and its use.	
3	Customer relations:	8
	Customers, user and consumers, product awareness, types of	
	customers, customer perception and expectations. Quality	
	feedback and redressal. Basic principles of reliability: quality	

	and reliability, Product life cycle, trade-o between	
	maintainability.	
4	Vendor relations:	8
	Vendor as a partner, vendor selection, vendor evaluation.	
	Push Pull view of supply chain and cycle view of chain	
	management	
5	SQC Tool:	8
	Histograms, Pie charts, Scatter diagrams, Cause and diagram	
	etc.	
	Statistical Process Control:	
	Process variability: Variables and process variation, measures	
	of accuracy and centering, precision or spread, normal	
	distribution	
	Process Control: Control charts for variables (X-chart, R-	
	chart, -chart) and attributes (np-charts, p-chart, c-charts, U-	
	chart) Process capability: OC curve, acceptance sampling,	
	single and double sampling producer's and consumer's risk.	
6	Quality System:	8
	Quality standards:	
	ISO 9001:2000 Quality management system. ^	
	ISO 14001:2004 Environmental management system.	
	ISO 27001:2005 Information security management system.	
	Quality assurance: Nature of assurance, reports on quality,	
	measuring performance, internal audit, surveillance audit,	
	quality certification methodology and implications	
	Productivity improvement Tools/ Approaches/ Techniques:	
	Principles of Six-Sigma, approaches like JIT, Lean	
	manufacturing zero defect concept, KANBAN, QFD, FMEA,	
	Basics of DOE and Shining concepts of quality. Productivity	
	improvement techniques like 5S, POKAYOKE, SMED,	
	KAIZEN and Concurrent Engineering.	

### **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to

### each module

### References

- 1. Juran, J. M., Gryana, F. M., Quality planning and analysis, TMH.
- 2. Bester Fidd, D. H., et.al. Total quality management, Prentice Hall.
- 3. Erossbly, Pillip b., Quality is free, Mentor/New Americal Library.
- 4. Ishikawa, K., What is total quality control? The Japanese way, Prentice Hall
- 5. Fergenbaum, Armand V., Total quality control.
- 6. Logothetis, N., Managing for total quality, Prentice Hall
- 7. Aurora, K. C., Total Quality Management, S. K. Kataria and Sons
- 8. Haldar, U. K., Total Quality Management, Dhanpatrai and Co.

<b>Course Code</b>	Course/Subject Name	Credits
BTE8043	Department Elective IV: Entrepreneurship	4

# **Pre-requisites:**

 Basic Knowledge of Engineering Science, Mathematics and Interest towards finance

# **Course Objectives:**

- Meaning and concept of entrepreneurship
- Preparing a Business Plan
- Financing the New Venture
- Managing Growth in New Venture
- skills required to be an entrepreneur

#### **Course outcomes:**

- Students will be able to make decision in new venture
- Students will have creativity in Entrepreneurship.
- Students will develop skill for innovation and competition.
- Students learn leadership qualities.

Module	Contents	Contact
		Hours
1	Introduction to Entrepreneurship: Meaning and concept of	04
	entrepreneurship, the history of entrepreneurship	
	development, role of entrepreneurship in economic	
	development, agencies in entrepreneurship management and future of entrepreneurship.	
2	The Entrepreneur: Meaning of entrepreneur, the skills	04
	required to be an entrepreneur, the entrepreneurial decision	
	process, and role models, mentors and support system.	
3	Business Opportunity Identification: Business ideas, methods	05
	of generating ideas, and opportunity recognition	
4	Preparing a Business Plan: Meaning and significance of a	05
	business plan, components of a business plan, and feasibility	
	study	
5	Financing the New Venture: Importance of new venture	05
	financing, types of ownership securities, venture capital, types	
	of debt securities, determining ideal debt-equity mix, and	
	financial institutions and banks	
6	Launching the New Venture: Choosing the legal form of new	
	venture, protection of intellectual property, and marketing the	04
	new venture	
7	Managing Growth in New Venture: Characteristics of high	04
	growth new ventures, strategies for growth, and building the	
	new venture capital	
8	Harvesting Rewards: Exit strategies for entrepreneurs,	04
	bankruptcy, and succession and harvesting strategy	

# **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which

are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

#### Internal

 Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Entrepreneurship, Hisrich Peters Sphephard, Tata McGraw Hill
- 2. Fundamentals of entrepreneurship, S.K. Mohanty, Published by PHI Learning, 2010
- 3. Management and Entrepreneurship, By N. V. R. Naidu, T. Krishna Rao
- Entrepreneurship in Theory and Practice: Paradoxes in Play by S. L. Nielsen, K. Klyver, M. Rostgaard Evald Published by Edward Elgar Publishing Ltd; 2012

<b>Course Code</b>	Course/Subject Name	Credits
BTE8044	Department Elective IV: Advanced Bioinformatics	4

# **Pre-requisites:**

• Bioinformatics, Knowledge of protein structure.

