THADOMAL SHAHANI ENGINEERING COLLEGE

1.3.2 Average percentage of courses that include experiential learning through project work/field work/internship as prescribed by the affiliating university / affiliating university curriculum For Year 2017-18

THADOMAL SHAHANI

INDEX

Sr. No.	Contents	Pg. No.
1	Syllabus Scheme of First Year Engineering	1
2	Syllabus Scheme of Information Technology	41
	Engineering	
3	Syllabus Scheme of Computer Engineering	250
4	Syllabus Scheme of Electronics & Telecommunication	428
	Engineering	
5	Syllabus Scheme of Chemical Engineering	606
6	Syllabus Scheme of Biomedical Engineering	759
7	Syllabus Scheme of Biotechnology Engineering	910

C THADOMAL SHAHANI ENGINEERING COLLEGE

First Year Engineering:

INFERING CO

Sr. No.	Subject Code	Subject Name	Count
1	FEL101	Basic Workshop Practice-I	1
2	FEC102	Applied Physics-I	1
3	FEC103	Applied Chemistry -I	1
4	FEC104	Engineering Mechanics	1
5	FEC105	Basic Electrical Engineering	1
6	FEC106	Environmental studies	1
7	FEL201	Basic Workshop Practice-II	1
8	FEC202	Applied Physics-II	1
9	FEC203	Applied Chemistry -II	1
10	FEC204	Engineering Drawing	1
11	FEC205	Structured Programming Approach	1
12	FEC206	Communication Skills	1
		Total	12

AC 14/7/2016, Item No. 4.64 UNIVERSITY OF MUMBAI

Bachelor of Engineering

<u>First Year Engineering (Semester I & II), Revised course</u> (REV- 2016) from Academic Year 2016 – 17, (Common for All Branches of Engineering)

(As per **Choice Based Credit and Grading System** with effect from the academic year 2016–2017)

From Coordinator's Desk:-

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) give freedom to affiliated Institutes to add few (PEO's) course objectives course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enables a much-required shift in focus from teachercentric to learner-centric education since the workload estimated is based on the investment of time in learning not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. Credit grading based system was implemented for First Year of Engineering from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2017-2018, for Third Year Final Year Engineering in the academic years 2018-2019, 2019-2020, respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

[1]

3

Program Structure for First Year Engineering (Semester I & II) Mumbai University (With Effect from 2016-2017)

Semester 1	ſ
------------	---

Course	Course Name		ching S ntact H				Credits Assigned					
Code		Theory	Prac	et.	Tu	t. 1	heory	Т	W/Pract	Tut.	Total	
FEC101	Applied Mathematics-I	04	-		01		04		-	01	05	
FEC102	Applied Physics-I	03	01		-		03		0.5	-	3.5	
FEC103	Applied Chemistry -I	03	01		-		03		0.5	-	3.5	
FEC104	Engineering Mechanics	05	02	,	-		05		01	-	06	
FEC105	Basic Electrical Engineering	04	02	,	-		04		01	-	05	
FEC106	Environmental studies	02	-		-		02		-	-	02	
FEL101	Basic Workshop Practice-I	-	04		-		-		02	-	02	
Total		21	10)	01	-	21		05	01	27	
					Ex	amin	ation	Scł	neme			
C	Course Name	Theory										
Course Code		Internal Assess		smei	ient		Te	rm	Pract	Oral	Total	
Coue		Test1	Test2	Av	vg	Sen Exar	Sem Wo Exam		rraci	Oral	Total	
FEC101	Applied Mathematics-I	20	20	2	0	80	2	5	-	-	125	
FEC102	Applied Physics-I	15	15	1	5	60	2	5	-	-	100	
FEC103	Applied Chemistry –I	15	15	1	5	60	2	5	-	-	100	
FEC104	Engineering Mechanics	20	20	2	0	80	2	5	-	25	150	
FEC105	Basic Electrical Engineering	20	20	2	0	80	2	5	-	25	150	
FEC106	Environmental studies	15	15	1	5	60	-		-	-	75	
FEL101	Basic Workshop Practice-I	-	-	-		-	5	0	-	-	50	
Total				10)5	420	17	5		50	750	

[2]

4

			mesu									
Course	Course Name		ching S ontact H			;			Cr	edits As	signed	
Code		Theory	Prac	et.	Tu	fut. The		eory T		W/Pract	Tut.	Total
FEC201	Applied Mathematics-II	04	-		0	1	0	4		-	01	05
FEC202	Applied Physics-II	03	01		- (3		0.5	-	3.5	
FEC203	Applied Chemistry -II	03	01		-		0	3		0.5	-	3.5
FEC204	Engineering Drawing	03	04		-		0	3		02	-	05
FEC205	Structured Programming Approach	04	02		-		0	4		01	-	05
FEC206	Communication Skills	02	02	,	_		0	2		01	-	03
FEL201	Basic Workshop Practice-II	-	04		-		-			02	-	02
Total		19	14		01		19			07	01	27
					Ex	kam	inat	ion S	Sch	eme		
	Course Name			eory								
Course		Internal Assessmen			ent En		nd	Ter	m			
Code		Test1	Test2	A	vg	Sem Exam		Sem Wo		Pract	Oral	Total
FEC201	Applied Mathematics-II	20	20	2	0	8	0	25	5	-	-	125
FEC202	Applied Physics-II	15	15	1	5	6	0	25	5	-	-	100
FEC203	Applied Chemistry -II	15	15	1	5	6	0	25	5	-	-	100
FEC204	Engineering Drawing	15	15	1	5	6	0	25	5	50	-	150
FEC205	Structured Programming Approach	20	20	2	0	8	0	25		25	-	150
FEC206	Communication Skills	10	10	1	0	4	0	25		-	-	75
FEL201	Basic Workshop Practice-II	-	-		-	-	-	50)	-	-	50
Total				9	5	38	80	20	0	75	-	750

Semester II

5

_

[3]

Course	Course Name		hing Scho ntact Hou		Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
FEC101	Applied Mathematics-I	04	-	01	04	-	01	05	

		Examination Scheme									
Course Code	Course Name		T	heory							
		Inter	nal Asse	essment	End	Term Work	Pract	Oral			
		Test1	Test2	Av of Test 1 & 2	Sem Exam				Total		
FEC101	Applied Mathematics-I	20	20	20	80	25	-	-	125		

- 1. To provide students with sound foundation in applied mathematics to solve real life problems in industry.
- 2. To provide hands on experience in using Scilab software to handle real life problems.

Outcomes: Learner will be able to...

- 1. Apply the concepts of complex numbers to the engineering problems.
- 2. Apply the knowledge of nth order derivatives of standard functions to engineering problems.
- 3. Apply the principles of basic operations of matrices to the engineering problems.
- 4. Apply the basic principles of partial differentiation to engineering problems.
- 5. Apply concepts of partial differentiation (maxima and minima, Jacobian), expansion of functions as an application of successive differentiation.
- 6. Apply SCILAB programming techniques to model problems based on solution of simultaneous linear algebraic equations.

Module	Detailed Contents	Hrs.
	Complex Numbers Pre-requisite: Review of Complex Numbers-Algebra of Complex Number, Different	
	representations of a Complex number and other definitions, D'Moivre's Theorem.	
	1.1. Powers and Roots of Exponential and Trigonometric Functions.	
01	1.2. Expansion of $\sin^n \theta$, $\cos^n \theta$ in terms of sines and cosines of multiples of θ and	3
	Expansion of sinn θ , cosn θ in powers of sin θ , cos θ	2
	1.3. Circular functions of complex number and Hyperbolic functions. Inverse Circular and	
	Inverse Hyperbolic functions. Separation of real and imaginary parts of all types	4
	of Functions.	
	Logarithm of Complex Numbers, Successive Differentiation	
02	2.1 Logarithmic functions, Separation of real and Imaginary parts of Logarithmic Functions.	4
02	2.2 Successive differentiation: nth derivative of standard functions. Leibnitz's Theorem	
	(without proof) and problems	4
	Matrices	
	Pre-requisite : Inverse of a matrix, addition, multiplication and transpose of a matrix	
	Types of Matrices (symmetric, skew-symmetric, Hermitian, Skew Hermitian, Unitary,	9
03	Orthogonal Matrices and properties of Matrices). Rank of a Matrix using Echelon forms,	
	reduction to normal form, PAQ in normal form, system of homogeneous and non –	
	homogeneous equations, their consistency and solutions. Linear dependent and independent	
	vectors. Application of inverse of a matrix to coding theory.	
	Partial Differentiation	
04	4.1 Partial Differentiation: Partial derivatives of first and higher order. Total differentials, differentiation of composite and implicit functions.	6
	differentiation of composite and implicit functions	1

[4]

	4.2. Euler's Theorem on Homogeneous functions with two and three independent	3
	variables (with proof).Deductions from Euler's Theorem	
	Applications of Partial Differentiation, Expansion of Functions	
	5.1 Maxima and Minima of a function of two independent variables, Jacobian.	
05	5.2 Taylor's Theorem (Statement only) and Taylor's series, Maclaurin's series (Statement	4
	only). Expansion of e^x , $sin(x)$, $cos(x)$, $tan(x)$, $sinh(x)$, $cosh(x)$, $tanh(x)$, $log(1+x)$,	
	$sin^{-1}(x), cos^{-1}(x), tan^{-1}(x)$, Binomial series.	4
	Indeterminate forms, Numerical Solutions of Transcendental Equations and System	
	of Linear Equations	
	6.1 Indeterminate forms, L- Hospital Rule, problems involving series.	2
06	6.2 Solution of Transcendental Equations: Solution by Newton Raphson method and	4
VO	Regula – Falsi Equation.	
	6.3 Solution of system of linear algebraic equations, by (1) Gauss Elimination Method, (2)	3
	Gauss Jacobi Iteration Method, (3) Gauss Seidal Iteration Method. (Scilab programming	
	for above methods is to be taught during lecture hours)	

Term Work:

General Instructions:

- 1. Batch wise tutorials are to be conducted. The number of students per batch should be as per University pattern for practicals.
- 2. Students must be encouraged to write Scilab Programs in tutorial class only. Each Student has to write at least 4 Scilab tutorials (including print out) and at least 6 class tutorials on entire syllabus.
- 3. SciLab Tutorials will be based on (i) Guass Elimination Method (ii) Guass Seidal Iteration method (iii) Gauss Jacobi Iteration Method (iv) Newton Raphson Method (v) Regula –Falsi method (vi) Maxima and Minima of functions of two variables

The distribution of Term Work marks will be as follows -

- 1. Attendance (Theory and Tutorial) : 05 marks
- 2. Class Tutorials on entire syllabus : 10 marks
- 3. SciLab Tutorials : 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.
- 5. Weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

[5]

7

References:

- 1. A text book of Applied Mathematics, P.N.Wartikar and J.N.Wartikar, Vol I and –II by Pune VidyarthiGraha.
- 2. Higher Engineering Mathematics, Dr.B.S.Grewal, Khanna Publication
- 3. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley EasternLimited, 9thEd.
- 4. Matrices, Shanti Narayan.S. Chand publication
- 5. Numerical Methods, Dr. P. Kandasamy , S. Chand Publication
- 6. Howard Anton and Christ Rorres. Elementary Linear Algebra Application Version. 6th edition. John Wiley & Sons, INC.
- 7. Eisenberg, Murray. Hill Ciphers and Modular Linear Algebra. 3 Nov 1999 (accessed November 2 December 2001)
- 8. <http://www.math.umass.edu/~murray/Hillciph.pdf>

[6]

Course Code	Course Name		hing Sche ntact Hou		Credits Assigned			
		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEC102	Applied Physics – I	03	01		03	0.5		3.5

		Examination Scheme									
Course Code	Course Name		T	heory							
		Inter	nal Asse	essment	End	Term	Pract	Oral			
		Test1	Test2	Av of Test 1 & 2	Sem Exam	Work			Total		
FEC102	Applied Physics – I	15	15	15	60	25			100		

- 1. To impart knowledge of basic concepts in applied physics.
- 2. To provide the knowledge and methodology necessary for solving problems in the field of engineering.

Outcomes: Learner will be able to...

- 1. Apply the concepts of crystallography and to use XRD techniques for analysis of crystal structure .
- 2. Apply the knowledge of Quantum mechanics to uncertainty principle and motion of free particle.
- 3. To comprehend the basic concepts of semiconductor physics and apply the same to electronic devices.
- 4. Apply the knowledge of superconductivity to SQUID and Magnetic levitation.
- 5. Apply the reasons for Acoustic defects and use this in the proper design of a Hall/Auditorium.
- 6. Use the knowledge of Piezoelectric and Magnetostriction effect for production of ultrasonic waves and its application in various fields.

Module	Detailed Contents	Hrs.
01	CRYSTAL STRUCTURE Introduction to crystallography; Study of characteristics of unit cell of Diamond, ZnS, NaCl and HCP; Miller indices of crystallographic planes & directions; interplanar spacing; X-ray diffraction and Bragg's law; Determination of Crystal structure using Bragg's diffractometer; Frenkel and Schotkey crystal defects; Ionic crystal legancy (3,4,6,8); Liquid crystal phases.	07
02	QUANTUM MECHANICS Introduction, Wave particle duality; de Broglie wavelength; experimental verification of de Broglie theory; properties of matter waves; wave packet, phase velocity and group velocity; Wave function; Physical interpretation of wave function; Heisenberg's uncertainty principle; Electron diffraction experiment and Gama ray microscope experiment; Applications of uncertainty principle; Schrodinger's time dependent wave equation; time independent wave equation; Motion of free particle; Particle trapped in one dimensional infinite potential well.	09
03	SEMICONDUCTOR PHYSICS Splitting of energy levels for band formation; Classification of semiconductors(direct & indirect band gap, elemental and compound); Conductivity, mobility, current density (drift & diffusion) in semiconductors(n type and p type); Fermi Dirac distribution function; Fermi energy level in intrinsic & extrinsic semiconductors; effect of impurity concentration and temperature on fermi level; Fermi Level diagram for p-n junction(unbiased, forward bais, reverse bias); Breakdown mechanism (zener&avalanchy), Hall Effect	14

[7]

	Applications of semiconductors: Rectifier diode, LED, Zener diode, Photo diode, Photovoltaic cell, BJT, FET, SCR., MOSFET	
04	SUPERCONDUCTIVITY Introduction, Meissner Effect; Type I and Type II superconductors; BCS Theory (concept of Cooper pair); Josephson effect Applications of superconductors- SQUID, MAGLEV	03
05	ACOUSTICS Conditions of good acoustics; Reflection of sound(reverberation and echo); absorption of sound; absorption coefficient; Sabine's formula; Acoustic Design of a hall; Common Acoustic defects and acoustic materials	03
06	ULTRASONICS Ultrasonic Wave generation; Magnetostriction Oscillator; Piezoelectric Oscillator; Applications of ultrasonic: Eco sounding; NDT; ultrasonic cleaning(cavitation); ultrasonic sensors; Industrial applications of ultrasonic(soldering, welding, cutting, drilling)	03

Suggested Experiments: (Any five)

- 1. Study of Diamond, ZnS, NaCl crystal structure.
- 2. Study of HCP structure.
- 3. Study of Miller Indices, Plane and direction.
- 4. Study of Hall Effect.
- 5. Determination of energy band gap of semiconductor.
- 6. Study of Ultrasonic Distance Meter.
- 7. Study of I / V characteristics of Zener diode.
- 8. Determination of 'h' using Photo cell.
- 9.Study of I / V characteristics of semiconductor diode

The distribution of Term Work marks will be as follows -

- 1. Attendance (Theory and Practical) : 05 marks
- 2. Assignments : 10 marks
- 3. Laboratory work (Experiments and Journal) : 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 3 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.
- 5. In question paper weightage of each module will be proportional to number of respective
- 1. lecture hrs as mentioned in the syllabus.

[8]

References:

- 1. A text book of Engineering Physics-Avadhanulu&Kshirsagar, S.Chand
- 2. Applied Solid State Physics Ranikant, Wiley India
- 3. Solid State Electronic Devices- B. G. Streetman, Prentice Hall Publisher
- 4. Physics of Semiconductor Devices- S. M. Sze, John Wiley & sons publisher
- 6. Modern Engineering Physics Vasudeva, S.Chand
- 7. Concepts of Modern Physics- ArtherBeiser, Tata McGraw Hill
- 8. Engineering Physics- V. Rajendran, Tata McGraw Hill
- 9. Introduction to Solid State Physics- C. Kittle, John Wiley & Sons publisher
- 10. Engineering Physics-H. K. Malik, McGraw Hill

[9]

Course	Course Name		hing Scheme ntact Hours)		Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
FEC103	Applied Chemistry – I	03	01		03	0.5		3.5	

				Exa	minatior	n Schem	e		
	Course Name		T	heory					
Course		Inter	nal Asso	essment	End	Term			
Code		Test1	Test2	Av of Test 1 & 2	Sem Exam	Work	Pract	Oral	Total
FEC103	Applied Chemistry – I	15	15	15	60	25			100

- 1. To provide necessary background in applied chemistry relevant to chemical industries.
- 2. To provide exposure in conducting experiments and interpret and report the results in professional format.

Outcomes: Learner will be able to...

- 1. Apply the knowledge of types of hardness of water and its estimation.
- 2. Apply the knowledge of various softening and disinfecting methods.
- 3. Apply the knowledge of various polymers, their synthesis, properties and uses along with their fabrication techniques.
- 4. Apply the knowledge of thermodynamics in studying different chemical systems in equilibrium obeying Gibb's phase rule.
- 5. Apply the knowledge of lubricants, types, properties and mechanisms to avoid frictional resistance.
- 6. Demonstrate the knowledge of Portland cement and carbon nanomaterials.

Module	Detailed Contents	Hrs.
01	Water Impurities in water, Hardness of water, Determination of Hardness of water by EDTA method and problems, Softening of water by Hot and Cold lime Soda method and numerical problems. Zeolite process and numerical problems. Ion Exchange process and numerical problems. Potable water standard as per BIS w.r.t. i) pH, ii) Alkalinity, iii) TDS, iv) Hardness; Drinking water or Municipal water -Treatments removal of microorganisms by adding Bleaching powder, Chlorination (no breakpoint chlorination), Disinfection by Ozone, Electrodialysis, Reverse osmosis, and Ultra filtration. BOD, COD- definition & significance, sewage treatment (only activated sludge process), Numerical problems related to COD.	12
02	Polymers Introduction to polymers, Classification, Types of polymerization, Thermoplastic and Thermosetting plastic; Compounding of plastic, Fabrication of plastic by Compression, Injection, Transfer and Extrusion moulding. Preparation, properties and uses of Phenol formaldehyde, PMMA, Kevlar. Effect of heat on the polymers (Glass transition temperature), Viscoelasticity. Conducting polymers, Engineering Plastics, Polymers in medicine and surgery. Rubbers : Natural rubber- latex, Drawbacks of natural rubber, Vulcanization of rubber, Preparation, properties and uses of Buna-S, Silicone and Polyurethane rubber.	12
03	Lubricants Introduction, Definition, Mechanism of lubrication, Classification of lubricants, Solid lubricants (graphite & Molybdenum disulphide), Semisolid lubricants, Liquid lubricants, Additives in blended Oils. Important properties of lubricants - Definition and significance of - Viscosity, Viscosity index, Flash and fire points, Cloud and pour points, Oiliness,	07

[10]

	Emulsification, Acid value and numerical problems, Saponification value and numerical problems.	
04	Phase Rule Gibb's Phase Rule, Terms involved with examples, One Component System (Water), Reduced Phase Rule, Two Component System (Pb- Ag), Advantages and Limitations of Phase Rule.	04
05	Important Engineering MaterialsCement – Manufacture of Portland Cement, Chemical Composition and Constitution ofPortland Cement, Setting and Hardening of Portland Cement, Concrete, RCC and Decay.Nanomaterials, preparation (Laser and CVD) method, properties and uses of CNTS,Fullerene - properties and uses.	05

Suggested Experiments:

- 1) To determine total, temporary and permanent hardness of water sample.
- 2) Removal of hardness using ion exchange column.
- 3) To determine acid value of a lubricating oil.
- 4) To determine free acid pH of different solutions using pHmeter
- 5) To determine metal ion concentration using colorimeter.
- 6) To determine flash point and fire point of a lubricating oil
- 7) To determine Chloride content of water by Mohr's Method.
- 8) To determine melting point and /or glass transition temperature of a polymer
- 9) Molecular weight determination of polymers by Oswald Viscometer.
- 10) To determine the percentage of lime in cement.
- 11) Hardening and setting of cement using Vicat's apparatus
- 12) Determination of Viscosity of oil by Redwood Viscometer.

Term Work shall consist of minimum five experiments. The distribution of marks for term work shall be as follows:

- 1 Attendance (Practical and Theory) : 05 marks
- 2 Laboratory Work (Experiments and journal) : 10 marks
- 3 Assignments and Viva on practical's : 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 3 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

[11]

References:

- 1. Engineering Chemistry Jain& Jain (DhanpatRai)
- 2. Engineering Chemistry Dara&Dara (S Chand)
- 3. Engineering Chemistry Wiley India (ISBN 9788126519880)
- 4. A Text Book of Engineering Chemistry Shashi Chawla (DhanpatRai)

[12]

Course	Course Name		Teaching Scheme (Contact Hours)		Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEC104	Engineering Mechanics	05	02	-	05	01	-	06

			Examination Scheme									
			T	heory								
Course	Course Name	Inter	nal Asse	essment	Term							
Code		Test1	Test2	Av of Test 1 & 2	End Sem Exam	Work	Pract	Oral	Total			
FEC104	Engineering Mechanics	20	20	20	80	25		25	150			

- 1. To acquaint the concept of equilibrium in two and three dimensional system.
- 2. To study and analyse motion of moving bodies.

Outcomes: Learner will be able to...

- 1. Illustrate the concept of force, moment and apply the same along with the concept of equilibrium in two and three dimensional systems with the help of FBD.
- 2. Demonstrate the understanding of Centroid and its significance and locate the same.
- 3. Correlate real life application to specific type of friction and estimate required force to overcome friction.
- 4. Establish relation between velocity and acceleration of a particle and analyse the motion by plotting the relation
- 5. Illustrate different types of motions and establish Kinematic relations for a rigid body
- 6. Analyse body in motion using force and acceleration, work-energy, impulse-momentum principles

Module	Detailed Contents	Hrs.
	1.1 System of Coplanar Forces:	05
	Resultant of concurrent forces, parallel forces, non-concurrent	
01	Non-parallel system of forces, Moment of force about a point, Couples, Varignon's	
	Theorem. Force couple system. Distributed Forces in plane.	
	1.2 Centroid for plane Laminas.	04
	2.1Equilibrium of System of Coplanar Forces:	
02	Condition of equilibrium for concurrent forces, parallel forces and non-concurrent non-	06
	parallel general forces and Couples.	
	2.2Types of support : Loads, Beams, Determination of reactions at supports for various	03
	types of loads on beams.(Excluding problems on internal hinges)	
	2.3Analysis of plane trusses : By using Method of joints and Method of sections.	05
	(Excluding pin jointed frames).	
	3.1 Forces in space:	
	Resultant of Non-coplanar Force Systems: Resultant of concurrent force system, parallel	05
	force system and non-concurrent non-parallel force system.	
	Equilibrium of Non-coplanar Force Systems: Equilibrium of Concurrent force system,	
03	parallel force system and non-concurrent non-parallel force system.	
05	3.2 Friction:	07
	Introduction to Laws of friction, Cone of friction, Equilibrium of bodies on inclined plane,	
	Application to problems involving wedges, ladders.	
	1.3 Principle of virtual work:	04
	Applications on equilibrium mechanisms, pin jointed frames.	

[13]

	4.1 Kinematics of a Particle : -Rectilinear motion, Velocity & acceleration in terms of	10
04	rectangular co-ordinate system, Motion along plane curved path, Tangential& Normal	
	component of acceleration, Motion curves (a-t, v-t, s-t curves), Projectile motion.	
	5.1 Kinematics of a Rigid Body :- Introduction to general plane motion,	06
05	Instantaneous center of rotation for the velocity, velocity diagrams for bodies in plane	
	motion.	
	6.1 Kinetics of a Particle: Force and Acceleration: -Introduction to basic concepts,	04
	D'Alemberts Principle, Equations of dynamic equilibrium, Newton's second law of	
	motion.	
06	6.2 Kinetics of a Particle: Work and Energy: Principle of work and energy, Law of	03
	conservation of energy.	
	6.3 Kinetics of a Particle: Impulse and Momentum: Principle of linear impulse and	03
	momentum. Law of conservation of momentum. Impact and collision.	

List of Experiments:-

- 1. Polygon law of coplanar forces.
- 2. Non-concurrent non-parallel (General).
- 3. Bell crank lever.
- 4. Support reaction for beam.
- 5. Inclined plane (to determine coefficient of friction).
- 6. Collision of elastic bodies (Law of conservation of momentum).
- 7. Kinematics of particles
- 8. Kinetics of particles

Any other experiment based on above syllabus.

Term work:-

Term work shall consist of minimum six experiments (at least one experiments on Dynamics), assignments consisting numerical based on above syllabus, at least 3 numerical from each module.

The distribution of marks for term work shall be as follows:

1.	Attendance (Theory and Practical)	: 05 marks
2.	Laboratory work (Experiment/ programs and journal)	: 10 marks
3.	Assignments	: 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

[14]

Oral Examination: - Oral examination will be based on entire syllabus

References:

- 1. Engineering Mechanics by R. C. Hibbeler.2
- 2. Engineering Mechanics by Beer & Johnston, Tata McGraw Hill
- 3. Engineering Mechanics by F. L. Singer, Harper& Raw Publication
- 4. Engineering Mechanics by Macklin & Nelson, Tata McGraw Hill
- 5. Engineering Mechanics by Shaum Series,
- 6. Engineering Mechanics by A K Tayal, Umesh Publication.
- 7. Engineering Mechanics by Kumar, Tata McGraw Hill
- 8. Engineering Mechanics (Statics) by Meriam and Kraige, Wiley Bools
- 9. Engineering Mechanics (Dynamics) by Meriam and Kraige, Wiley Bools

[15]

Course Code	Course Name		Teaching Scheme (Contact Hours) Credits Assign				signed	d		
Coue		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total		
FEC105	Basic Electrical Engineering	04	02	-	04	01	-	05		

				Exa	minatior	Schem	e		
	Course Name		T	heory					
Course		Inter	nal Asse	essment	Term				
Code		Test1	Test2	Av of Test 1 & 2	End Sem Exam	Work	Pract	Oral	Total
FEC105	Basic Electrical Engineering	20	20	20	80	25		25	150

- 1. To provide knowledge on fundamentals of D.C. circuits and its applications.
- 2. To impart knowledge on fundamentals of $1-\Phi$ A.C. circuits and its applications.
- 3. To inculcate knowledge on the basic operation and the performance of $1-\Phi$ transformer.
- 4. To impart knowledge on fundamentals of $3-\Phi$ A.C. circuits and its applications.
- 5. To provide knowledge on fundamentals of DC machines.

Outcomes: Learner will be able to...

- 1. To evaluate D.C. circuits using network theorems.
- 2. To evaluate $1-\Phi$ AC circuits.
- 3. To illustrate constructional features and operation of $1-\Phi$ transformer.
- 4. To evaluate $3-\Phi$ AC circuits.
- 5. To illustrate working principle of DC machines.
- 6. To conduct experiments on D.C. circuits and AC circuits.

Module	Detailed Contents	Hrs.
01	DC Circuits(Only Independent Sources): Kirchhoff 's laws, Ideal and practical voltage and current source, Mesh and Nodal analysis, Super node and Super mesh analysis, Source transformation, Star-delta transformation, Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem, (Source transformation not allowed for Superposition theorem, Mesh and Nodal analysis).	18
02	AC Circuits: Generation of alternating voltage and currents, RMS and Average value, form factor, crest factor, AC through resistance, inductance and capacitance, R-L, R-C and R-L-C series and parallel circuits, phasor diagrams, power and power factor, series and parallel resonance, Q factor and bandwidth.	12
03	Three Phase Circuits: Three phase voltage and current generation, star and delta connections(balanced load only), relationship between phase and line currents and voltages, Phasor diagrams, Basic principle of wattmeter, measurement of power by one and two wattmeter methods.	06
04	Single Phase Transformer: Construction, working principle, emf equation, ideal and practical transformer, transformer on no load and on load, phasor diagrams, equivalent circuit, OC and SC test, regulation and efficiency.	12
05	DC Machines: Principle of operation of DC motors and DC generators, construction and classification of DC machines, emf equation.	04

[16]

Term work:

Term work consists of performing minimum 06 practical mentioned as below.

Final certification and acceptance of the term work ensures satisfactory performance of laboratory work.

The distribution of marks for term work shall be as follows:

Attendance (Theory and Practical)	: 05 marks
Laboratory work (Experiment/journal)	: 10 marks
Assignments	: 10 marks

List of laboratory experiments (Minimum Six):

- 1. Mesh and Nodal analysis.
- 2. Verification of Superposition Theorem.
- 3. Verification Thevenin's Theorem.
- 4. Study of R-L series and R-C series circuit.
- 5. R-L-C series resonance circuit
- 6. R-L-C parallel resonance circuit.
- 7. Relationship between phase and line currents and voltages in three phase system (star & delta)
- 8. Power and phase measurement in three phase system by one wattmeter method.
- 9. Power and phase measurement in three phase system by two wattmeter method.
- 10. OC and SC test on single phase transformer

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 3 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

Text Books

- 1. V. N. Mittal and Arvind Mittal "Basic Electrical Engineering" Tata McGraw Hill, (Revised
- 2. Edition)
- 3. Electrical Engineering Fundamentals" by Vincent Del Toro, PHI Second edition, 2011
- 4. Edward Hughes: Electrical and Electrical Technology, Pearson Education (Tenth edition)
- 5. D P Kothari and I J Nagrath "Theory and Problems of Basic Electrical Engineering", PHI 13 thedition 2011.

Reference Books:

- 1. B.L.Theraja "Electrical Engineering " Vol-I and II,
- 2. S.N.Singh, "Basic Electrical Engineering" PHI, 2011Book name and author

[17]

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits As	signed	
Coue		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEC106	Environmental Studies	02			02			02

		Examination Scheme									
			T	heory							
Course	Course Name	Internal Assessment E				Term					
Code		Test1	Test2	Av of Test 1 & 2	Sem Exam	Work	Pract	Oral	Total		
FEC106	Environmental Studies	15	15	15	60			-	75		

- 1. Creating the awareness about environmental problems among students.
- 2. Imparting basic knowledge about the environment and its allied problems.
- 3. Developing an attitude of concern for the environment.
- 4. Motivating students to participate in environment protection and environment improvement.
- 5. Acquiring skills to help the concerned individuals in identifying and solving environmental problems.

Outcomes: Learner will be able to...

- 1. Illustrate Depleting Nature of Environmental Resources, Global Environmental Crisis, Ecosystem concept.
- 2. Adapt to 3R (Reuse, Recovery, Recycle).
- 3. Study different control measures related to Environmental Pollution.
- 4. Illustrate and analyse various Case Studies related to Environmental Legislation.
- 5. Demonstrate the working of Renewable energy sources & Equipments.
- 6. Illustrate the Techniques of Disaster Management and Green Building.

Module	Detailed Contents	Hrs.
01	 Overview of Environmental Aspects: Definition, Scope and Importance of Environmental Study Need for Public awareness of environmental education Introduction to depletion of natural resources: Soil, Water, Minerals and Forests. Global crisis related to – Population, water, sanitation & Land. Ecosystem: Study of ecosystems : Forest, desert and aquatic (in brief). Energy flow in Ecosystem, overview of Food Chain, Food Web and Ecological Pyramid. Concept of ecological succession and its impact on human beings (in brief). Case Study on Chipko Movement (Uttarakhand, India), (began in 1973). 	4
02	 Aspects of Sustainable Development: Concept and Definition of Sustainable Development. Social, Economical and Environmental aspects of sustainable development. Control measures: 3R (Reuse, Recovery, Recycle), Resource utilization as per the carrying capacity (in brief). Case Study on Narmada BachaoAndolan (Gujarat, India, in the mid and late 1980s). 	2

[18]

	Types of Pollution:	
	• Water pollution: Sources of water pollution and Treatment of Domestic and industrial	
	waste water (with flow-diagram of the treatment),	
	• Land Pollution: Solid waste, Solid waste management by land filling, composting and	
	incineration	
	• Air pollution: Sources of air pollution,	
	Consequences of air pollution :-	
	Greenhouse effect (Explanation with schematic diagram),	
03	Photochemical Smog (Explanation with chemical reaction).	8
00	Cleaning of gaseous effluents to reduce air contaminants namely dust particle or	Ū
	particulate matters by using:- (i) Electrostatic precipitators (ii) Venturi scrubber	
	(Schematic diagram and working).	
	• Noise pollution: Sources, effects, threshold limit for different areas and control methods.	
	• E-Pollution: Definition, Sources and effects.	
	Nuclear pollution: Sources and effects.	
	Case study on Water Pollution of Ganga River.	
	Case study on London smog (U. K.)(December, 1952).	
	Case Study of Fukushima Disaster (March, 2011).	
	Pollution Control Legislation:	
	Functions and powers of Central and State Pollution Control Board.	
04	Environmental Clearance, Consent and Authorization Mechanism.	3
	Case Study of Dombivali MIDC- Boiler Blast Tragedy (Thane, Maharashtra, India),	
	(May, 2016).	
	Renewable Sources of Energy:	
	• Importance of renewable sources of energy.	
	• Principle and working with schematic diagram of :-	
05	(i) Solar Energy: (a) Flat plate collector and (b) Photovoltaic cell.	4
00	(ii) Wind Energy: Wind Turbines.	-
	(iii) Hydropower: Hydropower generation from water reservoir of the dam.	
	(iv) Geothermal Energy: Utilisation of underground sources of steam for power	
	generation.	
	Technological Advances to overcome Environmental problems:	
	Concept of Green Buildings,	
	• Various indoor air pollutants and their effects on health.	
	Carbon Credit: Introduction and general concept.	
06	• Disaster Management: Techniques of Disaster Management to cope up with (i)	5
	Earthquake and (ii) Flood.	
	Case Study on Earthquake in Latur (Maharashtra, India), (September, 1993).	
	Case Study on Cloudburst and Landslides at Kedarnath (Uttarakhand, India), (June,	
	2013).	

Assessment:

Internal Assessment Test:

- 1. Each test will be of 15 marks.
- 2. At least one question will be based on case study. Candidate is expected to explain the salient features of the incident and suggest preventive measures.

End Semester Theory Examination:

- 1. Question paper will comprise of total six question, each carrying 15 marks.
- 2. Total four questions need to be solved.
- 3. Question Number One will be compulsory and it will be based on entire syllabus wherein sub-questions of 2 to 3 marks will be asked.
- 4. Remaining questions i.e. Q.2 to Q.6 will be mixed in nature and will be divided in three parts (a), (b) & (c) and they will belong to different modules.
- 5. In question paper, weight of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

[19]

References:

- 1. Environmental Studies by Benny Joseph, TataMcGraw Hill.
- 2. Environmental Studies by R.Rajagopalan, Oxford University Press.
- 3. Environmental Studies by. AnanditaBasak, Pearson Education.
- 4. Essentials of Environmental Studies by Kurian Joseph & Nagendran, Pearson Education.
- 5. Fundamentals of Environmental Studies by Varadbal G. Mhatre, Himalaya Publication House.
- 6. Perspective of Environmental Studies, by Kaushik and Kaushik, New Age International.
- 7. Renewable Energy by Godfrey Boyle, Oxford Publications.
- 8. Textbook of Environmental Studies by Dave and Katewa, Cengage Learning.
- 9. Textbook of Environmental studies by ErachBharucha, University Press.
- 10. Environmental pollution control engineering by C.S. Rao, New Age International (P) Limited Publishers.

[20]

Course Code	Course Name	Teaching Scheme (Contact Hours) Theory Pract. Tut.				Credits As	signed	
Coue	Code		Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEL101	Basic Workshop Practice - I		04		-	02		02

		Examination Scheme									
			T	heory							
Course	Course Name	Inter	nal Asse	essment	End	Term Work	Pract	Oral			
Code	course runne	Test1	Test2	Av of Test 1 & 2	Sem Exam				Total		
FEL101	Basic Workshop Practice - I					50			50		

	Detailed Contents	Hrs.
Note:	The syllabus and the Term- work to be done during semester I and Semester II is given	
	together. Individual Instructor for the course is to design the jobs for practice and	
	demonstration and spread the work over entire two semesters. The objective is to impart	
	training to help the students develop engineering skill sets. This exercise also aims in	
	inculcating respect for physical work and hard labor in addition to some amount of value	
	addition by getting exposed to interdisciplinary engineering domains.	
	The two compulsory trades (Trade 1 – Fitting and Trade 2 – Carpentry) shall be offered in	
	separate semesters.	
	Select any four trade topics (two per semester) out of the topic at trade 3 to 11.	
	Demonstrations and hands on experience to be provided during the periods allotted for the	
	same. Report on the demonstration including suitable sketches is also to be included in the	
	term – work	
	Fitting (compulsory)	
	• Use and setting of fitting tools for chipping, cutting, filing, marking, center	
Trade 1	punching, drilling, tapping.	30
	• Term work to include one job involving following operations : filing to size, one	
	simple male- female joint, drilling and tapping	
	Carpentry (compulsory)	
	• Use and setting of hand tools like hacksaws, jack planes, chisels and gauges for	
Trade 2	construction of various joints, wood tuning and modern wood turning methods.	30
	• Term work to include one carpentry job involving a joint and report on	
	demonstration of a job involving wood turning	
	Forging (Smithy)	
Trade 3	• At least one workshop practice job (Lifting hook and handle) is to be demonstrated.	15
	Welding	
Tue de 1	• Edge preparation for welding jobs. Arc welding for different job like, Lap welding	15
Trade 4	of two plates, butt welding of plates with simple cover, arc welding to join plates at	15
	right angles.	
	Machine Shop	. –
Trade 5	• At least one turning job is to be demonstrated.	15
	Electrical board wiring	
Trade 6	• House wiring, staircase wiring, wiring diagram for fluorescent tube light, Godown	15
	wiring and three phase wiring for electrical motors.	
	PCB Laboratory Exercises	
Trade 7	Layout drawing, Positive and negative film making, PCB etching and drilling, Tinning and	15
	soldering technique.	
	Sheet metal working and Brazing	
Trade 8	• Use of sheet metal, working hand tools, cutting, bending, spot welding	15
		1

[21]

Trade 9	 Plumbing Use of plumbing tools, spanners, wrenches, threading dies, demonstration of preparation of a domestic line involving fixing of a water tap and use of coupling, elbow, tee, and union etc. 	15
Trade 10	 Masonry Use of masons tools like trowels, hammer, spirit level, square, plumb line and pins etc. demonstration of mortar making, single and one and half brick masonry, English and Flemish bonds, block masonry, pointing and plastering. 	15
Trade 11	 Hardware and Networking: Dismantling of a Personal Computer (PC), Identification of Components of a PC such as power supply, motherboard, processor, hard disk, memory (RAM, ROM), CMOS battery, CD drive, monitor, keyboard, mouse, printer, scanner, pen drives, disk drives etc. Assembling of PC, Installation of Operating System (Any one) and Device drivers, Boot-up sequence. Installation of application software (at least one) Basic troubleshooting and maintenance Identification of network components: LAN card, wireless card, switch, hub, router, different types of network cables (straight cables, crossover cables, rollover cables) Basic networking and crimping. NOTE: Hands on experience to be given in a group of not more than four students. 	15

Term work:

Term work shall consist of respective reports and jobs of the trades selected the distribution of marks for term work shall be as follows.

1Laboratory work (Job and Journal): 40 marks2Attendance (Practical and Theory): 10 marks

[22]

Course Code	Course Name	Teaching Sc (Contact He				Credits Assigne		
		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEC201	Applied Mathematics-II	04		01	04		01	05

		Examination Scheme									
	Course Name		T	heory							
Course		Internal Assessment				Term					
Code		Test1	Test2	Av of Test 1 & 2	End Sem Exam	Work	Pract	Oral	Total		
FEC201	Applied Mathematics-II	20	20	20	80	25			125		

- 1. To provide students with sound foundation in applied mathematics to solve real life problems in industry.
- 2. To provide hands on experience in using Scilab software to handle real life problems.

Outcomes: Learner will be able to...

- 1. Apply the concepts of First Order and first degree Differential equation to the engineering problems.
- 2. Apply the concepts of Higher Order Linear Differential equation to the engineering problems.
- 3. Apply concepts of Beta and Gamma function to the engineering Problems.
- 4. Apply SCILAB programming techniques to solve differential equation to model complex engineering activities.
- 5. Apply concepts of Double integral of different coordinate systems to the engineering problems.
- 6. Apply concepts of triple integral of different coordinate systems to the engineering problems.

Module	Detailed Contents	Hrs.
	Differential Equations of First Order and First Degree	
01	1.1 Exact differential Equations, Equations reducible to exact form by using integrating	
	factors.	4
01	1.2 Linear differential equations (Review), equation reducible to linear form, Bernoulli's	
	equation.	3
	1.3: Simple application of differential equation of first order and first degree to electrical	
	and Mechanical Engineering problem (no formulation of differential equation)	2
	Linear Differential Equations With Constant Coefficients and Variable Coefficients	
	Of Higher Order	
	2.1. Linear Differential Equation with constant coefficient- complementary function,	
02	particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $sin(ax+b)$,	
	$\cos(ax+b), x^n, e^{ax}V, xV.$	
	2.2. Cauchy's homogeneous linear differential equation and Legendre's differential	3
	equation, Method of variation of parameters.	
	Numerical solution of ordinary differential equations of first order and first degree,	
	Beta and Gamma Function	
03	3.1. (a)Taylor's series method (b)Euler's method	4
00	(c) Modified Euler method (d) Runga-Kutta fourth order formula (SciLab programming is	
	to be taught during lecture hours)	
	3.2 .Beta and Gamma functions and its properties.	4
	Differentiation under Integral sign, Numerical Integration and Rectification	
	4.1. Differentiation under integral sign with constant limits of integration.	2
04	4.2. Numerical integration- by (a) Trapezoidal (b) Simpson's 1/3rd (c) Simpson's 3/8th rule	3
	(all with proof). (Scilab programming on (a) (b) (c) (d) is to be taught during lecture hours)	
	4.3. Rectification of plane curves.	3

[23]

05	 Double Integration 5.1. Double integration-definition, Evaluation of Double Integrals. 5.2. Change the order of integration, Evaluation of double integrals by changing the order of integration and changing to polar form. 	2 7
06	 Triple Integration and Applications of Multiple Integrals. 6.1. Triple integration definition and evaluation (Cartesian, cylindrical and spherical polar coordinates). 6.2. Application of double integrals to compute Area, Mass, Volume. Application of triple integral to compute volume. 	3 6

Term Work:

General Instructions:

- 1. Batch wise tutorials are to be conducted. The number of students per batch should be as per University pattern for practical.
- 2. Students must be encouraged to write Scilab Programs in tutorial class only. Each Student to write atleast 4 Scilab tutorials (including print out) and at least 6 class tutorials on entire syllabus.
- 3. SciLab Tutorials will be based on (i)Curve Tracing (ii) Taylor's series method, Euler's method Modified Euler method, RungaKutta fourth order formula (iii) Ordinary Differential Equation and (iv) Trapezoidal Simpson's 1/3rd and Simpson's 3/8th rule.