# **Course Objectives:**

- Study the development and implementation of tools that enables to efficiently access and manage various types of information.
- Study the development of new algorithms (mathematical formulas) and statistics used to assess relationships among members of large data sets. For example, methods to locate a gene within a sequence, predict protein structure and/or function, and cluster protein sequences into families of related sequences.
- The primary goal of bioinformatics is to increase the understanding of biological processes. What sets it apart from other approaches, however, is its focus on developing and applying computationally intensive techniques to achieve this goal.
- Help have a better knowledge of pharmaceutical biology & its relation with information technology.

#### **Course outcomes:**

By learning this course the students will be able to:

- Describe the contents and properties of the most important bio informatical databases, perform text-and sequence-based searches, and analyse and discuss the results in light of molecular biological knowledge
- Explain the major steps in pair wise and multiple sequence alignment, explain the principle for, and execute pair wise sequence alignment by dynamic programming
- Explain the major features of evolution of genes and proteins and explain how different methods can be used to construct phylogenetic trees.
- Explainthemajorfeaturesofmethodsformodellingproteinstructuresanduseprogr amsfor visualizing and analysing such structures.
- Give examples of methods for describing and analysing genes, genomes and gene expression
- To solve any biological sequence analysis problem, with choosing & modifying suitable computational model to solve it.

Module	Contents	Contact
		Hours
01	Introduction to concepts of molecular modelling Methods of molecular modelling: Molecular mechanics, Abinitio Quantum mechanics, Semi empirical quantum mechanics. Energy minimization of molecules: local & global energy minima.	10
02	Overview: Machine learning, Genetic algorithms, Simulated annealing Interoperability: Introduction, Its role in bioinformatics. Interexchange Languages: XML, CORBA and UMLS.	08

	Clustering algorithms.	
03	Drug discovery, Markov chains, Hidden markov models.	06
04	Drug designing: Drug optimization, Identification of pharmacophore, Optimizing access to target, Prodrugs, Endogenous compounds as drugs, Quantitative structure- activity relationship (QSAR).	05
05	Docking: Introduction, Protein protein docking, Protein	06
	Ligand docking, Applications of docking.	

#### **Term Work**

Term work shall consist of minimum eight tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 Marks Attendance: 05 Marks Total: 25 Marks

#### Assessment

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Cynthia Gibas & Per Jambeck, Developing Bioinformatics computer skills, third edition.
- 2. S.C. Rastogi, Bioinformatics concepts, skills & applications, first edition.
- 3. Dov Stekel, Microarray Bioinformatics.
- 4. David W. Mount, Bioinformatics sequence and genome analysis.
- 5. N.Claude Cohen, Molecular modeling in drug design.
- 6. Oreilly, Developing bioinformatics computer skills, Shroff publishers, 1st Indian edition.
- 7. Medicinal Chemistry by Graham L. Patrick, Oxford University Press

<b>Course Code</b>	Course Name	Credits
ILO8021	Institute Level Optional Subject II- Project	03
	Management	

### **Objectives:**

- To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

#### **Outcomes:**

Learner will be able to...

- Apply selection criteria and select an appropriate project from different options.
- Write work break down structure for a project and develop a schedule based on it
- Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- Use Earned value technique and determine & predict status of the project.
- Capture lessons learned during project phases and document them for future reference

Module	<b>Detailed Contents</b>	Contact Hours
1	Project Management Foundation:	5
	Definition of a project, Project Vs Operations, Necessity of	
	project management, Triple constraints, Project life cycles	
	(typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving	
	conflicts. Project management in various organization	
	structures. PM knowledge areas as per Project Management Institute (PMI).	
2	Initiating Projects:	6
_	How to get a project started, Selecting project strategically,	U
	Project selection models (Numeric /Scoring Models and Non-	
	numeric models), Project portfolio process, Project sponsor	
	and creating charter; Project proposal. Effective project	
	team, Stages of team development & growth (forming,	
	storming, norming & performing), team dynamics.	
3	Project Planning and Scheduling:	8
	Work Breakdown structure (WBS) and linear responsibility	
	chart, Interface	
	Co-ordination and concurrent engineering, Project cost	
	estimation and budgeting, Top down and bottoms up	
	budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart. Introduction to Project Management	
	Information System (PMIS).	
4	Planning Projects:	6

	Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan.  Risk Management in projects: Risk management planning, Risk identification and risk register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	
5	Executing Projects: Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects. Team management, communication and project meetings. 5.2 Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit. 5.3 Project Contracting Project procurement management, contracting and outsourcing,	8
6	Project Leadership and Ethics: Introduction to project leadership, ethics in projects. Multicultural and virtual projects. 6.2 Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.	6

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

<b>Course Code</b>	Course Name	Credits
ILO8022	Institute Level Optional Subject II- Finance	03
	Management	

# **Objectives:**

- Overview of Indian financial system, instruments and market
- Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- Knowledge about sources of finance, capital structure, dividend policy

### **Outcomes:**

Learner will be able to...

- Understand Indian finance system and corporate finance
- Take investment, finance as well as dividend decisions

Module	Detailed Contents	Contact Hours
01	Overview of Indian Financial System: Characteristics, Components and Functions of Financial System. Financial Instruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills. Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks,	06
02	Investment-Merchant Banks and Stock Exchanges  Concepts of Returns and Risks: Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio.  Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding and Continuous Discounting.	06
03	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision. Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	09
04	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback	10

	Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR) Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.	
05	Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance—Trade Credit, Bank Finance, Commercial Paper; Project Finance.  Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of Capital Structure Theories and Approaches— Net Income Approach, Net Operating Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	05
06	Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	03

### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

### **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

<b>Course Code</b>	Course Name	Credits
ILO8023	<b>Institute Level Optional Subject II- Entrepreneurship</b>	03
	Development and Management	

# **Objectives:**

- To acquaint with entrepreneurship and management of business
- Understand Indian environment for entrepreneurship
- Idea of EDP, MSME

### **Outcomes:**

Learner will be able to...

- Understand the concept of business plan and ownerships
- Interpret key regulations and legal aspects of entrepreneurship in India
- Understand government policies for entrepreneurs

Module	Detailed Contents	Contact Hours
01	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	04
02	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	09
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	08
05	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with	08

	large industries), exercises, e-Marketing	
06	Achieving Success In The Small Business: Stages of the small	05
	business life cycle, four types of firm-level growth strategies,	
	Options – harvesting or closing small business Critical Success	
	factors of small business	

#### Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGraw Hill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

<b>Course Code</b>	Course Name	Credits
ILO8024	Institute Level Optional Subject II- Human Resource	03
	Management	

- To introduce the students with basic concepts, techniques and practices of the human resource management.
- To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- To familiarize the students about the latest developments, trends & different aspects of HRM.
- To acquaint the student with the importance of inter-personal & inter-group behavioural skills in an organizational setting required for future stable engineers, leaders and managers.

#### **Outcomes:**

Learner will be able to...

- Understand the concepts, aspects, techniques and practices of the human resource management.
- Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- Gain knowledge about the latest developments and trends in HRM.
- Apply the knowledge of behavioural skills learnt and integrate it with in inter personal and intergroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Contact Hours
01	Introduction to HR	5
	Human Resource Management- Concept, Scope and	
	Importance, Interdisciplinary Approach Relationship with	
	other Sciences, Competencies of HR Manager, HRM	
	functions.	
	Human resource development (HRD): changing role of HRM	
	– Human resource Planning, Technological change,	
	Restructuring and rightsizing, Empowerment, TQM,	
	Managing ethical issues.	
02	Organizational Behaviour (OB)	7
	Introduction to OB Origin, Nature and Scope of	
	Organizational Behaviour, Relevance to Organizational	
	Effectiveness and Contemporary issues	
	Personality: Meaning and Determinants of Personality,	
	Personality development, Personality Types, Assessment of	
	Personality Traits for Increasing Self Awareness	
	Perception: Attitude and Value, Effect of perception on	
	Individual Decision-making, Attitude and Behavior.	
	Motivation: Theories of Motivation and their Applications for	
	Behavioral Change (Maslow, Herzberg, McGregor);	
	Group Behaviour and Group Dynamics: Work groups formal	