The distribution of Term Work marks will be as follows -

Attendance (Theory and Tutorial):	05 marks
Class Tutorials on entire Syllabus:	10 marks
SciLab Tutorials :	10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 3 to 4 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

References:

- 1. A text book of Applied Mathematics, P.N.Wartikar and J.N.Wartikar, Vol I and –II by Pune VidyarthiGraha.
- 2. Higher Engineering Mathematics, Dr.B.S.Grewal, Khanna Publication
- 3. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley EasternLimited, 9thEd.
- 4. Numerical methods by Dr. P. Kandasamy ,S.Chand Publications

[24]

Course Code	Course Name		hing Sche ntact Hou		Credits Assigned			
Coue		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEC202	Applied Physics – II	03	01		03	0.5		3.5

		Examination Scheme								
	Course Name		T	heory						
Course		Inter	nal Asso	essment	End	Term Work	Pract	Oral		
Code		Test1	Test2	Av of Test 1 & 2	Sem Exam				Total	
FEC202	Applied Physics – II	15	15	15	60	25			100	

- 1. To impart knowledge of basic concepts in applied physics.
- 2. To provide the knowledge and methodology necessary for solving problems in the field of engineering.

Outcomes: Learner will be able to...

- 1. Comprehend principles of interference and diffraction.
- 2. Illustrate the principle, construction and working of various LASERs and its applications.
- 3. Identify various applications of optical fibres.
- 4. Comprehend the concepts of electrodynamics and Maxwell's equations and their use in telecommunication systems.
- 5. Apply the concepts of electromagnetism in focusing systems and CRO.
- 6. Comprehend the significance of nanoscience and nanotechnology, its applications.

Module	Detailed Contents	Hrs.
01	INTERFERENCE AND DIFFRACTION OF LIGHT Interference by division of amplitude and by division of wave front; Interference in thin film of constant thickness due to reflected and transmitted light; origin of colours in thin film; Wedge shaped film(angle of wedge and thickness measurement); Newton's rings Applications of interference - Determination of thickness of very thin wire or foil; determination of refractive index of liquid; wavelength of incident light; radius of curvature of lens; testing of surface flatness; Anti-reflecting films and Highly reflecting film. Diffraction of Light –Fraunhoffer diffraction at single slit, Fraunhoffer diffraction at double slit, Diffraction Grating, Resolving power of a grating, dispersive power of a grating Application of Diffraction - Determination of wavelength of light with a plane transmission grating	14
02	LASERS Quantum processes as absorption, spontaneous emission and stimulated emission; metastable states, population inversion, pumping, resonance cavity, Einsteins's equations; Helium Neon laser; Nd:YAG laser; Semiconductor laser, Applications of laser- Holography (construction and reconstruction of holograms) and industrial applications(cutting, welding etc), Applications in medical field	04
03	FIBRE OPTICS Total internal reflection; Numerical Aperture; critical angle; angle of acceptance; Vnumber; number of modes of propagation; types of optical fiber; Losses in optical fibre(Attenuation and dispersion) Applications of optical fibre - Fibre optic communication system; sensors (Pressure, temperature, smoke, water level), applications in medical field	04

[25]

04	ELECTRODYNAMICS Cartesian, Cylindrical and Spherical Coordinate system, Scaler and Vector field, Physical significance of gradient, curl and divergence, Determination of Maxwell's four equations. Applications-design of antenna, wave guide, satellite communication etc.	08
05	CHARGE PARTICLE IN ELECTRIC AND MAGNETIC FIELDS Fundamentals of Electromagnetism, Motion of electron in electric field (parallel ,perpendicular, with some angle); Motion of electron in magnetic field (Longitudinal and Transverse); Magnetic deflection; Motion of electron in crossed field; Velocity Selector; Velocity Filter, Electron refraction; Bethe's law; Electrostatic focusing; Magnetostatic focusing; Cathode ray tube (CRT);Cathod ray Oscilloscope (CRO) Application of CRO: Voltage (dc,ac), frequency, phase measurement.	05
06	NANOSCIENCE AND NANOTECHNOLOGYIntroduction to nano-science and nanotechnology, Surface to volume ratio, Two main approaches in nanotechnology -Bottom up technique and top down technique; Important tools in nanotechnology such as Scanning Electron Microscope, Transmission Electron Microscope, Atomic Force Microscope.Nano materials: Methods to synthesize nanomaterials (Ball milling, Sputtering, Vapour deposition, solgel), properties and applications of nanomaterials.	04

Suggested Experiments: (Any five)

- 1. Determination of radius of curvature of a lens using Newton's ring set up
- 2. Determination of diameter of wire/hair or thickness of paper using Wedge shape film method.
- 3. Determination of wavelength using Diffracion grating. (Hg/ Ne source)
- 4. Determination of number of lines on the grating surface using LASER Sourse.
- 5. Determination of Numerical Aperture of an optical fibre.
- 6. Determination of wavelength using Diffracion grating. (Laser source)
- 7. Use of CRO for measurement of frequency and amplitude.
- 8. Use of CRO for measurement of phase angle.
- 9. Study of divergence of laser beam
- 10. Determination of width of a slit using single slit diffraction experiment (laser source)

The distribution of Term Work marks will be as follows -

- 4. Attendance (Theory and Practical) : 05 marks
- 5. Assignments : 10 marks
- 6. Laboratory work (Experiments and Journal) : 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 3marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

[26]

References:

- 1. A text book of Engineering Physics-Avadhanulu&Kshirsagar, S.Chand
- 2. Fundamentals of Optics by Jenkins and White, McGraw-Hill
- 3. Optics Ajay Ghatak, Tata McGraw Hill
- 4. Concepts of Modern Physics- ArtherBeiser, Tata Mcgraw Hill
- 5. A textbook of Optics N. Subramanyam and Brijlal, S.Chand
- 6. Engineering Physics-D. K. Bhattacharya, Oxford
- 7. Concepts of Modern Physics- ArtherBeiser, Tata Mcgraw Hill
- 8. Classical Electodyamics J. D. Jackson, Wiley
- 9. Introduction to Electrodynamics- D. J. Griffiths, Pearson publication
- 10. Intoduction to Nanotechnology- Charles P. Poole, Jr., Frank J. Owens, Wiley India edition
- 11. Nano: The Essential T. Pradeep, Mcgraw-Hill Education

[27]

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
Coue		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEC203	Applied Chemistry – II	03	01		03	0.5		3.5

		Examination Scheme									
	Course Name		T	heory							
Course		Internal Assessment			End	Term					
Code		Test1	Test2	Av of Test 1 & 2	Sem Exam	Work	Pract	Oral	Total		
FEC203	Applied Chemistry – II	15	15	15	60	25			100		

- 1. To provide necessary background in applied chemistry relevant to chemical industries.
- 2. To provide exposure in conducting experiments and interpret and report the results in professional format.

Outcomes: Learner will be able to...

- 1. Identify types of corrosion and factors affecting it related to problems affecting all industries.
- 2. Identify different types of corrosion control methods to study corrosion control in various industries.
- 3. Apply the knowledge of different types of fuels, including their production and refining methods and combustion mechanisms.
- 4. Illustrate composition and properties of different types of alloys and the process of powder metallurgy
- 5. Illustrate princpales of green chemistry.
- 6. Illustrate properties and applications of different types of composite materials.

Module	Detailed Contents	Hrs.
01	Corrosion: Introduction: Types of Corrosion- (I) Dry or Chemical Corrosion-i) Due to oxygen ii) Due to other gases (II) Wet or Electrochemical corrosion- Mechanism i) Evolution of hydrogen type ii) Absorption of oxygen. Types of Electrochemical Corrosion- Galvanic cell corrosion, Concentration cell corrosion (differential aeration), Pitting corrosion, Intergranular corrosion, Stress corrosion. Factors affecting the rate of corrosion- Nature of metal, position of metal in galvanic series, potential difference, overvoltage, relative area of anodic and cathodic parts, purity of metal, nature of the corrosion product, temperature, moisture, influence of pH, concentration of the electrolytes. Methods to decrease the rate of corrosion-Material selection, Proper designing, Use of inhibitors, Cathodic protection- i) Sacrificial anodic protection ii) Impressed current method, Anodic protection method, Metallic coatings- hot dipping- galvanizing and tinning, metal cladding, metal spraying, Electroplating, Cementation. Organic coatings – Paints (only constituents and their functions).	11
02	Alloys Introduction, purpose of making alloys, Ferrous alloys, plain carbon steel, heat resisting steels, stainless steels (corrosion resistant steels), effect of the alloying element- Ni, Cr, Co, Mn, Mo,W and V; Non-Ferrous alloys- Composition, properties and uses of- Alloys of Aluminium- i) Duralumin ii) Magnalium. Alloys of Cu- (I) Brasses-i) Commercial brass ii) German silver, (II) Bronzes- i) Gun metal ii) High phosphorous bronze. Alloys of Pb- i) Wood's metal ii)	07

[28]

03	 Tinmann's solder. Powder Metallurgy- Introduction, (1)Methods of powder metal formation- i) Mechanical pulverization ii) Atomization iii) Chemical reduction iv) Electrolytic process v) Decomposition (2) Mixing and blending. (3) Sintering (4) Compacting- i) Cold pressing ii) Powder injection moulding (iii) Hot compaction. Applications of powder metallurgy. Shape Memory Alloys- Definition, properties and Uses. Fuels Definition, classification of fuels-solid, liquid and gaseous. Calorific value- Definition, Gross or Higher calorific value & Net or lower calorific value, units of heat (no conversions), Dulong's formula & numerical for calculations of Gross and Net calorific values. Characteristics of a good fuel. Solid fuels- Analysis of coal- Proximate and Ultimate Analysis with Significance and numericals. Liquid fuels- Crude petroleum oil, its composition and classification and mining (in brief). Refining of crude oil- i) Separation of water ii) Separation of 'S' & iii) Fractional Distillation with diagram and composition and uses table. Cracking- Definition, Types of cracking- I) Thermal cracking – (i) Liquid phase thermal cracking (ii) Vapour phase thermal cracking. II) Catalytic cracking. Petrol- Refining of petrol, unleaded petrol (use of MTBE), Catalytic converter, Power alcohol, Knocking, Octane number, Cetane number, Antiknocking agents. Combustion- Calculations for requirement of only oxygen and air (by weight and by volume only) for given solid & gaseous fuels. Biodiesel- Method to obtain Biodiesel from vegetable oils (Trans-esterification), advantage and disadvantages of biodiesel. Fuel cell- Definition, types and applications.	12
04	Composite Materials Introduction, Constitution- i) Matrix phase ii) Dispersed phase. Characteristic properties of composite materials. Classification- (A) Particle - reinforced composites- i) Large – particle reinforced composites ii) Dispersion – strengthened composites. (B) Fiber – reinforced composites- i) Continuous – aligned ii) Discontinuous – aligned (short)- (a) aligned (b) randomly oriented (C) Structural Composites- i) Laminates (ii) Sandwich Panels.	04
05	Green Chemistry Introduction, Twelve Principles of Green chemistry, numerical on atom economy, Conventional and green synthesis of Adipic acid, Indigo, Ibuprofen and Carbaryl. Green solvents (water, supercritical CO ₂) and products from natural materials.	06

Suggested Experiments: (Any five)

- 1. Estimation of Zn- Complexometric titration.
- 2. Estimation of Ni- Complexometric titration.
- 3. Estimation of Al- Complexometic titration.
- 4. Flue gas analysis using Orsat's apparatus.
- 5. Estimation of Fe from plain carbon steel
- 6. Estimation of Ni by gravimetric method.
- 7. Estimation of Sniodometrically.
- 8. Preparation of Biodiesel from edible oil.
- 9. Estimation of Cu- Iodometrically.
- 10. Estimation of percentage moisture in coal.
- 11. Estimation of percentage ash in coal.
- 12. To estimate the emf of Cu-Zn system by potentiometry.
- 13.Demonstration of Electroplating.

[29]

Term work

Term Work shall consist of minimum five experiments. The distribution of marks for term work shall be as follows:

- 1. Attendance (Practical and Theory) : 05 marks
- 2. Laboratory Work (Experiments and journal) : 10 marks
- 3. Assignments and Viva on practicals : 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 3 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

References:

- 1. Engineering Chemistry Jain & Jain (DhanpatRai)
- 2. Engineering Chemistry Dara & Dara (S Chand)
- 3. Engineering Chemistry Wiley India (ISBN 9788126519880)
- 4. A Text Book of Engineering Chemistry ShashiChawla (DhanpatRai)
- 5. A Text Book of Green Chemistry V.K. Ahluwalia (Springer)

[30]

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
Coue		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
FEC204	Engineering Drawing	03	04		03	02		05

Course Code	Course Name	Examination Scheme								
		Theory								
		Internal Assessment			End	Term				
		Test1	Test2	Av of Test 1 & 2	Sem Exam	Work	Pract	Oral	Total	
FEC204	Engineering Drawing	15	15	15	60	25	50		150	

- 1. To impart and inculcate proper understanding of the theory of projection.
- 2. To impart the knowledge of reading a drawing.
- 3. To improve the visualization skill.
- 4. To teach basic utility of computer aided drafting (CAD) tool.

Outcomes: Learner will be able to...

- 1. Apply the basic principles of projections in 2D drawings.
- 2. Apply the basic principles of projections in converting 3D view to 2D drawing.
- 3. Read a given drawing.
- 4. Visualize an object from the given two views.
- 5. Use CAD tool to draw different views of a 3D object.
- 6. Use CAD tool to draw an object in 3D.

Module	Detailed Contents	Hrs.				
01	Introduction to Engineering Drawing:- Types of Lines, Dimensioning Systems as per					
	IS conventions.					
	Engineering Curves:- Basic construction of Cycloid, Involutes and Helix (of cylinder)					
	only.					
	** Introduction to Auto CAD:- Basic Drawing and Editing Commands. Knowledge of					
	setting up layers, Dimensioning, Hatching, plotting and Printing.					
02	Projection of Points and Lines:- Lines inclined to both the Reference Planes					
	(Excluding Traces of lines) and simple application based problems on Projection of					
	lines.					
	@Projection of Planes:- Triangular, Square, Rectangular, Pentagonal, Hexagonal and					
	Circular planes inclined to either HP or VP only. (Exclude composite planes)					
	Projection of Solids:- (Prism, Pyramid, Cylinder, Tetrahedron, Hexahedron and Cone only)					
	Solid projection with the axis inclined to HP and VP. (Exclude Spheres, Composite, Hollow					
	solids and frustum of solids). Use change of position or Auxiliary plane method					
03	Section of Solids:- Section of Prism, Pyramid, Cylinder, Tetrahedron, Hexahedron &					
	Cone cut by plane perpendicular to at least one reference plane.(Exclude Curved Section Plane). Use change of position or Auxiliary plane method					
	Development of Lateral Surfaces of Sectioned Solids:- Lateral surface development of					
	Prism, Pyramid, Tetrahedron, Hexahedron, Cylinder, Cone with section plane inclined to					
	HP or VP only. (Exclude DLS of a solid with a hole in it and Reverse Development).					
	(Exclude Reverse Development)					
04	Orthographic and Sectional Orthographic Projections:-					
	• Different views of a simple machine part as per the first angle projection method					
	recommended by I.S.					
	 Full or Half Sectional views of the Simple Machine parts. **Drawing of orthographic projections using Auto CAD. 	12				
	Druming of of mogruphic projections using fruto Crip.					

[31]

**Should be covered during Auto CAD practical sessions.

@ Should be covered only in Term work. (i.e. Questions will not be asked for the End semester Examination).

TERM WORK:

 $\underline{Component-1}$

Drawing Sheet – 1: Projection of Solids (3 Problems)
Drawing Sheet – 2: Section of Solids and Development of lateral surfaces (2 Problems)
Drawing Sheet – 3: Orthographic Projection without section (2 Problems)
Drawing Sheet – 4: Orthographic Projection with section (2 Problems)
Drawing Sheet – 5: Isometric Views (3 Problems)

Component -2

One A-3 size sketch book consisting of:-

- Two problems each from Engineering Curves, Projection of Lines, Planes and Solids. One problem from Section of solids without DLS and one problem from section of solids with DLS of that sectioned Solid.
- 2) Two problems from Orthographic Projections (with Section), One problem on Reading of Orthographic projections and Two problems on Isometric views.

Component-3

Printouts (preferably on A3 size sheet) of each from:

- 1. Orthographic Projections with Section 3 problems.
- 2. Isometric Views 4 problems
- 3. Reading of Orthographic Projections 1 problem.

Note:- 2 hrs /week Auto CAD Practical is essential for completing the Auto CAD Drawings and take required printouts.

AUTO CAD PRACTICAL EXAMINATION: (2hrs - 50 marks):

1) Minimum 1 problem from 1 OR 3 of Component-3 for 30 marks.

(All three views with at least 12 dimensions must be asked in the exam)

AND

2) Minimum 1 problem from 2 of Component-3 for 20 marks.

Note:- Print out of the Answers have to be taken **preferably in A3 size sheets** and should be **Assessed by External examiner only**. Knowledge of concepts and accuracy of drawing should be considered during evaluation.

[32]

INTERNAL ASSESSMENT TEST: (1 hr - 15 marks)

Out of the two tests, one test must be conducted by **conventional way** and another test must be **Practical Exam** (using AutoCAD software). Average of the two tests must be considered for Internal Assessment.

END SEMESTER EXAMINATION: (3 hrs - 60 marks)

- 1) Question paper will comprise of 6 questions, each carrying 15 marks.
- 2) Any 4 questions need to be solved. There won't be any compulsory Question.
- 3) Marks of each topic should be proportional to number of hours assigned to each Module.

Text Books.

- 1 N.D. Bhatt, "Engineering Drawing (Plane and solid geometry)", Charotar Publishing House Pvt. Ltd.
- 2 N.D. Bhatt & V.M. Panchal, "Machine Drawing", Charotar Publishing House Pvt. Ltd.

References.

- 1 M.B Shah & B.C Rana, "Engineering Drawing", Pearson Publications.
- 2 P.J. Shah, "Engineering Graphics", S Chand Publications.
- 3 Dhananjay A Jolhe, "Engineering Drawing" Tata McGraw Hill.
- 4 Prof. Sham Tickoo (Purdue University) & GauravVerma, "(CAD Soft Technologies) : Auto CAD 2012 (For engineers and Designers)", Dreamtech Press NewDelhi.

[33]

Course Code	Course Name		hing Scho ntact Hou		Credits Assigned				
Coue		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
FEC205	Structured Programming Approach	04	02		04	01		05	

		Examination Scheme										
			T	heory								
Course Code	Course Name	Inter	nal Asse	essment	End	Term Work	Pract	Oral				
		Test1	Test2	Av of Test 1 & 2	Sem Exam				Total			
FEC205	Structured Programming Approach	20	20	20	80	25	25		150			

Objectives

- 1. To familirise the logic of structured programming approach.
- 2. To provide exposure in developing algorithm, flowchart and thereby writing efficient codes for user defined problem.

Outcomes: Learner will be able to...

- 1. Illustrate the basic terminology used in computer programming.
- 2. Illustrate the concept of data types, variables and operators using C.
- 3. Design and Implement control statements and looping constructs in C.
- 4. Apply function concept on problem statements.
- 5. Demonstrate the use of arrays, strings, structures and files handling in C.
- 6. Demonstrate the dynamics of memory by the use of pointers to construct various data structures.

Module	Торіс	Detailed Contents	Hrs.			
01	Introduction to Computer, Algorithm And Flowchart	 1.1 Basics of Computer: Turing Model, Von Neumann Model, Basics of Positional Number System, Introduction to Operating System and component of an Operating System. 1.2 Algorithm & Flowchart : Three construct of Algorithm and flowchart: Sequence, Decision (Selection) and Repetition 				
02	Fundamentals of C-Programming	 2.1 Character Set, Identifiers and keywords, Data types, Constants, Variables. 2.2 Operators-Arithmetic, Relational and logical, Assignment, Unary, Conditional, Bitwise, Comma, other operators. Expression, statements, Library Functions, Preprocessor. 2.3 Data Input and Output – getchar(), putchar(), scanf(), printf(), gets(), puts(), Structure of C program . 	06			
03	Control Structures	 3.1 Branching - If statement, If-else Statement, Multiway decision. 3.2 Looping – while , do-while, for 3.3 Nested control structure- Switch statement, Continue statement Break statement, Goto statement. 				
04	Functions and Parameter	 4.1Function -Introduction of Function, Function Main, Defining a Function, Accessing a Function, Function Prototype, Passing Arguments to a Function, Recursion. 4.2 Storage Classes –Auto, Extern, Static, Register 	06			

[34]

05	Arrays , String Structure and Union	 5.1 Array-Concepts, Declaration, Definition, Accessing array element, One-dimensional and Multidimensional array. 5.2 String- Basic of String, Array of String, Functions in String.h 5.3 Structure- Declaration, Initialization, structure within structure, Operation on structures, Array of Structure. 5.4 Union - Definition , Difference between structure and union , Operations on a union 	14
06	Pointer and Files	 6.1 Pointer :Introduction, Definition and uses of Pointers, Address Operator, Pointer Variables, Dereferencing Pointer, Void Pointer, Pointer Arithmetic, Pointers to Pointers, Pointers and Array, Passing Arrays to Function, Pointers and Function, Pointers and two dimensional Array, Array of Pointers, Dynamic Memory Allocation. 6.2 Files: Types of File, File operation- Opening, Closing, Creating, Reading, Processing File. 	08

Laboratory Assignments:

- 1. Students are expected to solve and execute at least 20 programming problems based on above Syllabus.
- 2. Journal work should comprise of writing the problem definition, solution of problem either as algorithm and flow chart and source code in C (Advisable hand written) for all the 20 problems.

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 3 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

Text Books:

- 1 "MASTERING C" by K.R.Venugopal and SudeepR.Prasad, Tata McGraw-Hill Publications.
- 2 "A Computer Science –Structure Programming Approaches using C ", by BehrouzForouzan , Cengage Learning .
- 3 Schaum's outlines "Programming with C", by Byron S. Gottfried, Tata McGraw-Hill Publications.

Reference Books:

- 1 "Basics of Computer Science", by BehrouzForouzan, Cengage Learning.
- 2 "Programming Techniques through C", by M. G. Venkateshmurthy, Pearson Publication.
- 3 "Programming in ANSI C", by E. Balaguruswamy, Tata McGraw-Hill Education.
- 4 "Programming in C", by Pradeep Day and Manas Gosh, Oxford University Press.
- 5 "Let Us C", by YashwantKanetkar, BPB Publication.

[35]

Course Code	Course Name		hing Scho ntact Hou		Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
FEC206	Communication Skills	02	02		02	01		03	

	Course Name	Examination Scheme									
Course Code			T	heory							
		Inter	nal Asse	essment	End	Term Work	Pract	Oral			
		Test1	Test2	Av of Test 1 & 2	Sem Exam				Total		
FEC206	Communication Skills	10	10	10	40	25			75		

Objectives

- 1. To acquaint the students with appropriate language skills with the purpose of improving the existing ones LSRW
- 2. To make the learners understand the importance and effective use of non-verbal communication
- 3. To make the learner proficient in public speaking and presentation skills
- 4. To guide and teach the students to utilize the principles of professional business and technical writing for effective communication in the global world
- 5. To make the learner capable of creating official content digitally for further communication in the corporate environment

Outcomes: Learner will be able to...

- 1. Understand and evaluate information they listen to and express their ideas with greater clarity
- 2. Speak and respond effectively along the various channels of communication in a business organization
- 3. Speak convincingly before an audience with the help of an expanded vocabulary and enhanced digital content
- 4. Read and summarize effectively
- 5. Communicate through result oriented writing both within and outside the organization.
- 6. Write a set of effective and easy to understand technical description, instructions and convey the same using global information technology

Module	Detailed Contents	Hrs.
01	Communication Theory: Concept and Meaning, Communication cycle, Objectives, Barriers to communication (linguistic and semantic, psychological, physical, mechanical, cultural), Methods of communication (verbal and non-verbal), Networks of communication (formal and informal), Language skills (listening, speaking, reading, writing), Corporate communication: Digital Content Creation.	13
02	Business Correspondence: Principles of Business Correspondence, Parts of a business letter, Formats (Complete block and Modified block), Types of letters: Enquiry, Reply to enquiry, Claim, Adjustment and Sales letter.	05
03	Grammar and Vocabulary: Common errors, Concord (subject- verb agreement), Pairs of confused words, Lexicon (Enriching vocabulary through one-word substitutes, synonyms, antonyms, etc.)	02

[36]

04	Summarization and Comprehension: Passages to test the analytical skills and expression	02
05	Technical writing : Techniques to define an object, writing instructions, language exercises based on types of expositions (description of an object, explanation of a process)	02
06	Information Communication Technology (ICT) enabled communication media: E-mail, Blog and Website.	02

The distribution of Term Work marks will be as follows -

Attendance: 05 marksAssignments: 20 marks

List of assignments:

- 1. Communication theory: 02
- 2. Business Correspondence: 02
- 3. Grammar and vocabulary: 01
- 4. Summarization & Comprehension: 01
- 5. Technical writing: 01
- 6. ICT enabled communication media: 01

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 10 marks each. The first test should be conducted in the form of a three-minute public speech. The second test should be based on theory and application exercises as mentioned in the syllabus.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 10 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 3 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.
- 6. The first module (Communication Theory) will carry 40 % weightage.

References:

- 1. Communication in Organizations by Dalmar Fisher, Jaico Publishing House
- 2. Communication Skills by Meenakshi Raman & Sangeeta Sharma,
- 3. Oxford University Press.
- 4. Business Correspondence & Report-writing by R.C. Sharma& Krishna Mohan, Tata McGraw-Hill Education.
- 5. Effective Technical Communication by Ashraf Rizvi, Tata McGraw-Hill.
- 6. Technical Writing & Professional Communication for non-native speakers of English by Thomas N. Huckin & Leslie A. Olsen, McGraw –Hill.
- 7. Mastering Communication by Nicky Stanton, Palgrave Master Series
- 8. www.buisnesscommunicationskills.com
- 9. <u>www.kcitraing.com</u>
- 10. www.mindtools.com
- 11. Journal of Business Communication

- 39

[37]

Course Code	Course Name		hing Sche itact Hou		Credits Assigned				
		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
FEL201	Basic Workshop Practice - II		04			02		02	

		Examination Scheme									
			T	heory							
Course Code	Course Name	Inter	nal Asso	essment	End	n Work	Pract	Oral			
		Test1	Test2	Av of Test 1 & 2	Sem Exam				Total		
FEL201	Basic Workshop Practice - II					50			50		

Detailed Syllabus is given in Basic Workshop Practice-I

Term work:

Term work shall consist of respective reports and jobs of the trades selected the distribution of marks for term work shall be as follows:

Laboratory work (Job and Journal) : 40 marks

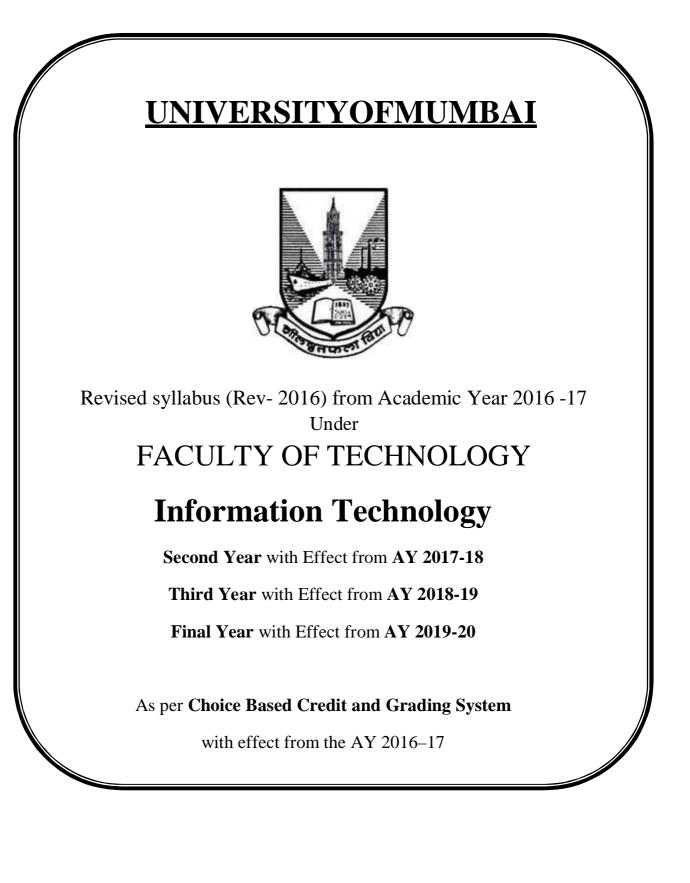
Attendance (Practical and Theory) : 10 marks

The final certification and acceptance of term – work ensures the satisfactory performance of laboratory work.

[38]

THADOMAL SHAHANI ENGINEERING COLLEGE

Information Technology


EGE

THADOMAL SHAHANI

Sr. No.	Subject Code	Subject Name	Count
1	ITL301	Data Structure Lab	1
2	ITL302	SQL Lab	1
3	ITL303	Fundamentals, Computer programming Paradigms Lab	1
4	ITL304	Java Lab (SBL)	1
5	ITM301	Mini Project – 1 A Front end /backend Application using JAVA	1
6	ITL401	Network Lab	1
7	ITL402	Unix Lab	1
8	ITL403	Microprocessor Lab	1
9	ITL404	Python Lab (SBL)	1
10	ITM401	Mini Project – 1 B Python based automation projects	1
11	TEITL501	Computer Graphics and Virtual Reality	1
12	TEITL502	Operating Systems	1
13	TEITL503	Microcontroller and Embedded Systems	1
14	TEITL504	Advanced Database Management Systems	1
15	TEITL505	Open-Source Technologies	1
16	TEITL601	Software Engineering	1
17	TEITL602	Distributed Systems	1
18	TEITL603	System and Web Security	1
19	TEITL604	Data Mining and Business Intelligence	1
20	TEITL605	Advance Internet Technology	1
21	ITL701	Software Project 2 1 1 Management	1
22	ITL702	Cloud Computing	1
23	ITL703	Intelligent System	1
24	ITL704	Wireless Technology	1
25	ITT705	Elective -I	1
26	ITP706	Project-I	1
27	ITL801	Storage Network 2 1 1 Management and Retrieval	1
28	ITL802	Big Data Analytics	1
29	ITL803	Computer Simulation 2 1 1 and Modeling	1
30	ITL804	Elective -II	1
31	ITP805	Project - II	1
		Total	31

AC 11.5.2017

Item No. 4.180

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learnercentric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

2

Preamble

It is an honor and a privilege to present the revised syllabus of Bachelor of Engineering in Information Technology (effective from year 2016-17) with inclusion of cutting edge technology.

Information Technology is comparatively a young branch among other engineering disciplines in the University of Mumbai. It is evident from the placement statistics of various colleges affiliated to the University of Mumbai that IT branch has taken the lead in the placement. The branch also provides multi-faceted scope like better placement and promotion of entrepreneurship culture among students, and increased Industry Institute Interactions.

Industries views are that, only 16 % graduates are directly employable. One of the reasons is a syllabus which is not in line with the latest technologies. Our team of faculties has tried to include all the latest technologies in the syllabus. Also the first time we are giving the choice of elective from fifth semester such that students will be master in one of the IT domain.

The syllabus is peer reviewed by experts from reputed industries and as per their suggestions it covers future trends in IT technology and research opportunities available due to these trends.

I would like to thank senior faculties of IT department of all colleges affiliated to Mumbai University for significant contribution in framing the syllabus. Also behalf of all faculties I thank all the industry experts for their valuable feedback and suggestions.

I sincerely hope that the revised syllabus will help all graduate engineers to face the future challenges in the field of information and technology

Program Outcome for graduate Program in Information Technology

- 1. Apply Core Information Technology knowledge to develop stable and secure IT system.
- 2. Design, IT infrastructures for an enterprise using concepts of best practices in information Technology management and security to enterprise processes.
- 3. Manage IT projects using written and oral communication skills in collaborative environments by Participating on teams that address solutions for IT management challenges.
- 4. Identify and discuss professional, individual, organizational, societal, and regulatory implications of Information systems and technology.
- 5. Assess Security of the IT Systems and able to respond to any breach in IT system
- 6. Ability to work in multidisciplinary projects and make it IT enabled.
- 7. Ability to propose the system to reduce carbon footprint.
- 8. Ability to adapt the lifelong learning process to be in sync with trends in Information Technology

Dr. Deven Shah

Chairman (Ad-hoc Board Information Technology) University of Mumbai)

University of Mumbai

Program Structure B.E. Information Technology, (Rev. 2016)

Course	Course	Teaching (Contac			Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
ITC301	Applied Mathematics III	4+1@	-	-	5	-	-	5	
ITC302	Logic Design	4	-	-	4	-	-	4	
ITC303	Data Structures & Analysis	4	-	-	4	-	-	4	
ITC304	Database Management System	4	-	-	4	-	-	4	
ITC305	Principle of Communications	3+1\$	-	-	4	-	-	4	
ITL301	Digital Design Lab	-	2	-	-	1	-	1	
ITL302	Data Structures Lab	-	2	-	-	1	-	1	
IT303	SQL Lab	-	2	-		1	-	1	
ITL304	Java Programming Lab	-	2+2*	-	-	2	-	2	
	Total	21	10	-	21	5	-	26	

S. E. Information Technology (Semester-III)

					Exa	mination Sc	heme			
Course	Course			Theo	ory					
Code	Name	Inte	rnal As	sessment	End	Exam	TW	Oral	Oral &	
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)	1 **	01th	Pract	Total
ITC301	Applied Mathematics III	20	20	20	80	3	-	-	-	100
ITC302	Logic Design	20	20	20	80	3	-	-	-	100
ITC303	Data Structures & Analysis	20	20	20	80	3	-	-	-	100
ITC304	Database Management System	20	20	20	80	3	-	-	-	100
ITC305	Principle of Communications	20	20	20	80	3		-	-	100
ITL301	Digital Design Lab	-	-	-	-	-	25		25	50
ITL302	Data Structures Lab	-	-	-	-	-	25		25	50
IT303	SQL Lab	-	-	-	-	-	25	-	25	50
ITL304	Java Programming Lab	-	-	-	-	-	50		50	100
	Total	100	100	100	400	-	125		125	750

@ 4 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as class wise

\$ 3 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as batch wise

* 2 hours shown as practical's to be taken class wise lecture and another 2 hours to be taken as batch wise practices in the lab.

Course	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
Code						Practical		
ITC301	Applied Mathematics III	04		01	04			05

		Examination Scheme									
Course	Course	Int		ry Marks							
Code	Name	Inte	ernal asse		End	Term	Oral &	Oral	Total		
		Test1	Test 2	Avg. of Two Tests	Sem. Exam	Work	Practical				
ITC301	Applied Mathematics III	20	20	20	80				100		

Course Objectives: Students will try to learn:

- 1. The concepts of Set theory and Relation.
- 2. The concepts of Functions and define the recursive functions.
- 3. The concept of Laplace transforms.
- 4. The concept of Inverse Laplace transforms.
- 5. The concept of permutations and combinations.
- 6. The concept of variable and also identify the mapping.

Course Outcomes: Students will able to:

- 1. Apply the Set theory and Relation concepts.
- 2. Apply the Functions and define the recursive functions.
- 3. Apply Laplace transform to different applications.
- 4. Apply Inverse Laplace transform to different applications.
- 5. Identify the permutations and combinations.
- 6. Define variable and also identify the mapping.

Prerequisite: Applied Mathematics I, Applied Mathematics II

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Basic of AM-I and AM-II.	02	
Ι	Set Theory	Set Theory: Definition of Sets, Venn Diagrams, complements, cartesian products, power sets, counting principle, cardinality and countability (Countable and Uncountable sets), proofs of some general identities on sets, pigeonhole principle.	08	CO1

II	Relation & Function	Relation: Definition, types of relation, composition of relations, domain and range of a relation, pictorial representation of relation, properties of relation, partial ordering relation. Function: Definition and types of function, composition of functions, recursively defined functions.	08	CO1 CO2
III	Laplace Transform	Introduction, Definition of Laplace transforms Laplace transform of constant, trigonometrical, exponential functions. Important properties of Laplace transform: First shifting theorem, Laplace transform of $L{f(at)}$, $L{t^n f(t)}$, $L{\left\{\frac{f(t)}{t}\right\}}$, $L{\left\{\frac{d^n f(t)}{dt^n}\right\}}$, $L{\left\{\int_0^t f(u) du\right\}}$ (all without proof). Unit step function, Heavi side function, Dirac-delta function, Periodic function and their Laplace transforms, Second shifting theorem.	08	CO3
IV	Inverse Laplace Transform	Inverse Laplace transform with Partial fraction and Convolution theorem (without proof). Application to solve initial and boundary value problem involving ordinary differential equations with one dependent variable and constant coefficients.	08	CO4
V	Complex Variable & mapping	Functions of a complex variable, Analytic functions, Cauchy- Riemann equations in Cartesian co- ordinates, Polar co-ordinates. Harmonic functions, Analytic method and Milne Thomson methods to find f(z), Orthogonal trajectories. Conformal Mapping, Linear, Bilinear transformations, Cross ratio, fixed points and standard transformation such as rotation and magnification, inversion, translation.	10	CO6
VI	Permutations, Combinations and Probability	Rule of sumand product,Permutations,Combinations,Algorithms forgeneration of	08	CO5

Permutations and Combinations.
Discrete Probability, Conditional
Probability, Bayes' Theorem,
Information and Mutual
Information.

- 1. Higher Engineering Mathematics by Grewal B. S. 38th edition, Khanna Publication 2005.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 3. A Text Book of Applied Mathematics Vol. I & II by P.N.Wartilar & J.N.Wartikar, Pune, Vidyarthi Griha Prakashan, Pune.
- 4. Modern Digital Electronics by R. P. Jain 8th edition, Tata Mcgraw Hill
- 5. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", SiE Edition, TataMcGraw-Hill.

References:

- 1. Advanced Engineering Mathematics by C. Ray Wylie & Louis Barrett, TMH International Edition.
- 2. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 3. Lapplace Transforms by Murray R. Spiegel, Schaun's out line series-McGraw Hill Publication.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
Code						Practical		
ITC302	Logic Design	04			04			04

		Examination Scheme									
Course	Course	Inte	Theo: ernal asse	ry Marks							
Code	Name	Test1	Test2	Avg. of Two Tests	End Sem. Exam	Term Work	Oral & Practical	Oral	Total		
ITC302	Logic Design	20	20	20	80				100		

Course Objectives: Students will try to learn:

- 1. The concept of various components.
- 2. The concepts that underpin the disciplines of Analog and digital electronic logic circuits.
- 3. Various Number system and Boolean algebra.
- 4. Design and implementation of combinational circuits
- 5. Design and implementation of Sequential circuits
- 6. Hardware description language

Course Outcomes: Students will able to:

- 1. Understand the concepts of various components to design stable analog circuits.
- 2. Represent numbers and perform arithmetic operations.
- 3. Minimize the Boolean expression using Boolean algebra and design it using logic gates
- 4. Analyze and design combinational circuit.
- 5. Design and develop sequential circuits
- 6. Translate real world problems into digital logic formulations using VHDL.

Prerequisite: Basic Electrical Engineering

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Semiconductor theory, Diodes, Integrated Circuits	02	
Ι	Biasing of BJT	Biasing of BJT: DC operating point, BJT characteristics & parameters, all biasing circuits, analysis of above circuits and their design, variation of operation point and its stability. Differential	08	CO1

		Amplifier, constant current source, current mirror.		
II	Number System and codes	Introduction to Number systems, Binary Number systems, Signed Binary Numbers, Binary, Octal, Decimal and Hexadecimal number Systems and their conversion, Binary arithmetic using compliments, Gray Code, BCD Code, Excess-3 code, ASCII Code.inter-conversion of codes,	08	CO2
III	Boolean Algebra and Logic gates	Introduction, NAND and NOR operations, Exclusive –OR and Exclusive –NOR operations, Boolean Algebra Theorems and Properties , Standard SOP and POS form, Reduction of Boolean functions using Algebric method, K -map method (2,3,4 Variable).Variable entered Maps, Quine Mc Cluskey, Mixed Logic Combinational Circuits and multiple output function Basic Digital Circuits: NOT,AND, OR,NAND,NOR,EX-OR,EX-NOR Gates.	10	CO2 CO3
IV	Design and Analysis of Combinational Circuits	Introduction, Half and Full Adder, Half and Full Subtractor, Four Bit Binary Adder, One digit BCD Adder, code conversion, Encoder and Decoder ,Multiplexers and De- multiplexers, Decoders, Binary comparator (2,3 variable)4-bit Magnitude Comparator IC 7485 and ALU IC74181.	08	CO2 CO3 CO4
V	Sequential Logic Design	 Flip Flops : SR, JK, D, T, master slave flip flop, Truth Table, excitation table and conversion Register: Shift register, SISO, SIPO, PISO, PIPO, Bi-directional and universal shift register. Counters: Design of synchronous and asynchronous ,Modulo Counter, Up Down counter IC 74193, Ring and Johnson Counter 	9	CO4 CO5
VI	VHDL	Introduction to VHDL, Library, Entity, Architecture Modeling styles, Concurrent and Sequential statements, data objects and data types, attributes, design examples	07	CO5 CO6

	for combinational circuits	

- 1. Robert L. Boylestad, Louis Nashelsky, "Electronic devices and circuit Theory", PHI
- 2. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 3. M. Morris Mano, "Digital Logic and computer Design", PHI
- 4. J. Bhasker." VHDL Primer", Pearson Education.
- 5. Balbaniam, Carison,"Digital Logic Design Principles", Wiley Publication

References:

- 1. Martin s. Roden, Gordon L. Carpenter, William R. Wieserman "Electronic Design-From Concept to Reality", Shroff Publishers and Distributors.
- 2. A. Anand Kumar, "Fundamentals of Digital Circuits", Prentice Hall India
- 3. Subrata Ghosal, "Digital Electronics", Cengage Learning.
- 4. Anil K. Maini, "Digital Electronics Principles and Integrated Circuits", Wiley India
- 5. Donald p Leach, Albert Paul Malvino, "Digital principles and Applications", Tata McGraw Hill

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC303	Data Structures & Analysis	04			04			04

		Examination Scheme									
			Theory	Marks							
Course Code Course Name		Internal assessment			End Sem. Exam	Term Work	Oral & Practical	Oral	Total		
		Test1	Test 2	Avg. of two Tests							
ITC303	Data Structures & Analysis	20	20	20	80				100		

Course Objectives: Students will try to:

- 1. Understand and remember algorithms and its analysis procedure.
- 2. Introduce the concept of data structures through ADT including List, Stack, Queues .
- 3. To design and implement various data structure algorithms.
- 4. To introduce various techniques for representation of the data in the real world.
- 5. To develop application using data structure algorithms.
- 6. Compute the complexity of various algorithms.