	and informal groups and stages of group development. Team	
	Effectiveness: High performing teams, Team Roles, cross	
	functional and self-directed team. Case study	
03	Organizational Structure & Design	6
	Structure, size, technology, Environment of organization;	
	Organizational Roles & conflicts: Concept of roles; role	
	dynamics; role conflicts and stress.	
	Leadership: Concepts and skills of leadership, Leadership and	
	managerial roles, Leadership styles and contemporary issues	
	in leadership.	
	Power and Politics: Sources and uses of power; Politics at	
	workplace, Tactics and strategies.	
04	Human resource Planning	5
	Recruitment and Selection process, Job-enrichment,	
	Empowerment - Job-Satisfaction, employee morale.	
	Performance Appraisal Systems: Traditional & modern	
	methods, Performance Counselling, Career Planning.	
	Training & Development: Identification of Training Needs,	
	Training Methods	
05	Emerging Trends in HR	6
	Organizational development; Business Process Re-engineering	
	(BPR), BPR as a tool for organizational development,	
	managing processes & transformation in HR. Organizational	
	Change, Culture, Environment	
	Cross Cultural Leadership and Decision Making: Cross	
	Cultural Communication and diversity at work, Causes of	
	diversity, managing diversity with special reference to	
	handicapped, women and ageing people, intra company	
	cultural difference in employee motivation.	
06	HR & MIS	10
	Need, purpose, objective and role of information system in	
	HR, Applications in HRD in various industries (e.g.	
	manufacturing R&D, Public Transport, Hospitals, Hotels and	
	service industries	
	Strategic HRM	
	Role of Strategic HRM in the modern business world, Concept	
	of Strategic, Strategic Management Process, Approaches to	
	Strategic Decision Making; Strategic Intent – Corporate	
	Mission, Vision, Objectives and Goals Labor Laws & Industrial Relations	
	Evolution of IR, IR issues in organizations, Overview of	
	Labor Laws in India; Industrial Disputes Act, Trade Unions	
	Act, Shops and Establishments Act	

# **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

• Question paper will comprise of 6 questions each carrying 20 questions.

- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Stephen Robbins, Organizational Behaviour, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behaviour, Latest Ed, 2016, Pearson Publications

<b>Course Code</b>	Course Name	Credits
ILO8025	Institute Level Optional Subject II- Professional	03
	Ethics and Corporate Social Responsibility (CSR)	

- To understand professional ethics in business
- To recognized corporate social responsibility

# **Outcomes:**

Learner will be able to...

- Understand rights and duties of business
- Distinguish different aspects of corporate social responsibility
- Demonstrate professional ethics
- Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Contac t Hours
01	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties of Business	04
02	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition; Oligopolistic Competition; Oligopolies and Public Policy Professional Ethics and the Environment: Dimensions of Pollution and Resource Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	08
03	Professional Ethics of Consumer Protection: Markets and Consumer Protection; Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising Ethics; Consumer Privacy Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of Discrimination; Reservation of Jobs.	06
04	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple bottom line, Human resources, Risk management, Supplier relations; Criticisms and concerns—Nature of business; Motives; Misdirection.  Trajectory of Corporate Social Responsibility in India	05
05	Corporate Social Responsibility: Articulation of Gandhian Trusteeship Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India, Corporate Social Responsibility and Public-Private Partnership (PPP) in India	08
06	Corporate Social Responsibility in Globalizing India: Corporate Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs, Government of India, Legal Aspects of Corporate Social Responsibility—Companies Act, 2013.	08

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

### **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

<b>Course Code</b>	Course Name	Credits
ILO8026	Institute Level Optional Subject II- Research	03
	Methodology	

- To understand Research and Research Process
- To acquaint students with identifying problems for research and develop research strategies
- To familiarize students with the techniques of data collection, analysis of data and interpretation

### **Outcomes:**

Learner will be able to...