Course Outcomes: Students will be able to:

- 1. Select appropriate data structures as applied to specified problem definition.
- 2. Implement operations like searching, insertion, and deletion, traversing mechanism etc. on various data structures.
- 3. Students will be able to implement Linear and Non-Linear data structures.
- 4. Implement appropriate sorting/searching technique for given problem.
- 5. Design advance data structure using Non-Linear data structure.
- 6. Determine and analyze the complexity of given Algorithms.

Prerequisite: C Programming Language

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	C Programming Language	02	
Ι		Introduction to Data structures, Need of Data structures, Types of	07	CO1

	Introduction to	Data structures : Linear and non		CO2
	Data structures and Analysis	linear data structures		CO3
	7 mary 515	Arrays, Stacks, Queue, Linked list and Tree, Graph, Recursion, ADT (Abstract Data type).		CO6
		Introduction to Analysis, Algorithms, characteristics of an algorithms, Time and Space complexities, Order of growth functions, Asymptotic notations		
		Introduction to Stack, Stack as		CO1
	Stack	ADT, Operations on stack, Application of stack: – reversing	07	CO2
II	Stack	string, Polish notations	07	CO3
				CO6
III	Queue	Introduction to Queue, Queue as ADT, Operations on Queue, Linear representation of queue, Circular Queue, Priority Queue, De-queue, Application of Queues	06	CO1 CO2 CO3 CO6
IV	Linked list	Introduction to Linked List, Basic concept of Linked List, Memory allocation & de allocation of Linked list, Singly Linked list, Doubly Linked list, Circular linked list, Operations on linked list, Linked representation of stack, Linked representation of Queue, Application of linked list.	08	CO1 CO2 CO3 CO6
V	Sorting and Searching	Introduction to Sorting: Bubble Sort, Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort, Shell Sort, Radix sort. Analysis of Sorting Techniques. Comparison of sorting Techniques Introduction to Searching: Linear	12	CO4 CO5 CO6

		search, Binary search, Hashing Techniques, Different Hash functions, Collision& Collision resolution techniques, Analysis of searching Techniques.		
VI	Trees & Graph	Introduction to Trees, Definitions& Tree terminologies, Binary tree representation, Operations on binary tree, Traversal of binary trees, Binary search tree, Threaded Binary tree, Expression tree, Application of Trees Introduction to Graph, Introduction Graph Terminologies, Graph Representation, Type of graphs, Graph traversal:Depth first search(DFS)&Breadth First search(BFS), Minimum Spanning Tree : Prim's & Kruskal's Shortest Path Algorithm – Dijkstra's Algorithm. Applications of graph	10	CO1 CO2 CO3 CO6

- 1. Data structures using C by Tenenbaum, Langsam, Augenstein, Pearson.
- 2. Data Structures using C, ReemaThareja, Oxford.
- 3. C and Data structures, Prof. P.S.Deshpande, Prof. O.G.Kakde, Dreamtech Press.
- 4. Introduction to Data Structure and its Applications Jean-Paul Tremblay, P. G. Sorenson

Reference Books:

- 1. Data Structures Using C & C++, Rajesh K. Shukla, Wiley- India.
- 2. Data Structures and Algorithm Analysis in C ,Mark A.Weiss ,Pearson
- 3. ALGORITHMS Design and Analysis, Bhasin, OXFORD.
- 4. Computer Algorithms by Ellis Horowitz and Sartaj Sahni, Universities Press.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.

- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
						Practical		
ITC304	Database Management Systems	04			04			04

Course Code	Course Name	Examination Scheme								
			Theo	ry Marks						
		Internal assessment			End	Term Work	Oral & Practical	Oral	Total	
		Test1	Test 2	Avg. of two Tests	Sem. Exam	,, one				
ITC304	Database Management Systems	20	20	20	80				100	

Course Objectives: Students will try:

- 1. To describe a sound introduction to the discipline of database management systems.
- 2. To give a good formal foundation on the relational model of data and usage of Relational Algebra
- 3. To introduce the concepts of basic SQL as a universal Database language
- 4. To enhance knowledge to advanced SQL topics like embedded SQL, procedures connectivity through JDBC
- 5. To demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- 6. To provide an overview of physical design of a database system, by discussing Database indexing techniques and storage techniques.

Course Outcomes: Student should be able to:

- 1. Explain the features of database management systems and Relational database
- 2. Design conceptual models of a database using ER modeling for real life applications and also construct queries in Relational Algebra
- 3. Create and populate a RDBMS for a real life application, with constraints and keys, using SQL.
- 4. Retrieve any type of information from a data base by formulating complex queries in SQL.
- 5. Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database.
- 6. Build indexing mechanisms for efficient retrieval of information from a database

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisites	Basic knowledge of operating systems and file systems, Any programming	02	

		knowledge		
Ι	Introduction Database Concepts	Introduction, Characteristics of databases, File system V/s Database system, Users of a Database system Data Models, Schemas, and Instances, Three-Schema Architecture and Data Independence, Database Administrator (DBA), Role of a DBA	05	CO 1
II	Entity– Relationship Data Model	Conceptual Modeling of a database, The Entity-Relationship (ER) Model, Entity Types, Entity Sets, Attributes, and Keys, Relationship Types, Relationship Sets, Weak Entity Types Generalization, Specialization and Aggregation, Extended Entity- Relationship (EER) Model.	09	CO 2
III	Relational Model and Relational Algebra	Introduction to Relational Model, Relational Model Constraints and Relational Database Schemas, Concept of Keys: Primary Kay, Secondary key, Foreign Key, Mapping the ER and EER Model to the Relational Model, Introduction to Relational Model, Introduction to Relational Algebra, Relational Algebra expressions for • Unary Relational Operations, • Set Theory operations, • Binary Relational operation Relational Algebra Queries	09	CO 2
IV	Structured Query Language (SQL)	Overview of SQL , Data Definition Commands, Set operations , aggregate function , null values, , Data Manipulation commands, Data Control commands , Views in SQL, Complex Retrieval Queries using Group By, Recursive Queries, nested Queries ; Referential integrity in SQL. Event Condition Action (ECA) model (Triggers) in SQL; Database Programming with JDBC, Security and authorization in SQL Functions and Procedures in SQL and cursors.	10	CO 3, CO 4
V	Relational– Database Design	Design guidelines for relational schema, Functional Dependencies, Definition of Normal Forms- 1NF, 2NF, 3NF, BCNF, Converting Relational Schema to higher normal forms.	08	CO 5

VI	Storage Indexing	and	Techniques; T Level Order Indexes; Over	Types of ed Ind rview of	lexes; f B-Tree	Multilevel es and B+-	09	CO 6
			Trees; Indexes	s on Mu	ltiple K	leys.		

- 1. Korth, Slberchatz, Sudarshan, "Database System Concepts", 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, PEARSON Education.
- 3. G. K. Gupta :"Database Management Systems", McGraw Hill

References:

- 1. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 2. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom "Database System Implementation", Pearson Ltd. 1/e
- 3. Thomas M. Connolly Carolyn Begg, Database Systems : A Practical Approach to Design, Implementation and Management, 4/e, Pearson Education.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC305	Principle of Communications	03		01	03		01	04

	Course Name	Examination Scheme								
Course Code		Theory Marks								
		Internal assessment End			End	Term	Oral &	Oral	Total	
		Test1	Test 2	Avg. of 2 Tests	Sem. Exa m	Work	Practical	Orar	Total	
ITC305	Principle of Communications	20	20	20	80				100	

\$ 3 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as batch wise

Course Objectives: Students will try to:

- 1. Study the basic principles and techniques used in analog and digital communications.
- 2. Understand the concept of noise and Fourier transform for designing and analysing communication system.
- 3. Acquire the knowledge of different modulation techniques such as AM, FM and study the block diagrams of transmitter and receiver.
- 4. Study the Sampling theorem and Pulse Analog Modulation techniques.
- 5. Learn the concepts of Digital modulation techniques such as PCM, DM, ADM and multiplexing techniques.
- 6. Gain the core idea of Electromagnetic Radiation and propagation of waves.

Course Outcomes: Students will be able to:

- 1. Differentiate analog and digital communication systems
- 2. Identify different types of noise occurred, its minimization and able to apply Fourier analysis in frequency & time domain to quantify bandwidth requirement of variety of analog and digital communication systems.
- 3. Design generation & detection AM, DSB, SSB, FM transmitter and receiver.
- 4. Apply sampling theorem to quantify the fundamental relationship between channel bandwidth, digital symbol rate and bit rate
- 5. Explain different types of line coding techniques for generation and detection of signals.
- 6. Describe Electromagnetic Radiation and propagation of waves.

Prerequisite: Basic Electrical Engineering

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Electrical engineering concepts, analog and digital electronics.	02	
Ι	Introduction	Basics of analog communication systems (Block diagram), Sources of information, Baseband and band pass signals, Types of communication channels, Frequency / Spectrum allocations, Need for modulation and demodulation	03	CO1
II	Fourier Transform and Noise	Introduction to Fourier Transform, its properties (time and frequency shifting and convolution property), Fourier transform of unit step, delta and gate function. Correlated and uncorrelated sources of noise in communication system, Noise parameters –Signal to noise ratio, Noise factor, Noise figure, Friis formula and Equivalent noise temperature	05	CO2
Π	Modulation and Demodulation (AM and FM)	AM: Amplitude modulation techniques and its types- DSBFC AM, DSBSC-AM, SSB SC AM- spectrum, waveforms, bandwidth, Power calculations. AM Receivers – Block diagram of TRF receivers and Super heterodyne receiver. Receiver characteristics - Sensitivity, Selectivity, Fidelity, Image frequency and its rejection and double spotting FM : Principle of FM- waveforms, spectrum, bandwidth. Pre- emphasis and de-emphasis in FM, FM noise triangle, Comparison of AM and FM systems, FM generation: Direct method –Varactor diode Modulator, Indirect method (Armstrong method) block diagram and waveforms. FM demodulator: Foster Seely discriminator, Ratio detector.	12	CO3
IV	Pulse Analog Modulation	Sampling theorem for low pass and band pass signals with proof, Anti- aliasing filter, PAM, PWM and PPM generation and	05	CO4

		Degeneration.		
V	Digital Modulation Techniques and Transmission	Introduction to digital communication (Block diagram), Quantization process, Pulse code modulation, Delta modulation, Adaptive delta modulation, Principle of time division multiplexing, Frequency division multiplexing and its applications. Introduction to Line codes, Inter- symbol interference, Binary phase shift keying, Differentially encoded phase shift keying, Quadrature phase shift keying, M-ary phase shift keying, Quadrature amplitude shift keying	08	CO5
VI	Radiation and Propagation of Waves	Electromagnetic radiation, fundamentals, types of propagation, ground wave, sky wave, tropospheric scatter propagation	04	CO6

- 1. Simon Haykin, Michael Moher, Introduction to Analog & Digital Communications, Wiley India Pvt. Ltd., 2nd Ed.
- 2. Herbert Taub, Donald L Schilling, Goutam Saha, Principles of Communication Systems, Tata McGraw Hill, 3rdEd.
- 3. V Chandrasekar, Communication Systems, Oxford University Press, Ist Ed.

References:

- 1. George Kennedy, Bernard Davis, SRM Prasanna, Electronic Communication Systems, Tata McGraw Hill, 5th Ed.
- 2. Wayne Tomasi, Electronic Communications Systems, Pearson Publication, 5th Ed.
- 3. BP Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University.
- 4. K Sam Shanmugam, Digital and Analog Communication Systems, Wiley India Pvt. Ltd, 1st Ed.

Suggested Topics for Tutorials (Any 10):

- 1. Demonstration of Amplitude modulation.
- 2. Demonstration of Frequency modulation.
- 3. Study of AM/ FM receiver.
- 4. Demonstration of Signal sampling and reconstruction.
- 5. Study of PWM generation and detection.
- 6. Study of PCM coding and decoding.
- 7. Study of Delta modulation and demodulation
- 8. Demonstration of TDM/ FDM.
- 9. Demonstration of BPSK, BFSK, BASK
- 10. Study of QPSK
- 11. Study of Inter symbol Interference and Line coding.
- 12. Study of different types of Propagation.

University of Mumbai, B. E. (Information Technology), Rev 2016

21

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	TW/Prac	Tutorial	Tota
	Name					tical		1
ITL301	Digital Design Lab		2			1		01

Course Code	Course Name	Examination Scheme							
			Theo	ory Marks					
		Internal assessment			End	Term Work	Oral & Practical	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	V OIK			
ITL301	Digital Design Lab					25	25	50	

Lab Objectives: Students will try to:

- 1. Learn to minimize and design combinational logic;
- 2. Understand the relationships between combination logic and Boolean algebra, and between sequential logic and finite state machines;
- 3. Appreciate tradeoffs in complexity and speed of combinational designs;
- 4. Understand how state can be stored in a digital logic circuit;
- 5. Study how to design a simple finite state machine from a specification and be able to implement this in gates and edge triggered flip-flops
- 6. Learn to translate real world problems into digital logic formulations

Lab Outcomes: Students will be able to:

- 1. Minimize the Boolean algebra and design it using logic gates.
- 2. Analyse and design combinational circuit.
- 3. Realise given function using combinational circuit.
- 4. Design and develop sequential circuits
- 5. Implement digital systems using programmable logic devices
- 6. Translate real world problems into digital logic formulations using VHDL.

Prerequisite: Concepts of Logic Design

Hardware requirement:

Digital Trainer kit, ICs for various logic gates and functions, connecting wires

Software requirement:

VHDL tool

Detail Syllabus:

Sr.	Module	Detailed Content	Hours	LO
No.				Mapping

I	Boolean Algebra and Logic gates	a. Verify the truth table of logic gates (basic and universal gates)b. Realization of Boolean algebra using gates	04	LO1
II	Design and Analysis of Combinational Circuits	a. Design of Full Adder and Full Subtractor.b. verify the operation of 4- bit magnitude comparator	04	LO2
III	Implementation of Combinational Circuits	a. Implementation of MUX and DeMUX.b. Implementation of Encoder and Decoder	04	LO3
IV	Sequential Logic Design	 a. To verify and observe the operation of flip-flop(any two) b. To design any two shift register. c. To design Modulo and ring Counter 	06	LO4
V	Programmable logic Devices	a. Evaluate and observe Boolean expression using PALs and PLAs	04	LO5
VI	VHDL	 a. Implementation of Logic Gates using VHD b. Evaluate and observe combinational circuits on VHDL. 	04	LO6

- 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 2. Balbaniam, Carison,"Digital Logic Design Principles", Wiley Publication

References:

- 1. M. Morris Mano, "Digital Logic and computer Design", PHI
- 2. J. Bhasker." VHDL Primer", Pearson Education.

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

Course	Course Name	Theory	Practical	Tutorial	Theory	TW/Pra	Tutorial	Total
Code						ctical		
ITL302	Data Structures		2			1		1
	Lab							

		Examination Scheme							
Course Code		Theory Marks							
	Course Name	Internal assessment			End	Term	Oral & Practical	Total	
		Test1	Test2	Avg. of two Tests	Sem. Exam	Work			
ITL302	Data Structures Lab					25	25	50	

Lab Objectives: Students will try:

- 1. Understand and remember algorithms and its analysis procedure.
- 2. Introduce the concept of data structures through ADT including List, Stack, Queues .
- 3. To design and implement various data structure algorithms.
- 4. To introduce various techniques for representation of the data in the real world.
- 5. To develop application using data structure algorithms.
- 6. Compute the complexity of various algorithms.

Lab Outcomes: Students will be able to:

- 1. Select appropriate data structures as applied to specified problem definition.
- 2. Implement operations like searching, insertion, and deletion, traversing mechanism etc. on various data structures.
- 3. Students will be able to implement Linear and Non-Linear data structures.
- 4. Implement appropriate sorting/searching technique for given problem.
- 5. Design advance data structure using Non-Linear data structure.
- 6. Determine and analyze the complexity of given Algorithms.

Prerequisite: C Programming Language

Hardware Requirement:	Software requirement:
PC i3 processor and above	Turbo/Borland C complier.

Detailed Syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Introduction of C programming language		
Ι	Stack	1. Implementations of stack menu driven program	04	LO1
		2. Implementation of multistack in one array.		LO2
		3. *Implementations of Infix to Postfix		LO3
		Transformation and its evaluation program.		LO6
		4. Implementations of Infix to Prefix Transformation and its evaluation program.		
II	Queue	1. Implementations of circular queue menu driven	04	LO1
		program		LO2
		2. * Implementations of double ended queue menu driven program		LO3
		3. Implementations of queue menu driven program		LO6
		 Implementation of Priority queue program using array. 		
III	Linked List	1. Implementations of Linked Lists menu driven	04	LO1
		program.	01	LO1 LO2
		2. *Implementation of different operations		LO3
		on linked list –copy, concatenate, split, reverse, count no. of nodes etc		LO6
		3. Implementation of polynomials operations (addition, subtraction) using Linked List.		
		4. Implementations of Linked Lists menu driven program (stack and queue)		
IV	Tree & Graph	1. Implementations of Binary Tree menu driven	04	LO1
		program		LO2
		2. Implementation of Binary Tree Traversal program.		LO3
		 3. *Implementation of construction of expression tree using postfix expression. 4. Implementations of BST program 		LO6
		 Implementation of various operations on tree 		
		like – copying tree, mirroring a tree, counting the number of nodes in the tree, counting only		

		 leaf nodes in the tree. 6. Implementation of Preorder traversal of a threaded binary tree. 7. Implementations of Huffman code construction 8. Implementations of Graph menu driven program (DFS & BSF) 	
V	Sorting	 Implementations of Shell sort, Radix sort and Insertion sort menu driven program. *Implementations of Quick Sort, Merge sort and Heap Sort menu driven program Implementations of Advanced Bubble Sort, Insertion Sort and Selection Sort menu driven program 	04 LO4 LO5 LO6
VI	Searching	 Implementations of searching methods (Index Sequential, Interpolation Search) menu driven program *Implementation of hashing functions with different collision resolution techniques 	02 LO4 LO5 LO6

- 1. Data structures using C by Tenenbaum, Langsam, Augenstein, Pearson.
- 2. Data Structures using C, ReemaThareja, Oxford.

Reference Books:

- 1. C and Data structures, Prof. P.S.Deshpande, Prof. O.G.Kakde, Dreamtech Press.
- 2. Data Structures A Pseudocode Approach with C, Richard F. Gilberg & Behrouz A. Forouzan, second edition, CENGAGE Learning.

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

		Theory	Practical	Tutorial	Theory	TW/Prac tical	Tutorial	Total
ITL303	SQL Lab		2			01		01

		Examination Scheme							
Subject Code	Subject Name	Theory Marks							
		Internal assessment			End	Term Work	Oral & Practical	Total	
		Test 1	Test 2	Avg. of 2 Tests	Sem. Exam				
ITL303	SQL Lab					25	25	50	

Course Objectives: Students will try:

- 1. To provide a sound introduction to the creation of problem statements from real life situations.
- 2. To give a good formal foundation on the relational model of data and usage of Relational Algebra.
- 3. To introduce the concepts of basic SQL as a universal Database language.
- 4. To enhance knowledge to advanced SQL topics like embedded SQL, procedures connectivity through JDBC.
- 5. To enable the design of an efficient database using normalization concepts.
- 6. To enable students to be create indexes for databases for efficient retrieval.

Course Outcomes: Student should be able to:

- 1. Construct problem definition statements for real life applications and implement a database for the same.
- 2. Design conceptual models of a database using ER modeling for real life applications and also construct queries in Relational Algebra.
- 3. Create and populate a RDBMS, using SQL.
- 4. Write queries in SQL to retrieve any type of information from a data base.
- 5. Analyze and apply concepts of normalization to design an optimal database.
- 6. Implement indexes for a database using techniques like B or B+ trees.

Hardware Requirement:	Software requirement:			
PC i3 processor and above	Any SQL Compiler			

Detailed syllabus:

Sr. No.	Detailed Content	Hours	CO Mapping	
1	 a) Students to be given assignments to construct detailed problem definitions for real life applications. b) Construction of ER/EER diagrams for the given problems. c) Assignment based on relational 	4	CO 1 CO 2	
2	Algebraa) Basic SQL Queries-DDL and DML.b) Construction of Database-Keysc) Population of the database	5	CO 3	
3	Complex Queries using group by, nested queries, recursive queries, joins, views, Triggers, Cursors	5	CO 4	
4	Design and Implementation of a fully fledged Database with front end for a real life application (Using JDBC)	4	CO 1	
5	Assignment for conversion of relation to different normal forms.	2	CO 5	
6	Program for construction of index- B-Tree / B+-Tree	4	CO 6	

Text Books:

- 1. SQL The Complete Reference, 3rd Edition, James R Groff, Paul N. Weinberg, Andy Oppel, McGraw Hill.
- 2. G. K. Gupta :"Database Management Systems", McGraw Hill

References:

- 1. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 2. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above SQL syllabus.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ITL304	Java Programming Lab		2+2*			2		2

Course Code	Course Name	Examination Scheme						
		Theory Marks						
		Internal assessment			End	Term	Oral & Practical	Total
		Test1	Test 2	Avg. of two Tests	Sem. Exam	Work		
ITL304	Java Programming Lab					50	50	100

* 2 hours shown as practical's to be taken class wise lecture and other 2 hours to be taken as batch wise practical's in Lab.

Lab Objectives: Students will try:

1. To understand how to design, implement, test, debug, and document programs that use basic data types and computation, simple I/O, conditional and control structures, string handling and functions.

To understand the importance of Classes & objects along with constructors, Arrays and Vectors.
 Discuss the principles of inheritance, interface and packages and demonstrate though problem analysis assignments how they relate to the design of methods, abstract classes and interfaces and packages.

4. To understand importance of Multi-threading & different exception handling mechanisms.

5. To learn experience of designing, implementing, testing, and debugging graphical user interfaces in Java using applet and AWT that respond to different user events.

6. To understand Java Swings for designing GUI applications based on MVC architecture.

Lab Outcomes: Upon Completion of the course the learner should be able to:

1. Implement Object Oriented programming concept using basic syntaxes of control Structures, strings and function for developing skills of logic building activity.

2. Identify classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem

- 3. Demonstrates how to achieve reusability using inheritance, interfaces and packages and describes faster application development can be achieved.
- 4. Demonstrate understanding and use of different exception handling mechanisms and

concept of multithreading for robust faster and efficient application development.

- 5. Identify and describe common abstract user interface components to design GUI in Java using Applet & AWT along with response to events
- 6. Identify, Design & develop complex Graphical user interfaces using principal Java Swing classes based on MVC architecture

Hardware Requirements	Software Requirements	Other Requirements				
PCWithFollowingConfiguration1. Intel PIV Processor2. 2 GB RAM3. 500 GB Harddisk4. Network interface card	 Windows or Linux Desktop OS JDK 1.8 or higher Notepad ++ JAVA IDEs like Netbeans or Eclipse 	1. Internet Connection for installing additional packages if required				

Detailed Syllabus:

Sr. No.	Module	Detailed Contents	Hours	LO Mapping
1)	Fundamental of Java Programming	 Theory 1.1 Overview of procedure and object oriented Programming, Java Designing Goals, Features of Java Language. 1.2 Introduction to the principles of object-oriented programming: Classes, Objects, Abstraction, Encapsulation, Inheritance, Polymorphism, 1.3 Keywords, Data types, Variables, Operators, Expressions, Types of variables and methods. 1.4 Control Statements: If Statement, If-else, Nested if, switch Statement, break, continue. Iteration Statements: for loop, while loop, and do-while loop. Experiment 1: (Perform any three programs that covers Classes, Methods, Control structures and Looping statements) i) Write a Java program to understand how to accept input using Scanner or 	12	LO 1 LO 2

BufferedReader and print output using
System.out.println statement.
ii) Write a Java program to display the
default value of all primitive data types
in Java.
iii) Write a Java program that prints all real
solutions to the quadratic equation
$ax^{2+bx+c} = 0$. Read in a, b, c and use the
quadratic formula. If the discriminate b2-
4ac is negative, display a message stating
that there are no real solutions.
iv) Write a java program to test whether
string is palindrome or not
v) Write a java program to count number
of alphabets, digits, special symbols,
blank spaces and words from the given
sentence.
vi) Write a java program to count number of
vowels and consonants from the given
strings.
vii) Write a Menu driven program in java to
implement simple banking application. Application
should read the customer name, account number,
initial balance, rate of interest, contact number and
address field etc. Application should have following
methods.
1. createAccount()
2. deposit()
3. withdraw()
4. computeInterest()
5. displayBalance()
viii) Write a menu driven Java program which will

	1 1 1 1 1 1 1		
	read a number and should implement the following		
	methods		
	1. factorial()		
	2. reverse()		
	3. testArmstrong()		
	4. testPalindrome()		
	5. testPrime()		
	6. fibonacciSeries()		
	ix) Write a Java program to demonstrate Method		
	overloading		
2)	Theory		
Classes, Objects, Arrays and Recursion	 2.1 Classes & Objects: Class Fundamentals: Assigning Object Reference Variables, Passing parameters to Methods and Returning parameters from the methods, Nested and Inner Classes. 2.2 Constructors: Parameterized Constructors, finalize() Method, Method overloading, Constructors overloading, Recursion, Command-Line Arguments. 2.3 Wrapper classes, Java.util.Scanner, Java. io.BufferedReader, Java.io.DataInputStream, Java.io.DataOutputStream and String Buffer classes and String functions. 2.4 Arrays & Vectors: One Dimensional arrays, Two Dimensional array, Irregular arrays, dynamic arrays, Array List and Array of Object. Experiment 2 (Perform any Five programs that covers Classes & objects, Constructors, Command Line Arguments, 	12	LO 1 LO 2

Arrays/	Vectors & recursions)
i)	Write a java program to demonstrate
	Constructors, Parameterized Constructors
	and Constructor Overloading
ii)	Write a java program to demonstrate
	Command Line Arguments
iii)	Write a java program to demonstrate String
	Functions
iv)	Write a java program to demonstrate Array
	and Vectors operations
v)	Write a java programs to add n strings in a vector array. Input new string and
	check whether it is present in the vector. If it is
	present delete it otherwise add it to the vector.
vi)	Write a java programs to test whether the
	given element is present in the vector
	array.
vii)	Write a java programs to find frequency of
	a element in the given Vector array.
viii	Write a java programs to add n strings in a
vec	tor array. Input new string and check whether it
is p	present in the vector. If it is present delete it
othe	erwise add it to the vector.
ix)	Write menu driven program to implement
recu	arsive functions for following
	tasks.
	a) To find GCD and LCM
	b) To find X ^Y
с) To print n Fibonacci numbers

		 d) To find reverse of number e) To 1+2+3+4++(n-1)+n x) Write the Menu driven program to perform a) Addition of two matrices of order m*n and p*q b) Multiplication of two matrices of order m*n and p*q c) Transpose of matrix of order m*n d) addition of diagonal and non-diagonal 		
3)	Inheritance, Interface and Packages	 Theory 3.1 Inheritance Basics, , Types of Inheritance in Java, Concept of Super and sub class, inheriting Data members and Methods, Role of Constructors in inheritance, Making methods and classes final , Method overriding, Dynamic Method Dispatch, Abstract classes and methods 3.2 Defining an interface, extending interfaces , implementing interfaces, accessing implementations through interface references, Interfaces vs. Abstract classes. 3.3 Packages – Steps for defining, creating and accessing a Package, importing packages, Making JAR Files for Library Packages, java.util.Vector Experiment 3 (Perform any Two programs that covers Inheritance, interfaces and packages) i) Write a java programs to demonstrate hierarchical inheritance 	08	LO 3
		ii) Write a java program to demonstrate extending& implementing Interfaces		

	 iii) Write a java program to demonstrate Modules and packages iv) Write a java program to create user defined packages 		
Exception Handling and Multithreading	 Theory: 4.1 Exception handling Mechanism: try, catch, throw, throws and finally. 4.2 Multithreading: Need of Multithreading, Java thread Model, thread Life-Cycle, thread class Methods, Implementing Runnable, Extending thread, Synchronizing threads, synchronized Statement, Critical Factor in Thread –Deadlock. Experiment 4 (Perform any Two programs that covers Exception Handling & Multithreading) i) Write java programs to demonstrate Exception handling using try, catch, throw, throws and finally statements. ii) Write a Java Program to input the data through command Line and Find out total valid and in-valid integers. (Hint: use exception handling). iii) Write a Java Program to calculate the Result. Result should consist of name, seatno, date, center number and marks of semester three exam. Create a User Defined Exception class MarksOutOfBoundsException, If Entered marks of any subject is greater than 100 or less than 0, and then program should create a user defined Exception of type MarksOutOfBoundsException and must have a provision to handle it. 	06	LO3 LO 4

		iv) Write java program to graate a user defined		
		iv) Write java program to create a user defined Exception class known as		
		ExceptionclassknownasPayOutOfBoundsException.Organizationdoesnot		
		offer basic salary less than 8000. If entered salary is		
		less than 8000 then program should create an		
		Exception of Type PayOutOfBoundsException.		
		Program should calculate gross salary by considering		
		salary parameters such as DA, HRA, CA, TA,		
		Professional tax, TDS, PF etc		
		v) Write java programs to create user defined threads		
		by extending thread class and by implementing		
		runnable.		
		vi) Write ieve program to print Table of Five Seven		
		vi) Write java program to print Table of Five, Seven		
		and Thirteen using Multithreading (Use Thread class		
		for the implementation).		
		vii) Write a java program to print first 20 prime		
		numbers and 15 Fibonacci numbers by creating two		
		child threads and also print the total time taken by		
		each thread for the execution.		
		viii) Write a java program to implement use of nested		
		try-catch concept using appropriate example.		
		try-caten concept using appropriate example.		
		ix) Write java program to create the child thread.		
		Comment on the execution of main and Child		
		Thread.		
		x) Write java program to implement the concept of		
		Thread Synchronization		
		vi) Write a Java program to identify whether insutted		
		xi) Write a Java program to identify whether inputted		
		data is byte/short/int/long/float/double/String/char		
		type. (Use Exception Handling)		
5)	Applet	5.1 Applet: Applet fundamentals, Applet lifecycle,		LO3
	Programming,	Creating applet, paint method Applet tag, Applet	10	
	GUI	class methods.		LO4

development	5.2 Designing Graphical User Interfaces in Java,	LO 5
using AWT	Components and Containers, Basics of	
and Event	Components, Using Containers, Layout Managers,	
handling	AWT Components, Adding a Menu to Window,	
	Extending GUI Features	
	5.3 Event-Driven Programming in Java, Event-	
	Handling Process, Event- Handling Mechanism,	
	Delegation Model of Event Handling, Event	
	Classes, Event Sources, Event Listeners, Adapter	
	Classes as Helper Classes in Event Handling.	
	Experiment 5	
	(Perform any Three programs that covers Applet	
	Programming, GUI development using AWT and	
	Event handling)	
	i) Write java program to draw the house on an applet.	
	ii) On Applet: Take a Login and Password from the	
	user and display it on the third Text Field which	
	appears only on clicking OK button and clear	
	both the Text Fields on clicking RESET button	
	Perform same using AWT and Swings as well.	
	Login _[]X	
	Login : Password : OK RESET	
	iii) Write java program to create an advertisement	
	banner on an applet using multithreading	
	iv) Write java program to create a registration form	
	using AWT.	
	v) Write a Java program to demonstrate the use of	
	AWT components namely buttons, labels, text boxes,	
	lists/combos, menus with event handling.	

6)	Java Swings	 vi) Write a java program to store personal telephone directory in such a way that when user hits a character, the names which starts with the character and telephone numbers should appear. Theory 6.1 Introducing Swing: AWT vs Swings, Components and Containers, Swing Packages, A Simple Swing Application, Painting in Swing, Designing Swing GUI Application using Buttons, JLabels, Checkboxes, Radio Buttons, JScrollPane, JList, JComboBox, Trees, Tables Scroll pane Menus and Toolbars Experiment 6 (Perform any one programs that covers concept of Swings) 	06	LO4
Tota		 i) Write a Java program to implement Swing components namely Buttons, JLabels, Checkboxes, Radio Buttons, JScrollPane, JList, JComboBox, Trees, Tables Scroll pane Menus and Toolbars to design interactive GUI. ii) Write a program to create a window with four text fields for the name, street, city and pincode with suitable labels. Also windows contains a button MyInfo. When the user types the name, his street, city and pincode and then clicks the button, the types details must appear in Arial Font with Size 32, Italics. 		LO 6

Textbook Books:

- 1. Herbert Schildt, "Java-The Complete Reference", Seventh Edition, Tata McGraw Hill Publication
- 2. E. Balguruswamy, "Programming with java A primer", Fifth edition, Tata McGraw Hill Publication

Reference Books:

1. D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press University of Mumbai, B. E. (Information Technology), Rev 2016 2. H. M.Deitel, P. J. Deitel, S. E. Santry, "Advanced Java 2 Platform How to Program" Prentice Hall

3. Learn to Master JAVA, from Star EDU solutions , by ScriptDemics

Term Work:

The term Work shall consist of at least 12 to 15 practical's based on the above list. The also Term work Journal must include at least 2 assignments.

Term Work Marks: 50 Marks (Total marks) = 40 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

University of Mumbai

Program Structure B.E. Information Technology, (Rev. 2016)

Course	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
ITC401	Applied Mathematics-IV	4+1@	-	-	5	-	-	5
ITC402	Computer Networks	4	-	-	4	-	-	4
ITC403	Operating Systems	4	-	-	4	-	-	4
ITC404	Computer Organization and Architecture	4	-	-	4	-	-	4
ITC405	Automata Theory	3+1\$	-	-	4	-	-	4
ITL401	Networking Lab	-	2	-	-	1	-	1
ITL402	Unix Lab	-	2	-		1	-	1
ITL403	Microprocessor Programming Lab	-	2	-	-	1	-	1
ITL404	Python Lab	-	2+2*	-	-	2	-	2
	Total	21	10	-	21	5	-	26

S. E. Information Technology (Semester-IV)

		Examination Scheme								
ourse	Course	Theory								
Code	Name	Inte	Internal Assessme		End	Exam	TW	Oral	Oral &	Total
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)			Pract	
ITC401	Applied Mathematics-IV	20	20	20	80	3	-	-	-	100
ITC402	Computer Networks	20	20	20	80	3	-	-	-	100
ITC403	Operating Systems	20	20	20	80	3	-	-	-	100
ITC404	Computer Organization and Architecture	20	20	20	80	3	-	-	-	100
ITC405	Automata Theory	20	20	20	80	3		-	-	100
ITL401	Networking Lab	-	-	-	-	-	25	25		50
ITL402	Unix Lab	-	-	-	-	-	25		25	50
ITL403	Microprocessor Programming Lab	-	-	-	-	-	25	25		50
ITL404	Python Lab	-	-	-	-	-	50		50	100
	Total	100	100	100	400	-	125	50	75	750

@ 4 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as class wise

\$ 3 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as batch wise

*2 hours shown as practical's to be taken class wise lecture and other 2 hours to be taken as batch wise practicals in Lab.

Course	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
Code						Practical		
ITC401	Applied Mathematics IV	04		01	04			05

Course Code	Course Name	Examination Scheme								
		Theory Marks								
		Internal assessment			End	Term	Oral &	Oral	Total	
		Test1	Test2	Avg. of Two Tests	Sem. Exam	Work	Practical			
ITC401	Applied Mathematic s IV	20	20	20	80				100	

Course Objectives: Students will try to learn:

- 1. The concepts of Number Theory by using different theorem.
- 2. The concepts of probability and study PDF.
- 3. The concept of sampling theory and correlation.
- 4. The concept of graphs and trees.
- 5. The concept of groups theory.
- 6. The concept of Lattice theory.

Course Outcomes: Students will able to:

- 1. Apply the Number Theory to different applications using theorem.
- 2. Apply probability and understand PDF.
- 3. Understand sampling theory and correlation.
- 4. Apply the graphs and trees concepts to different applications.
- 5. Understand group's theory.
- 6. Understand the Lattice theory.

Prerequisite: Applied Mathematics III

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Basic of Set, Permutations, Combination and Probability.	02	
Ι	Elements of Number Theory I	Modular Arithmetic, Divisibility and Euclid Algorithm, Primes and the Sieve of Eratosthenes, Testing for primes, Prime Number Theorem	06	CO1

II	Elements of	Euler's, Fermat's Little theorems,	06	CO1
11	Number Theory II	Congruences, Computing Inverse in Congruences, Legendre and Jacobi Symbols, Chinese Remainder Theorem	00	
III	Probability	Statistics: Formal concept, sample space, outcomes, events Random Variables: discrete & continuous random variables, expectation, Variance, Probability Density Function & Cumulative Density Function Moments, Moment Generating Function Probability distribution: binomial distribution, Poisson & normal distribution	08	CO2
IV	Sampling theory	Test of Hypothesis, Level of significance, Critical region, One Tailed and two Tailed test, Test of significant for Large Samples:- Means of the samples and test of significant of means of two large samples Test of significant of small samples:- Students t- distribution for dependent and independent samples Chi square test:- Test of goodness of fit and independence of attributes, Contingency table. Correlation Scattered diagrams Karl Pearson's coefficient of correlation Spearman's Rank correlation Regression Lines	10	CO3
V	Graph & Groups theory.	Introduction to graphs, graph terminology, representing graphs and graph isomorphism, connectivity, Euler and Hamilton paths, planar graphs, graph coloring, introduction to trees, application of trees. Groups, subgroups, generators and evaluation of powers, cosets and Lagrange's theorem, permutation groups and Burnside's theorem, isomorphism, automorphisms, homomorphism and normal	12	CO4 CO5

		subgroups, rings, integral domains and fields.		
VI	Lattice theory	Lattices and algebras systems, principles of duality, basic properties of algebraic systems defined by lattices, distributive and complimented lattices, Boolean lattices and Boolean algebras, uniqueness of finite Boolean expressions, prepositional calculus. Coding theory: Coding of binary information and error detection, decoding and error correction.	08	CO5

Text Books:

- 1. Cryptograph and Network Security by B. A. Forouzan & D. Mukhopadhyay, 11th edition, McGraw Hill Publication.
- 2. Network Security and Cryptograph byBernard Menezes, Cengage Learning Publication.
- 3. Higher Engineering Mathematics by Grewal B. S. 38th edition, Khanna Publication 2005.
- 4. Probability and Statistics for Engineering, Dr. J Ravichandran, Wiley-India.
- 5. Mathematical Statistics by H. C Saxena, S Chand & Co.
- 6. C. L. Liu: Elements of Discrete Mathematics, 2nd edition, TMH

References:

- 1. Elementary Number Theory and its applications by Kenneth H. Rosen, 5th edition, Addison Wesley Publication.
- Abstract Algebra by I. N. Herstain, 3rd eition, John Wiley and Sons Publication.
 Discrete Mathematics by Norman Biggs, 2nd edition, Oxford University Press.
- 4. Advanced Engg. Mathematics by C. Ray Wylie & Louis Barrett.TMH International Edition.
- 5. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 6. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 7. Probability by Seymour Lipschutz, McGraw-Hill publication.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination:

- Some guidelines for setting the question papers are as:
 - Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
 - Question paper will comprise of total six questions, each carrying 20 marks.
 - Q.1 will be compulsory and should cover maximum contents of the syllabus.

- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
	Name					Practical		
ITC402	Computer Networks	04			04			04

Course Code	Course Name	Examination Scheme								
		Theory Marks								
		Internal assessment			End	Term Work	Oral & Practical	Oral	Total	
		Test1	Test 2	Avg. of two Tests	Sem. Exam					
ITC402	Computer Networks	20	20	20	80				100	

Course Objectives: Students will try to:

- 1. Study the basic taxonomy and terminology of the computer networking and enumerate the layers of OSI model and TCP/IP model.
- 2. Acquire knowledge of Application layer and Presentation layer paradigms and protocols.
- 3. Study Session layer design issues, Transport layer services, and protocols.
- 4. Gain core knowledge of Network layer routing protocols and IP addressing.
- 5. Study data link layer concepts, design issues, and protocols.
- 6. Read the fundamentals and basics of Physical layer, and will apply them in real time applications.

Course Outcomes: Students will be able to:

- 1. Describe the functions of each layer in OSI and TCP/IP model.
- 2. Explain the functions of Application layer and Presentation layer paradigms and Protocols.
- 3. Describe the Session layer design issues and Transport layer services.
- 4. Classify the routing protocols and analyze how to assign the IP addresses for the given network.
- 5. Describe the functions of data link layer and explain the protocols.
- 6. Explain the types of transmission media with real time applications.

Prerequisite: COA, Logic Design

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Von Neumann model, Modulation, Demodulation, encoding, Decoding.	02	

I	Introduction	Network Criteria, Physical Structures, Network Types: LAN, WAN, Switching, OSI Reference model, TCP/IP suite, Comparison of OSI and TCP/IP, Network devices.	04	CO1
II	Application layer and Presentation layer	Introduction: Providing Services, Application layer Paradigms, Client- Server Paradigm: Application Programming Interface, Using Services of the Transport Layer, Standard Client Server applications: World Wide Web and HTTP, FTP, Electronic Mail, TELNET, Secure Shell (SSH), Domain Name System (DNS), Compression: Lossless Compression, Lossy Compression, Multimedia data: Text, Image, Video , Audio ,Multimedia in the Internet: Streaming Stored Audio/Video, Real-Time Interactive Audio/Video, Optimal Compression Algorithms, Huffman Coding, Adaptive Huffman Compression, Dictionary Based Compression, Speech Compression, LZW, RLE, Image Compression – GIF,JPEG.	10	CO1 CO2
III	Session layer and Transport layer	Session layer design issues, Session Layer protocol - Remote Procedure Call (RPC), Transport layer services, Transport Layer Protocols: Simple Protocol, Stop-and-Wait Protocol, Go- Back-N Protocol (GBN), Selective- Repeat Protocol, Bidirectional Protocols: Piggybacking, Internet Transport-Layer Protocols, User Datagram Protocol: User Datagram, UDP Services, UDP Applications, Transmission Control Protocol: TCP Services, TCP Features, Segment, Segment, A TCP Connection, State Transition Diagram, Windows in TCP, Flow Control, Error Control, TCP Congestion Control, TCP Timers, Options.	10	CO1 CO3
IV	Network Layer	Introduction: Network-Layer Services, Packet Switching, Network-Layer Performance, Network-Layer Performance, Network-Layer Congestion, Structure of A Router, Network Layer Protocols: IPv4 Datagram Format, IPv4 Addresses,	12	CO1 CO4

		Forwarding of IP Packets, ICMPv4, Unicast Routing: General Idea, Routing Algorithms, Unicast Routing Protocols, Multicast Routing : Introduction, Multicasting Basics, Intradomain Routing Protocols, Interdomain Routing Protocols, Next generation IP: Packet Format , IPv6 Addressing , Transition from IPv4 to IPv6, ICMPv6, Mobile IP: Addressing , Agents , Three Phases , Inefficiency in Mobile IP.		
V	Data Link Layer	Wired Networks; Introduction: Nodes and Links, Two Types of Links, Two Sublayers, Data Link Control: Framing, Flow and Error Control, Error Detection and Correction, Two DLC Protocols, Medium Access Protocols: Random Access, Controlled Access, Channelization, Link Layer Addressing, Wired LANS: Ethernet Protocol; IEEE Project 802, Standard Ethernet, Fast Ethernet (100 Mbps), Gigabit Ethernet, 10-Gigabit Ethernet, Virtual LANs, Other Wired Networks: Point-to-Point Networks, SONET, Switched Network: ATM, Connecting Devices: Repeaters or Hubs, Link-Layer Switches, Routers, Sliding Window Compression.	09	CO1 CO5
VI	Physical Layer	Data and Signals: Analog and Digital, Transmission Impairment, Data Rate Limits, Performance, Digital Transmission: Digital-to-Digital Conversion , Analog-to-Digital Conversion, Analog Transmission: Digital-to-Analog Conversion, Analog- to-Analog Conversion ,Bandwidth Utilization: Multiplexing, Spread Spectrum, Transmission Media: Guided Media, Unguided Media: Wireless, Real Time Interactive Protocols: Rationale for New Protocols, RTP, Session Initialization Protocol (SIP), H.323, SCTP.	05	CO1 CO6

Text Books:

- 1. Behrouz A. Forouzan, Forouzan Mosharrat, Computer Networks A Top down Approach, Mc Graw Hill education.
- 2. Andrew S Tanenbaum, Computer Networks -, 4th Edition, Pearson Education.
- 3. Ranjan Bose, Information Theory, Coding and Cryptography, Ranjan Bose, Tata McGrawHill, Second Edition.

University of Mumbai, B. E. (Information Technology), Rev 2016

49

4. Diane Teare, "Authorized Self- Study Guide Designing for CISCO Internetwork Solutions(DESGN), Second Edition.

References:

- 1. Behrouz A. Forouzan, Data communications and Networking, Fifth edition TMH 2013.
- 2. James F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, 3rd Edition, Pearson Eduction.
- 3. L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach, 4th Ed, Elsevier India.
- 4. S. Keshav, An Engineering Approach to Computer Networks, 2nd Edition, Pearson Edication.
- 5. W. A. Shay, Understanding communications and Networks, 3rd Edition, W. A. Shay, Cengage Learning.
- 6. Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufman.

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: So

Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
	Name					Practical		
ITC403	Operating	04			04			04
	System							

	Course Name	Examination Scheme							
Course Code		Theory Marks							
		Internal assessment			End	Term	Oral &	Oral	Total
		Test1	Test 2	Avg. of two Tests	Sem. Exam	Work	Practical		
ITC403	Operating System	20	20	20	80				100

Course Objectives: Students will try:

- 1. To understand the main components of an OS & their functions.
- 2. To study the process management and scheduling.
- 3. To understand various issues in Inter Process Communication (IPC) and the role of OS in IPC.
- 4. To understand the concepts and implementation Memory management policies and virtual memory.
- 5. To understand the working of an OS as a resource manager, file system manager, process manager, memory manager and I/O manager and methods used to implement the different parts of OS
- 6. To study the need for special purpose operating system with the advent of new emerging technologies

Course Outcomes: Student will be able to

- 1. Describe the important computer system resources and the role of operating system in their management policies and algorithms.
- 2. Understand the process management policies and scheduling of processes by CPU
- 3. Evaluate the requirement for process synchronization and coordination handled by operating system
- 4. Describe and analyze the memory management and its allocation policies.
- 5. Identify use and evaluate the storage management policies with respect to different storage management technologies.
- 6. Identify the need to create the special purpose operating system.

Prerequisite: Programming Language C

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Programming Language C. Basic of Hardware i.e. ALU,RAM,ROM, HDD etc.	02	
Ι	Overview of Operating System	Introduction: Operating System Structure and operations, Process management, Memory management, storage management, Protection and security, Distributed and special purpose Systems; System Structure: Operating system services and interface, System calls and its types, System programs, Operating System Design and implementation, OS structure, Virtual machines, OS debugging and generation, System boot.	07	C01
II	Process Management	Process concept: Process Scheduling, Operation on process and Interprocess communication;, Multithreading, Process: Multithreading models and thread libraries, threading issues; Process Scheduling: Basic concepts, Scheduling algorithms and Criteria, Thread Scheduling and Multiple Processor Scheduling;	09	C02
III	Process coordination	Synchronization: The critical Section Problem, Peterson's Solution, synchronization Hardware and semaphores, Classic problems of synchronization, monitors, Atomic transactions; Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock.	09	CO3
IV	Memory Management	Memory Management strategies: Background, Swapping, Contiguous Memory Allocation, Paging, Structure of the Page Table, Segmentation; Virtual Memory Management: Demand Paging, Copy-on- Write, Page Replacement, Allocation of Frames, Thrashing, Memory-Mapped Files, Allocating Kernel Memory, Other Considerations.	10	C04
V	Storage Management	File system: File Concept, Access Methods, Directory and Disk Structure, File-System Mounting, File Sharing, Protection; Implementing file System: File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free- Space Management, Efficiency and Performance, Recovery, NFS; Secondary Storage Structure: Overview of Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, Disk Management, RAID Structure, Stable-Storage Implementation, Tertiary-Storage Structure, Swap-Space Management; I/O systems: Overview I/O Hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O Requests to	09	C05

		Hardware Operations, STREAMS, Performance		
VI	Distributed Systems	Distributed operating System: Network based OS, Network Structure and Topology, Communication Structure and Protocols; Distributed File system: Naming and transparency, Remote file access, Stateful Versus Stateless Service, File Replication; Distributed Synchronization: Mutual Exclusion, Concurrency Control and Deadlock Handling,	06	C06

Text Books:

1. Operating System Concepts, Abraham Silberschatz, Greg Gagne, Peter Baer Galvin, 8th edition Wiley.

2. Modern Operating System, Tanenbaum, Pearson Education.

3. Operating Systems: Internal and Design Principles: William Stallings, PHI

Reference Books:

1. Operating System Design and Implementation, A Tanenbaum, Pearson

- 2. Real Time Systems Design and Analysis, Wiley, IEEE Press
- 3. Principles of Operating Systems: Naresh Chauhan, Oxford Higher Education

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral &	Tutorial	Total
						Practical		
ITC404	Computer Organization and Architecture	04			04			04

					Examina	ation Scł	neme	
Course	Course Name		Theo	ory Marks				
Code		Internal assessment			End	Term Work	Oral & Practical	Total
		Test1	Test 2	Avg. of two Tests	Sem. Exam			
ITC404	Computer Organizatio n and Architecture	20	20	20	80			100

Course Objectives: Students will try to:

- 1. Conceptualize the basics of organizational and architectural issues of a digital computer.
- 2. Analyze processor performance improvement using instruction level parallelism.
- 3. Learn the function of each element of a memory hierarchy.
- 4. Study various data transfer techniques in digital computer.
- 5. Articulate design issues in the development of processor or other components that satisfy design requirements and objectives.
- 6. Learn microprocessor architecture and study assembly language programming.

Course Outcomes: Students will be able to:

- 1. Describe basic organization of computer and the architecture of 8086 microprocessor.
- 2. Implement assembly language program for given task for 8086 microprocessor.
- 3. Demonstrate control unit operations and conceptualize instruction level parallelism.
- 4. Demonstrate and perform computer arithmetic operations on integer and real numbers.
- 5. Categorize memory organization and explain the function of each element of a memory hierarchy.
- 6. Identify and compare different methods for computer I/O mechanisms.

Prerequisite: Fundamentals of Computer, Digital Logic Design

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	basic combinational and sequential logic circuits, binary numbers and arithmetic, basic computer organizations	02	
Ι	Overview of Computer Architecture &	Introduction of Computer Organization and Architecture. Basic organization of computer and block level description of the functional	07	CO1

	Organization	units. Evolution of Computers, Von Neumann model. Performance measure of Computer Architecture. Architecture of 8086 family, 8086 Hardware Design, Minimum mode & Maximum mode of Operation. Study of bus controller 8288 & its use in Maximum mode.	10	CO2
II	Programming 8086	Addressing modes, Instruction Set, Assembly Language Programming, Mixed Language Programming, Programs based on Stacks, Strings, Procedures, Macros, Timers, Counters & delay.	10	02
III	Processor Organization and Architecture	 CPU Architecture, Register Organization, Instruction formats, basic instruction cycle. Instruction interpretation and sequencing. Control Unit: Soft wired (Micro- programmed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations, concepts of nano programming. Introduction to parallel processing concepts, Flynn's classifications, pipeline processing, instruction pipelining, pipeline stages, pipeline hazards. 	11	CO3
IV	Data Representation and Arithmetic Algorithms	Number representation: Binary Data representation, two's complement representation and Floating-point representation. Integer Data arithmetic: Addition, Subtraction. Multiplication: Unsigned & Signed multiplication- Add & Shift Method, Booth's algorithm. Division of integers: Restoring and non-restoring division, signed division, basics of floating point representation IEEE 754 floating point(Single & double precision) number representation. Floating point arithmetic: Addition, subtraction	10	CO4
V	Memory Organization	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics. Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory.	07	CO5
VI	I/O Organization	Input/output systems, I/O modules and 8089 IO processor. Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	05	CO6

Text Books:

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw-Hill.
- 2. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- 3. 8086/8088 family: Design Programming and Interfacing: By John Uffenbeck (Pearson Education)
- 4. Microprocessor and Interfacing: By Douglas Hall (TMH Publication).

References:

- 1. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, Tata McGraw-Hill.
- 2. Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.
- 3. John P. Hayes, "Computer Architecture and Organization", McGraw-Hill., Third Edition.
- 4. K Bhurchandi, "Advanced Microprocessors & Peripherals", Tata McGraw-Hill Education

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: S

on: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Oral & Practical	Tutorial	Total
ITC405	Automata Theory	03		01	03		01	04

					Examination Scheme					
			Theor	y Marks						
Course Code	Course Name	Inter	rnal asses	ssment	End	Term	Oral &	Oral	Total	
		Test1	Test 2	Avg. of two Tests	Sem. Exam	Work	Practical		Total	
ITC405	Automata Theory	20	20	20	80				100	

\$ 3 hours shown as theory to be taken class wise and 1 hour to be taken tutorial as batch wise

Course Objectives: Students will try:

- 1. To learn fundamentals of Regular and Context Free Grammars and Languages
- 2. To understand the relation between Regular Language and Finite Automata and machines.
- 3. To learn how to design Automata's and machines as Acceptors, Verifiers and Translators.
- 4. To understand the relation between Contexts free Languages, PDA and TM.
- 5. To learn how to design PDA as acceptor and TM as Calculators.
- 6. To learn how to co-relate Automata's with Programs and Functions.

Course Outcomes: The students will be able to:

- 1. Understand, design, construct, analyze and interpret Regular languages, Expression and Grammars.
- 2. Design different types of Finite Automata and Machines as Acceptor, Verifier and Translator.
- 3. Understand, design, analyze and interpret Context Free languages, Expression and Grammars.
- 4. Design different types of Push down Automata as Simple Parser.
- 5. Design different types of Turing Machines as Acceptor, Verifier, Translator and Basic computing machine.
- 6. Compare, understand and analyze different languages, grammars, Automata and Machines and appreciate their power and convert Automata to Programs and Functions

Prerequisite: Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.

Detailed syllabus:

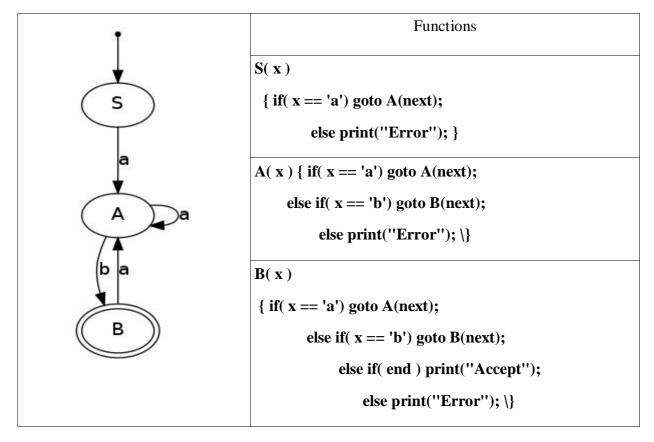
Sr. No.	Module	Detailed Content	Hours	CO Mapping
Ι	Introductio	Languages: Alphabets and Strings.	06	CO1
	n and	Regular Languages: Regular		
	Regular	Expressions, Regular Languages,		
		Regular Grammars, RL and LL		

	Languages	grammars, Closure properties		
II	Finite	Finite Automata: FA as language	09	CO2
	Automata	acceptor or verifier, NFA (with and		
	and	without ε), DFA, RE to NFA, NFA to		
	machines	DFA, Reduced DFA , NFA-DFA		
		equivalence, FA to RE.		
		Finite State Machines: m/c with output		
		Moore and Mealy machines. M/c as		
		translators. Melay and Moore m/c		
		conversion		
III	Context	Context Free Languages: CFG,	08	CO3
	Free	Leftmost and Rightmost derivations,		
	Grammars	Ambiguity,		
		Simplification and Normalization (
		CNF) and Chomskey Hierarchy (Types		
		0 to 3)		
IV	Push Down	Push Down Automata: Deterministic (05	CO4
	Automata	single stack)PDA, Equivalence		
		between PDA		
		and CFG.	~ -	
V	Turing	Turing Machine: Deterministic TM,	07	CO5
	Machine	Multi-track and Multi-tape TMs,		
		concept of UTM and idea of system		
		program. Issue and concept of Halting Problem		
VI	Application	1.Power and Limitations of Regular and	04	CO2
	s of	Context Free Grammars and Machines		
	Automata	Context Free Oranimars and Machines		CO4
		2.Designing Functions:		COF
		FA: Acceptor and Verifier.		CO5
		FSM: Translator		CO6
		PDA: Simple Parser for WF parenthesis,		
		palindromes etc.		
		TM: Basic bit wise calculator(+ /-		
		/AND/OR) and Translator		
		(Note Added)		

Text books

- 1. J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.
- 2. Kavi Mahesh, "Theory of Computation A Problem Solving Approach", Wiley India

References


- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons.
- 3. Theory of Computation By Vivek Kulkarni from Oxford University.

4. N.Chandrashekhar& K.L.P. Mishra, "Theory of Computer Science, Automata Languages & Computations", PHI publications.

Sample Example for Tutorial: Applications of Automata

An automata can be easily converted to functions by converting *States* to *functions* and *Transitions* to *function calls* or *gotos* begining with Starting state and *Accepting* in a terminating state.

A simple example of DFA is:

Suggested Tutorials:

Sr. No.	Module	Detailed Content
Ι	Introduction and Regular Languages	1 Tutorial on design of RE, RG, RLG and LLG for given Regular Language.
II	Finite Automata and machines	3 Tutorials for converting RE to NFA, NFA to DFA to Reduced DFA, FA to RE.1 Tutorial on design of Moore and Mealy machines.
III	Context Free Grammars	 Tutorial on design of CFG and Leftmost and Rightmost derivations. Tutorial for converting CFG to CNF.
IV	Push Down Automata	1 Tutorial on design of Push Down Automata.
V	Turing Machine	 Tutorial on design of single tape Turing Machine. Tutorial on design of Multi-track and Multi-tape TMs.
VI	Applications of Automata	 2 Tutorials for converting Automata to Functions: a. FA to Acceptor / Verifier. b. FSM to Translator. c. PDA to Simple Parser for WF parenthesis, palindromes etc. d. TM to Basic bit wise calculator(+ /- /AND/OR) / Translator

Assessment:

Internal Assessment for 20 marks:

Consisting of Two Compulsory Class Tests

Approximately 40% to 50% of syllabus content must be covered in First test and remaining 40% to 50% of syllabus contents must be covered in second test.

End Semester Examination: Some guidelines for setting the question papers are as:

- Weightage of each module in end semester examination is expected to be/will be proportional to number of respective lecture hours mentioned in the syllabus.
- Question paper will comprise of total six questions, each carrying 20 marks.
- **Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**.
- **Remaining question will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any other module. (Randomly selected from all the modules.)
- Total **four questions** need to be solved.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Prac tical	Tutorial	Total
ITL401	Networking Lab		02			1		1

		Exami	Examination Scheme					
Course Course Name		Theory Marks						
Code	Course Name	Interna	al assessn	nent	End	Term Work	Oral	Total
		Test 1	Test 2	Avg. of 2 Tests	Sem. Exam			
ITL401	Networking Lab					25	25	50

Lab Objectives: Students will try:

- 1. To get familiar with the basic network administration commands.
- 2. To install and configure network simulator and learn basics of TCL scripting.
- 3. To understand the network simulator environment and visualize a network topology and observe its performance
- 4. To analyze the traffic flow and the contents of protocol frames.
- 5. To implement client-server socket programs.
- 6. To design and configure a network for an organization.

Lab Outcomes: Student will be able to

- 1. Execute and evaluate network administration commands and demonstrate their use in different network scenarios
- 2. Demonstrate the installation and configuration of network simulator.
- 3. Demonstrate and measure different network scenarios and their performance behavior.
- 4. Analyze the contents the packet contents of different protocols.
- 5. Implement the socket programming for client server architecture.
- 6. Design and setup a organization network using packet tracer.

Hardware Requirement:	Software requirement:
PC i3 processor and above	NS2.34, Protocol Analyzer (eg. Wireshark), Packet tracer (Eg. CISCO packet tracer)

Prerequisite: C Programming Language

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Programming Language (C/java), Basic commands of windows and unix operating system, editor commands (eg nano/vi editor etc)	02	
Ι	Fundamentals of Computer Network	Understanding Basic networking Commands: Ping, Tracert, traceroute, ipconfig, ifconfig, nslookup, netstat	02	LO1
II	Basics of Network simulation	Installation and configuration of NS2 Introduction to Tcl Hello Programming	03	LO2
ΠΙ	Simulation of Network Topology	 Implementation of Specific Network topology with respect to 1. Number of nodes and physical layer configuration 2. Graphical simulation of network with Routing Protocols and traffic consideration (TCP, UDP) using NAM. 3. Analysis of network performance for quality of service parameters such as packet-delivery-ratio, delay and throughput 4. Comparative analysis of routing protocols with respect to QOS parameters using Xgraph/gnuplot for different load conditions. 	05	LO3
IV	Protocol Analyzer	Installation of Wire shark Analysis of Packet headers,	04	LO4
V	Socket Programming	Socket Programming with C/Java 1.TCP Client, TCP Server	04	LO5

		2. UDP Client, UDP Server		
VI	Case study on designing network topology	A case study to design and configure any organization network eg. College network or campus network, using any packet tracer or network topology design software based on infrastructure requirements, servers and clients, traffic consideration and application requirements.	06	L06

Text Books:

- 1. Computer Network: Top Down approach, Behrouz Forouzan, Firoz Mossharraf. MGH
- 2. Packet analysis with Wire shark, Anish Nath, PACKT publishing

Reference Books:

- 1. NS2.34 Manual
- 2. Introduction to Network Simulator NS2, 2nd Edition, Teerawat Issariyakul, Ekram Hossain, Springer

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Prac tical	Tutorial	Total
ITL402	Unix Lab		2			1		1

					Examina	ation Sch	neme	
Course			Theo	ory Marks				
Code	Course Name	Int	ernal asse	essment	End	Term Work	Oral & Practical	Total
		Test 1	Test 2	Avg. of two Tests	Sem. Exam			

University of Mumbai, B. E. (Information Technology), Rev 2016

63

ITL402	Unix Lab	 	 	25	25	50

Lab Objectives: Students will try:

- 1. To introduce Basic Unix general purpose Commands
- 2. To learn network Unix commands.
- 3. To learn C programming in Unix editor environment.
- 4. To learn shell script and sed concepts.
- 5. To learn file management and permission advance commands.
- 6. To learn awk, grap, perl scripts.

Lab Outcomes: Student will be able to:

- 1. Identify the basic Unix general purpose commands.
- 2. Apply and change the ownership and file permissions using advance Unix commands.
- 3. Use the awk, grep, perl scripts.
- 4. Implement shell scripts and sed.
- 5. Apply basic of administrative task.
- 6. Apply networking Unix commands.

Prerequisite: C Programming Language and Operating System

Hardware requirement:

PC i3 and above.

Software requirement:

Unix, Editor, Bash shell, Bourne shell and C shell.

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Programming syntax, Installation of Unix, concepts of operating system	02	
Ι	Basic Commands	 A brief history of UNIX, Unix Architecture. Logging into (and out of) UNIX systems, Changing your password, General format of UNIX commands. a) Installation of Unix operating system. b) User management in Unix. c) Study of Unix general purpose 	04	LO1

		utility command list obtained from		
		(cd, cp, ps, ls, mv, rm, mkdir,		
		rmdir, man, who, cat, echo, more,		
		date, time, kill, history, chmod,		
		passwd, who am i, who, time, bc,		
		history, clear, man, lost, chown,		
		finger, pwd, cal, logout, shutdown)		
		commands.		
II	Advance	a) Study of Unix networking	04	LO1
	Commands	commands (ifconfig, ping,		LO2
		traceroute, netstat, nslookup, whois,		LO5
		hostname, tcpdump).		LO6
		b) Study of Unix file system (tree		LOU
		structure).		
		c) Study of .bashrc, /etc/bashrc and		
		Environment variables.		
		d) Study File and directory		
		permissions.		
		e) Study of Editor Vi/other editor.		
		f) Study of Bash shell, Bourne shell		
		and C shell in Unix operating		
		system.		
III	Basic System	Process management	04	LO1
	administrative task	Memory management	01	
		File system management		LO2
		User management		LO5
IV	Shell scripts	a) Write a shell script program to	04	LO1
1 V	Shen seripts	display list of user currently logged	04	
		in.		LO4
		b) Write a shell script program to		
		display "HELLO WORLD".		
		c) Write a shell script program to		
		develop a scientific calculator.		
		d) Write a shell Script program to		
		check whether the given number is		

even or odd. e) Shell script Program to search whether element is present is in the list or not. V Shell scripts and a) Shell script program to check 06 LO1 sed whether given file is a directory or LO4
V Shell scripts and a) Shell script program to check 06 LO1
V Shell scripts and a) Shell script program to check 06 LO1
V Shell scripts and a) Shell script program to check 06 LO1
sed whether given file is a directory or to the
sed whether given file is a directory or LO4
not.
b) Shell script program to count
number of files in a Directory.
c) Shell script program to copy
contents of one file to another.
d) Create directory, write contents
on that and Copy to a suitable
location in your home
directory.
e) Use a pipeline and command
substitution to set the length of a
line in file to a variable.
f) Write a program using sed
command to print duplicated lines
of Input.
or input.
VI grep, awk, perl a) Write a grep/egrep script to find 04 LO1
scripts the number of words character, LO2 words and lines in a file.
LO3
b) Write an awk script to develop a
Fibonacci series.
c) Write a perl script to compute the
power of a given number.
d) Write an awk script to display
the pattern of given string or
number.
e) Write a perl script to check a
number is prime or not.
f) Write an egrep script to display

		list of files in the directory.		
--	--	---------------------------------	--	--

- 1. Unix, concepts and applications by Sumitabha Das, McGraw-Hill
- 2. Mastering Shell Scripting, Randal. K. Michael , Second Edition, Wiley Publication

References:

- 1. Unix Shell Programming by Yashwant Kanetkar
- 2. Unix shell programming by forozun

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Prac tical	Tutorial	Total
ITL403	Microprocessor Programming Lab		2			1		1

Course		Examination Scheme						
	Course Name	Theory Marks						
Code		Inte	ernal asse	essment	End	Term Work	Oral	Total
		Test1	Test 2	Avg. of two Tests	Sem. Exam			
ITL403	Microprocessor Programming Lab					25	25	50

Lab Objectives: Students will try to:

- 1. Learn assembling and disassembling of PC.
- 2. Get hands on experience with Assembly Language Programming.
- 3. Study interfacing of peripheral devices with 8086 microprocessor.
- 4. Understand techniques for faster execution of instructions and improve speed of operation and performance of microprocessors.
- 5. Learn fundamentals of designing embedded systems
- 6. Write and debug programs in TASM/MASM/hardware kits

Lab Outcomes: Students will be able to :

University of Mumbai, B. E. (Information Technology), Rev 2016

67

- 1. Apply the fundamentals of assembly level programming of microprocessors.
- 2. Build a program on a microprocessor using arithmetic & logical instruction set of 8086.
- 3. Develop the assembly level programming using 8086 loop instruction set.
- 4. Write programs based on string and procedure for 8086 microprocessor.
- 5. Analyze abstract problems and apply a combination of hardware and software to address the problem
- 6. Make use of standard test and measurement equipment to evaluate digital interfaces.

Prerequisite: Logic Design, Programming Languages(C, C++), COA

Hardware Requirement:

- Motherboard, RAM, Processor, Connectors, Cables, SMPS, HDD, Monitor, Graphics card (optional), Cabinet.
- 8086 microprocessor experiment kits with specified interfacing study boards.

Software Requirement:

• Microsoft Macro Assembler (TASM)/Turbo Assembler(TASM)

NOTE: Programs can be executed on assembler or hardware boards,

Detailed syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
Ι	PC Assembly	 Study of PC Motherboard Technology (South Bridge and North Bridge). Disassembling the System Unit & Identifying Internal Components and Connections. Study of various connections and ports used in computer communication. 	06	LO1
II	Arithmetic and logical operations in 8086 Assembly language programming	 Program for 16 bit BCD addition Program to evaluate given logical expression. Convert two digit Packed BCD to Unpacked BCD. (any two) 	04	LO2 LO6
III	Loop operations in 8086 Assembly language programming	 Program to move set of numbers from one memory block to another. Program to count number of 1's 	06	LO3 LO6

University of Mumbai, B. E. (Information Technology), Rev 2016

		 and 0;s in a given 8 bit number 3. Program to find the smallest/largest number from a given set of numbers. 4. Program to search for a given number (any three) 	04	
IV	String and procedure in 8086 Assembly language programming	 Check whether a given string is a palindrome or not. 	04	LO4 LO6
V	Procedure in 8086 Assembly language programming	 Compute the factorial of a positive integer 'n' using recursive procedure. Generate the first 'n' Fibonacci numbers. (any one) 	02	LO4 LO6
VI	Interfacing with 8086 microprocessor	 Interfacing Seven Segment Display Interfacing keyboard matrix Interfacing DAC (any two) 	04	LO5 LO6

1. Scott Mueller,"Upgrading and repairing PCs", Pearson,

2. John Uffenbeck, "8086/8088 family: Design Programming and Interfacing:"Pearson Education

Reference Books:

1. K Bhurchandi, "Advanced Microprocessors & Peripherals", Tata McGraw-Hill Education

Term Work:

Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

69

Course Code	Course Name	Theory	Practical	Tutorial	Theory	TW/Pract ical	Tutorial	Total
ITL404	Python lab		2+2*			02		02

		Examination Scheme							
Course Code	Course Name	Theory Marks							
		Inte	rnal asses	ssment	End	Term Work	Oral & Practical	Total	
		Test1	Test 2	Avg. of two Tests	Sem. Exam				
ITL404	Python lab					50	50	100	

*2 hours shown as practical's to be taken class wise lecture and other 2 hours to be taken as batch wise practicals in Lab.

Lab Objectives: The course will help the students to get familiar with:

- 1. Basics of Python programming
- 2. Decision Making and Functions in Python
- 3. Object Oriented Programming using Python
- 4. Files Handling in Python
- 5. GUI Programming and Databases operations in Python
- 6. Network Programming in Python

Lab Outcomes: Upon Completion of the course the learner should be able to:

- 1. Describe the Numbers, Math functions, Strings, List, Tuples and Dictionaries in Python
- 2. Express different Decision Making statements and Functions
- 3. Interpret Object oriented programming in Python
- 4. Understand and summarize different File handling operations
- 5. Explain how to design GUI Applications in Python and evaluate different database operations
- 6. Design and develop Client Server network applications using Python

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements			
PC With following	1. Windows or Linux Desktop OS	1. Internet Connection for			
Configuration	2. Python 3.6 or higher	installing additional packages			
1. Intel PIV Processor	3. Notepad ++				
2. 2 GB RAM	4.Python IDEs like Pydev,				
3. 500 GB Harddisk	Netbeans or Eclipse				
4. Network interface card	5. Mysql				

Prerequisite Subjects: Structured Programming Approach & Java Programming

Detailed Syllabus:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Basic Programming syntax of Java/C. Installation and configuration of python.	02	
I	Basics of Python	 Theory: Numbers in Python, Basic & Built-in Math functions, Number Formats, Strings, Quotes, print() Function, Assigning Values to Names & Changing Data Through Names, Copying Data, Tuples — Unchanging Sequences of Data, Lists — Changeable Sequences of Data, Dictionaries — Groupings of Data Indexed by Name, Special String Substitution Using Dictionaries , Arrays, Treating a String Like a List, Special Types, Ranges of Sequences, Working with Sets, Arrays. Lab Experiment: Write python programs to understand Expressions, Variables, Quotes, Basic Math operations, Strings: Basic String Operations & String Methods, List, Tuples, Dictionaries, Arrays. (Minimum Three Programs based on math 	10	LO 1
		operations, Strings and List/Tuples/ Dictionaries)		
II	Decision Making and Functions	Theory: If statement, if-elif-else, Repetition using while loop, for loop, break statement, Handling Errors- try: statement, except: statement, Functions-Grouping Code under a Name, defining a Function, describing a	10	LO 2

University of Mumbai, B. E. (Information Technology), Rev 2016

		 function in the function, Checking & Setting Your Parameters, Calling Functions from within Other Functions, Functions Inside of Functions, Layers of Functions Lab Experiment: Write python programs to understand different decision making statements and Functions. (Minimum Three Programs based on Decision making, Looping Statements and Functions) 		
III	Object Oriented Programming using Python programming	 Theory: Creating a Class, Self Variables, Constructors, Types of Methods, Inner Classes, Constructors in Inheritance, Polymorphism,, The super() Method, Method Resolution Order (MRO), Operator Overloading, Method Overloading & Overriding, Interfaces in Python. Exceptions Handling: Errors in a Python Program, Exceptions, Exception Handling, Types of Exceptions, The Except Block, The assert Statement. Modules and Packages: Creating Modules and Packages, Documenting & Viewing Module, Basics of Testing Your Modules and Packages, Importing & exporting Modules. Lab Experiment: Write python programs to understand different Object oriented features in Python (Minimum four programs based on a) Classes & objects, 	10	LO 3

		b) Constructors,		
		c) Inheritance & Polymorphism,		
		d) Exception handling		
IV	Files Handling	 Theory: Types of Files in Python, Opening a File, Closing a File. Writing Text Files, Knowing Whether a File Exists or Not, Working with Binary Files, Appending Text to a File, Reading Text Files, File Exceptions, The with Statement Pickle in Python, Lambda and Filter, Map & range functions. Lab Experiment: 	07	LO 4
		Lab Experiment:		
		Write python programs to understand different File handling operations		
V	GUI Programming and Databases	Theory: GUI Programming - Writing a GUI with Python: GUI Programming Toolkits, Creating GUI Widgets with Tkinter, Creating Layouts, Radio Buttons and Checkboxes, Dialog Boxes.	07	LO 5
		Database Access - Python's Database Connectivity, Types of Databases Used with Python, Mysql database Connectivity with Python, Performing Insert, Deleting & Update operations on database		
		Lab Experiment:		
		Write python programs to understand GUI designing and database operations		
		(Minimum Three programs based on		
		GUI designing using Tkinter, Mysql database creation & Database connectivity with DML		

		operations using python		
VI	Web Programming	Theory:UnderstandingProtocols,Introduction to Sockets, TCP/IP Server,TCP/IP Client, UDP Server, UDP Client, FileServer, File Client, Two-Way Communicationbetween Server and Client, MultithreadedClient-Server Chat ApplicationLab Experiment:Write python programs to understand TCPand UDP Sockets in Python(Minimum One programs based on TCP orUDP Sockets)	06	LO 6

- 1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1", Wrox Publication
- 2. Dr. R. Nageswara Rao,"Core Python Programming", Dreamtech Press, Wiley Publication.
- 3. Magnus Lie Hetland,"Beginning Python From Novice to Professional", Second Edition", Apress Publication.

Reference Books:

- 1. Wesley J Chun," Core Python Applications Programming", Third Edition, Pearson Publication.
- 2. E. Balguruswamy," Introduction to Computing and Problem Solving using Python", McGraw Hill Publication
- 3. Learn to Master Python, from Star EDU solutions, by ScriptDemics

Term Work:

Term Work shall consist of at least 12 to 15 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 50 Marks (Total marks) = 40 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Oral & Practical Exam: An Oral & Practical exam will be held based on the above syllabus.

UNIVERSITY OF MUMBAI

Bachelor of Engineering

Information Technology (Third Year – Sem. V & VI)

Revised course

(REV- 2012) from Academic Year 2014 -15

Under

FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

Page 1

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2013-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Page 2

Preamble:

The engineering education in India in general is expanding in manifolds. Now, the challenge is to ensure its quality to the stakeholders along with the expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Information Technology of University of Mumbai, happy to state here that, Program Educational Objectives were finalized in a meeting where more than 30 members from different Institutes were attended, who were either Heads or their representatives of Information Technology Department. The Program Educational Objectives finalized for undergraduate program in Information Technology are listed below;

- 1. To prepare Learner's with a sound foundation in the basics of engineering fundamentals.
- 2. To prepare Learner's to use effectively modern programming tools to solve real life problems.
- 3. To prepare Learner's for successful career in Indian and Multinational Organisations and to excel in Postgraduate studies
- 4. To encourage and motivate Learner's for entrepreneurship.
- 5. To inculcate professional and ethical attitude, good leadership qualities and commitment to social responsibilities in Learners.
- 6. To encourage Learner to use best practices and implement technologies to enhance information security and enable compliance, ensuring confidentiality, information integrity, and availability.

In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

Dr. J. W. Bakal Chairman, Board of Studies in Information Technology University of Mumbai, Mumbai

University of Mumbai, Information Technology (semester V and VI) (Rev-2012) Page 3

Third Year Engineering (Semester V) Revised course for Information Technology

Academic Year 2014-15 (REV- 2012)

Sub			ng Scheme s/week)		C	redits Assig	gned	
Code	Subject Name	Theory	Practical	Tut.	Theory	TW/ Practical	Tut.	Total
TEITC501	Computer Graphics and Virtual Reality	4			4			4
TEITC502	Operating Systems	4			4			4
TEITC503	Microcontroller and Embedded Systems	4			4			4
TEITC504	Advanced Database Management Systems	4			4			4
TEITC505	Open Source Technologies	3			3			3
TEITC506	Business Communication and Ethics*		2**+2			2		2
TEITL501			2			1		1
TEITL502			2			1		1
TEITL503	Microcontroller and Embedded Systems		2			1		1
TEITL504	Advanced Database Management Systems		2			1		1
TEITL505	Open Source Technologies		2			1		1
	Total	19	12		19	07		26

*Common for all programs.

******Theory class to be conducted for entire class.

Note: During third year of engineering learners can be exposed to industrial environment by arranging an industrial visit.

Examination Scheme

University of Mumbai, Information Technology (semester V and VI) (Rev-2012)

				Theor	у				Total 150 150
Course	Course Name	Interr	nal Asses	sment	End	Exam	Term	Pract/	Total
Code		TEST 1	TEST 2	AVG.	sem exam	duration (in Hrs)	work	Oral	
TEITC501	Computer Graphics and Virtual Reality	20	20	20	80	3	25	25	150
TEITC502	Operating Systems	20	20	20	80	3	25	25	150
TEITC503	Microcontroller and Embedded Systems	20	20	20	80	3	25	25	150
TEITC504	Advanced Database Management Systems	20	20	20	80	3	25	25	150
TEITC505	Open Source Technologies	20	20	20	80	3	25	25	150
TEITC506	Business Communication and Ethics*						25	25	050
	Total	100	100	100	400	15	150	150	800

Third Year Engineering (Semester VI) Revised course for Information Technology Academic Year 2014 -15 (REV- 2012)

Subject Name **Credits Assigned** Subject **Teaching Scheme** (hrs/week) Code Theory Practical Tut. Theory TW/Pract. Tut. Total TEITC601 Software Engineering 4 4 4 TEITC602 Distributed Systems 4 4 4 System and Web TEITC603 4 4 4 Security TEITC604 Data Mining and 4 4 4 Business Intelligence TEITC605 Advance 4 4 4 Internet Technology Software Engineering TEITL601 2 1 1 TEITL602 Distributed Systems 2 1 1 System and Web TEITL603 2 1 1 Security TEITL604 Data Mining and 2 1 1 Business Intelligence TEITL605 Advance Internet 2 1 1

10

20

05

20

Technology

Total

Page 6

25

Examination Scheme

				Theory					Total 150 150 150 150
Course	Course Name	Inter	nal Assessi	ment	End	Exam	Term	Practical	
Code		TEST 1	TEST 2	AVG.	Sem exam	duration (in Hrs)	work	/Oral	
TEITC601	Software Engineering	20	20	20	80	3	25	25	150
TEITC602	Distributed Systems	20	20	20	80	3	25	25	150
TEITC603	System & Web Security	20	20	20	80	3	25	25	150
TEITC604	Data Mining & Business Intelligence	20	20	20	80	3	25	25	150
TEITC605	Advance Internet Technology	20	20	20	80	3	25	25	150
	Total	100	100	100	400	15	125	125	750

Course Code	Course	Teaching Scheme Credits Assigned						
	Name	Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
						Practical		
	Computer	04	02		04	01		05
TEITC501	Graphics	Hrs./Week	Hrs./Week					
	And							
	Virtual							
	Reality							

Course Code					Examina	ation Scher	ne						
	Course		The	ory Marks					Total				
	Name	Inte	ernal as	sessment	End	Term Work	Practical	Oral	Total				
		Test 1	Test 2	Avg. of 2 Tests	Sem. Exam								
TEITC501	Computer Graphics And Virtual Reality	20	20	20	80	25	25		150				

Co	ourse Objectives
1	The objective of the course is to equip students with the fundamental knowledge and
	basic technical competence in the field of computer graphics.
2	Provide an understanding of how to scan convert the basic geometrical primitives, how to
	transform the shapes so as to fit them as per the picture definition.
3	Provide an understanding of mapping from a world coordinates to device coordinates,
	clipping, solid modeling, rendering, and projections.
4	To comprehend and analyze the fundamentals of animation, virtual reality, underlying
	technologies, principles, and applications.

Co	ourse Outcomes
1	Students shall have understood basic concepts of computer graphics.
2	Students shall have understood algorithms to scan convert the basic geometrical
	primitives, transformations, Area filling, clipping.
3	Students shall have understood the fundamentals of animation, Virtual reality ,the related
	technologies, and shall be able to describe applications of Virtual Reality.