- Prepare a preliminary research design for projects in their subject matter areas
- Accurately collect, analyze and report data
- Present complex data or situations clearly
- Review and analyze research findings

Module	Detailed Contents	Contact Hours
01	Introduction and Basic Research Concepts	09
	1.1 Research – Definition; Concept of Construct, Postulate,	
	Proposition, Thesis, Hypothesis, Law, Principle. Research	
	methods vs Methodology	
	1.2 Need of Research in Business and Social Sciences	
	1.3 Objectives of Research	
	1.4 Issues and Problems in Research	
	1.5 Characteristics of Research: Systematic, Valid, Verifiable,	
	Empirical and Critical	
02	Types of Research	07
	2.1. Basic Research	
	2.2. Applied Research	
	2.3. Descriptive Research	
	2.4. Analytical Research	
	2.5. Empirical Research	
02	2.6 Qualitative and Quantitative Approaches	07
03	Research Design and Sample Design	07
	3.1 Research Design – Meaning, Types and Significance	
	3.2 Sample Design – Meaning and Significance Essentials of a good sampling Stages in Sample Design Sampling	
	good sampling Stages in Sample Design Sampling methods/techniques Sampling Errors	
04	Research Methodology	08
V <del>-1</del>	4.1 Meaning of Research Methodology	Vo
	4.2. Stages in Scientific Research Process:	
	a. Identification and Selection of Research Problem	
	b. Formulation of Research Problem	
	c. Review of Literature	
	d. Formulation of Hypothesis	
	e. Formulation of research Design	

	f. Sample Design	
	g. Data Collection	
	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
05	Formulating Research Problem	04
	5.1 Considerations: Relevance, Interest, Data Availability,	
	Choice of data, Analysis of data, Generalization and	
	Interpretation of analysis	
06	Outcome of Research	04
	6.1 Preparation of the report on conclusion reached	
	6.2 Validity Testing & Ethical Issues	
	6.3 Suggestions and Recommendation	

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Credits
ILO8027	Institute Level Optional Subject II- IPR and	03
	<b>Patenting</b>	

- To understand intellectual property rights protection system
- To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- To get acquaintance with Patent search and patent filing procedure and applications

### **Outcomes:**

- understand Intellectual Property assets
- assist individuals and organizations in capacity building
- work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Contact Hours
01	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc. Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development	05
02	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active in IPR enforcement Indian Scenario of IPR: Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc.	07
03	Emerging Issues in IPR: Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	05
04	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	07
05	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
06	Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and	07

Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publication etc, Time frame and cost, Patent Licensing, Patent Infringement
Patent databases: Important websites, Searching international databases

#### Assessment

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

### **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

#### References

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. Lous Harns, 2012, The enforcement of Intellectual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

<b>Course Code</b>	Course Name	Credits
ILO8028	Institute Level Optional Subject II - Digital Business	03
	Management	

- To familiarize with digital business concept
- To acquaint with E-commerce
- To give insights into E-business and its strategies

### **Outcomes:**

The learner will be able to .....

- Identify drivers of digital business
- Illustrate various approaches and techniques for E-business and management
- Prepare E-business plan

Module	Detailed content	Contact
		Hours
1	Introduction to Digital Business-	09
	Introduction, Background and current status, E-market places,	
	structures, mechanisms, economics and impacts. Difference	
	between physical economy and digital economy.	
	Drivers of digital business- Big Data & Analytics, Mobile,	
	Cloud Computing, Social media, BYOD, and Internet of Things	
	(digitally intelligent machines/services). Opportunities and	
	Challenges in Digital Business,	
2	Overview of E-Commerce	06
	E-Commerce- Meaning, Retailing in e-commerce-products and	
	services, consumer behaviour, market research and	
	advertisement. B2B-E-commerce-selling and buying in private	
	e-markets, public B2B exchanges and support services, e-supply	
	chains, Collaborative Commerce, Intra business EC and	
	Corporate portals. The E-C models and applications, innovative	
	EC System-From E-government and learning to C2C, mobile	
	commerce and pervasive computing. EC Strategy and	
	Implementation-EC strategy and global EC, Economics and	
	Justification of EC, Using Affiliate marketing to promote your e-	
	commerce business, Launching a successful online business and	
	EC project, Legal, Ethics and Societal impacts of EC.	
3	Digital Business Support services: ERP as e -business	06
	backbone, knowledge Tope Apps, Information and referral	
	system	
	Application Development: Building Digital business	
	Applications and Infrastructure	
4	Managing E-Business-Managing Knowledge, Management	06
	skills for e-business, Managing Risks in e -business. Security	
	Threats to e-business -Security Overview, Electronic commerce	
	Threats, Encryption, Cryptography, Public Key and Private Key	
	Cryptography, Digital signatures, Digital Certificates, Security	
	Protocols over Public Networks: HTTP, SSL, Firewall as	
	Security Control, Public Key Infrastructure (PKI) for Security,	

	Prominent Cryptographic Applications	
5	E-Business Strategy-E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition(Process of Digital Transformation)	04
6	Materializing e-business: From Idea to Realization-Business plan preparation.  Case Studies and presentations	08

#### **Internal**

• Assessment consists of two tests which should be conducted at proper intervals.