DETAILED SYLLABUS

Sr. No.	Module	Detailed Content	Hours
1.	Introduction to Computer graphics and Output primitives	Introduction, Display Devices, Bitmap and Vector based graphics, Overview of Coordinate system, Scan Conversion of:point, line using Digital differential analyzer& Bresenham's algorithm, circle using midpoint approach, Curve Generation : Bezier and B-Spline curves. Introduction to fractals: generation procedure, classification, dimension and Koch Curve.	10
2.	Area Filling and Two Dimensional Transformations	Area filling : Inside/Outside Test , Scan line Polygon Fill Algorithm , Boundary Fill and Flood Fill algorithm. Basic Geometrical 2D transformations : Translation, Rotation, Scaling, Reflection, Shear, their homogeneous Matrix representation and Composite transformation.	8
3.	Two Dimensional Viewing	Introduction ,Viewing Pipeline , View Coordinate reference frame ,Window to viewport transformation, Point clipping, Line clipping: Cohen Sutherland Algorithm, Liang Barsky algorithms, Polygon clipping: Sutherland Hodgeman polygon clipping and Weiler Atherton. Text Clipping.	6
4.	Three Dimensional Transformation,Viewi ng and Projection.	Three Dimensional transformations: Translation, Scaling, Rotations, Composite. Three Dimensional object representation: Polygon Surfaces, Tables, Meshes. Three Dimensional Viewing Pipeline , Viewing transformation , Projections : Parallel(Oblique and orthographic), Perspective (one Point)	6
5.	Introduction to Animation	Key Frame Animation, Animation Sequence, Motion Control Methods, Morphing, Warping(only Mesh Warping).	2
6.	Introduction to Virtual Reality	Virtual Reality : Basic Concepts , Classical Components of VR System , Types of VR Systems, Three Dimensional Position Trackers, Navigation and Manipulation Interfaces, Gesture	8

		Interfaces, Graphical Display, Sound displays, and Haptic Feedback . Input Devices ,Graphical Rendering Pipeline , Haptic Rendering Pipeline, Open GL rendering pipeline.Applications of Virtual Reality.	
7	Modeling	Geometric Modeling: Virtual Object Shape, Object Visual Appearance.Kinematics Modeling: Object Position, Transformation Invariants, Object Hierarchies, Physical Modeling: Collision Detection, Surface Deformation, Force Computation. Behavior Modeling.	4
8	Introduction to VR programming	Introduction, Programming through VRML : Defining and Using Nodes and Shapes, VRML Browsers, Java 3D :Visual Object Definition by Shape 3D instances, Defining personal visual object class, ColorCube Class, Geometric – Utility Classes, Geometry Classes, Attributes.	4

- 1 Donald Hearn and M. Pauline Baker, "Computer Graphics", Pearson Education.
- 2 R. K Maurya, "Computer Graphics with Virtual Reality", Wiley India.

Reference Books

- 1 Grigore Burdea, Philippe Coiffet, "Virtual Reality Technology", Wiley.
- 2 Steven Harrington, "Computer Graphics", McGraw Hill.
- 3 Rogers, "Procedural Elements of Computer Graphics", Tata McGraw Hill.
- 4 Vince, "Virtual Reality Systems", Pearson Education.
- 5 F.S. Hill, Stephen M. Kelley, "Computer Graphics using Open GL" Prentice Hall

Term work: Term Work shall consist of programs based on the given list. Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Suggested Practical List:

- 1. Implementation of Line Drawing algorithms : DDA , Bresenham and using them generating line with different styles like dotted , dashed , centered and thick line.
- 2. Implementation of Circle generation algorithm : Midpoint and using it generating concentric circles.
- 3. Implementation of Area Filling Algorithm : Boundary Fill , Flood Fill and Scan line Polygon Fill.
- 4. Curve Generation : Bezier for n control points , B Spline (Uniform)
- 5. Fractal Generation (Koch Curve)
- 6. Program for performing Two Dimensional Transformations : Translation , Scaling , Rotation , Reflection , Shear by using a homogeneous Matrix representation ,use of a function for matrix multiplication is desirable , so as to perform composite transformation.
- 7. Implementation of Line Clipping Algorithm : Cohen Sutherland , Liang Barsky.
- 8. Implementation of Polygon Clipping Algorithm : Sutherland Hodgman.
- 9. Program to represent a 3D object using polygon surfaces and then perform 3D transformation.
- 10. Program to perform projection of a 3D object on Projection Plane : Parallel and Perspective.
- 11. Program for Animation.

It is desirable to implement some of the experiments by using Open GL.

In addition at least 3 programs using VRML and JAVA 3D APIs.

It is recommended to encourage the student to form a group for a mini project (a simple graphical utility) and for them submitting a theoretical Q. / A. type assignments can be kept optional.

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus.
- Remaining question will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

University of Mumbai, Information Technology (semester V and VI) (Rev-2012) Page 11

Course Code	Course Name	Те	aching Schen	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
						Practical		
TEITC502	Operating	04	02		04	01		05
	Systems	Hrs./Week	Hrs./Week					

Course Code					Examinati	on Schen	ne						
			Theo	ory Marks									
	Course Name	Inter	nal asses	sment	End Sem.	Term Work	Practical	Oral	Total				
		Test1	Test2	Avg. of 2 Tests	Exam	WOIK		l					
TEITC502	Operating Systems	20	20	20	80	25		25	150				

Pre-requisites: Data structures, Programming Language (C / JAVA), Computer Organization & Architecture.

Course Objectives:

- To understand the main components of an OS & their functions.
- To understand the working of an OS as a resource manager, file system manager, process manager, memory manager and I/O manager and methods used to implement the different parts of OS.
- To understand the concepts and implementation of virtual memory.
- To understand various issues in Inter Process Communication (IPC) and the role of OS in IPC.
- To study different file systems of OS like Linux, Windows and overview of OS for mobile & hand held devices.

Course Outcomes:

- Student will learn important computer system resources and their management policies, algorithms used by operating systems.
- Student will understand what makes a computer system function and the primary PC components.
- Student will understand the working of an OS as a manager of various resources.
- Student will implement some of the functions of OS such as scheduling policies, page replacement algorithms, IPC.

Sr. No.	Module	Detailed Content	Hours
1	Overview of Operating System	Operating system objectives and functions, Evolution of OS, Characteristics of modern OS, Basic concepts: Processes, Files, System calls, Shell, Kernel architectures: Monolithic, Micro-kernel, Layered, Kernel mode of operations.	4
2	Process Management	Process description: Process, Process States, Process Control Block (PCB), Threads, Thread management. Process Scheduling: Types, Comparison of different scheduling policies.	10
3	Process Co-ordination	Principles of Concurrency, Race condition and critical section, Mutual Exclusion- Hardware and Software approaches, Semaphores, Monitors, Message Passing, Producer Consumer Problem.	10
		Deadlock: Principles of Deadlock, Deadlock Detection, Deadlock Avoidance, Deadlock Prevention.	
4	Memory Management	Memory Management Requirements, Memory Partitioning, Virtual memory: Paging; Segmentation; Page replacement policies, page faults.	6
5	Input Output Management	I/O Devices, Organization of the I/O Function, Operating System Design Issues, I/O Buffering, Disk Scheduling and disk scheduling algorithms, Disk cache.	6
6	File Management	Overview, File Organization, File Sharing; Record Blocking; Secondary Storage Management.	6
7	Case Studies	Producer Consumer Problem, Multithreading, RAID, File systems of Windows and Linux, Overview of Android OS.	6

DETAILED SYLLABUS:

- 1. Modern Operating Systems, Tanenbaum, IIIrd Edition, PHI
- 2. Operating System-Internal & Design Principles, VIth Edition, William Stallings, Pearson
- 3. Operating Systems Concepts, Silberschatz A., Galvin P., Gagne G, VIIIth Edition Wiley.
- 4. Principles of Operating Systems, Naresh Chauhan, First Edition, Oxford university press.

References:

- 1. Operating Systems in Depth, Thomas W. Doeppner, Wiley.
- **2.** Operating System Programming and Operating Systems, D M Dhamdhere, IInd Revised Edition, Tata McGraw.
- 3. Operating Systems, Achyut S. Godbole, 2nd edition, Tata McGraw Hill.
- **4.** Application development using Android, Hello, Android, mobile development platform, Ed Burnette, 3rd Edition.
- 5. Linux Command Line & Shell Scripting, Richard Blum and Christine Bresnahan, 2nd edition, Wiley.

Term work: Term Work shall consist of programs based on the given list. Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance) **Oral Examination will be based on the above syllabus**.

Suggested Practical List:

- 1. Implementation of System Calls (at least five).
- 2. Implementation of CPU Scheduling Policies (both pre-emptive and non pre-emptive).
- 3. Implementation of Page Replacement Algorithms.
- 4. Implementation of IPC (Producer Consumer problem).
- 5. Implementation of Multithreading.
- 6. Implementation of Deadlock Avoidance algorithm (Bankers algorithm).

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus.
- Remaining question will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

University of Mumbai, Information Technology (semester V and VI) (Rev-2012) Page 14

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tut.	Theory	TW/ Practical	Tut.	Total
TEITC503	Microcontroller and Embedded Systems	04 Hrs./Week	02 Hrs./Week		04	01		05

		Examination Scheme							
	Course Name	Theory Marks				TW	Pract ical	Oral	Total
Course Code		Interna	Internal Assessment End Semester						
TEMOSO	Microcontroller and Embedded Systems	Test1 (T1)	Test2 (T2)	Average of T1 & T2	Exam				
TEITC503		20	20	20	80	25	-	25	150

Pre-requisites: Fundamentals of Computer, Digital Logic Circuits, Computer Organization and Architecture

Course Objectives:

CEO 1	To conceptualize the basics of embedded systems							
CEO 2	To conceptualize the basics of organizational and architectural issues of a microcontroller.							
CEO 3	To learn programming techniques used in microcontroller.							
CEO 4	To understand basic concept of ARM processor							
CEO 5	To understand fundamentals of real time operating system							

Course Outcomes:

Α	Ability to understand basic structure embedded systems
B	Ability to understand basic structure microcontroller.
С	Ability to understand basic concepts used in embedded system.
D	Ability to program microcontroller.
Ε	Ability to design conceptual embedded system.

University of Mumbai, Information Technology (semester V and VI) (Rev-2012) Page 15

Detailed Syllabus:

Module	Detailed Contents	Hours
1	Introduction to Embedded Systems:Overview of Embedded System Architecture, Application areas, Categories of embedded systems, specialties of embedded systems. Recent trends in embedded systems. Brief introduction to embedded microcontroller cores CISC, RISC, ARM, DSP and SoC.	06
2	The Microcontroller Architecture:Introduction to 8051 Microcontroller, Architecture, Pinconfiguration, Memory organization, Input /Output Ports, Counterand Timers, Serial communication, Interrupts.	08
3	Assembly Language Programming of 8051: Instruction set, Addressing modes, Development tools, Assembler Directives, Programming based on Arithmetic & Logical operations, I/O parallel and serial ports, Timers & Counters, and ISR.	10
4	ARM 7 architecture:Architectural inheritance, Detailed study of Programmer's model,ARM Development tools, Instruction set: Data processing, Datatransfer, Control flow. Addressing modes. Writing simpleassembly language programs. Pipelining, Brief introduction toexceptions and interrupts handling.	10
5	Embedded / Real Time Operating System: Architecture of kernel, Task and Task scheduler, Interrupt service routines, Semaphores, Mutex, Mailboxes, Message queues, Event registers, Pipes, Signals, Timers, Memory management, Priority inversion problem. Off-the-Shelf Operating Systems, Embedded Operating Systems, Real Time Operating System (RTOS) and Handheld Operating Systems.	8
6	Embedded System - Design case studies: Digital clock, Battery operated smart card reader, Automated meter reading system, Digital camera.	06

Page 16

- 1. The 8051 microcontroller & Embedded systems, M. A. Mazidi, J. G. Mazidi, R. D. McKinlay, Pearson
- 2. The 8051 microcontroller & Embedded systems, Kenneth J. Ayala, Dhananjay V. Gadre, Cengage Learning
- 3. Embedded / real time systems: concepts, design & programming, Black Book, Dr. K. V. K. K. Prasad, Dreamtech press, Reprint edition 2013
- 4. Introduction to embedded systems, Shibu K. V., McGraw Hill
- 5. ARM System on chip Architecture, Steve Furber, Pearson, edition second

Reference Books:

- 1. Embedded systems an integrated approach, Laya B. Das, Pearson, Third impression, 2013
- 2. ARM system developer's guide, Andrew N. Sloss, Dominic Symes, Chris Wright, Morgan Kaufmann Publishers
- 3. Embedded system design A Unified hardware/software Introduction, Frank Vahid, Tony Givargis, Wiely
- 4. ARM Technical Reference manual

Term Work: 25 Marks (Total marks) = 15 Marks (Experiment and Case Studies) + 5 Marks (Assignments) + 5 Marks (Attendance)

The faculty should conduct eight programming practicals/experiments based on the above syllabus and two case studies based on recent trends in embedded systems.

Oral examination will be based on the above syllabus.

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus.
- Remaining question will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each module.

Course	Course	Teaching Scheme			Credits Assigned				
Code	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
TEITC504	Advanced Database Management Systems	04 Hr/week	02 Hr/week		04	01		05	

	Course Name	Examination Scheme									
Course Code			The	eory Marks							
		Internal assessment			End Sem.	Term Work	Practical	Oral	Total		
		Test1	Test2	Avg. of 2 Tests	Exam	WOIK					
TEITC504	Advanced Database Management Systems	20	20	20	80	25		25	150		

Course Objectives:

- 1. To reinforce and strengthen the database concepts learned in the basic course in database technologies
- 2. To impart skills that can help design and implement advanced queries using Structured Query Language.
- 3. To equip students with knowledge to implement and integrate databases in actual applications.
- 4. To make students aware of how databases are actually stored and accessed.
- 5. To introduce advanced concepts of transaction management and recovery techniques.
- 6. To initiate awareness about the potential security threats that exist in database systems and how to tackle them

- 7. To introduce other database models like distributed and object based
- 8. To create awareness of how enterprise can organize and analyze large amounts of data by creating a Data Warehouse.

Course Outcomes: At the end of the course the student will be able to:

- 1. Construct complex queries using SQL to retrieve and manipulate information in a database.
- 2. Design and implement full-fledged real life applications integrated with database systems.
- 3. Clearly understand how databases are actually stored and accessed; How transaction ACID properties are maintained and how a database recovers from failures.
- 4. Apply security controls to avoid any type of security incidents on vital database systems.
- 5. Design advanced data systems using Object based systems or Distributing databases for better resource management.
- 6. Understand the importance of enterprise data and be able to organize data to perform analysis on the data and take strategic decisions.

Sr.	Module	Detailed Content	Hours	Weightage
No.				
1		Reviewing basic concepts of a relational	01	0%
	Introduction	database, Basic SQL		
2	Advanced SQL	Complex Retrieval Queries using Group By, Recursive Queries, nested Queries; Specifying Constraints as Assertions; Event Condition Action (ECA) model (Triggers) in SQL; Creating and working with Views in SQL; Database Programming: Embedded SQL, Dynamic SQL and SQLJ, Database Programming with Function Calls: JDBC; Stored Procedures in SQL, Embedded SQL, Dynamic SQL.	06	10%

DETAILED SYLLABUS

3	Advanced Transaction Processing & Recovery	Review of ACID properties and Serializability; Multiversion Concurrency Control Techniques; Granularity of Data Items and Multiple Granularity Locking ; Advanced Database Recovery techniques like Write Ahead Logging (WAL), ARIES, Checkpoints.	06	10%
4	Data Security	Introduction to Database Security Issues; Discretionary Access Control Based on Granting and Revoking Privileges; Mandatory Access Control and Role-Based Access Control for Multilevel Security; SQL Injection; Introduction to Statistical Database Security Introduction to Flow Control	04	10%
5	Storage and Indexing	Operation on Files; hashing Techniques; Types of Single-Level Ordered Indexes; Multilevel Indexes; Dynamic Multilevel Indexes Using B- Trees and B+-Trees; Indexes on Multiple Keys.	04	10%
6	Distributed Databases	TypesofDistributedDatabaseSystems;DistributedDatabaseArchitectures;DataFragmentation,ReplicationandAllocationTechniquesDistributedDatabaseDesign;QueryProcessingandOptimizationinDistributedDatabases;OverviewOfOverviewofTransactionManagementDistributedDatabases;OverviewofConcurrencyControlandRecoveryDistributedDatabases.	06	10%
7	Object Based Databases	OverviewofObjectDatabaseConcepts;Object-Relational Features;ObjectDatabaseExtensions toSQL;TheDefinitionLanguageODL;ObjectDatabaseConceptualDesign;TheObjectQueryLanguageOQL.	05	10%
8	Introduction to Data	The Need for Data Warehousing; Increasing Demand for Strategic Information; Inability of Past Decision Support System; Operational Vs Decisional Support System; 1.3 Data	02	5%

	Warehousing	 Warehouse Defined; Benefits of Data Warehousing; Features of a Data Warehouse; The Information Flow Mechanism; Role of Metadata; Classification of Metadata; Data Warehouse Architecture; Different Types of Architecture; Data Warehouse and Data Marts; Data Warehousing Design Strategies. 		
9	Dimensional Modeling	Data Warehouse Modeling Vs Operational Database Modeling; Dimensional Model Vs ER Model; Features of a Good Dimensional Model; The Star Schema; How Does a Query Execute? The Snowflake Schema; Fact Tables and Dimension Tables:; he Factless Fact Table; Updates To Dimension Tables: Slowly Changing Dimensions, Type 1 Changes, Type 2 Changes, Type 3 Changes, Large Dimension Tables, Rapidly Changing or Large Slowly Changing Dimensions, Junk Dimensions, Keys in the Data Warehouse Schema, Primary Keys, Surrogate Keys & Foreign Keys; Aggregate Tables; Fact Constellation Schema or Families of Star.	06	15%
10	ETL Process	Challenges in ETL Functions; Data Extraction; Identification of Data Sources; Extracting Data: Immediate Data Extraction, Deferred Data Extraction; Data Transformation: Tasks Involved in Data Transformation, Data Loading: Techniques of Data Loading, Loading the Fact Tables and Dimension Tables Data Quality; Issues in Data Cleansing.	04	10%
11	Online Analytical Processing (OLAP)	Need for Online Analytical Processing; OLTP vs OLAP; OLAP and Multidimensional Analysis; Hypercubes; OLAP Operations in Multidimensional Data Model; OLAP Models: MOLAP, ROLAP, HOLAP, DOLAP;	04	10%

- 1. Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, PEARSON Education.
- 2. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 3. Theraja Reema, "Data Warehousing", Oxford University Press, 2009

References:

- 1. Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India.
- 2. C. J. Date, A. Kannan, S. Swamynathan "An Introduction To Database Systems", 8th Edition Pearson Education.
- Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems" 3rd Edition - McGraw Hill
- 4. Ralph Kimball, Margy Ross, "The Data Warehouse Toolkit: The Definitive Guide To Dimensional Modeling", 3rd Edition. Wiley India.

Oral Exam:

An oral exam will be held based on the above syllabus.

Term work:

Assign a case study for group of 2/3 students and each group to perform the following experiments on their case-study:

Suggested Practical List

- 1. Problem Definition and draw ER /EER diagram
- 2. Creation of the database: using constrains and triggers
- 3. Advanced SQL must cover Views, nested and recursive queries.
- 4. Implementing an application and integrating with the database using JDBC, Dynamic and embedded SQL
- 5. Any one Database Hashing technique
- 6. Implementing and index using B or B+ trees.
- Creating and querying an Object database. Use ODL and OQL (Paper Exercise-Assignment)

University of Mumbai, Information Technology (semester V and VI) (Rev-2012) Page 22

- 8. Implementing a Distributed Database.
- 9. Demonstration of database security techniques SQL injection, inference attacks etc.
- 10. Problem Definition for a Data Warehouse, Construction of Star Schema Model.
- Creation of a DW and running OLAP operations on them (Roll up, Drill down, Slice, Dice, pivot)

Tools used:

- 1. Any Database software like Oracle, DB2, SQL Server, MY SQL or any other open source tools.
- 2. Programming to be done in JAVA.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.
- 5. Weightage of marks should be proportional to number of hours assigned to each module.

Course	Course	Tea	ching Scher	me	Credits Assigned			
Code	Name	Theory	Theory Practical Tutorial			Practical/Oral	Tutorial	Total
TEITC505	Open Source Technologies	03 Hr/Week	02 Hr/Week		03	01		04

Course Code	Course Name	Examination Scheme								
		Theory Marks								
		Internal assessment			End	Term Work	Practical	Oral	Total	
		Test1	Test 2	Avg. of 2 Tests	Sem. Exam					
TEITC505	Open Source Technologies	20	20	20	80	25	25		150	

Course Objectives:

- 1. To introduce the concept of open Source Software.
- 2. To enable students to learn Linux Environment.
- 3. To make students well versed with Android and Shell Programming

Course Outcomes: On successful completion of this course students should be able:

- 1. To develop android applications.
- 2. To install and work on Linux.
- 3. To perform Shell Programming.

DETAILED SYLLABUS

Sr. No.	Module	Detailed Content	Hours
1.	Over View of Open Source Software	Need of Open Sources –Advantages of Open sources – Applications- FOSS – FOSS usage –Free Software Movement – Comercial Aspect of Open Source Movement – Licensing – Certification – Open Source Software Development Model – comparision with close source / Proprietary software – Free Software – Open source vs source –available –Widely used open source software license :Apache License, BSD license, GNU General Public License, GNU Lesser General Public License, MIT License, Eclipse Public License and Mozilla Public License.	04
2.	Open Source Operating System	Installation of Linux (Redhat-CentOS): Theory about Multiboot Enviroment, Hardisk Partitioning, Swap space, LVM, and Bootloader Command Line: Basic File System Manamgnet Task, Working with files, Piping and Redirection, Working with VI editor, use of sed and understanding FHS of Linux	04
3.	Open Source Operating System: system Administrator task	Job management, Process Mangment, Mounting Devices and filesystem working with Linux, Backup, working with user, group and permission, Managing Software. Understanding Boot process and related files, Common kernel Manamgnet Task	04
4.	Open source Operating System: Network and Security Administration	 Basic networking commands, Configuration of Apache Web servers, DNS servers, DHCP servers, mail Servers, NFS, FTP servers. Securing servers with IPtables. Setting up cryptographic services, SSL, Managing Certificate with OpenSSL, working with the GNU Privacy guard. 	06

5.	Open Source Operating System: Shell Programming	Bash Shell Scripting, Executing Script, Working with Variables and Input, Using Control Strutures, Script control, handling with signals, Creating functions, working sed and gawk -Working with web using shell script: Downloading web page as formatted text file and parsing for data, working cURL etc.	08
6.	Open source Tools Only in LAB	Version Control using RCS and CVS (hands on RCS in single Machine) Content management : Understanding working of Drupal (Basic Drupal components) Security assessment : OpenVAS IDE :Working of Eclipse	
7.	Open Source Mobile Programming	Android programming: Setting up Android Enviroment (using Eclipse for android development), Activites and Intents, User Interface, Designing UI using views, Data Persistence, Conent Providers, messaging and networking, Location-based Services, Publishing Android Applications	10

- 1. Redhat Linux 6.0 Administration Wiley
- 2. Linux Shell scripting Cookbook: Sarath Lakshman PACKT
- 3. Linux Lab Open source Technology : Ambavade -Dreamtech
- 4. Beginning Adnorid Development Wrox Press

References:

1. Drupal guide to Planning and Building Web Site: Wrox Press

Term Work: 25 Marks (Total marks) = 15 Marks (Experiment and Case Studies) + 5 Marks (Assignments) + 5 Marks (Attendance)

Suggested Practical List :

- 1. Linux command line : File System, Process Managment User Administration
- 2. Setting Up Web server, DNS server, FTP Servers
- 3. Working with IPTABLES, OpenVAS
- 4. Version Control
- 5. Working with Drupal
- 6. Shell Script
- 7. Andorid Setup
- 8. Programning in Andorid
- 9. Programming in Android

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.
- 5. Weightage of marks should be proportional to number of hours assigned to each module.

Course Code	Course/Subject Name	Credits
TEITC506	Business Communication & Ethics	2

Pre-requisite

• FEC206 Communication Skills

Objective

- 1. To inculcate in students professional and ethical attitude, effective communication skills, teamwork, skills, multidisciplinary approach and an ability to understand engineer's social responsibilities.
- 2. To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
- 3. To inculcate professional ethics and codes of professional practice
- 4. To prepare students for successful careers that meets the global Industrial and Corporate requirement' provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.

Outcomes: A learner will be able to

- 1. communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities
- 2. Participate and succeed in Campus placements and competitive examinations like GATE, CET.
- 3. Possess entrepreneurial approach and ability for life-long learning.
- 4. Have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.

Module	Unit No.	Topics	Hrs
1.0	1.0	Report Writing	08
	1.1	Objectives of report writing	
	1.2	Language and Style in a report	
	1.3	Types of reports	
	1.4	Formats of reports: Memo, letter, project and survey based	
2.0	2.0	Technical Proposals	02
	2.1	Objective of technical proposals	
	2.2	Parts of proposal	
3.0	3.0	Introduction to Interpersonal Skills	08
	3.1	Emotional Intelligence	
	3.2	Leadership	

DETAILED SYLLABUS:

3.3	Team Buliding	
3.4	Assertiveness	
3.5	Conflict Resolution	
3.6	Negotiation Skills	
3.7	Motivation	
3.8	Time Management	

4.0	4.0	Meetings and Documentation	02
	4.1	Strategies for conducting effective meetings	
-	4.2	Notice	
-	4.3	Agenda	
	4.4	Minutes of the meeting	
5.0	5.0	Introduction to Corporate Ethics and etiquettes	02
-	5.1	Business Meeting etiquettes, Interview etiquettes, Professional	
		and work etiquettes, Social skills	
	5.2	Greetings and Art of Conversation	
	5.3	Dressing and Grooming	
	5.4	Dinning etiquette	
	5.5	Ethical codes of conduct in business and corporate activities	
		(Personal ethics, conflicting values, choosing a moral	
		response, the process of making ethical decisions)	
6.0	6.0	Employment Skills	06
	6.1	Cover letter	
	6.2	Resume	
	6.3	Group Discussion	
	6.4	Presentation Skills	
	6.5	Interview Skills	
		Total	28

List of Assignments

- 1. Report Writing (Synopsis or the first draft of the Report)
- 2. Technical Proposal (Group activity, document of the proposal)
- 3. Interpersonal Skills (Group activity and Role play)
- 4. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 5. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 6. Corporate ethics and etiquettes (Case study,Role play)
- 7. Cover Letter and Resume
- 8. Printout of the PowerPoint presentation

Term Work

Term work shall consist of all assignments from the list.

The distribution of marks for term work shall be as follows:

Assignments: 20 marks
Project Report Presentation: 15 marks
Group Discussion: 10 marks
Attendance : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

Reference Books:

- 1. Fred Luthans, "Organisational Behavior", Mc Graw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", Mc Graw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", Mc Graw Hill
- 4. Wallace and Masters, "*Personal Development for Life and Work*", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. R.C Sharma and Krishna Mohan, "Business Correspondence and Report Writing",
- B N Ghosh, "Managing Soft Skills for Personality Development", Tata McGraw Hill.Lehman, Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 8. Bell .Smith,"Management Communication" Wiley India Edition,3rdedition.Dr.K.Alex ,"Soft Skills",S Chand and Company
- 9. Dr.KAlex,"SoftSkills",S Chand and Company

Course	Course	Те	aching Scher	ne		Credits A	ssigned	
Code	Name	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total
TEITC601	Software Engineering	04 Hr/Week	02 Hr/Week		04	01		05

Course Code	Course Name		Examination Scheme								
		Theory Marks									
		Inter	mal asses	ssment	D 10	Term	Practical	Oral	Total		
		Test 1	Test 2	Avg. of 2 Tests	End Sem. Exam	Work					
TEITC601	Software Engineering	20	20	20	80	25		25	150		

Course Objectives:

This course will study a collection of methods which embody an "engineering" approach to the development of software. It will discuss the nature of software and software projects, software development models, software process maturity, project planning, management, and estimations. Students are required to study and practice methods for analysis, design, testing, and implementation of large, complex software systems. We will inquire into the various perspectives on software quality -- what it means, how to measure it, how to improve it. The major work of the course should be a group project.

Course Outcomes:

- 1. Meet the Information Technology Program Objectives of identifying and solving engineering problems
- **2.** To understand principles, concepts, methods, and techniques of the software engineering approach to producing quality software for large, complex systems.
- **3.** To function effectively as a member of a team engaged in technical work.
- 4. To think critically about ethical and social issues in software engineering for different applications

DETAILED SYLLABUS

Sr. No.	Module	Detailed Content	Hours
1	Introduction to Software Engineering	Professional Software Development, Layered Technology, Process framework, CMM, Process Patterns and Assessment	03
2	Process Models	Prescriptive Models : Waterfall Model, Incremental, RAD Models Evolutionary Process Models:Prototyping, Spiral and Concurrent Development Model Specialized Models: Component based, Aspect Oriented development	06
03	Agile Software Development	Agile Process and Process Models, Adaptive and Dynamic system Development, Scrum, Feature Driven Development and Agile Modeling	03
04	Engineering and Modeling Practices	Core Principles, Communication, Planning, Modeling, Construction and deployment. System Modeling and UML	04
05	Requirements Engineering and Analysis Model	Requirements Engineering Tasks, Elicitation, building analysis model, Data Modeling concepts, Object Oriented Analysis	06
06	Design Engineering	Design Concepts, Design Model – Data, Architecture, Interface, Component Level and Deployment Level design elements	05
07	Testing strategies and tactics	Testing strategies for conventional and Object Oriented architectures, Validation and system testingSoftware testing fundamentals, Black box and white box testing, Object Oriented testing methods	06
08	Metrics for Process and Projects	Process Metrics and Project Metrics, Software Measurement, Object Oriented Metrics, Software Project Estimation, Decomposition Techniques, LOC based, FP based and Use case based estimations, Empirical estimation Models	06

09	Risk Management	Risk strategies, Software risks, Risk Identification,	03
		Projection, RMMM	
10	Quality Management	Quality Concepts, SQA activities, Software reviews, FTR, Software reliability and measures, SQA plan	03
11	Change Management	Software Configuration Management, elements of SCM, SCM Process, Change Control	03

Text Books:

- 1. "Software Engineering : APractitioner's Approach" by Roger Pressman Sixth Edition
- 2. "Software Engineering" by Ian Sommerville, Pearson
- 3. "Software Engineering : A Precise Approach" Pankaj Jalote, Wiley India

References: (for Practical)

- 1. "System Analysis and Design" Alan Dennis, Wixom, R M Roth Wiley India
- 2. "Software Engineering : Principles and Practice" by Waman S Jawadekar

Term work: Should be based on the Project work done as a team.

Suggested Practical List:

The focus of the lab component of this course is to apply software engineering methods for carrying out a software development mini project. Students will be assigned to teams of 3-4 students. Each team will be assigned to produce a software development model, complete with specifications, prototyping, and design.

The deliverables required may be:

- 1. Application of agility principles/process model selection/system modeling tools for the given scenario
- 2. Requirements gathering, elicitation, elaboration, negotiation, specification, validation using appropriate tools
- 3. Use case development
- 4. Activity diagram, class diagrams, swimlane, data flow diagrams, State diagrams and sequence diagrams
- 5. Data design model, Architecture, UI, Collaboration diagrams
- 6. Component Level Design
- 7. Design unique test cases on different strategies
- 8. Prepare project Plan, predict resources and timeline(scheduling)
- 9. Prepare a risk identification and management plan

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.
- 5. Weightage of marks should be proportional to number of hours assigned to each module.

Course	Course	Tea	aching Schen	ne		Credits Assi	gned	
Code Name		Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
TEITC602	Distributed Systems	04 Hr/Week	02 Hr/Week		04	01		05

Course	Course Name	Examination Scheme								
			The	eory Marks						
Code		Inte	ernal asse	essment	End Sem.	Term	Practical	Oral	Total	
		Test1	Test 2	Avg. of 2 Tests	Exam					
TEITC602	Distributed Systems	20	20	20	80	25	25		150	

Course Objectives:

Distributed Systems form a significant field in Information Technology. The course aims to provide solid foundation in the concepts of distributed systems along with its design and implementation. Synchronization, Message Passing, Remote Communication, Consistency Management and Application development using different Distributed Technologies form part of core concepts to be studied under this course.

Course Outcomes:

- The student gains clear understanding of fundamental principles of Distributed Systems along with design and implementation of key mechanisms, Clock Synchronization, Election Algorithms, Mutual Exclusion, Message Communication, Process and Resource Scheduling etc.
- The student understands the message communication, remote procedure call and Remote method invocation (RPC and RMI) along with group communication.
- Emphasis is on developing applications using current distributed computing technologies like EJB, CORBA and .NET.
- Student should be able to develop/design distributed system/applications for an enterprise using SOA

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours
No.			48
1	Fundamentals	Introduction, Distributed Computing Models, Software Concepts, Issues in designing Distributed System, Client – Server Model	4
2	Communication	 Message Passing , Introduction to Message Passing, Advantages and features of Message Passing, Message Format, Message Buffering, Multi Data gram Messaging , Group Communication Remote Procedure Call (RPC): Basic RPC Operations, Parameter Passing, Extended RPC Models Remote Object Invocation: Distributed Objects, Binding a Client to an Object, Static Vs Dynamic RMI, Parameter Passing, Java RMI Message Oriented Communication: Persistence and synchronicity in communication, Message Oriented Transient and Persistent Communications 	8
3	Processes	Threads, Code Migration: Approaches to Code Migration, Migration and Local Resources, Migration in Heterogeneous Systems	4
4	Synchronization	Clock Synchronization, Physical and Logical Clocks, Global State, Election Algorithms, Mutual Exclusion, Distributed Transactions, Deadlocks	8
5	Consistency and Replication	Introduction, Data-Centric Consistency Models, Client Centric Consistency Models, Distributed Protocols	8
6	Distributed Technologies and Frameworks	Overview of EJB S/W Architecture, view of EJB Conversation, Building and Deploying EJB, Roles in EJB, Types of Enterprise Beans, Lifecycle of Beans, Developing Applications using EJB Framework.	5

		Introduction to CORBA, CORBA Components and architecture, Method Invocation, Static and Dynamic Invocation in CORBA, CORBA IDL, Developing Application using CORBA	4
		Introduction to .NET, .NET architecture, . NET Remoting	3
		Comparison of RMI, CORBA, EJB, .NET	1
7.	Service Oriented	Defining SOA, Business value of SOA, SOA	3
	Architecture	characteristics, Concept of a service, SOA Architecture,	
		Deploying SOA applications.	

Text Books:

- Sunita Mahajan, Seema Shah, "Distributed Computing", Oxford, second edition.
- Andrew S. Tanenbaum & Maarten van Steen "Distributed Systems : Principles and paradigms" Prentice Hall of India Private Limited
- G. Sudha Sadasivam, Radha Shankarmani, "Middleware and Enterprise Integration Technologies", Wiley Precise Textbook

References:

- 1. Pradeep K. Sinha "Distributed Operating Systems", Prentice Hall of India Private Limited
- 2. Thomas Erl "Service Oriented Architecture : Concepts, Technology and Design" Prentice Hall
- 3. G. Coulouris, J. Dollimore and T. Kindberg "Distributed Systems :

Term work: 25 marks

Term work should consist of at least 10 practical experiments with 1 mini project and assignments covering the topics of the syllabus

Distribution of marks for term work shall be as follows:

Laboratory work (10 Experiments)	10 Marks
Mini Project	05 Marks
Assignments	05 Marks
Attendance	05 Marks

Suggested Practical List :

- 1. Client Server based program using RPC
- 2. Client Server based program using RMI
- 3. Implementation of Clock Synchronization (logical/physical)
- 4. Implementation of Election algorithm.
- 5. Implementation of Mutual Exclusion algorithms
- 6. Program multithreaded client/server processes.
- 7. Program to demonstrate process/code migration.
- 8. Write a distributed application using EJB
- 9. Write a program using CORBA to demonstrate object brokering.
- 10. Use .Net framework to deploy a distributed application.
- 11. Mini Project : For Eg. using SOA

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.
- 5. Weightage of marks should be proportional to number of hours assigned to each module.

Course	Course	rse Teaching Scheme			Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
TEITC603	System And Web Security	04 Hr/Week	02 Hr/Week		04	01		05

	Course Name	Examination Scheme								
		Theory Marks								
Course Code		Internal assessment			F 10	Term	Practical	Oral	Total	
		Test1	Test 2	Avg. of 2 Tests	End Sem. Exam	Work	Tactical	orur		
TEITC603	System And Web Security	20	20	20	80	25		25	150	

Course Objectives

- 1. Understand the fundamental principles of access control models and techniques, authentication and secure system design
- 2. Apply methods for authentication, access control, intrusion detection and prevention
- 3. Identify and mitigate software security vulnerabilities in existing systems.
- 4. Understand the role of firewalls, IPSec, Virtual Private Networks and identity management, etc.
- 5. Understand Web Server vulnerabilities and their counter measures

Course Outcomes:

Upon successful completion of the course the student will be able to:

- Differentiate between authentication and authorization;
- Explain the basic idea behind access control and compare the various access control policies and models.

- Explain the need for security protocols in the context of use with Internet-based applications;
- Explain the basic idea behind firewalls and intrusion detection systems and how they work;
- Explain malicious software and typical software solutions used in dealing with viruses and worms;
- Understand and explain various issues related to program security and web security.

Sr. No.	Module	Detailed Content	Hours
1	Introduction to Computer Security	Vulnerabilities, Threats and Attacks, Public Key Cryptography and Cryptanalysis, Knapsack cryptosystem	04
2	Authentication	Authentication Methods and Protocols, Password based authentication, Token Based Authentication, Biometric Authentication, Digital Certificates, X. 509 Directory Services, PKI, Needham Schroeder Authentication Protocol, Single sign on, Kerberos Authentication Protocol, Federated Identity Management.	08
3	Access Control	Access control Policies: DAC, MAC, RBAC, Access control Matrix, ACLs and Capability Lists, Multiple level security model: Biba and Bell La Padula Models, Multilateral security, Covert channel, CAPTCHA.	06
4	Software security	Software Flaws, Buffer Overflow, Incomplete Mediation, Race conditions, Malware: Viruses, Worms, Trojans, Logic Bomb, Bots, Rootkits, Miscellaneous Software Attacks: Salami attack, Linearization Attacks, Trusted Computing: Software reverse engineering, Digital Rights management	08

DETAILED SYLLABUS:

5	Operating System	Linux Security Model, File System Security, Linux	04
	Security	Vulnerabilities, Windows Security Architecture,	
		Windows Vulnerabilities	
6	Network Security	Network security basics, TCP/IP vulnerabilities Layer wise: Packet Sniffing, ARP spoofing, port scanning, IP spoofing, TCP syn flood, DNS Spoofing, Internet Security Protocols: SSL, TLS, IPSEC, Secure Email and S/MIME, Denial of Service: Classic DOS attacks, Source Address spoofing, ICMP flood, SYN flood, UDP flood, Distributed Denial of Service, Defenses against Denial of Service Attacks.Firewalls, Intrusion Detection Systems: Host Based and Network Based IDS, Honey pots.	12
7	Web Security	User Authentication and session management, Cookies, Secure HTTP, SQL Injection Techniques, Cross Site Scripting, Cross-Site Request Forgery, Session Hijacking and Management, Phishing and Pharming Techniques, Web Services Security.	06

Text Books

- 1) Computer Security Principles and Practice, by William Stallings, Pearson Education.
- 2) Security in Computing by Charles P. Pfleeger, Pearson Education
- 3) Computer Security by Dieter Gollman, **3rd Edition**, Wiley India.
- 4) Cryptography and Network Security by Behrouz A. Forouzan, TATA McGraw hill.

Reference Books

- 1) Information security Principles and Practice by Mark Stamp, Wiley publication
- 2) OWASP TOP 10: https://www.owasp.org/index.php/Top_10_2013
- 3) Network security bible 2nd edition, Eric Cole, Wiley India.

Term Work: 25 Marks (Total marks) = 15 Marks (Experiment and Case Studies) + 5 Marks (Assignments) + 5 Marks (Attendance)

Suggested Practical List:

- 1. Design and implement the RSA cryptosystem.
- 2. Implement Digital signature scheme using RSA.
- 3. Simulate the Buffer overflow attack.
- 4. Simulate the Salami attack.
- 5. Design and implement a program for adding passwords to a file. The program should be able to filter out weak passwords (based on dictionary words or variants) and store the strong passwords by creating a hash of user ID and password.
- 6. Study of a packet sniffer like wireshark, or tcpdump. Use this tool to capture and analyze data in packets.
- 7. Download and install nmap. Use it with different options to scan open ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, etc
- 8. Detect ARP spoofing using open source tool ARPWATCH
- 9. Install an IDS (e.g. SNORT) and study the logs.
- 10. Use of iptables in linux to create firewalls.
- 11. Implement a simple SQL injection attack.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.
- 5. Weightage of marks should be proportional to number of hours assigned to each module.

Course	Course	Te	aching Schei	me	Credits Assigned				
Code	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
TEITC604	Data Mining and Business Intelligence	04 Hr/Week	02 Hr/Week		04	01		05	

	Course Name	Examination Scheme								
Course			Theor	ry Marks						
Code		Internal assessment			End	Term Work	Practical	Oral	Total	
		Test1	Test 2	Avg. of 2 Tests	Errore					
TEITC604	Data Mining and Business Intelligence	20	20	20	80	25		25	150	

Course Objectives:

- 1. To introduce the concept of data Mining as an important tool for enterprise data management and as a cutting edge technology for building competitive advantage.
- 2. To enable students to effectively identify sources of data and process it for data mining.
- 3. To make students well versed in all data mining algorithms, methods, and tools.
- 4. Learning how to gather and analyse large sets of data to gain useful business understanding.
- 5. To impart skills that can enable students to approach business problems analytically by identifying opportunities to derive business value from data.

Course Outcomes: On successful completion of this course students should be able:

- 1. Demonstrate an understanding of the importance of data mining and the principles of business intelligence
- 2. Able to prepare the data needed for data mining algorithms in terms of attributes and class inputs, training, validating, and testing files.
- 3. Implement the appropriate data mining methods like classification, clustering or association mining on large data sets.
- 4. Define and apply metrics to measure the performance of various data mining algorithms.
- 5. Apply BI to solve practical problems : Analyze the problem domain, use the data collected in enterprise apply the appropriate data mining technique, interpret and visualize the results and provide decision support.

Sr. No.	Module	Detailed Content	Hours
110.			
1	Introduction to	What is Data Mining; Kind of patterns to be mined;	02
	Data Mining	Technologies used; Major issues in Data Mining	
2	Data Exploration	Types of Attributes; Statistical Description of Data;	04
		Data Visualization; Measuring similarity and	
		dissimilarity.	
3	Data	Why Preprocessing? Data Cleaning; Data Integration;	04
	Preprocessing	Data Reduction: Attribute subset selection, Histograms,	
		Clustering and Sampling; Data Transformation & Data	
		Discretization: Normalization, Binning, Histogram	
		Analysis and Concept hierarchy generation.	
4	Classification	Basic Concepts;	08
		Classification methods:	
		1. Decision Tree Induction: Attribute Selection	
		Measures, Tree pruning.	
		2. Bayesian Classification: Naïve Bayes' Classifier.	
		Prediction : Structure of regression models; Simple linear regression, Multiple linear regression.	
		Model Evaluation & Selection: Accuracy and Error	
		measures, Holdout, Random Sampling, Cross	
		Validation, Bootstrap; Comparing Classifier	
		performance using ROC Curves.	
		Combining Classifiers: Bagging, Boosting, Random	

DETAILED SYLLABUS:

		Forests.	
5	Clustering	Cluster Analysis: Basic Concepts; Partitioning Methods : K-Means, K-Mediods; Hierarchical Methods : Agglomerative, Divisive, BIRCH; Density-Based Methods: DBSCAN, OPTICS	08
6	Outlier Analysis	What are outliers? Types, Challenges; Outlier Detection Methods: Supervised, Semi- Supervised, Unsupervised, Proximity based, Clustering Based.	02
7	Frequent Pattern Mining	Market Basket Analysis, Frequent Itemsets, Closed Itemsets, and Association Rules; Frequent Pattern Mining, Efficient and Scalable Frequent Itemset Mining Methods, The Apriori Algorithm for finding Frequent Itemsets Using Candidate Generation, Generating Association Rules from Frequent Itemsets, Improving the Efficiency of Apriori, A pattern growth approach for mining Frequent Itemsets; Mining Frequent itemsets using vertical data formats; Mining closed and maximal patterns; Introduction to Mining Multilevel Association Rules and Multidimensional Association Rules; From Association Mining to Correlation Analysis, Pattern Evaluation Measures; Introduction to Constraint-Based Association Mining.	08
8	Business Intelligence	What is BI? Effective and timely decisions; Data, information and knowledge; The role of mathematical models; Business intelligence architectures; Enabling factors in business intelligence project; Development of a business intelligence system; Ethics and business intelligence	03
9	Decision Support System	Representation of the decision-making process; Evolution of information systems; Definition of decision support system; Development of a decision support system.	03
10	BI Applications	Data mining for business Applications like Fraud Detection, Clickstream Mining, Market Segmentation, retail industry, telecommunications industry, banking & finance CRM etc	06

Text Books:

- 1. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition
- 2. G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", 1st Edition, Wiley India.
- 3. Business Intelligence: Data Mining and Optimization for Decision Making by Carlo Vercellis, Wiley India Publications

Reference Books:

- 1. P. N. Tan, M. Steinbach, Vipin Kumar, "Introduction to Data Mining", Pearson Education
- 2. Michael Berry and Gordon Linoff "Data Mining Techniques", 2nd Edition Wiley Publications.
- 3. Michael Berry and Gordon Linoff "Mastering Data Mining- Art & science of CRM", Wiley Student Edition
- 4. Vikram Pudi & Radha Krishna, "Data Mining", Oxford Higher Education.

Oral Exam:

An oral exam will be held based on the above syllabus.

Term work:

Assign a case study for group of 2/3 students and each group to perform the following experiments on their case-study; Each group should perform the exercises on a large dataset created by them.

Suggested Practical List:

- 1) 2 tutorials
 - a) Solving exercises in Data Exploration
 - b) Solving exercises in Data preprocessing
- 2) Use WEKA to implement the following Classifiers Decision tree, Naïve Bayes, Random Forest;
- 3) Implementation of any one classifier using languages like JAVA;
- 4) Use WEKA to implement the following Clustering Algorithms K-means, Agglomerative, Divisive;
- 5) Implementation of any one clustering algorithm using languages like JAVA;

- 6) Use Weka to implement Association Mining using Apriori, FPM;
- 7) Detailed study of any one BI tool like Oracle BI, SPSS, Clementine, and XLMiner etc. (paper Assignment)
- 8) Business Intelligence Mini Project: Each group assigned one new case study for this; A BI report must be prepared outlining the following steps:
 - a) Problem definition, Identifying which data mining task is needed
 - b) Identify and use a standard data mining dataset available for the problem. Some links for data mining datasets are: WEKA site, UCI Machine Learning Repository, KDD site, KDD Cup etc.
 - c) Implement the data mining algorithm of choice
 - d) Interpret and visualize the results
 - e) Provide clearly the BI decision that is to be taken as a result of mining.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.
- 5. Weightage of marks should be proportional to number of hours assigned to each module.

Course Code	Course	Teaching Scheme			Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	gned Tutorial	Total	
TEITT605	Advanced Internet Technology	04 Hr/Week	02 Hr/Week		04	01		05	

Course Code	Course Name	Examination Scheme								
		Theory Marks								
		Internal assessment			- 10	Term	Practical	Oral	Total	
		Test1	Test 2	Avg. of 2 Tests	End Sem. Exam	Work	l'inclicat	orur	r otur	
TEITT605	Advanced Internet Technology	20	20	20	80	25	25		150	

Course Objectives:

- 1. To introduce the concept of Search Engine basics.
- 2. To enable students to determine SEO Objective and develop SEO plan prior to Site Development.
- 3. To make students well versed with HTML 5, CSS3 and Responsive Web Design.
- 4. Learning the characteristic of RIA Web Mashup Eco System.

Course Outcomes: On successful completion of this course students should be able:

- 1. Develop Keyword Generation, Using Google Analytics etc.
- 2. To demonstrate Responsive Web Design.
- 3. To demonstrate Amazon/Google or yahoo mashup.

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours
1.	Search Engine Optimization	 Search Engine Basics Algorithm based Ranking Systems – Determining Searcher Intent and Delivering Relevant, Fresh Content, Analyzing Ranking Factors, Using Advanced Search Techniques, Vertical Search Techniques, Country- Specific Search Engines Determining SEO Objective and Finding Your Site's Audience – Setting SEO Goals and Objective, Developing SEO plans Perior to Site Deveopment - SEO for Rawtraffic;E-commerce Sales;Mindsahre/Branding; Direct Marketing; Reputation Management; Ideological Influence Getting started SEO: Defining Your Site's Information Architecture, Auditing an Existing Site to identify SEO Problems, Identifying Current Server Statistic Software and Gaining Access – Dtermining Top competitors, Benchmarking Current Indexing Status, Current Rankings, Benchmarking Current Traffic Source and Volumes, Conduct SEO/Website SWOT analysis. Keyword Genration – Creating Pages – Website Structure- Creating Content-Creating Communities- building Links-Using Google Analytics-Social Media Optimization-Creating Pay-per-click Campaigns- Optimization - Tracking Results and Measuring Success. 	20
2.	Responsive web design with HTML5 and CSS3	Getting Started with HTML 5, CSS3 and Responsive Web Design.	16

		Media Queries: Supporting Differing Viewports	
		Embracing Fluid Layout	
		HTML 5 for Responsive Design	
		CSS3: Selectors, Typography and color Modes	
		Stunning Aesthetics with CSS3	
		CSS3 Transitions, Transformations and Animations	
		Conquer Forms HTML5 and CSS3	
3.	RIA and Mashup	 Characteristic of RIA – Web Mashup Eco Systems – Mashup Techniques :1) Mashing on the Web Server, Rich User Interface using Ajax, Mashing with JSON RIA: Ajax vs Traditional Approach Technical Background: Javascript and AJAX JSON Alternative to XML Syndication REST and WS * Web Services 	12

Text Books:

- 1. Professional Web 2.0 Programming WROX press
- 2. Responsive Web Design with HTML5 and CSS3 PACKT
- 3. The Art of SEO O'Reilly Publication

References:

- 1. Rich Internet Application AJAX and Beyond WROX press
- 2. Web Technology, Srinivasan, Pearson

Term Work: 25 Marks (Total marks) = 15 Marks (Experiment and Case Studies) + 5 Marks (Assignments) + 5 Marks (Attendance)

Suggested Practical List:

- 1) Practical on SEO (Keyword Generation, Using Google Analytics etc.)
- 2) Practical to demonstrate Responsive Web Design
- 3) Practical to demonstrate Amazon/Google or yahoo mashup

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.
- 5. Weightage of marks should be proportional to number of hours assigned to each module.

AC7/6/2014

Item no. - 4.29

(As per Semester Based Credit and Grading System)

From Dean's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of

Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and grading system enables a much-required shift in focus from teacher-centric to learnercentric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3-2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble

The engineering education in India in general is expanding in manifolds. Now, the challenge is to ensure its quality to the stakeholders along with the expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Information Technology of University of Mumbai, happy to state here that, Program Educational Objectives were finalized in a meeting where more than 30 members from different Institutes were attended, who were either Heads or their representatives of Information Technology Department. The Program Educational Objectives finalized for undergraduate program in Information Technology are listed below;

- 1. To prepare Learner's with a sound foundation in the basics of engineering fundamentals.
- 2. To prepare Learner's to use effectively modern programming tools to solve real life problems.
- 3. To prepare Learner's for successful career in Indian and Multinational Organisations and to excel in Postgraduate studies
- 4. To encourage and motivate Learner's for entrepreneurship.
- 5. To inculcate professional and ethical attitude, good leadership qualities and commitment to social responsibilities in Learners.
- 6. To encourage Learner to use best practices and implement technologies to enhance information security and enable compliance, ensuring confidentiality, information integrity, and availability.

In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

Dr. J. W. Bakal

Chairman, Board of Studies in Information Technology,

B.E. Engineering (Semester VII) Revised course for Information Technology

Academic Year 2015 -16 (REV- 2012)

Course Code	Course Name		ing Sch rs/week		Credits Assigned			
		Theory	Pract.	Tut.	Theory	TW/Prac	Tut.	Total
ITC701	Software Project Management	4			4			4
ITC702	Cloud Computing	3			3	5		3
ITC703	Intelligent System	4			4			4
ITC704	Wireless Technology	4			4			4
ITC705	Elective - I	4			4			4
ITL701	Software Project Management		2			1		1
ITL702	Cloud Computing		2			1		1
ITL703	Intelligent System		2			1		1
ITL704	Wireless Technology		2			1		1
ITT705	Elective - I		2			1		1
ITP706	Project-I		*			3		3
	Total	19	10		19	08		27

*Work load of the teacher in semester VII is equivalent to 6 hrs/week.

Elective –I (Semester VII)							
ITC7051	Image Processing						
ITC7052	Software Architecture						
ITC7053	E-Commerce & E-Business						
ITC7054	Multimedia Systems						
ITC7055	Usability Engineering						
ITC7056	Ubiquitous Computing						

Examination Scheme

				Theory	7				
Course	Course Name	Interr	nal Asses	sment	End	Exam	Term	Pract/	Total
Code		TEST 1	TEST 2	AVG.	sem exam	duration (in Hrs)	work	Oral	
ITC701	Software Project Management	20	20	20	80	3	25	25	150
ITC702	Cloud Computing	20	20	20	80	3	25	25	150
ITC703	Intelligent System	20	20	20	80	3	25	25	150
ITC704	Wireless Technology	20	20	20	80	3	25	25	150
ITC705	Elective - I	20	20	20	80	3	25	25	150
ITP706	Project-I						25	25	050
	Total	100	100	100	400	15	150	150	800

B.E. Engineering (Semester VIII) Revised course for Information Technology from Academic Year 2015 -16, (REV- 2012)

Course	Course Name	Tea	aching Sc	heme		Credits Ass	signed	
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
ITC801	Storage Network	4			4			4
	Management and							
	Retrieval							
ITC802	Big Data Analytics	4			4	S		4
ITC803	Computer Simulation	4			4			4
	and Modeling				0.			
ITC804	Elective -II	4		Ģ	4			4
ITL801	Storage Network		2			1		1
	Management and							
	Retrieval				*			
ITL802	Big Data Analytics		2			1		1
ITL803	Computer Simulation		2			1		1
	and Modeling							
ITL804	Elective -II	2	2			1		1
ITP805	Project - II		**			6		6
	Total	16	08		16	10		26

****Workload of the teacher in semester VIII is equivalent to 12 hrs/week.**

Elective –I I	(Semester VIII)
ITC8041	Enterprise Resource Planning
ITC8042	Wireless Sensor Networks
ITC8043	Geographical Information Systems
ITC8044	Robotics
ITC8045	Soft Computing
ITC8046	Software Testing & Quality Assurance

Examination Scheme

				Theo	ry				5
Course	Course Name	Intern	al Assess	sment	End	Exam	Term	Pract/ Oral	Total
Code		TEST 1	TEST 2	AVG ·	sem exam	duration (in Hrs)	work		
ITC801	Storage Network Management and Retrieval	20	20	20	80	3	25	25	150
ITC802	Big Data Analytics	20	20	20	80	3	25	25	150
ITC803	Computer Simulation and Modeling	20	20	20	80	3	25	25	150
ITC804	Elective -II	20	20	20	80	3	25	25	150
ITP805	Project - II						50	50	100
	Total	80	80	80	320	12	150	150	700

Course	Course Name	Te	eaching Scher (hrs/week)	me		Credits Assi	gned	
Code		Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
ITC701	Software Project Management	04	02		04	01		05

					Exami	nation Sch	neme	•	
			Theo	ory Mark	S		3		
Course Code	Course Name	Intern	al assess	ment	End Sem. Exam	Term Work	Practical	Oral	Total
		Test1	Test 2	Avg. of 2 Tests	2				
ITC701	Software Project Management	20	20	20	80	25		25	150

Course Objectives:

This course will help students to identify key areas of concern over Project Life Cycle (PLC) and use of project management principles across all the phases of PLC. The course will also help student to make them understand the importance and necessity of project plan and how it is helpful to project manager in monitoring and controlling the various aspects of the project such as schedule, budget, etc. The course will make them understand the importance of team and how to work as a team member, share best project management practices.

Course Outcomes:

- Upon completion of the course, students should be able to:
- Articulate similarities and differences between IT projects and other types of projects.
- Justify an IT project by establishing a business case
- Develop a project charter
- Develop a work breakdown structure for an IT project

- Estimate resources (time, cost, human being, etc.)
- Establish task inter-dependencies
- Construct and analyze a network diagram
- Identify IT project risks and develop risk mitigation strategies
- Ensure the quality of the project using various standards
- Demonstrate Team work and team spirit and how to overcome the conflicts

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours
No.			•
1	An overview of	Introduction, the state of IT project management,	4
	IT Project	context of project management, need of project	
	Management	management, project goals, project life cycle and IT	
		development, information technology project	
		methodology (ITPM), project feasibility, request for	
		proposal (RFP), the business case, project selection and	
		approval, project contracting, PMBOK.	
2	Project	Introduction, project management process, project	4
	Integration	integration management, the project charter, project	
	Management	planning framework, the contents of a project plan, the	
		planning process.	
3	Project Scope	Introduction, scope planning, project scope definition,	4
	Management	project scope verification, scope change control, the	
		Work Breakdown Structure (WBS), the linear	
		responsibility chart.	
4	Project Time	Introduction, developing the project schedule,	10
	Management	Scheduling Charts, logic diagrams and network (AOA,	
		AON), critical path, calendar scheduling and time based	
		network, management schedule reserve, PDM network,	
		PERT, CPM, Resource loading, resource leveling,	
		allocating scarce resources to projects and several	
		projects, Goldratt's critical chain.	
5	Project Cost	Cost estimating, Cost escalation, Cost estimating and	4
	Management	system development cycle, Cost estimating process,	
		Elements of budgets and estimates, Project cost	
		accounting and MIS, Budgeting using cost accounts,	
		Cost schedules and forecasts.	

6	Project Quality	Introduction, Quality tools and philosophies, quality	3
0	• • •		5
	Management	systems, the IT project quality plan.	
7	Project Human	Introduction, organization and project planning, the	5
	Resource	project team, multidisciplinary teams, the project	
	Management	environment, project leadership, ethics in projects,	
		multicultural projects, Role of project manager, IT	
		governance and the project office.	
		Introduction to change, the nature of change, the change	
		management plan, dealing with resistance and conflicts.	•
8	Project	Introduction, monitoring and controlling the project, the	4
	Communication	project communications plan, project metric, project	
	Management	control, designing the control system, the plan-monitor-	
	_	control cycle, data collection and reporting, reporting	
		performance and progress, information distribution.	
9	Project Risk	Basic concepts, Identification, Assessment, Response	4
	Management	planning, Management.	
10	Project	Introduction, project procurement management,	3
	Procurement	outsourcing.	
	Management		
11	The	Introduction, project implementation, administrative	3
	Implementation	closure, project evaluation, project audit.	
	Plan and Project		
	Closure		

Text Books:

- 1. Jack T. Marchewka, Information Technology Project Management, 4th edition, Wiley India, 2009.
- 2. John M. Nicholas, Project Management for Business and Technology, 3rd edition, Pearson Education.

References:

- 1. E-Book Project Management Body of Knowledge (PMBOK).
- 2. Claudia M. Baca, Patti M. Jansen, PMP: Project Management Professional Workbook, Sybex Publication.
- 3. S. J. Mantel, J. R. Meredith and etal., Project Management 1st edition, Wiley India, 2009.
- 4. Joel Henry, Software Project Management, A real-world guide to success, Pearson Education, 2008.
- 5. Gido and Clements, Successful Project Management, 2nd edition, Thomson Learning

- 6. Hughes and Cornell, Software Project Management, 3rd edition, Tata McGraw Hill
- 7. Joseph Phillips, IT Project Management, end edition, Tata McGraw Hill
- 8. Robert K. Wyzocki, Effective Project Management, 5th edition, Wiley
- 9. Brown, K.A. Project Management, McGraw Hill, 2002.
- 10. Dinsmore, P. C. (Ed.), The AMA Handbook of Project Management. AMACOM, 1993.

Term work:

Term work shall consist of at least 10 experiments covering all topics of the syllabus. Distribution of marks for term work shall be as follows:

- 1. Attendance (Theory and Practical): 05 Marks
- 2. Laboratory work (Experiments and Journal): 15 Marks
- 3. Assignments: 5 Marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory Work and Minimum Passing in the term work.

Suggested Practical List:

In practical, a group of maximum **three** students should be formed. Each group is supposed to complete all lab experiments (given below) on the case study given by the subject teacher. In lab experiments, students can used the tools like MsWord to prepare document whereas MsProject for preparing WBS, N/w diagram, PERT, CPM, performance analysis of the project, etc.

- 1. Project and System's Management
- 2. Feasibility study
- 3. Project Proposal
- 4. Project Planning
- 5. Activity Planning
- 6. Analyzing the project network diagram
- 7. Cost estimation and budgeting
- 8. Risk management
- 9. Performance analysis of project
- 10. Project evaluation and closure

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus.
- Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.

ſ	Course Code	Course	Tea	aching Sche (hrs/week)	me		Credits Assi	gned	
		Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Tota 1
	ITC702	Cloud Computing	04	02		04	01		05

			Examination Scheme								
Course	Course Name		Т	heory Ma	rks			0			
Code	Course Maine	Inter	nal ass	essment	End Sem.	Term Work	Practical	Oral	Total		
		Test 1	Test 2	Avg. of 2 Tests	Exam	S					
ITC702	Cloud Computing	20	20	20	80	25		25	150		

Course Objectives:

This course will help the students to get familiar with cloud computing fundamentals, architecture, services, implementation and deployment techniques etc.

Course Outcomes:

 \square

After completion of the course the learner should be able to:

1. Differentiate different computing techniques.

- 2. Compare various cloud computing providers/ Software.
- 3. Handle Open Source Cloud Implementation and Administration.
- 4. Understand risks involved in cloud computing.

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours
1.	Introduction to Cloud Computing	 Introduction – Component of CC – Comparing CC with Virtualization, Grids, Utility Computing, client- server model, P-to-P Computing – Impact of CC on Business – Key Drivers for Cloud Computing - Cloud computing Service delivery model 	2
		 Cloud Types – Private, Public and Hybrid, when to avoid public cloud, Cloud API 	•
2.	Virtualization	 Introduction & benefit of Virtualization – Implementation Levels of Virtualization-VMM Deisgn Requirements and Providers – Virtualization at OS level – Middleware support for Virtualization – Virtualization structure/tools and mechanisms: Hypervisor and Xen Architecture, Binary Translation with full Virtualization, Para Virtualization with Compiler Support – Virtualization fo CPU, Memory and I/O Devices, Hardware support for Virtualization in intel x86 processor – CPU Virtualization – Memory Virtualization and I/O Virtualization – Virtualization in Multicore processors 	4
3.	Cloud computing Services	XaaS, IaaS, PaaS- Leveraging PaaS for Productivity- Languages for PaaS- DBaaS(Database as a services) – SaaS (Software as a service) – Comparison of various cloud computing providers/ Softwares.	4
4.	Cloud Computing and Business Value	Key Business Drivers for CC- Cloud computing and out sourcing – Types of Scalability – Security issues in Cloud Computing- time to Market Benefits- Distribution over Internet – Three levels of Business value from Cloud computing.	4
5.	Open Source Cloud Implementation and Administration	Eucalyptus and Open Stack Architecture Features – Components – Various mode of operations – Installation and configuration process of both open source – Cloud Administration and Management Task – Creating User Interface (Web Interface) of Private cloud.	6

	6.	Cloud Deployment Techniques	Factors for Successful Cloud Deployment – Network Requirements – Potential Problem areas in a cloud Network and their Mitigation – Cloud Network Topologies – Automation and Self-service feature in a cloud –cloud performance.	4
	7.	Security	Security for Virtualization Platform – Host security for SaaS, PaaS and IaaS – Data Security – Data Security Concerns – Data Confidentiality and Encryption – Data Availability – Data Integrity – Cloud Storage Gateways – Cloud Firewall	4
	8.	Architecture for Cloud Application	Cloud Application requirements- Architecture for traditional Vs Cloud Applications- Multi-ties Application Architecture- SOA for Cloud applications – Resource oriented SOA – Method –oriented SOA and Event Driven SOA – Parallelization within Cloud Applications – Leveraging In- memory Operations for Cloud Application	• 4
	9	Cloud Programming	 Programming Support for Google Apps engine: GFS, Big Tables, Googles NO SQL System, Chubby, Google Distibuted Lock Service, Programming Support for Amazon EC2: Amazon S3, EBS and Simple DB etc. 	4
	10	Adoption and Use of Cloud	Adoption of Public cloud by SMBs- Public Cloud Adoption phase for SMBs- Vendor liability and Management Adoption process of Public clouds by Enterprises – Managed Private clouds Migrating Application to the cloud – Impact of Shared Resources and Multi-Tenancy on cloud Applications – Phases during Migration an Application to An IaaS Cloud	4
	41	Risks of Cloud Computing and Related Costs	Risk Assessment and Management – Rosk of Vendor Lock- in – Risk of Loss of control over IT services- Risk of Poor Provisioning – Risk of Multi-tenant environment – Risk failure of cloud provider – SLA risk –security, malware and Internet Attacks – Risk with Application Licensing.	2
4	12	AAA Administration for Clouds	AAA model – SSO for Clouds – Authentication management and Authorization management in clouds – Accounting for Resource utilization.	2

13	Security as a service	What can security as service offer- Benefits for Security as a service – Issues with Security as a Service- Identity Management as a Service	2	
14	Mobile Cloud Computing	Introduction, Defination, Architecture, Benefits, challenges in mobile and at cloud shield	2	

- 1. Cloud Computing Principles and Paradigms, Rajkumar Buyya Wiley
- 2. Distributed and Cloud Computing, Kai Hwang, Mk Publication
- 3. Cloud computing Black Book Dreamtech Publication

References:

- 1. Using Goolgle Apps engine O'reilly Publication
- 2. Programming Amazon EC2, O'reilly Publication
- 3. Cloud security, Ronald L. Wiley Publication
- 4. Cloud computing Dr. Kumar Saurabh, wily Publication
- 5. Virtualization for Dummies, Wiley Publication

Term work:

Suggested Practical List (If Any):

- 1. Implementation of Private cloud using Eucalyptus or Open stake
 - Working with KVM to create VM
 - Installation and configuration of Private cloud
 - Bundling and uploading images on a cloud
 - Creating web based UI to launch VM
 - Working with Volumes Attached to the VM
- 2. Programming using Google Apps engine and Pythone

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus.
- Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.

Course Code	Course Name	Te	aching Sche (hrs/week)	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
ITC703	Intelligent System	04	02		04	01		05

Course	Course Neme	Examination Scheme							
		Theory Marks					5	•	
Code	Course Name	Inte	rnal as	sessment	End Sem.	Term Work	Practical	Oral	Total
		Test 1	Test 2	Avg. of 2 Tests	Exam	S C			
ITC703	Intelligent System	20	20	20	80	25		25	150

- 1. To introduce the students' with different issues involved in trying to define and simulate intelligence.
- 2. To familiarize the students' with specific, well known Artificial Intelligence methods, algorithms and knowledge representation schemes.
- 3. To introduce students' different techniques which will help them build simple intelligent systems based on AI/IA concepts.

Course Outcomes:

- 1. Students will develop a basic understanding of the building blocks of AI as presented in terms of intelligent agents.
- 2. Students will be able to choose an appropriate problem-solving method and knowledge-representation scheme.
- 3. Students will develop an ability to analyze and formalize the problem (as a state space, graph, etc.) and select the appropriate search method.
- 4. Students will be able to develop/demonstrate/ build simple intelligent systems or classical toy problems using different AI techniques.

DETAILED SYLLABUS

Module	Detailed Content	Hours	
1	Introduction: Introduction to AI, AI Problems and AI techniques, Solving problems by searching, Problem Formulation.	04	0
2	Intelligent Agents: Structure of Intelligent agents, Types of Agents, Agent Environments PEAS representation for an Agent.	03	5
3	Uninformed Search Techniques: DFS, BFS, Uniform cost search, Depth Limited Search, Iterative Deepening, Bidirectional search, Comparing Different Techniques.	04	
4	Informed Search Methods : Heuristic functions, Hill Climbing, Simulated Annealing, Best First Search, A*, IDA*, SMA*, Crypto- Arithmetic Problem, Backtracking for CSP, Performance Evaluation.	08	
6	Adversarial Search: Game Playing, Min-Max Search, Alpha Beta Pruning.	03	
7	Knowledge and Reasoning: A Knowledge Based Agent, WUMPUS WORLD Environment, Propositional Logic, First Order Predicate Logic, Forward and Backward Chaining, Resolution., Introduction to PROLOG.	08	
8	Planning : Introduction to Planning, Planning with State Space Search,PartialOrderedplanning,HierarchicalPlanning,Planning,Conditional Planning,Planning with Operators.	04	
9	Uncertain Knowledge and Reasoning: Uncertainly, Representing Knowledge in an Uncertain Domain, Conditional Probability, Joint Probability, Bays theorem, Belief Networks, Simple Inference in Belief Networks.	06	
10	Learning: Learning from Observation, General Model of Learning Agents, Inductive Learning, Learning Decision Trees, Rote Learning, Learning by Advice, Learning in Problem Solving, Explanation based Learning	05	
11	Expert Systems: Representing and using Domain Knowledge, Expert System-shell, Explanation, Knowledge Acquisition	03	

Text Books:

- **1.** Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Pearson Education.
- Elaine Rich, Kevin Knight, Shivshankar B Nair, Artificial Intelligence, McGraw Hill, 3rd Edition.
- 3. Elaine Rich, Kevin Knight, Artificial Intelligence, Tata McGraw Hill, 2nd Edition.

Reference Books:

- **1.** George Lugar, .AI-Structures and Strategies for Complex Problem Solving., 4/e, 2002, Pearson Education.
- 2. Nils J. Nilsson, Principles of Artificial Intelligence, Narosa Publication.
- 3. Patrick H. Winston, Artificial Intelligence, 3rd edition, Pearson Education.
- 4. Deepak Khemani, A First Course in Artificial Intelligence, McGraw Hill Publication

Term work:

Term Work shall consist of at least 8 practical and 2 assignments based on the list given below:

Suggested Practical:

- 1. Implementing Water jug problem using 1. BFS., 2. DFS (Un-Informed Search)
- 2. Implementing 8 puzzle problem with Heuristic function using Hill Climbing. (Informed Search)
- 3. Implementing 8 puzzle problem with Heuristic function Best First Search (Informed Search)
- 4. Implementing 8 Queen Problem with Heuristic function (Informed Search)
- 5. Implementing Tic-Tac-Toe problem to demonstrate Min Max and Alpha Beta Pruning. (Adversarial Search)
- 6. Implementing WUMPUS world problem. (Knowledge and Reasoning)
- 7. Introduction to PROLOG solving Basic problems like Factorial, Fibonacci series, Implementing User Defined String functions etc. (PROLOG)
- 8. Implementing Family Information System (PROLOG)
- 9. Implementing Mini Expert system. (PROLOG)

(Note: List of experiments is not limited with the above list, teacher can choose different set of experiments but care should be taken to explore variety of topics.)

Term Work: 25 Marks (total marks) = 15 Marks (Experiment) + 5 Marks (Assignment) + 5Marks (Attendance (theory + practical))

Oral examination is to be conducted based on the complete syllabus.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.

Course Code Course		Теа	aching Sche (hrs/week)	me	Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Tota 1
ITC704	Wireless Technology	04	02		04	01		05

		Examination Scheme								
Course Code	Course Name	Theory Marks						7		
		Internal assessment			End Sem.	Term Work	Practical	Oral	Total	
		Test 1	Test 2	Avg. of 2 Tests	Exam					
ITC704	Wireless Technology y	20	20	20	80	25		25	150	

Get acquainted with modern wireless communication networks. Evolution of cellular networks, to understand basic framework of various protocols and standards used to develop wireless personal and wide area networks

Course Outcomes:

- 1. Understand the new trends in mobile/wireless communications networks
- 2. Understand the characteristics of mobile/wireless communication channels
- 3. Understand the multiple radio access techniques
- 4. Understand the multiuser detection techniques
- 5. Understand various wireless networks and their technologies
- 6. Understand need of securities and economies in wireless systems

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours
1	Fundamentals of wireless Communication	 Fundamentals of Wireless Communication Advantages, Limitations and Applications Wireless Media Infrared Modulation Techniques DSSS And FHSS Multiple access technique: TDMA,CDMA, FDMA, CSMA,OFDMA [fundamentals] Frequency Spectrum Radio and Infrared Frequency Spectrum 	08
2	Wireless technology	 The cellular concepts: Frequency Reuse, Channel assignment strategies, Handoff strategies Interference and System Capacity [Design problems] Evolution of cellular networks 1G, 2G,3G,4G GSM: System Architecture, Radio Subsystem, Channel Types, GSM frame structure CDMA: Architecture, Frequency and channel specifications, forward and Reverse CDMA Channels. 	10
3	Wire less in local loop (WLL)	User requirements of WLL systems, WLL system architecture, MMDS, LMDS, WLL subscriber terminal, WLL interface to the PSTN	04
4	Wire less local area networks (WLAN)	Introduction, WLAN Equipment, WLAN topologies and Technologies, IEEE 802.11 WLAN : Architecture, Physical Layer, Data Link Layer , MAC Layer, Security Latest developments of IEEE 802.11 standards	08
5	Wireless personal area netwoks (WPAN)	Introduction ,WPAN technologies and Protocols, Bluetooth (802.15.1)[Protocol stack and network connection establishment, security aspects] HR –WPAN (UWB) (IEEE 802.15.3) LR-WPAN (IEEE 802.15.4) Zigbee [Stack architecture, components, Network Topologies, Applications] Wireless Sensor networks [Network model and protocol stack,	08

		routing algorithms, Applications]		
6	Wireless metropolitan area	IEEE 802.16 [Protocol Architecture],	04	
	networks	IEEE 802.16a [Wimax]		$\mathbf{\wedge}$
		Wimax and LTE /3GPP comparison	C	
7	Security issues in	The need, attacks, security services, wired equivalent	03	
	Wireless Systems	privacy protocol(WEP), Mobile IP, VPN [PPTP, L2TP,		
		IPSec]		
8	Economies of	Economic Benefits, Economics of Wireless industry	03	
	Wireless Network	Wireless data forecast, charging issues		

- 1. Modern wireless communication systems: by Simon Haykin, Michael Moher, adapted by David Koilpillai ; Pearson (Indian edition 2011)
- 2. Wireless Networks: by Nicopolitidia, M S Obaidat, GI Papadimitriou; Wiley India (student edition 2010)
- 3. Wireless communications: by T L Singal; Tata McGraw Hill Education private Ltd.(edition 2011)

References:

- 1. Wireless and Mobile Networks: Dr. Sunilkumar S. Manvi & Mahabaleshwar S. Kakkasageri
- 2. Wireless Communications and Networking: by Vijay K. Garg
- 3. Wireless Communications: by Theodore S. Rappaport

Term work: Students are asked to perform lab sessions using Ns-2 Simulator and Matlab platform.

Assignments should be given based on syllabus.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.

Course Code	Course Name	Teaching So	cheme		Credits A	ssigned		
		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
ITC7051	Image Processing	04	02		04	01		05

Course	CourseName	Examination Scheme							
Code		Theory M	larks			TW	Pract.	Oral	Total
		Internal A	ssess	ment	End				
ITC7051	Image Processing	Test 1	Test 2	Average of Test1 & Test2	Semester Exam			0')
		20	20	20	80	25		25	150

Course Pre-requisite: As images are two dimensional signals, the single dimensional Digital Signal Processing fundamentals are part of the prerequisite study.

Objective: One picture is worth thousand words. A course in digital image processing teaches how such visual information can be used in various applications. This course will introduce the basic ideas and techniques used for processing images and their popular applications. The objectives of this course are:

- To cover the basic theory and algorithms that are widely used in digital image processing,
- To expose students to current technologies and issues that are specific to image processing systems
- To develop skills in using computers to process images.

Outcome: Students should demonstrate the ability:

- To understand the fundamental concepts of a digital image processing system,
- To make extensive use of these concepts in implementing processing techniques such as noise removal, enhancement, compression for efficient storage and transmission, object extraction, representation and description for recognition or building computer vision, etc.

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	Weightage of marks
0	Introductions to Signal Processing Only as a prerequisite for Image Processing. Hence not part of theory exam.	Analog, discrete and digital signals, 1D, 2-D signals with examples. Discrete time signals: sequences, Discrete time systems LTI systems and their properties. Convolution and Correlation- need, methods and examples	04	0%
1	Introduction to digital image processing	Introduction: Definition of digital image, generation of digital image, steps in digital image processing, 2D sampling, spatial and tonal resolutions, pixel connectivity, elements of digital image processing systems	05	10%
2	Image enhancement in the spatial domain	Point operations, histogram processing, spatial filtering: smoothing, sharpening, median, highboost	07	20%
3	Two Dimensional Discrete Fourier Transform	Introduction to image in frequency domain, Concept of basis images, two dimensional D.F.T. and its properties, two dimensional F.F.T. Filtering in the frequency domain: smoothening, sharpening and homomorphic filtering.	06	15%
4	Image segmentation	Detection of discontinuities, edge linking and boundary detection, Hough transform, thresholding, region oriented segmentation.	06	10%
5	Image representation and description	Boundary descriptors: shape number, Fourier descriptor, statistical moments; regional descriptors	06	10%
6	Image data compression	Image data redundancies: coding, inter-pixel, psychovisual; Fundamentals of lossless compression : Arithmetic coding, Huffman coding, LZW coding, RLE, Bit plane coding, predictive coding Lossy compression : JPEG, Subband coding, Vector quantization, Image compression standard, Fidelity criteria	06	15%
7	Image morphology	Morphological operation : Dilation erosion, Opening & Closing, Hit or Miss Transform, Basic Morphological Algorithms	04	10%

University of Mumbai, Information Technology (semester VII and semester VIII) (Rev-2012)

X	Applications of image processing	Digital authentication recognition), V and recogniti	the following applica watermarking, (face, finger print, Vehicle number plate of on, Content Based t Compression.	Biometric signature detection		10%	
---	----------------------------------	---	--	-------------------------------------	--	-----	--

1. Gonzalez & Woods, Digital Image Processing, Pearson Education, Third Edition.

2. W. Pratt, Digital Image Processing, Wiley Publication, Fourth Edition, 2013.

Reference Books:

- 1. J. G. Proakis and D. G. Manolakis, Digital Signal processing Principals, Algorithms and Applications, PHI publications, Third edition,
- 2. Milan Sonka , Digital Image Processing and Computer Vision, Thomson publication, Second Edition.2007.
- 3. A.K. Jain, Fundamentals of Image processing, Prentice Hall of India Publication, 1995
- 4. Gonzalez & Woods, Digital Image Processing using MATLAB, Pearson Education
- 5. S.Jayaraman, S Esakkirajan and T Veerakumar, Digital Image Processing ,McGraw Hill Education (India) Private Limited, New Delhi, 2009.
- 6. S.Sridhar, Digital Image Processing ,Oxford University Press, New Delhi, 2011.

Term work:

At least 08 experiments covering entire syllabus must be performed during the semester and it should be presented in the practical record. Term work assessment must be based on the overall performance of the student with every practical graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. Due weightage should be given for the student's attendance.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests shall be considered as final IA marks

Suggested Practical List:

A minimum of 8 experiments from the suggested list must be performed. The DSP experiments (experiment 1 and 2) are the prerequisites.

- 1. Write a MATLAB program or C++ program for generating the following discrete time signals:
 - a. Exponential signal
 - b. Unit step and unit ramp signals
 - c. Sinusoidal signal
 - d. Composite signal with minimum 3 sinusoids added
- 2. Write a MATLAB program to demonstrate convolution and correlation operations with different examples of discrete time sequences.
- 3. Write a program for the following point processing operations and compare the results with MATLAB built in functions
 - a. Image negative
 - b. Gray level slicing with or without background
 - c. Power law transformations
 - d. Bit plane slicing
 - e. Histogram equalization
- 4. Write a program for image enhancement and compare the results with MATLAB built in functions.
 - a. Smoothing
 - b. Sharpening
 - c. High boost filtering
- 5. Write a program for image noise removal and analyze the results using,
 - a. Averaging
 - b. Median filter
- 6. Write a MATLAB program for 2D Discrete Fourier Transform and Inverse transform using built in functions.
- 7. Write a MATLAB PROGRAM for Transform domain processing using low pass and high pass filters and analyze the results for the following (any one):
 - a. Ideal filter
 - b. Butterworth filter
 - c. Gaussian filter
- 8. Write a MATLAB PROGRAM for edge detection in 2 directions and compare the results with built in functions for the following operators (any one):
 - a. Robert operator
 - b. Prewitt operator
 - c. Sobel operator
- 9. Write a MATLAB PROGRAM to compress the image using any one of the following lossless image compression techniques:
 - a. Huffman
 - b. RLE
 - c. LZW
- 10. Write a MATLAB PROGRAM to compress the image using any one of the following

lossy image compression techniques:

- a. JPEG
- b. IGS
- c. Predictive coding
- 11. Write a MATLAB PROGRAM to perform the following basic and derived morphological operations:
 - a. Dilation
 - b. Erosion
 - c. Opening
 - d. Closing
 - e. Boundary Detection
- 12. Write a MATLAB PROGRAM to represent / describe the image using any one of the following:
 - a. Chain code / shape number
 - b. Moments
 - c. Fourier descriptors
 - d. Euler number

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.

Course Code	Course Name	Teaching Scheme (hrs/week)			Credits Assigned			
ITC7052	Software Architecture	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
		04	02		04	01		05

			Examination Scheme						
Course Code	Course Name	Intern Test 1	Theor al asses Test 2	y Marks sment Avg. of 2 Test s	End Sem. Exam	Term Work	Practical	Oral	Total
ITC7052	Software Architecture	20	20	20	80	25		25	150

- To provide students with a strong foundation in developing large, practical softwareintensive applications.
- To train students with sound technical exposure to the concepts, principles, methods and best practices in software architecture.
- To develop the ability among students to learn the details of modeling techniques, design, implementation, deployment, and system adaptation.
- To enable students to choose the right tool for the job at hand and document design rationale.
- To prepare students to gain experiences with examples in design pattern application and case studies in software architecture.

Course Outcomes:

At the end of the course, students should be able to:

- 1. Argue the importance and role of software architecture.
- 2. Recognize major software architectural styles, design patterns, and frameworks.
- 3. Design software architecture for large scale software systems.
- 4. Describe various documentation approaches and architectural description languages.
- 5. Apply architectural patterns to quickly generate architectural alternatives and choose between them.

Prerequisites:

This course builds on the study of Object Oriented Software Engineering. We assume fluency with Object Oriented Languages and UML

DETAILED SYLLABUS:

Sr. No	Module	Detailed Content	Hours
1	1	Basic Concepts	03
		1.1 Concepts of Software Architecture	
		1.2 Models.	
		1.3 Processes.	•
		1.4 Stakeholders.	
2	2	Designing Architectures	05
		2.1 The Design Process.	
		2.2 Architectural Conception.	
		2.3 Refined Experience in Action: Styles and Architectural Patterns.	
		2.4 Architectural Conception in Absence of Experience.	
		2.5 Putting it all Together: Design Processes Revisited	
3	3	Connectors	06
		3.1 Connectors in Action: A Motivating Example.	
		3.2 Connector Foundations.	
		3.3 Connector Roles.	
		3.4 Connector Types and Their Variation Dimensions.	
		3.5 Example Connectors.	
		3.6 Using the connector Framework	
4	4	Modeling	04
		4.1 Modeling Concepts.	
		4.2 Ambiguity, Accuracy, and Precision.	
		4.3 Complex Modeling: Mixed Content and Multiple Views.	
		4.4 Evaluating Modeling Techniques.	
		4.5 Specific Modeling Techniques: Generic Techniques, Domain and	
		Style specific ADLs, Extendable ADLs.	
5	5	Visualization	04
		5.1 Visualization Concepts.	
		5.2 Common issues in Visualization.	
		5.3 Visualization Techniques: Textual Visualization, UML, xADL.	
6	6	Analysis	06
-		6.1 Analysis Goals.	
		6.2 Scope of Analysis.	