### **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules
- Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective DOI:10.1787/9789264221796-en OECD Publishing

<b>Course Code</b>	Course Name	Credits
ILO8029	Institute Level Optional Subject II- Environmental	03
	Management	

- Understand and identify environmental issues relevant to India and global concerns
- Learn concepts of ecology
- Familiarise environment related legislations

### **Outcomes:**

Learner will be able to...

- Understand the concept of environmental management
- Understand ecosystem and interdependence, food chain etc.
- Understand and interpret environment related legislations

Module	Detailed Contents	Contact Hours
01	Introduction and Definition of Environment: Significance of	10
	Environment Management for contemporary managers, Career	
	opportunities.	
	Environmental issues relevant to India, Sustainable	
	Development, and The Energy scenario.	
02	Global Environmental concerns: Global Warming, Acid Rain,	06
	Ozone Depletion, Hazardous Wastes, Endangered life-species,	
	Loss of Biodiversity, Industrial/Man-made disasters,	
	Atomic/Biomedical hazards, etc.	
03	Concepts of Ecology: Ecosystems and interdependence	05
	between living organisms, habitats, limiting factors, carrying	
	capacity, food chain, etc.	
04	Scope of Environment Management, Role & functions of	10
	Government as a planning and regulating agency.	
	Environment Quality Management and Corporate	
	Environmental Responsibility	
05	Total Quality Environmental Management, ISO-14000, EMS	05
	certification.	
06	General overview of major legislations like Environment	03
	Protection Act, Air (P & CP) Act, Water (P & CP) Act,	
	Wildlife Protection Act, Forest Act, Factories Act, etc.	

# **Assessment**

## Internal

• Assessment consists of two tests which should be conducted at proper intervals.

# **End Semester theory examination**

- Question paper will comprise of 6 questions each carrying 20 questions.
- Total 4 questions need to be solved
- Question no.1 will be compulsory based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules

• Weightage of marks should be proportional to number of hours assigned to each module

### References

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

<b>Course Code</b>	Course Name	Credits
BTP801	Project-B	06

### **Guidelines:**

- Project groups: Groups of minimum two and not more than three students can be made.
- Students should spend considerable time in applying all the concepts studied, into the Project, hence, eight hours each are allotted in project A, B to the students.
- Students are advised to take up industrial/ experimental/ simulation and/or optimization based topics for their project
- Students should report their guides weekly with their work.

### **Exam Guidelines**

### Term Work - 100 Marks:

- Presentation 50 Marks
- Report -50 Marks

# Oral - 50 Marks

<b>Course Code</b>	Course/Subject Name	Credits
BTL801	Lab-VI	1.5

## **Concepts for experiments:**

A minimum of 10 experiments must be performed from the following concept:

- 1. Physical property like pH, turbidity, conductivity, alkalinity determination of waste water
- 2. Determination of total phosphorus content of waste water
- 3. Determination of total Kjeldahl Nitrogen of waste water
- 4. Determination of BOD of waste water
- 5. Determination of COD of waste water
- 6. Determination of Oil and grease content of waste water
- 7. Determination of total solids, total suspended solids and total dissolved solids
- 8. Determination of MLSS and MLVSS
- 9. Determination of Sludge Volume Index
- 10. Estimation of metals like iron, copper in waste water
- 11. Determination of chloride content of waste water
- 12. Estimation of coliform bacteria in waste water
- 13. Determination of phytoplankton in waste water
- 14. Determination of Most Probable Number of waste water
- 15. Removal of heavy metals by chemical methods from waste water Adsorption

### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.

<b>Course Code</b>	Course/Subject Name	Credits
BTL802	Lab-VII	1.5

# **Concepts for experiments:**

A minimum of 10 experiments must be performed from the following Concept:

- Adsorption
- Dialysis
- Reverse Osmosis
- Batch drying
- Crystallization
- Isolation and purification of biomolecules (protein/s or enzyme) from crude source / fermentation broth
- Determination of Solar Constants
- Study of Enzyme inhibitors
- Characterization of enzymes / Determination of Molecular weight of enzymes

### **Practical Examination**

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight out of ten experiments.