		6.3 Architectural Concern being Analyzed.	
		6.4 Level of Formality of Architectural Models.	
		6.5 Type of Analysis.	
		6.6 Analysis Techniques.	
7	7	Implementation and Deployment	04
		6.1 Concepts.	
		6.2 Existing Frameworks.	
		6.3 Software Architecture and Deployment.	
		6.4 Software Architecture and Mobility.	
8	8	Applied Architectures and Styles	08
		8.1 Distributed and Networked Architectures.	
		8.2 Architectures for Network-Based Applications.	
		8.3 Decentralized Architectures.	
		8.4 Service-Oriented Architectures and Web Services.	
9	9	Designing for Non-Functional Properties	04
		9.1 Efficiency.	
		9.2 Complexity.	
		9.3 Scalability and Heterogeneity.	
		9.4 Adaptability.	
		9.5 Dependability.	
10	10	Documentation	04
		10.1 Uses of Architectural Documentation.	
		10.2 Views	
		10.3 Choosing the Relevant Views	
		10.4 Documenting a View	
		10.5 Documentation across Views	

- 1. Richard N. Taylor, Nenad Medvidovic, Eric M. Dashofy, "Software Architecture: Foundations, Theory, and Practice", Wiley Publications.
- 2. Len Bass, Paul Clements, Rick Kazman, "Software Architecture in Practice", Pearson

References:

1. M. Shaw, "Software Architecture Perspectives on an Emerging Discipline", Prentice Hall.

Term work: Term work should be based on the Lab experiments and assignments.

Suggested Practical List:

- 1. Modeling using xADL
- 2. Analysis Case study
- 3. Visualization using xADL
- 4. Integrate software components using a middleware
- 5. Use middleware to implement connectors
- 6. Wrapper to connect two applications with different architectures
- 7. Creating web service
- 8. Architecture for any specific domain

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus.
- Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.

University of Mumbai, Information Technology (semester VII and semester VIII) (Rev-2012) Page 31

Course Code	Course	Te	eaching Sche (Hrs./Week)		Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical/	Tutorial	Total
						Oral		
ITC7053	E- Commerce and E- Business	04	02		04	01		05

Course Code	Course Name		Examination Scheme									
			Т	heory Ma	rks			0				
				sessment	End Sem.	Term Work	Practical	Oral	Total			
		Test 1	Test 2	Avg. of 2 Tests	Exam	C						
ITC7053	E- Commerce and E- Business	20	20	20	80	25		25	150			

- \triangleright
 - To understand technical aspect of E-commerce and E-Business
- To describe the process of E-commerce and E-business
- To understand Infrastructure design issues of E-commerce

Course Outcomes:

Graduates will be able to design and conduct experiments, as well as analyze and interpret the technological, user, network requirements for developing the various modules of e commerce/business site, will be able to apply the knowledge gained and modern engineering tools in their application domain.

Pre requisites:

Internet Technologies, Database concepts, Internet Security, Middleware technologies, web services

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours
1	E – commerce :-	Definition of e com, different types of e com,	2
	Introduction to E	Examples of e com E commerce trade cycle,	
	commerce	Advantages and disadvantages of ecom, Traditional	
		commerce Vs E commerce	
			0
2	Overview of	Client side programming (Dream weaver , Front page)	8
	Hardware and	, Server side programming (PHP) , Database	
	software	connectivity, session tracking, middleware	
	technologies for E	technologies from e com perspective and security	
	com	aspects wrt to e commerce, integration of web services	
3	Payment System	Traditional payment model, Characteristics of payment	8
	for e commerce	system, SET Protocol for credit card payment, E-cash,	
		E-check, smart cards	
4	E – Marketing	Value chain, Working of e – market, Transactions at e	8
	Strategies	– market, Strategies for marketing for selling on the	
		web – Advertising supported, advertising subscription	
		mixed model, fee for transaction model Sales and	
		Promotions Strategies for Purchasing and support	
		activities	
5	E business :-	Definition of e business, Characteristics, elements of e	4
	Introduction to e	business, e business roles, Impact of e business,	
	business	challenges of e business, difference between e business	
		, e commerce	
6	Developing e	E- business structure, Evolution of e –business and its	3
	business models	stages, E – business models, Characteristics of Internet	
		based software and e business solutions	
7	E-business	Strategic planning process, SCM, CRM, ERP,	7
	strategies	procurement	
8	Design and	a) Building an e commerce website. :-	8
	development of	SDLC, system design, Issues involved in designing a	

an business website	website, Prerequisites required for designing in – house website, steps involved in web site development, e- business and web site development solutions, security issues involved and analysing website traffic Case study	
	b) Analysis and design – (Workflow management, process modelling, data modelling), UI design, use case design, information architecture, security concerns	<u>_</u> 0

- 1. E-Commerce Fundamentals and application (Henry Chan) Wiley publication
- 2. Electronics Commerce (Gary Schneider) Thomson Course technology
- 3. E Business, Parag Kulkarni, Sunita Jahirabadkar, Pradip Chande, Oxford Higher Education , Oxford University Press
- 4. E –business and E commerce Management , Dave Chaffey , Pearson , 3rd edition
- 5. E commerce by Laudon

References:

- 1. E- Commerce Strategies, Technology and applications (David Whitley) Tata McGrawHill
- 2. Introduction to E-commerce Elias Awad

Term work:

Term work should include at least 8 experiments.

Journal must include at least 2 assignments.

Term work: - 25 marks (total) = 15 marks (experiments) + 5 marks (Assignments) + 5 marks (attendance – theory + Practical).

Oral exam will be based on the above syllabus.

Suggested Practical List (If Any):

Exp 1: All experiments should be part of final e-commerce / e business portal development

- 1. Home page design
- 2. Form validation (Ajax enabled)
- 3. Catalog design and Search techniques (Web mining , and Ajax enabled)
- 4. Access control mechanism (session management)
- 5. Payment systems
- 6. Security features
- 7. Creating Web Site to integrate web Services
- 8. Server side using Web Services

Exp 2: Case study of M commerce, bit coins, Google app engine, and other current e com / e business technologies

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.

Course Code	Course	Te	eaching Sche Hrs./Week		Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total
ITC7054	Multimedia Systems	04	02		04	01		05

Course Code	Course Name		Examination Scheme								
			Theory Marks)			
		Inter	Internal assessment End Sem.				Practical	Oral	Total		
		Test 1	Test 2	Avg. of 2 Tests	Exam		2				
ITC7054	Multimedia Systems	20	20	20	80	25		25	150		

- To understand technical aspect of Multimedia Systems
- To understand and evaluate the process of development of Multimedia Systems
- To understand the framework and standards available for different Multimedia applications

Course Outcomes:

Students will be able to understand the relevance and underlying infrastructure of multimedia systems. The purpose of this course is to make the students capable to apply their multimedia knowledge to understand the current requirements of multimedia products. The standards and frameworks introduced will help the students develop the multimedia systems as per industry standards

Pre requisites:

Interactive I/O devices, Networking, basic concepts communication devices, Standards & frameworks

DETAILED SYLLABUS:

	Sr. No.	Module	Detailed Content	Hours	
	1	Introduction to Multimedia	What is multimedia, Hypermedia, Multimedia tools, Multimedia Authoring & its Tools, VERML, File Formats.	2	•
	2	Color in Images & Video	Colour Models for Images & Videos, Video Signals, Digital Video, MIDI, Quantization, Transmission of Audio	4	
	3	Compression Algorithms	Lossless Compression, Introduction, Basics, RLC ,VLC, lossless Image Compression, Lossy Compression, introduction, Distortion, Rate Distortion Theory, Quantization	4	
	4	Image Compression Standards	JPEG standards, JPEG 2000 standards, JPEG –LS standards, Bi-Level Image Compression Standards	4	
	5	Video Compression Techniques	Introduction, Motion Compensation ,Motion vectors, H.261& H.263,MPEG-1&MEPEG- 2MPEG_4,MPEG-7,MPEG21	5	
	6	Audio Compression	ADPCM, Vocoders, Psychoacoustics, MPEG audio.	3	
	7	Multimedia Network Applications	Quality of Multimedia Data transmission, Multimedia over IP, Multimedia over ATM, Media on Demand, Multimedia over Wireless Network	6	
	8	Multimedia Data bases	Design and Architecture of Multimedia Data base, Types, Organization, Medias Abstraction, Query Language.	7	
1	9	Frame Work for Multimedia Standards	Introduction, Standard Activates, Standard to built a news Global Information Infrastructure, Standardization process on Multimedia Communication, ITU-I Mediacom 2004 Framework, ISO/MPEG -21 Framework, IETF Multimedia Internet Standards.	6	

10	Application layer:	Introduction, ITU applications, MPEG Application,	7	
		Digital Broadcasting Applications, Universal		
		multimedia access.		

1) Fundamentals of Multimedia by Ze-Nian Li& Mark.S.Drew

2) Introduction to Multimedia Communication, Application, Middleware, Networking by K.R.Roa, Zoran S,Bojkovic & Dragorad A. Milovanovic.

References:

Multimedia systems by Thakker

Term work:

Term work should include at least 8 experiments.

Journal must include at least 2 assignments.

Term work :- 25 marks (total) = 15 marks (experiments) + 5 marks (Assignments) + 5 marks (attendance – theory + Practical).

Oral exam will be based on the above syllabus.

Suggested Practical List (if any):

- 1) Creating sample movies/ animations in flash.
- 2) Designing a multimedia application / multimedia authoring system.
- 3) Design a web application using dream viewer & fireworks
- 4) Construction of website using pictures, video, audio
- 5) Design a game application in flash
- 6) Record speech & perform compression & decompression
- 7) Case study on all file formats related to multimedia system
- 8) Case study on different authoring tools
- 9) Different levels of control in slide show presentation

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 3 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Weightage of marks should be proportional to number of hours assigned to each module.

Course Code	Course Name		g Scheme /Week)	Credits Assigned					
Code	Tunic	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
ITC7055	Usability Engineering	04	02		04	01		05	

		Examination Scheme								
Course	Course		Т	heory Ma	rks					
Code	Name	Inter	nal ass	essment	End Sem.	Term Work	Practical	Oral	Total	
		Test 1	Test 2	Avg. of 2 Tests	Exam	Q				
ITC7055	Usability Engineering	20	20	20	80	25		25	150	

Is to provide concrete advice and methods that can be systematically employed to ensure a high degree of usability in the final user interface.

Course Outcomes:

Students will be able to create useful usable and used interface.

DETAILED SYLLABUS:

	Sr. No.	Module	Detailed Content	Hours
	1	1	Introduction Cost Savings, Usability Now, Usability Slogans, Discount Usability Engineering, Recipe For Action, Usability and Other Considerations, Definition of Usability, Example: Measuring the Usability of Icons, Usability Trade-Offs, Categories of Users and Individual User Differences	06
	2	2	Generations of User Interfaces Batch Systems, Line-Oriented Interfaces, Full-Screen Interfaces, Graphical User Interfaces, Next-Generation Interfaces, Long-Term Trends in Usability	02
	3	3	The Usability Engineering LifecycleKnow the User, Competitive Analysis, Goal Setting,Parallel Design, Participatory Design, Coordinating theTotal Interface, Guidelines and Heuristic Evaluation,Prototyping, Interface Evaluation, Iterative Design,Follow-Up Studies of Installed Systems, Meta-Methods,Prioritizing, Usability Activities.	08
	4	4	Usability Heuristics Simple and Natural Dialogue, Speak the Users' Language, Minimize User Memory Load, Consistency, Feedback, Clearly Marked Exits, Shortcuts, Good Error Messages, Prevent Errors, Help and Documentation, Heuristic Evaluation.	08
	5	5	Usability Testing Test Goals and Test Plans, Getting Test Users, Choosing Experimenters, Ethical Aspects of Tests with Human, Subjects, Test Tasks, Stages of a Test, Performance Measurement, Thinking Aloud, Usability Laboratories,	08
	6	6	Usability Assessment Methods beyond Testing Observation, Questionnaires and Interviews, Focus Groups, Logging, Actual Use, User Feedback, Choosing Usability Methods.	04
2	7	7	Interface StandardsNational, International and Vendor Standards,Producing Usable In-House Standards.International User InterfacesInternational Graphical Interfaces, InternationalUsability Engineering, Guidelines for	08

		Internationalization, Resource Separation, Multilocale Interfaces.	
8	8	Future Developments Theoretical Solutions, Technological Solutions, CAUSE Tools: Computer-Aided Usability Engineering,	04
		Technology Transfer	

² Usability Engineering by Jacob Nielson, Morgan Kaufmann, Academic Press.

* eBook available

References:

Developing User Interfaces - Ensuring Usability through Product & Process by Deborah Hix, Rex Hartson, Wiley

Suggested Practical List (If Any): Refer appendix A of the text book for Practical Exercise.

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Weight age of marks should be proportional to number of hours assigned to each module.

Course Code	Course	Te	eaching Sche (Hrs./Week)	me	Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
ITC7056	Ubiquitous Computing	04	02		04	01		05	

		Examination Scheme								
Course Code	Course		Tł	eory Marks	-		C	•		
Course Code	Name	Inte	ernal ass	sessment	End Sem.	Term Work	Practical Oral	Oral	Total	
		Test 1	Test 2	Avg. of 2 Tests	Exam		5			
ITC7056	Ubiquitous Computing	20	20	20	80	25		25	150	

- To introduce the ideas of ubiquitous computing techniques based on human experience.
- To generate an ability to design, analyze and perform experiments on real life problems using various smart devices, smart interaction and smart environment.
- To integrate computation into the environment, rather than having computers as distinct objects.
- To enable people to move around and interact with computers more naturally than they currently do.

Course Outcomes:

On successful completion of this course the student has: Knowledge and understanding regarding:

- The objectives and the historical development of the field of ubiquitous computing
- Fundamentals of sensor technology and sensor networks
- Apply middleware techniques to implement ubiquitous computing systems
- Design of new (often embedded) interactive artifacts
- Context aware and adaptive systems
- Compare the usability of alternative design of interactions for specific ubiquitous computing systems

DETAILED SYLLABUS:

ſ	Sr. No.	Module	Detailed Content	Hours
-	1	Introduction to Ubiquitous Computing	Definition, Advantage, Application and Scope. Properties of Ubiquitous Computing, Ubiquitous System Environment Interaction. Architectural Design for UbiCom Systems: Smart DEI Model.	4
	2	Smart Devices and Services	Introduction to Smart Devices: Users, Mobiles, Cards and Device Networks. Service Architecture Models. Service Provision Life-Cycle. Virtual Machines and Operating Systems Mobile Computers and Communicator Devices.	
-	3	Sensing and Controlling	Tagging the Physical World. Sensors and SensorNetworks.Micro Actuation and Sensing:Micro-Electro-MechanicalSystems (MEMS).EmbeddedSystems and Real-Time Systems.Control Systems forPhysical World Tasks.Robots	8
-	4	Context-Aware Systems	Introduction to Context-Aware Computing, Context- Aware Systems, Context-Aware Applications, Designing and Implementing Context-Aware Applications, Issues for building Context-Aware Applications.	8
-	5	Human–Computer Interaction	User Interfaces and Interaction for Four Widely Used Devices. Hidden UI Via Basic Smart Devices. Hidden UI Via Wearable and Implanted Devices. Human- Centered Design (HCD). User Models: Acquisition and Representation. iHCI Desi	10
	6	Ubiquitous Communication	Data Networks. Audio Networks. Wireless Data Networks. Universal and Transparent Audio, Video and Alphanumeric Data. Ubiquitous Networks. Network Design Issues. Human Intelligence Versus Machine Intelligence. Challenges in Ubiquitous System, Social Issues: Promise Versus Peril.	10

S

[1] Stefan Poslad. Ubiquitous Computing: Smart Devices, Environments and Interactions, Wiley Publication.

[2] John Krumm. Ubiquitous Computing Fundamentals. CRC Press.

References:

[1] Yin-Leng Theng and Henry B. L. Duh. Ubiquitous Computing: Design, Implementation, and Usability. IGI Global.

[2] Adam Greenfield. Everyware the Drawing age of Ubiquitous Computing, Published in Association with AIGA.

[3] Mobile and Ubiquitous Computing", Georgia Tech, 2003.

Term work:

Term work will be based on Practical and Assignments covering the topics of the syllabus.

Suggested Practical List (If Any):

- 1. Applications for location-based messages
- 2. Global Positioning system
- 3. Context-Aware system
- 4. Human Computer Interaction
- 5. Ubiquitous Communication
- 6. Case study of Class Room 2020
- 7. Case study of Super Market
- 8. Case study of Hospital Management

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Weight age of marks should be proportional to number of hours assigned to each module.

Course Code	Course	Tea	aching Scher (Hrs./Week)		Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
ITP706	Project I		*			03		03	

*Work load of the teacher in semester VII is equivalent to 6 hrs/week.

			Examination Scheme							
Course Code	Course		Tl	neory Marks			0			
Course Code	Name			sessment	End Sem.	Term Work	Practical	Oral	Total	
		Test 1	Test 2	Avg. of 2 Tests	Exam					
ITP706	Project I					25		25	50	
					•					

Objective: To help the learner to develop some of the following:

1. Relate theory with real time applications.

2. Experiencing the issues involved with creation and design of simple products and processes.

Outcomes: The learner should be able to prepare a synopsis of the work selected.

Guidelines for Project

• Students should do literature survey/visit industry/analyze current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by experimental/simulation methods. The solution to be validated with proper justification and compile the report in standard format.

Guidelines for Assessment of Project I

- Project I should be assessed based on following points
 - Quality of problem selected
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization
 - Clarity of objective and scope
- Project I should be assessed through a presentation by a panel of Internal and External examiners appointed by the University of Mumbai.

Course Code	Course	Tea	aching Sche (Hrs./Week)		Credits Assigned					
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total		
ITC801	Storage Network Management and Retrieval	04	02		04	01	C C	05		

		Examination Scheme									
Course Code	Course Name	Inter	Theo nal asses	ory Marks sment	- 7	Term Work	Practical Oral		Total		
		Test1	Test 2	Avg. of 2 Tests	End Sem. Exam	WOIK					
ITC801	Storage Network Management and Retrieval	20	20	20	80	25		25	150		

- a. Study and evaluate the need for Storage networking, current storage technologies: SAN, NAS, IP storage etc., which will bridge the gap between the emerging trends in industry and academics.
- b. Understanding and building Storage networks and its backup and recovery techniques.
- c. Study the information retrieval system as per different application in storage networks.

Course Outcomes:

- 1) Students will be able to evaluate storage architectures, including storage subsystems, SAN, NAS, and IP-SAN, also define backup, recovery.
- 2) Examine emerging technologies including IP-SAN.
- **3**) Define information retrieval in storage network and identify different storage virtualization technologies.

Prerequisite: Computer Networks, Database Management Systems and Operating Systems

Sr. No.	Module	Detailed Content	Hours
INU.			
Ι	NEED FOR STORAGE NETWORK	 INTRODUCTION:- Limitations of traditional server centric architecture,. Storage centric architecture and its advantages. BASICS OF STORAGE NETWORK:- Intelligent Storage Systems (ISS), Data protection (RAID 	10
		implementation methods).RAID arrays ,Components, RAID technologies, RAID levels, RAID impact on disk, performance & RAID comparison.	
II	STORAGE NETWORK ARCHITECTURE	SCSI, SAN: FC SAN FC Protocol Stack, IP Storage, Infiniband, Virtual Interfaces	08
III	ADVANCED STORAGE TECHNOLOGY	NETWORK ATTACHED STORAGE (NAS):- Local File systems, Network File systems and file servers, Shared Disk File systems: Case study, Comparison: NAS, FC SAN and iSCSI SAN.	14
		STORAGE VIRTUALIZATION:- Virtualization in I/O path, Limitations and requirements, Definition of Storage Virtualization, Storage virtualization on Block and file level, Storage virtualization on various levels of Storage network, Symmetric and Asymmetric Virtualization.	
IV	STORGAE NETWORK BACKUP AND RECOVERY	BC Terminology, BC Planning Lifecycle, General Conditions for Backup, Recovery Considerations, Network Backup Services Performance Bottlenecks of Network Backup, Backup Clients, Back up file systems, Backup Databases, Next Generation Backup.	06

DETAILED SYLLABUS:

 \square

V	INFORMATION	Overview, Abstraction, Information System, Measures,	10	
	RETRIEVAL IN	from Data to Wisdom, Document and Query Form,		
	STORAGE	Query structures, The matching process, Text analysis:		
	NETWORK	Indexing, Matrix representation, Term extraction, Term		
		association, , Stemming , Multilingual retrieval systems		

Text Books:

- 1. ULF Troppen, Rainer Erkens and Wolfgang Muller, "Storage Networks Explained: Basic and Applications of Fibre Channel SAN, NAS and ISCSI and Infifniband", Wiley
- 2. EMC Educational Services, "Information Storage and Management", wiley India
- 3. R. R. Korfhage, "Information Storage and Retrieval", Wiley

References:

- 1. Richard Barker and Paul Massiglia, "Storage Area Network Essentials: A Complete Guide to Understanding and Implementing SANs", Wiley.
- 2. Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill
- 3. W. Curtis Preston, "Using SANs and NAS", O'Reilly

Term work: based on Laboratory Practical's/ Case studies and assignment

- 1. Term work shall consist of 10 practical implementation, case studies and study of simulators or tools available.
- 2. Study and implementation of simulation tool Navishpere and Unisphere related to storage network management.
- 3. Case study on Building and implementing SAN.
- 4. Study and implementation of any information retrieval tool.

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code	Course	Tea	iching Schei Hrs./Week	me	Credits Assigned			
	Name	Theory	Theory Practical Tutorial			Practical/Oral	Tutorial	Tota 1
ITC802	Big Data Analytics	04	02		04	01		05

Course Code		Examination Scheme							
	Course Name		I	Theory M	arks			0	
		Inter	nal ass	essment	End Sem.	Term Work	Practical	Oral	Total
		Test 1	Test 2	Avg. of 2 Tests	Exam				
ITC802	Big Data Analytics	20	20	20	80	25		25	150

Course Objectives:

- 1. To provide an overview of an exciting growing field of big data analytics.
- 2. To introduce the tools required to manage and analyze big data like Hadoop, NoSql Map-Reduce.
- 3. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems in for decision support.

Course Outcomes: At the end of this course a student will be able to:

- 1. Understand the key issues in big data management and its associated applications in intelligent business and scientific computing.
- 2. Acquire fundamental enabling techniques and scalable algorithms like Hadoop, Map Reduce and NO SQL in big data analytics.
- 3. Interpret business models and scientific computing paradigms, and apply software tools for big data analytics.
- **4.** Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.

DETAILED SYLLABUS:

ſ	Sr. No.	Module	Detailed Content	Book	Hours
-	1	Introduction to Big Data	Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach, Case Study of Big Data Solutions.	From Ref. Books	03
-	2	Introduction to Hadoop	What is Hadoop? Core Hadoop Components; Hadoop Ecosystem; Physical Architecture; Hadoop limitations.	Hadoop in Practise Chapter 1	02
-	3	NoSQL	 What is NoSQL? NoSQL business drivers; NoSQL case studies; NoSQL data architecture patterns: Key-value stores, Graph stores, Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns; Using NoSQL to manage big data: What is a big data NoSQL solution? Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; Four ways that NoSQL systems handle big data problems 	No-SQL book	04
	4	MapReduce and the New Software Stack	Distributed File Systems : Physical Organization of Compute Nodes, Large-Scale File-System Organization. MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures. Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce , Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with One MapReduce Step.	Text Book 1	06

	5	Finding Similar Items	Applications of Near-Neighbor Search, Jaccard Similarity of Sets, Similarity of Documents, Collaborative Filtering as a Similar-Sets Problem . Distance Measures: Definition of a Distance Measure , Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance.	Text Book 1	03
	6	Mining Data Streams	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Querie, Issues in Stream Processing. Sampling Data in a Stream : Obtaining a Representative Sample , The General Sampling Problem, Varying the Sample Size. Filtering Streams: The Bloom Filter, Analysis. Counting Distinct Elements in a Stream The Count-Distinct Problem, The Flajolet-Martin Algorithm, Combining Estimates, Space Requirements Counting Ones in a Window: The Cost of Exact Counts, The Datar-Gionis-Indyk- Motwani Algorithm, Query Answering in the DGIM Algorithm, Decaying Windows.	Text Book 1	06
	7	Link Analysis	PageRank Definition, Structure of the web, dead ends, Using Page rank in a search engine, Efficient computation of Page Rank: PageRank Iteration Using MapReduce, Use of Combiners to Consolidate the Result Vector. Topic sensitive Page Rank, link Spam, Hubs and Authorities.	Text Book 1	05
S	8	Frequent Itemsets	 Handling Larger Datasets in Main Memory Algorithm of Park, Chen, and Yu, The Multistage Algorithm, The Multihash Algorithm. The SON Algorithm and MapReduce Counting Frequent Items in a Stream Sampling Methods for Streams, Frequent Itemsets in Decaying Windows 	Text Book 1	05
	9	Clustering	CURE Algorithm, Stream-Computing, A Stream- Clustering Algorithm, Initializing & Merging Buckets,	Text	05

		Answering Queries	Book 1	
10	Recommendation	A Model for Recommendation Systems, Content-Based	Text	04
	Systems	Recommendations, Collaborative Filtering.	Book 1	
11	Mining Social-	Social Networks as Graphs, Clustering of Social-	Text	05
	Network Graphs	Network Graphs, Direct Discovery of Communities,	Book 1	
		SimRank, Counting triangles using Map-Reduce		

Text Books:

- 1. Anand Rajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press,
- 2. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 3. Dan McCreary and Ann Kelly "Making Sense of NoSQL" A guide for managers and the rest of us, Manning Press.

References:

- 1. Bill Franks , **"Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics"**, Wiley
- 2. Chuck Lam, "Hadoop in Action", Dreamtech Press
- 3. Judith Hurwitz, Alan Nugent, Dr. Fern Halper, Marcia Kaufman, "Big Data for Dummies", Wiley India
- Michael Minelli, Michele Chambers, Ambiga Dhiraj, "Big Data Big Analytics: Emerging Business Intelligence And Analytic Trends For Today's Businesses", Wiley India
- 5. Phil Simon, "Too Big To Ignore: The Business Case For Big Data", Wiley India
- 6. Paul Zikopoulos, Chris Eaton, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data', McGraw Hill Education.
- 7. Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley India.

Oral Exam:

An oral exam will be held based on the above syllabus.

Term work:

Assign a case study for group of 2/3 students and each group to perform the following experiments on their case-study; Each group should perform the exercises on a large dataset created by them.

Term work: (15 marks for programming exercises + 10 marks for mini-project)

Suggested Practical List: Students will perform at least 8 programming exercises and implement one mini-project. The students can work in groups of 2/3.

- 1. Study of Hadoop ecosystem
- 2. 2 programming exercises on Hadoop
- 3. 2 programming exercises in No SQL
- 4. Implementing simple algorithms in Map- Reduce (3) Matrix multiplication, Aggregates, joins, sorting, searching etc.
- 5. Implementing any one Frequent Itemset algorithm using Map-Reduce
- 6. Implementing any one Clustering algorithm using Map-Reduce
- 7. Implementing any one data streaming algorithm using Map-Reduce
- 8. Mini Project: One real life large data application to be implemented (Use standard Datasets available on the web)
 - a) Twitter data analysis
 - b) Fraud Detection
 - c) Text Mining etc.

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code	Course	Tea	ching Scheme (Hrs./Week)		Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
ITC803	Computer Simulation and Modeling	04	02		04	01		05	

		Examination Scheme							
	e Course Name	Theory Marks				0			
Course Code		Internal assessment			End	Term Work	Practical	Oral	Total
		Test1	Test 2	Avg. of 2 Tests	Sem. Exam	2			
ITC803	Computer Simulation and Modeling	20	20	20	80	25	25		150

Course Objectives:

This course presents an introduction to discrete event simulation systems. Emphasis of the course will be on modeling and the use of simulation languages/software to solve real world problems in the manufacturing as well as services sectors. The course discusses the modeling techniques of entities, queues, resources and entity transfers in discrete event environment. The course will teach the students the necessary skills to formulate and build valid models, implement the model, perform simulation analysis of the system and analyze results properly.

The "theory" of simulation involves probability and statistics, thus a good background in probability and statistics is a required prerequisite

Course Outcomes:

- Understand the meaning of simulation and its importance in business, science, engineering, industry and services
- Identify the common applications of discrete-event system simulation.
- Practice formulation and modeling skills.

- Understand simulation languages
- Ability to analyze events and inter-arrival time, arrival process, queuing strategies, resources and disposal of entities
- An ability to perform a simulation using spreadsheets as well as simulation language/package
- Ability to generate pseudorandom numbers using the Linear Congruential Method
- Ability to perform statistical tests to measure the quality of a pseudorandom number generator
- Ability to define random variate generators for finite random variables
- Ability to analyze and fit the collected data to different distributions

DETAILED SYLLABUS:	

 \square

Sr.	Module	Detailed Content	Hours
No.			
1	UNIT - I	Introduction to Simulation.	
	Introduction to simulation	Simulation Examples.	
	Simulation	General Principles	15
2	UNIT - II		
	Mathematical &	Statistical Models in simulation.	
	Statistical Models in Simulation	Queuing Models	8
		X	
3	UNIT - III	Random Number Generation.	
	Random Numbers	Testing random numbers (Refer to Third edition)	
		Random Variate Generation: Inverse transform	9
		technique, Direct Transformation for the Normal	
		Distribution, Convolution Method, Acceptance- Rejection Technique (only Poisson Distribution).	
		Rejection Technique (only Poisson Distribution).	
4	UNIT – IV	Input Modeling	
	Analysis of	Verification, Calibration and Validation of Simulation	
	simulation data	Models	10
		Estimation of absolute performance.	12
		Case study	
5	UNIT V		

Application	Processor and Memory simulation	4]
	Manufacturing & Material handling		

Text Books:

Discrete Event System Simulation; Third Edition, Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, Prentice-Hall

Discrete Event System Simulation; Fifth Edition, Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, Prentice-Hall

References:

- 1. System Modeling & Analysis; Averill M Law, 4th Edition TMH.
- 2. Principles of Modeling and Simulation; Banks C M, Sokolowski J A; Wiley
- 3. System Simulation ; Geoffrey Gordon ; EEE
- 4. System Simulation with Digital Computer; Narsing Deo, PHI

Term work:

Laboratory work: 10 marks

Mini Simulation Project presentation: 10 marks

Attendance / Quiz: 5 marks

Suggested Practical List (If Any):

Perform simulation exercises given in the text book (third edition) using spreadsheets and/or simulation language/package

- Queue- single server, multi-server, classic case- dump truck
- Inventory Lead time=0, lead time fixed, lead time probabilistic
- Reliability problem
- Tutorials on statistical models
- Random number generate and test
- Goodness of fit test
- Output analysis Point estimate and Confidence Interval

University of Mumbai, Information Technology (semester VII and semester VIII) (Rev-2012) Page 58

Simulation: Real World Examples – can be in the field of business, transportation, medical, computing, manufacturing and material handling- Presentation to be taken.

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code	Course	Те	aching Sche (Hrs./Week)	me		Credits Assi	gned	
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
ITC8041	Enterprise Resource Planning	04	02		04	01		05

Course Code	Course Name		Examination Scheme						
		Theory Marks						5	
		Inter	nal ass	essment	End Sem.	Term Work	Practical Oral		Total
		Test 1	Test 2	Avg. of 2 Tests	Exam		0		
ITC8041	Enterprise Resource Planning	20	20	20	80	25		25	150

Course Objectives: This course presents an introduction to ERP and related technologies. The course discusses ERP Manufacturing Perspective and ERP modules. The course will teach the learners the ERP implementation lifecycle, emphasis on ERP benefits and introduces the ERP tools.

Course Outcomes: The learner will be familiar with ERP and related technologies like Business Processing Reengineering (BPR), Supply Chain Management (SCM), Customer Relationship Management(CRM), MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System etc. The learner should gain the knowledge on ERP tools and ERP benefits.

DETAILED SYLLABUS:

	Sr. No.	Module	Detailed Content	Hours
	1.	Introduction to ERP	Enterprise – An Overview Integrated Management Information, Business Modeling, Integrated Data Model	04
	2.	ERP and Related Technologies	Business Processing Reengineering(BPR), Data Warehousing, Data Mining, On-line Analytical Processing(OLAP), Supply Chain Management (SCM), Customer Relationship Management(CRM), MIS - Management Information System, DSS - Decision Support System, EIS - Executive Information System	06
	3.	ERP Manufacturing Perspective	MRP - Material Requirement Planning, BOM - Bill Of Material, MRP - Manufacturing Resource Planning, DRP - Distributed Requirement Planning, PDM - Product Data Management	06
	4.	ERP Modules	Finance, Plant Maintenance, Quality Management, Materials Management	06
	5.	Benefits of ERP	Reduction of Lead-Time, On-time Shipment, Reduction in Cycle Time, Improved Resource Utilization, Better Customer Satisfaction, Improved Supplier Performance, Increased Flexibility, Reduced Quality, Costs, Improved Information Accuracy and Design-making Capability	06
	6.	ERP Implementation Lifecycle	Pre-evaluation Screening, Package Evaluation, Project Planning Phase, Gap Analysis, Reengineering, Configuration, Implementation Team Training, Testing, Going Live, End-user Training, Post- implementation (Maintenance mode)	06
j'	7.	ERP case Studies	E-Commerce to E-business E-Business structural transformation, Flexible Business Design, Customer Experience, Create the new techo enterprise, New generation e-business leaders, memo to CEO, Empower your customer, Integrate Sales and Service, Integrated Enterprise applications	06
	8.	E-Business	Enterprise resource planning the E-business Backbone Enterprise architecture, planning, ERP usage in Real	08

	Architecture	world, ERP Implementation, Future of ERP		
		applications, memo to CEO ,E-Procurement, E-		
		Governance, Developing the E-Business Design		
9.	Introduction to	JD Edwards-Enterprise One	04	
	ERP tools	Microsoft Dynamics-CRM Module		

Text Books:

- 1. Enterprise Resource Planning Alexis Leon, Tata McGraw Hill.
- 2. Enterprise Resource Planning Diversified by Alexis Leon, TMH.
- 3. Enterprise Resource Planning Ravi Shankar & S. Jaiswal, Galgotia.

Reference Books:

1. Guide to Planning ERP Application, Annetta Clewwto and Dane Franklin, McGRaw-Hill, 1997

2. The SAP R/3 Handbook, Jose Antonio, McGraw – Hill

3. E-Business Network Resource planning using SAP R/3 Baan and Peoplesoft : A Practical Roadmap For Success By Dr. Ravi Kalakota

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code	Course	Teaching Scheme (Hrs/Week)			Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
ITC8042	Wireless Sensor Networks	04	02		04	01		05	
)	

Course Code	Course Name		Examination Scheme						
		Theory Marks						5	
		Inter	nal ass	essment	End Sem.	Term Work	Practical Oral	Total	
		Test 1	Test 2	Avg. of 2 Tests	Exam		0		
ITC8042	Wireless Sensor Networks	20	20	20	80	25		25	150

Course Objectives:

1. To understand the concepts of sensor networks and study the architecture of WSN.

2. To understand applications of WSN.

3. To discuss the challenges in designing MAC and routing protocols for wireless sensor networks.

4. To study different operating systems and look at performance issues.

5. To understand WSN Standards and future trends in WSN.

5. To study Challenges of Security in Wireless Sensor Networks and Protocols and Mechanisms for Security.

Course Outcomes:

1. Students shall be able to understand and study the functionalities, applications and architecture of WSN.

2. Students shall be able to describe the challenges in designing various protocols for wireless sensor networks.

- 3. Students shall be able to understand the current technology trends for the implementation and deployment of wireless sensor networks.
- 4. Students shall gain an understanding of WSN Standards and future trends in WSN.

5. Students shall be able to understand security aspects like Privacy issues, attacks and countermeasures.

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours
1.	Overview and Introduction of Wireless Sensor Network	Background of Sensor Network Technology; Types of Application; Challenges for WSNs: Characteristics requirements, Required mechanism; Basic Sensor Network Architectural Elements; Sensor Network scenarios: Types of sources and sinks, single-hop versus multi hop networks, Multiple sinks and sources, three types of mobility; Some examples of sensor nodes: Mica Mote family, EYES nodes, BT nodes.	6
2.	Applications of Wireless Sensor Network	Category 1(C1WSNs), Category 2(C2WSNs), Range of Applications, Examples of Category 1 WSN (C1WSNs) Applications, and Examples of Category 2 WSN(C2WSNs) Applications.	4
3.	MAC Protocols	Fundamentals of (wireless) MAC protocols, Requirements and design considerations for MAC Protocols in WSN, Low duty cycle protocols and wakeup concepts, STEM,S-MAC, Mediation device protocol, Wakeup radio concepts, Contention- based protocols, CSMA protocols, PAMAS, Schedule-based protocols, LEACH, SMACS, Traffic-adaptive medium access protocol(TRAMA),IEEE 802.15.4 MAC protocol, Slotted CSMA-CA protocol	9

4.	Network and	Network layer :	7
	Transport layer Protocol.	Data Dissemination and Gathering, Routing Challenges and Design Issues, Routing Strategies: Flooding and it's variants, Power-Efficient Gathering in Sensor Information Systems, Geographical routing, Transport layer : Transport protocol Design issues, Examples of Existing Transport Control Protocols: CODA, ESRT, RMST, PSFQ, GARUDA, ATP; Performance of Transport Control Protocols :Congestion, packet loss recovery.	60
5.	Operating Systems , Performance and Traffic Management Issues	Operating System Design Issues, Examples of Operating Systems: TinyOS, Mate, MagnetOS, MANTIS,OSPM,EYES OS, SenOS, EMERALDS, PicOS, WSN Design Issues, Performance Modeling of WSNs	7
6.	WSN standards and Future trends in wireless sensor networks	Wireless sensor network standards-IEEE 802.15.4 Low rate WPAN standard, The ZIGBEE alliance etc. Future trends in wireless sensor networks: Wireless Multimedia Sensor Networks, Sensor Network Applications in Challenging Environments.	6
7	Security	Fundamentals of Network Security ,Challenges of Security in Wireless Sensor Networks, Security Attacks in Sensor Networks, Protocols and Mechanisms for Security, IEEE 802.15.4 and ZigBee Security	9

Text Books:

- 1. HOLGER KARL, ANDREAS WILLIG., "Protocols, and Architectures: For Wireless Sensor Networks", Wiley Student Edition
- 2. Kazem Sohraby, Daniel Minoli, Taieb Znati., "Wireless Sensor Networks: Technology, Protocols, and Applications", Wiley Student Edition.
- 3. Waltenegus Dargie and Christian Poellabauer., "Fundamentals of Wireless Sensor Networks-Theory & Practice", John Wiley publication, 2010.
- 4. J. Zheng and A. Jamalipour, "Wireless Sensor Networks : A Networking Perspective " John Wiley publication, 2009

References:

- 1. Edgar H. Callaway Jr., "Wireless Sensor Networks Architectures and Protocols", AUERBACH Publications, CRC Press, 2004.
- 2. Feng Zhao, Leonidas Guibas ,"Wireless Sensor Networks: An Information Processing Approach", Morgan Kaufmann Series in Networking 2004.

Term work: Term work shall consist of at least 06 experiments from the suggested list & 04 assignments based on the syllabus.

Distribution of marks for term work shall be as follows.

- 1. Attendance (Theory & Practical) :05 marks
- 2. Laboratory Work (Experiment & Journal):15 marks
- 3. Assignment : 05 marks.

The final certification and acceptance of Term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Suggested Practical List :

- 1. Installation of OMNET ++.
- 2. Installation & configuration of TinyOS.
- 3. Implementation of any two routing algorithms using JAVA
- 4. Implementation of any two programs on Tiny OS.
- 5. Study of any of the WSN operating systems.

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code	Course	Tea	ching Schen (Hrs./Week)	ne	Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Term Work /Practical	Tutorial	Total	
ITC8043	Geographical Information Systems	04	02		04	01		05	

Course Code	Course Name		Examination Scheme					
		Theory Marks			Term	Practical	Oral	Total
		Internal as	Internal assessment End					
		Test 1	Test 2	Exam		5		
ITL8043	Geographical Information Systems	20	20	80	25		25	150

Course Objective:

- To provide an understanding of the basic concepts and uses of GIS technology
- To develop an ability to analyze, interpret geospatial data
- To provide an understanding of the basic principles of Remote Sensing and its use in GIS
- To provide a research platform for students in the area of GIS adapting to ever changing Technologies

Course Outcomes:

After completing this course, students will be able to:

- Apply the knowledge of science for real world applications in GIS
- Design and conduct experiments as well as analyze, interpret the geospatial data using GIS tools
- Function with multidisciplinary Teams.
- Use the techniques, skills and modern engineering tools necessary for engineering practice.
- Adapt to Open source standards

DETAILED SYLLABUS:

Module No.	Unit No.	Details of Topic	Hrs.
1.0		Fundamentals of GIS	06
1.0	1.1	Introduction, Definition of GIS, Evolution of GIS, components of GIS,	
	1.2	Geospatial Data, Geographic Coordinate System, Map Projections, Commonly Used Map Projections, UTM grid system, Map Scale	C C
	1.3	Cartographic Symbolization, Types of Maps, Typography, Map Design, Map Production	
2.0		Data Management, Models and Quality Issues	06
	2.1	Vector Model : Topology, Non topological Vector models, Attribute Data in GIS, Attribute Data Entry, Vector Data Query, Manipulation of Fields and Attribute Data	
	2.2	Raster Data Model : Elements of Raster Data Model, Types of Raster Data, Raster Data Structure, Raster Data Query, Data Compression, Data Conversion, Integration of Raster and Vector data	
	2.3	Data input and editing, Data quality Issues: Accuracy, Consistency, Precision and Resolution, Completeness; sources of error in GIS	
3.0		GIS Data Exploration Analysis and Visualization	2+2+4+4=12
	3.1	Data exploration: Descriptive statistics, Graphs, Dynamic Graphics	
	3.2	Vector Data Analysis: Buffering, Overlay, Distance Measurement, Pattern Analysis, Map Manipulation	
	3.3	Raster Data Analysis: Local Operations, Neighborhood Operations, Zonal Operations, Data Extraction, Data Generalization, Comparison of Vector and Raster Based	
		Data	
. (3.4	Spatial Interpolation: Elements of Spatial Interpolation, Global methods, Local Methods, Kriging, Comparison of	
		Spatial Interpolation Methods	
4.0		Terrain mapping, Geocoding and Segmentation	04
	4.1	Terrain Mapping and Analysis: Data for Terrain Mapping and Analysis: DIM, TIN, Terrain Mapping, Slope and Aspect, Surface Curvature, Raster versus TIN	
	4.2	Geocoding and Dynamic Segmentation: Geocoding, Applications of Geocoding, Dynamic Segmentation,	

5.0		Remote Sensing Fundamentals	12
	5.1	Remote Sensing: Basic Principles, Electromagnetic Remote Sensing, Energy Sources, Energy Interactions with Surface Materials, , Energy Interactions with Earth's Atmosphere, Spectral Reflectance Curves	
	5.2	Microwave Remote Sensing, The Radar Principle, Factors Affecting Microwave Measurements, Radar Wavebands, SLAR Systems, SAR, Interpreting SAR Images, Geometrical Characteristics, Remote Sensing, Platform and Sensors, Satellite System Parameters, Sensor Parameters, Imaging Sensor Systems, Earth Resources Satellites, Meteorological Satellites. Data Formats, Standard Products	°.
	5.3	Visual Image Interpretation: Information Extraction By human and Computer, Remote sensing Data Products, Image Interpretation, Elements of Image Interpretation	
6.0		Project Management	04
	6.1	Planning of Project, Implementation of Project, Management of Project, Case study	
7.0		Modern trends and Applications of GIS	04
	7.1	Multimedia GIS, Internet GIS, Mobile GIS, Applications of GIS in Urban and municipal area	

Recommended Books

- 1. Kang-tsung Chang, "Introduction to Geographical Information Systems", Tata McGraw Hill, Third Edition, 2003
- 2. M. Anji Reddi, "Remote Sensing and Geographical Information Systems", B. S. Publications, Second Edition, 2001
- 3. Basudeb Bhatta ,Remote Sensing and GIS ,Oxford University Press,2nd Edition
- 4. Ian Heywood, Sarah Cornelius & etal., "An Introduction to Geographical Information Systems", 2nd Edition, Pearson Education
- 5. A.M. Chandra and S.K. Ghosh, Remote Sensing and Geographical Information Systems , Narosa Publishing House Pvt ltd.
- 6. Peter A Burrough and McDonell, "Principles of Geographical Information Systems", Oxford University Press, 1998.
- 7. M. N. DeMers, "Fundamentals of Geographic Information Systems", 3rd edition, Wiley.
- 8. George B Korte, "The GIS Book", Onword press, Thomson Learning, 5th Edition, 2003
- 9. Tor Bernhardsen, "Geographic Information Systems An Introduction", 3rd edition, Wiley Publications

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

Term Work:

Term Work shall consist of at least 10 programs based on the above syllabus using any suitable software.

Distribution of marks for term work shall be as follows:

- 1. Attendance (Theory and Practical): 05 Marks
- 2. Laboratory work (Performing Experiments and Journal): 20 Marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory Work and Minimum Passing in the term work.

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code	Course	Course (Hrs./Week)			Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Term Work	Tutorial	Total	
						/Practical			
ITC8044	Robotics	04	02		04	01		05	

Course Code	Course Name		Examination Scheme							
		Т	Term	Practical	Oral	Total				
		Internal assessment End Sem.			Work					
		Test 1 Test 2 Exam								
ITL8044	Robotics	20 20 80			25		25	150		

Course Objectives: The Lerner is introduced to the fundamentals and kinematics of Robots. The topics like Differential motions & velocities, Trajectory Planning, Mobile Robot Motion Planning etc. are discussed.

Course Outcomes: At the end of this course, learners will be able to

- a. Understand kinematics and dynamics of stationary and mobile robots
- b. Understand trajectory planning for rigid robot and mobile robots
- c. Implement trajectory generation and path planning algorithms

٠

d. Work in interdisciplinary projects

Detailed Syllabus:

 \square

C	cobot Classification, Robot Components, Degrees of freedom,	03 Hrs	Chapter 1 –
			m . D 1 4
	sints Coordinates Coordinate		Text Book 1
Jo	oints, Coordinates, Coordinate		
fr	rames, workspace, applications		
2. Kinematics of H	Iomogeneous transformation	07 Hrs	Chapter 2 –
Robots m	natrices, Inverse transformation		Text Book 1
m	natrices, Forward and inverse		
ki	inematic equations – position and		
01	rientation, Denavit-Hatenberg		
re	epresentation of forward		
ki	inematics, Inverse kinematic		
so	olutions, Case studies		
	, ,		
3. Differential motions D	Differential relationship, Jacobian,	06 Hrs	Chapter 3 –
and velocities D	Differential motion of a frame and		Text Book 1
ro	obot, Inverse Jacobian		
4. Dynamic Analysis of La	agrangian mechanics, Moments of	07 Hrs	Chapter 4 –

University of Mumbai, Information Technology (semester VII and semester VIII) (Rev-2012) Page 71

Forces	Inertia, Dynamic equations of robots, Transformation of forces and moment between coordinate frames		Text Book 1	
5. Trajectory Planning	Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories	07 Hrs	Chapter 5 – Text Book 1	S
6. Mobile Robot Motion Planning	Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent Bug	04 Hrs	Chapter 2 – Text Book 2	
7. Potential Functions and Visibility Graphs	Attractive/Repulsive potential, Gradient descent, wave-front planner, navigation potential functions, Visibility map, Generalized Voronoi diagrams and graphs, Silhouette methods	08 Hrs	Chapter 4 & 5 – Text Book 2	
8. Coverage Planning	Cell Decomposition, Localization and Mapping	06 Hrs	Chapter 6, 9 – Text Book 2	

Text Books

- 1. Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011
- 2. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard,

Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion – Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.

Reference Books

- 1. Mark W. Spong & M. Vidyasagar, "Robot Dynamics & Control", Wiley India Pvt. Ltd., Second Edition, 2004
- John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 3. Aaron Martinez & Enrique Fernandez, "Learning ROS for Robotics Programming", Shroff Publishers, First Edition, 2013.

Term Work:

Term Work shall consist of at least 10 programs based on the above syllabus using any suitable software.

Distribution of marks for term work shall be as follows:

- 1. Attendance (Theory and Practical): 05 Marks
- 2. Laboratory work (Performing Experiments and Journal): 20 Marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory Work and Minimum Passing in the term work.

List of Experiments:

Note: At least one experiment shall be performed from every group. Total number of experiments should be 10.

- 1. Forward kinematics of n-DOF robot arm Simulation (maximum 2 experiments)
- 2. Inverse Kinematics of n-DOF robot arm Simulation (maximum 2 experiments)
- 3. Dynamic modeling of n-DOF robot arm & Simulation (maximum 2 experiments)
- 4. Trajectory planning of n-DOF robot arm (maximum 2 experiments)
- 5. Simulation of Bug1, bug2 and tangent bug algorithms (maximum 3 experiments)
- 6. Simulation of Potential field, voronoi graph, and visibility graph methods (maximum 3 experiments)

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code Course			ching Scheme Hrs/Week)	9	Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
ITC8045	Soft Computing	04	02		04	01		05	

Subject Code	Subject Name	Examination Scheme								
]	Theory Mar	ks		C	•		
		Internal assessment End Sem.				Term Work	Practical	Oral	Total	
		Test 1	Test 2	Avg. of 2 Tests	Exam	6	3			
ITC8045	Soft Computing	20	20	20	80	25		25	150	

Course Objectives:

AIM: To introduce the techniques and methodologies of soft computing and adaptive neuro-fuzzy inferencing systems which differ from conventional AI and computing in terms of its tolerance to imprecision and uncertainty.

- To introduce the ideas of soft computational techniques based on human experience.
- To generate an ability to design, analyze and perform experiments on real life problems using various Neural Learning Algorithms.
- To conceptualize fuzzy logic and its implementation for various real world applications.
- To apply the process of approximate reasoning using Neuro-Fuzzy Modeling.
- To provide the mathematical background to carry out optimization using genetic algorithms.

Course Outcomes:

 \square

Student should be able to mimic human like thought process on deterministic machines and apply it to different real world problems faced in the professional front.

DETAILED SYLLABUS:

Sr.No.	Module	Detailed Content	Hours
1	Introduction to Soft Computing	Neural Networks: Definition, Advantages, Applications, Scope. Fuzzy logic: Definition, Applications. Hybrid System: Definition, Types of Hybrid Systems, Applications. Genetic Algorithms: Definition, Applications.	
2	Neural Networks	Fundamental Concepts and Models of Artificial Neural Systems: Biological Neurons and Their Artificial Models, Models of Artificial Neural Networks, Neural Processing, Learning and Adaptation, Neural Network Learning Rules and Comparison. Linearly and Non-Linearly Separable Pattern Classification. Perceptron Convergence Theorem. Multi-layer Feedforward Network: Delta Learning Rule for Multiperceptron Layer, Generalized Delta Learning Rule, Feedforward Recall and Error Back-propagation Training, LearningFactors, CharacterRecognitionApplication. Associative Memory: Hopfield Network, Bidirectional Associative Memory. Radial Basis Function Networks.	20
3	Fuzzy Set Theory	Brief Review of Conventional Set Theory, Introduction to Fuzzy Sets, Properties of Fuzzy Sets, Operations on Fuzzy Sets, Membership Functions.Fuzzy Extension Principle, Fuzzy Relations, Projection and Cylindrical Extension of Fuzzy Relations, Fuzzy Max-Min and Max-Product Composition. Fuzzy Knowledge Based Systems with Applications, Defuzzification Methods, Fuzzy Composition Rules, Architecture of Mamdani Type Fuzzy Control Systems.	16
4	Hybrid Systems	ANFIS: Adaptive Neuro-Fuzzy Inference Systems: Introduction, ANFIS Architecture, and Hybrid Learning Algorithm.	4
5	Genetic Algorithms	What are Genetic Algorithms? Why Genetic Algorithms? Biological Background: The Cell, Chromosomes, Genetics, Reproduction, Neural Selection, Traditional Optimization and Search Techniques, Genetic Algorithm and Search space: Simple GA, General GA, Operators in GA, Encoding, Selection, Crossover, Mutation, Stopping Condition for GA flow, Constraints in GA, Problem solving using GA, Classification of GA.	6

Text Books:

1. Jacek M. Zurada, "Introduction to Artificial Neural Systems," Jaico Publishing House.

2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications," 3rd ed. Wiley India.

3. S. N. Sivanandam and S. N. Deepa, "Principles of Soft Computing," 2nd ed. Wiley India.

4. Jang J.S.R, Sun C. T. and Mizutani E., "Neuro-Fuzzy and Soft Computing – A Computational Approach to Learning and Machine Intelligence," PHI.

References:

1. Laurene Fausett, "Fundamentals of Neural Networks – Architectures, Algorithms, And Applications," Pearson Education.

2. Hagan T. Martin, H. B. Demuth, and Mark Beale, "Neural Network Design," Thomson Learning.

3. Satish Kumar, "Neural Networks – A classroom Approach," 2nd ed. Tata McGraw Hill.

4. Kishan Mehrotra, Chilukuri. K. Mohan, and Sanjay Ranka, "Elements of Artificial Neural Networks,"

2nd ed. Penram Int. Publishing India.

5. H. J. Zimmermann, "Fuzzy Set Theory and its Applications," Allied Publishers Ltd.

6. Driakov D. Hellendoorn H. and Reinfrank M., "An Introduction to Fuzzy Control," Narosa Publishing House.

Term work:

Term work will be based on Practical and Assignments covering the topics of the syllabus.

Suggested Practical List (If Any):

- 1. Fuzzy membership function
- 2. Fuzzy Extension principle
- 3. Fuzzy controller
- 4. Perceptron Learning rule
- 5. Delta Learning Rule
- 6. Associative Memory
- 7. Genetic Algorithm
- 8. Competitive Learning

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code Course		Tea	aching Sche	me	Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total	
ITC8046	Software Testing & Quality Assurance	04	02		04	01		05	

	Subject Name	Examination Scheme								
Subject Code		Theory Marks						0		
		Internal assessment End Sem.				Term Work	Practical	Oral	Total	
		Test 1	Test 2	Avg. of 2 Tests	Exam	C				
ITC8046	Software Testing & Quality Assurance	20	20	20	80	25		25	150	

Course Objectives: The students will learn

- I. Basic software debugging methods.
- II. White box and Black box testing methods
- III. Writing the testing plans
- IV. Different testing tools

Course Outcomes:

After completion of course the students will able to:

1: Identify the reasons for bugs and analyze the principles in software testing to prevent and remove bugs.

2: Implement various test processes for quality improvement

3: Apply the software testing techniques in commercial environments

4: Provides practical knowledge of a variety of ways to test software and an understanding of some of the trade-offs between testing techniques.

5: Familiar with the open source testing tools.

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours
Unit-I Testing Methodology	Ũ	Introduction, Goals of Software Testing, Software Testing Definitions, Model for Software Testing, Effective Software Testing vs Exhaustive Software Testing, Software Failure Case Studies, Software Testing Terminology, Software Testing Life Cycle (STLC), Software Testing methodology, Verification and Validation, Verification requirements, Verification of high level design, Verification of low level design, validation.	10
	Unit II Testing Techniques	 Dynamic Testing : Black Box testing: boundary value analysis, equivalence class testing, state table based testing, cause-effect graphing based testing, error guessing. White box Testing Techniques: need, logic coverage criteria, basis path testing, graph matrices, loop testing, data flow testing, mutation testing. Static Testing. Validation Activities: Unit validation, Integration, Function, System, Acceptance Testing. Regression Testing: Progressive vs. Regressive, regression testing produces quality software, regression testability, objectives of regression testing, regression testing types, define problem, regression testing techniques. 	12
	Unit III Managing the Test Process	Test Management: test organization, structure and of testing group, test planning, detailed test design and test specification. Software Metrics: need, definition and classification of software matrices. Testing Metrics for Monitoring and Controlling the Testing Process: attributes and corresponding matrics, estimation model for testing effort, architectural design, information flow matrix used for testing, function point and test point	10

	analysis. Efficient Test Suite Management: minimizing the test suite and its benefits, test suite minimization problem, test suite prioritization its type, techniques and measuring effectiveness.	~	9
Unit IV Test Automation	Automation and Testing Tools: need, categorization, selection and cost in testing tool, guidelines for testing tools. Study of testing tools: WinRunner, QTP, LoadRunner, TestDirector and IBM Rational Functional Tester, Selenium etc.	8	
Unit V Testing for Specialized Environment	Testing Object Oriented Software: OOT basics, Object- oriented testing. Testing Web based Systems: Web based system, web technology evaluation, traditional software and web based software, challenges in testing for web based software, testing web based testing, Testing a data warehouse	5	
Unit VI Quality Management	Software Quality Management, McCall's quality factors and Criteria, ISO 9126 quality characteristics, ISO 9000:2000,software quality management	3	

Text Books:

- 1. Software Testing Principles and Practices Naresh Chauhan Oxford Higher Education
- 2. Effective Methods for Software Testing , third edition by Willam E. Perry, Wiley Publication
- 3. Software Testing and quality assurance theory and practice by Kshirasagar Naik, Priyadarshi Tripathy, Wiley Publication
- 4. Software Testing Concepts and Tools by Nageswara Rao Pusuluri , dreamtech press

References:

1. Foundation of Software Testing 2 e , by Aditya P. Mathur , Pearson publication

- 2. Software Testing Tools by Dr. K.V.K.K. Prasad, dreamtech press
- 3. Software Testing Principles, techniques and tools by M.G. Limaye , Mc Graw Hill publication

Term work:

Term work will be based on Practical and Assignments covering the topics of the syllabus.

Suggested Practical List:

1. Write programs in C Language to demonstrate the working of the following a. constructs: i) do...while ii) while....do iii) if...else iv)switch v) for

2. A program written in C language for Matrix Multiplication fails. Introspect the causes for its failure and write down the possible reasons for its failure.

3. Take any system (e.g. ATM system) and study its system specifications and report the various bugs.

- 4. Write the test cases for any known application (e.g. Banking application)
- 5. Create a test plan document for any application (e.g. Library Management System)
- 6. Design Test case using boundary value analysis by taking quadratic equation problem.
- 7. Design a test cases using equivalent class partitioning taking triangle problem
- 8. Study of any testing tool (e.g. Win runner)
- 9. Study of any web testing tool (e.g. Selenium)
- 10. Study of any test management tool (e.g. Test Director)
- 12. Study of any open source-testing tool (e.g. Test Link)

Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Q.1 will be compulsory, based on entire syllabus where in sub questions of 2 to 3 marks will be asked.
- Remaining question will be randomly selected from all the modules.

Course Code	Course	Tea	aching Scher (Hrs./Week)		Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical/Oral	Tutorial	Total
BEITP805	Project II		**			06		06

**Work load of the teacher in semester VIII is equivalent to 12 hrs/week.

Course Code	Course Name		Examination Scheme								
		Theory Marks									
		Internal assessment			End Sem.	Term Work	Practical	Oral	Total		
		Test 1	Test 2	Avg. of 2 Tests	Exam			C	\mathbf{S}		
ITP706	Project I					50	C	50	100		

Course Objectives:

2

- 1. Implimentaion of the topic selected in Project-I.
- 2. Initiating the learners to technical writing and documentation for reuse.

3. Developing proficiency in carrying out critical analysis, review and study of existing literature on technological experimentation and finding out of scholastic investigation

Outcomes: The learner should be able to:

- 1. Demonstrate the product that is implemented.
- 2. Produce the proper documentation of the work.
- 3. Able to work in team and communicate with peers.
- 4. Develop skills required by the industry.

University of Mumbai, Information Technology (semester VII and semester VIII) (Rev-2012) Page 81

Guidelines for Project

 Students should do literature survey/visit industry/analyze current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by experimental/simulation methods. The solution to be validated with proper justification and compile the report in standard format.

Guidelines for Assessment of Project II

- Project II should be assessed based on following points
 - Quality of problem selected
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization / Industrial trends
 - Clarity of objective and scope
 - Quality of work attempted
 - Validation of results
 - Quality of Written and Oral Presentation
- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Project II should be assessed through a presentation jointly by Internal and External Examiners approved by the University of Mumbai
- Students should be motivated to publish a paper based on the work in Conferences/students competitions

THADOMAL SHAHANI ENGINEERING COLLEGE

Computer Engineering

,

EGE

THADOMAL SHAHANI SF

NEERING C

Sr. No.	Subject Code	Subject Name	Count
1	CSL301	Data Structure Lab	1
2	CSL302	Digital Logic & Computer Architecture Lab	1
3	CSL303	Computer Graphics Lab	1
4	CSL304	Skill base Lab course: Object Oriented Programming with Java	1
5	CSM301	Mini Project – 1 A	1
6	CSL401	Analysis of Algorithm Lab	1
7	CSL402	Database Management System Lab	1
8	CSL403	Operating System Lab	1
9	CSL404	Microprocessor Lab	1
10	CSL405	Skill Base Lab Course: Python Programming	1
11	CSM401	Mini Project 1-B	1
12	CPC501	Microprocessor	1
13	CPC502	Operating Systems	1
14	CPC503	Structured and Object Oriented Analysis and Design	1
15	CPC504	Computer Networks	1
16	CPL501	Web Technologies Laboratory	1
17	CPL502	Business Communication and Ethics*	1
18	CPC601	System Programming and Compiler Construction	1
19	CPC602	Software Engineering	1
20	CPC603	Distributed Databases	1
21	CPC604	Mobile Communication and Computing	1
22	CPE6011	Elective-I	1
23	CPL601	Network Programming Laboratory	1
24	CPC701	Digital Signal Processing	1
25	CPC702	Cryptography and System Security	1
26	CPC703	Artificial Intelligenc	1
27	CPE7042X	Elective-II	1
28	CPP701	Project I	1
29	CPL701	Network Threats and Attacks Laboratory	1
30	CPC801	Data Warehouse and Mining	1
31	CPC802	Human Machine Interaction	1
32	CPC803	Parallel and distributed Systems	1
33	CPE803X	Elective-III	1
34	CPP802	Project II	1
35	CPL801	Cloud Computing Laboratory	1
		Total	35

AC – 11.05.2017

Item No. 4.193

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17

Under

FACULTY OF TECHNOLOGY

Computer Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Chairman's Preamble:

Engineering education in India is expanding and is set to increase manifold. The major challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Computer Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for Undergraduate Program were finalized in a brain storming session, which was attended by more than 85 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Computer Engineering. The Program Educational Objectives finalized for the undergraduate program in Computer Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals.
- 2. To motivate the Learner in the art of self-learning and to use modern tools for solving real life problems.
- 3. To equip the Learner with broad education necessary to understand the impact of Computer Science and Engineering in a global and social context.
- 4. To encourage, motivate and prepare the Learner's for Lifelong- learning.
- 5. To inculcate professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process.

In addition to Program Educational Objectives, for each course of the program, objectives and expected outcomes from a learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr. Subhash K. Shinde Chairman, Board of Studies in Computer Engineering, University of Mumbai, Mumbai.

Course	Course	Teaching (Contac			Credits Assigned					
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total		
CSC301	Applied Mathematics -III	4+1@	-	-	5	-	-	5		
CSC302	Digital Logic Design and Analysis	4	-	-	4	-	-	4		
CSC303	Discrete Mathematics	3+1@	-	-	4	-	-	4		
CSC304	Electronic Circuits and Communication Fundamentals	4	-	-	4	-	-	4		
CSC305	Data Structures	4	-	-	4	-	-	4		
CSL301	Digital System Lab	-	2	-	-	1	-	1		
CSL302	Basic Electronics Lab	-	2	-	-	1	-	1		
CSL303	Data structure Lab	-	2	-		1	-	1		
CSL304	OOPM(Java) Lab	-	2+2*	-	-	2	-	2		
	Total	21	10	-	21	5	-	26		

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2017-18 S. E. Computer Engineering (Semester-III)

@ 1 hour to be taken tutorial as class wise.

*2 hours shown as practical's to be taken class wise and other 2 hours to be taken as batch wise

					Exa	mination Sc	heme			
Course	Course			Theo	ory				• •	
Code	Name	Inte	rnal As	sessment	End	Exam	TW	Oral	Oral &	
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)	1 **	Ulai	Pract	Total
CSC301	Applied Mathematics -III	20	20	20	80	3	-	-	-	100
CSC302	Digital Logic Design and Analysis	20	20	20	80	3	-	-	-	100
CSC303	Discrete Structures	20	20	20	80	3	-	-	-	100
CSC304	Electronic Circuits and Communication Fundamentals	20	20	20	80	3	-	-	-	100
CSC305	Data Structures	20	20	20	80	3		-	-	100
CSL301	Digital System Lab	-	-	-	_	-	25		25	50
CSL302	Basic Electronics Lab	-	-	-	-	-	25	25		50
CSL303	Data structure Lab	-	-	-	-	-	25	-	25	50
CSL304	OOPM(Java) Lab	-	-	-	-	-	50		50	100
	Total	100	100	100	400	-	125	25	100	750

Course	Course		g Scheme ct Hours)		Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
CSC401	Applied Mathematics- IV	4+1@	-	-	5	-	-	5	
CSC402	Analysis of Algorithms	4	-	-	4	-	-	4	
CSC403	Computer Organization and Architecture	4	-	-	4	-	-	4	
CSC404	Computer Graphics	4	-	-	4	-	-	4	
CSC405	Operating System	4	-	-	4	-	-	4	
CSL401	Analysis of Algorithms Lab	-	2	-	-	1	-	1	
CSL402	Computer Graphics Lab	-	2	-	-	1	-	1	
CSL403	Processor Architecture Lab	-	2	-		1	-	1	
CSL404	Operating System Lab	-	2	-	-	1	-	1	
CSL405	Open Source Tech Lab	-	2+2*	-	-	2	-	2	
	Total	21	12	-	21	6	-	27	

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2017-18 S. E. Computer Engineering (Semester-IV)

@ 1 hour to be taken tutorial as class wise .

*2 hours shown as Practical's to be taken class wise and other 2 hours to be taken as batch wise

					Exan	ination Sch	eme			
Course	Course			Theor	у					
Code	Name	Int	ernal As	ssessment	End Exam		TW	Oral	Oral &	Total
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)			Pract	
CSC401	Applied Mathematics- IV	20	20	20	80	3	-	-	-	100
CSC402	Analysis of Algorithms	20	20	20	80	3	-	-	-	100
CSC403	Computer Organization and Architecture	20	20	20	80	3	-	-	-	100
CSC404	Computer Graphics	20	20	20	80	3	-	-	-	100
CSC405	Operating System	20	20	20	80	3		-	-	100
CSL401	Analysis of Algorithms Lab	-	-	-	-	-	25		25	50
CSL402	Computer Graphics Lab	-	-	-	-	-	25		25	50
CSL403	Processor Architecture Lab	-	-	-	-	-	25	25	-	50
CSL404	Operating System Lab	-	-	-	-	-	25	-	25	50
CSL405	Open Source Tech Lab	-	-	-	-	-	25		25	50
	Total	100	100	100	400	-	125	25	100	750

Course	Course	Teaching (Contac	Scheme t Hours)		Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
CSC501	Microprocessor	4	-	-	4	-	-	4	
CSC502	Database Management System	4	-	-	4	-	-	4	
CSC503	Computer Network	4	-	-	4	-	-	4	
CSC504	Theory of Computer Science	3+1@	-	-	4	-	-	4	
CSDLO 501X	Department Level Optional Course -I	4	-	-	4	-	-	4	
CSL501	Microprocessor Lab	-	2	-	-	1		1	
CSL502	Computer Network Lab	-	2	-	-	1	-	1	
CSL503	Database & Info. System Lab	-	2	-	-	1	-	1	
CSL504	Web Design Lab	-	2+2*	-	-	2	-	2	
CSL505	Business Comm. & Ethics	-	2+2*	-	-	2	-	2	
	Total	20	14	-	20	7	-	27	

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2018-19 T. E. Computer Engineering (Semester-V)

@ 1 hour to be taken tutorial as class wise.

*2 hours shown as Practical's to be taken class wise and other 2 hours to be taken as batch wise

				E	xamina	tion Scher	ne		
Course	Course	Inte	rnal A c	<u>Theor</u> sessment	v End	Enom	Exam Trivi		
Code	Name	Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)	TW	& Pract	Total
CSC501	Microprocessor	20	20	20	80	3	-	-	100
CSC502	Database Management System	20	20	20	80	3	-	-	100
CSC503	Computer Network	20	20	20	80	3	-	-	100
CSC504	Theory of Computer Science	20	20	20	80	3	_	-	100
CSDLO 501X	Department Level Optional Course -I	20	20	20	80	3		-	100
CSL501	Microprocessor Lab	-	-	-	-	-	25	25	50
CSL502	Computer Network Lab	-	-	-	-	-	25	25	50
CSL503	Database & Info. System Lab	-	-	-	-	-	25	25	50
CSL504	Web Design Lab	-	-	-	-	_	25	25	50
CSL505	Business Comm. & Ethics	-	-	-	-	-	50	-	50
	Total	100	100	100	400	-	150	100	750

Course	Course	Teaching (Contact			Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
CSC601	Software Engineering	4	-	-	4	-	-	4	
CSC602	System Programming & Complier Construction	4	-	-	4	-	-	4	
CSC603	Data Warehousing & Mining	4	-	-	4	-	-	4	
CSC604	Cryptography & System Security	4	-	-	4	-	-	4	
CSDLO 601X	Department Level Optional Course -II	4	-	-	4	-	-	4	
CSL601	Software Engineering Lab	-	2	-	-	1	-	1	
CSL602	System software Lab	-	2	-	-	1	-	1	
CSL603	Data Warehousing & Mining Lab	-	2	-	-	1	-	1	
CSL604	System Security Lab	-	2	-	-	1	-	1	
CSP605	Mini-Project	-	4	-	-	2	-	2	
	Total	20	12	-	20	6	-	26	

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2018-19 T. E. Computer Engineering (Semester-VI)

		Examination Scheme									
Course	Course			Theory		1			Oral		
Code	Name	Inte	ernal As	sessment End		Exam	TW	Oral	&	Total	
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)			Pract		
CSC601	Software Engineering	20	20	20	80	3	-	-	-	100	
CSC602	System Programming & Complier Construction	20	20	20	80	3	-	-	-	100	
CSC603	Data Warehousing & Mining	20	20	20	80	3	-	-	-	100	
CSC604	Cryptography & System Security	20	20	20	80	3	-	-	-	100	
CSDLO 601X	Department Level Optional Course -II	20	20	20	80	3	-	-	-	100	
CSL601	Software Engineering Lab	-	-	-	-	-	25	25		50	
CSL602	System Software Lab	-	-	-	-	-	25		25	50	
CSL603	Data Warehousing & Mining Lab	-	-	-	-	-	25		25	50	
CSL604	System Security Lab	-	-	-	-	-	25		25	50	
CSP605	Mini-Project	-	-	-	-	-	25		25	50	
	Total		100	100	400	-	150	25	100	750	

Course	Course	Teaching (Contac	; Scheme t Hours)	9	Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
CSC701	Digital Signal & Image Processing	4	-	-	4	-	-	4	
CSC702	Mobile Communication & Computing	4	-	-	4	-	-	4	
CSC703	Artificial Intelligence & Soft Computing	4	-	-	4	-	-	4	
CSDLO 701X	Department Level Optional Course -III	4	-	-	4	-	-	4	
ILO701X	Institute Level Optional Course-I	3	-	-	3	-	-	3	
CSL701	Digital Signal & Image Processing Lab	-	2	-	-	1	-	1	
CSL702	Mobile App. Development. Tech. Lab	-	2	-	-	1	-	1	
CSL703	Artificial Intelligence & Soft Computing Lab	-	2	-		1	-	1	
CSL704	Computational Lab-I	-	2			1	-	1	
CSP705	Major Project-I	-	6			3	-	3	
	Total	19	14	-	19	7	-	26	

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2019-20
B. E. Computer Engineering (Semester-VII)

					Exar	nination Sche	eme			
Course	Course			The	ory					Total
Code	Name	Inter	rnal Asse	essment	End	Exam	TW	Oral	Oral & Pract	
		Test 1	Test 2	Avg.	Sem. Exam	Duration (in Hrs)				
CSC701	Digital Signal & Image Processing	20	20	20	80	3	-		-	100
CSC702	Mobile Communication & Computing	20	20	20	80	3	-		-	100
CSC703	Artificial Intelligence & Soft Computing	20	20	20	80	3	-		-	100
CSDLO 701X	Department Level Optional Course -III	20	20	20	80	3	-		-	100
ILO701X	Institute Level Optional Course-I	20	20	20	80	3			-	100
CSL701	Digital Signal & Image Processing Lab	-	-	-	-	-	25			25
CSL702	Mobile App. Development. Tech. Lab	-	-	-	-	-	25		25	50
CSL703	Artificial Intelligence & Soft Computing Lab		-	-	-		25	25		50
CSL704	Computational Lab-I						25		25	50
CSP705	Major Project-I	-	-	-	-	-	50	-	25	75
	Total	100	100	100	400		150	25	75	750

Course	Course		Teaching Scheme (Contact Hours)				Credits Assigned				
Code	Name	Theory	Pract	Tut	Theory	TW/ Prac t	Tut	Total			
CSC801	Human Machine Interaction	4	-	-	4	-	-	4			
CSC802	Distributed Computing	4	-	-	4	-	-	4			
CSDLO 801X	Department Level Optional Course -IV	4	-	-	4	-	-	4			
ILO801X	Institute Level Optional Course-II	3	-	-	3	-	-	3			
CSL801	Human Machine Interaction Lab	-	2	-	-	1		1			
CSL802	Distributed Computing Lab		2			1		1			
CSL803	Cloud Computing Lab	-	4	-	-	2		2			
CSL804	Computational Lab-II	-	2	-		1		1			
CSP805	Major Project-II	-	12			6	-	6			
	Total	15	22	-	15	11	-	26			

Program Structure B.E. Computer Engineering, (Rev. 2016) w.e.f. AY 2019-20 B. E. Computer Engineering (Semester-VIII)

		Examination Scheme								
Course	Course		Theory				TW		Oral &	Total
Code	Name	Internal Assessment End			Exam	Oral				
		Test 1	Test 2	Avg.	Sem. Exam	Duratio n (in			Pract	
CSC801	Human Machine Interaction	20	20	20	80	3	-	-	-	100
CSC802	Distributed Computing	20	20	20	80	3	-	-	-	100
CSDLO 801X	Department Level Optional Course -IV	20	20	20	80	3	-	-	-	100
ILO801X	Institute Level Optional Course-II	20	20	20	80	3	-	-	-	100
CSC801	Human Machine Interaction Lab						25	25	-	50
CSL802	Distributed Computing Lab	-	-	_	-	-	25	25		50
CSL803	Cloud Computing Lab	-	-	-	-	-	50		25	75
CSL804	Computational Lab-II	-	-	-	-	-	50		25	75
CSP805	Major Project-II						50		50	100
	Total			100	400		150		100	750

Sem.	Department Level Optional Course (DLOC)	Institute Level Optional Course (ILOC)
v	CSDLO5011: Multimedia System CSDLO5012: Advance Operating System CSDLO5013: Advance Algorithm	
VI	CSDLO6021: Machine Learning CSDLO6022: Advance Database System CSDLO6023: Enterprise Resource Planning CSDLO6024: Advance Computer Network	
VII	CSDLO7031: Advance System Security & Digital Forensics CSDLO7032: Big Data & Analytics CSDLO7033: Robotics	ILO7011. Product Lifecycle Management ILO7012. Reliability Engineering ILO7013. Management Information System ILO7014. Design of Experiments ILO7015. Operation Research ILO7016. Cyber Security and Laws ILO7017. Disaster Management & Mitigation Measures ILO7018. Energy Audit and Management ILO7019. Development Engineering
VIII	DLO8011: High Performance Computing DLO8012: Natural Language Processing DLO8013: Adhoc Wireless Network	ILO8021. Project Management ILO8022. Finance Management ILO8023. Entrepreneurship Development and Management ILO8024. Human Resource Management ILO8025. Professional Ethics and CSR ILO8026. Research Methodology ILO8027. IPR and Patenting ILO8028. Digital Business Management ILO8029. Environmental Management

Course Code	Course Name	Credits
CSC301	Applied Mathematics-III	5

Course objectives:

- 1. To understand the concept of complex variables, C-R equations, harmonic functions and its conjugate and mapping in complex plane.
- 2. To learn the complex mapping, standard mappings, cross ratios and fixed point.
- 3. To learn the Laplace Transform, Inverse Laplace Transform of various functions, its application and Z-transform.
- 4. To understand the concept of Fourier Series, its complex form and enhance the problem solving skill.

Course outcomes: On successful completion of course learner will be able to:

- 1. Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic function.
- 2. Plot the image of the curve by a complex transformation from z-plane to w-plane.
- 3. Expand the periodic function by using Fourier series and complex form of Fourier series.
- 4. Understand the concept of Laplace transform and inverse Laplace transform of various functions and its application to solve ordinary differential equations.
- 5. Apply the concept of Z- transformation and its inverse of the given sequence.
- 6. Apply the concept of Correlation and Regression to the engineering problems.

Module No.	Unit No.	Topics	Hrs.
1.0		Laplace Transform	09
	1.1	Laplace Transform of Standard Functions:	
		Introduction, Definition of Laplace transform, Laplace transform of	
		1, $e^{at} \sin(at)$, $\cos(at)$, $\sinh(at)$, $\cosh(at)$, $t^{n} \operatorname{erf}(t)$, Heavi-side	
		unit step, dirac-delta function, LT of periodic function.	
	1.2	Properties of Laplace Transform: Linearity, first shifting property, second shifting property,	
		multiplication by t^n , division by t , Laplace Transform of derivatives and integrals, change of scale property. (without proof)	
2.0		Inverse Laplace Transform	08
	2.1	Inverse Laplace Transform by Partial fraction method, Convolution	
		theorem	
	2.2	Application to solve initial and boundary value problem involving	

		and in any differential equations with any dependent variable and	
		ordinary differential equations with one dependent variable and	
2.0		constant coefficients.	10
3.0		Fourier Series	10
	3.1	Dirichlet's conditions, Fourier series of periodic functions with	
		period 2π and $2L$, Fourier series for even and odd functions.	
	3.2	Half range sine and cosine Fourier series, Parsevel's	
		identities (without proof)	
	3.3	Complex form of Fourier series, Orthogonal and Orthonormal set of	
		functions.	
4.0		Complex Variable & mapping	09
	4.1	Functions of a complex variable, Analytic functions, Cauchy-	
		Riemann equations in Cartesian co-ordinates & Polar co-ordinates.	
	4.2	Harmonic functions, Analytic method and Milne Thomson methods	
		to find $f(z)$, Orthogonal trajectories.	
	4.3	Mapping: Conformal mapping, bilinear transformations, cross	
		ratio, fixed points, bilinear transformation of straight lines and	
		circles.	
5.0		Z-transform	06
	5.1	Z-transform of standard functions such as $Z(a^n)$, $Z(n^p)$.	
	5.2	Properties of Z-transform :Linearity, Change of scale, Shifting	
		property, Multiplication of K, Initial and final value, Convolution	
		theorem (without proof)	
	5.3	Inverse Z transform: Binomial Expansion and Method of Partial	
		fraction	
6.0		Correlation & regression, Curve Fitting	10
	6.1	Scattered diagrams, Karl Pearson's coefficient of correlation,	
		covariance, Spearman's Rank correlation(non-repeated and repeated	
		ranks)	
	6.2	Regression coefficient & Lines of Regression.	
	6.3	Fitting of curves: Least square method. Fitting of the straight line	
		$y = a + bx$, parabolic curve $y = a + bx + cx^2$, & exponential curve	
		$y = ab^x$	
		<i>y uo</i>	

- 1. Higher Engineering Mathematics by Grewal B. S. 38th edition, Khanna Publication 2005.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 3. A Text Book of Applied Mathematics Vol. I & II by P.N.Wartilar &
- 4. J.N.Wartikar, Pune, Vidyarthi Griha Prakashan., Pune.

Reference Books:

- 1. Advanced Engg. Mathematics by C. Ray Wylie & Louis Barrett.TMH International Edition.
- 2. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 3. Integral Transforms and their Engineering Applications by Dr. B. B. Singh, Synergy Knowledgewar.
- Laplace Transforms by Murry R. Spieget, Schaun's out line series-McGraw Hill Publication.

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSC302	Digital Logic Design and Analysis	4

Course Objectives:

- 1. To introduce the fundamental concepts and methods for design of digital circuits and a pre-requisite for computer organization and architecture, microprocessor systems.
- 2. To provide the concept of designing Combinational and sequential circuits.
- 3. To provide basic knowledge of how digital building blocks are described in VHDL.

Course Outcomes: At the end of the course student should be able-

- 1. To understand different number systems and their conversions.
- 2. To analyze and minimize Boolean expressions.
- 3. To design and analyze combinational circuits.
- 4. To design and analyze sequential circuits
- 5. To understand the basic concepts of VHDL.
- 6. To study basics of TTL and CMOS Logic families.

Module	Detailed Content			
1	Number Systems and Codes Introduction to number system and conversions: Binary, Octal, Decimal and Hexadecimal number Systems, Binary arithmetic: addition, subtraction (1's and 2's complement), multiplication and division. Octal and Hexadecimal arithmetic: Addition and Subtraction (7's and 8's complement method for octal) and (15's and 16's complement method for Hexadecimal). Codes: Gray Code, BCD Code, Excess-3 code, ASCII Code. Error Detection and Correction: Hamming codes.	8		
2	 Boolean Algebra and Logic Gates: Theorems and Properties of Boolean Algebra, Boolean functions, Boolean function reduction using Boolean laws, Canonical forms, Standard SOP and POS form. Basic Digital gates: NOT , AND , OR , NAND , NOR , EXOR , EX-NOR, positive and negative logic, K-map method 2 variable, 3 variable, 4 variable, Don't care condition, Quine-McClusky Method, NAND-NOR Realization. 			
3	Norr Realization:Combinational Logic Design:Introduction, Half and Full Adder, Half subtractor Full Subtractor, FourBit Ripple adder, look ahead carry adder, 4 bit adder subtractor, one digitBCDAdder, Multiplexer, Multiplexer tree, Demultiplexer,Demultiplexer tree, Encoders Priority encoder, Decoders, One bit, Twobit , 4-bit Magnitude Comparator, ALU IC 74181.			

	Sequential Logic Design:			
	Introduction: SR latch, Concepts of Flip Flops: SR, D, J-K, T, Truth			
	Tables and Excitation Tables of all types, Race around condition, Master			
	Slave J-K Flip Flops, Timing Diagram, Flip-flop conversion, State			
4	machines, state diagrams, State table, concept of Moore and Mealy machine.			
	Counters : Design of Asynchronous and Synchronous Counters, Modulus			
	of the Counters, UP- DOWN counter, Shift Registers: SISO, SIPO,			
	PIPO, PISO Bidirectional Shift Register, Universal Shift Register, Ring			
	and twisted ring/Johnson Counter, sequence generator.			
	Introduction to VHDL:			
5	Introduction: Fundamental building blocks Library, Entity, Architecture,			
5	Modeling Styles, Concurrent and sequential statements, simple design			
	examples for combinational circuits and sequential circuits.			
	Digital Logic Families:			
6	Introduction: Terminologies like Propagation Delay, Power	3		
	Consumption, Fan in and Fan out, current and voltage parameters, noise			
	margin, with respect to TTL and CMOS Logic and their comparison			

- 1. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 2. M. Morris Mano, "Digital Logic and computer Design", PHI.
- 3. Norman Balabanian, "Digital Logic Design Principles", Wiley.
- 4. J. Bhasker." VHDL Primer", Pearson Education.

Reference Books:

- 1. Donald p Leach, Albert Paul Malvino, "Digital principles and Applications", Tata McGraw
- 2. Yarbrough John M., "Digital Logic Applications and Design", Cengage Learning.
- 3. Douglas L. Perry, "VHDL Programming by Example", Tata McGraw Hill.

Internal Assessment: Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

Theory Examination:

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSC303	Discrete Mathematics	4

Course Objectives:

- 1. Cultivate clear thinking and creative problem solving.
- 2. Thoroughly train in the construction and understanding of mathematical proofs. Exercise common mathematical arguments and proof strategies.
- 3. Thoroughly prepare for the mathematical aspects of other Computer Engineering courses

Course Outcomes: At the end of the course student will be able to

- 1. Understand the notion of mathematical thinking, mathematical proofs and to apply them in problem solving.
- 2. Ability to reason logically.
- 3. Ability to understand relations, Diagraph and lattice..
- 4. Ability to understand use of functions, graphs and their use in programming applications.
- 5. Understand use of groups and codes in Encoding-Decoding
- 6. Apply discrete structures into other computing problems such as formal specification, verification, artificial intelligence, cryptography, Data Analysis and Data Mining etc.

Prerequisite: Basic Mathematics

Sr. No.	Module	Detailed Content	Hours
1	Set Theory	 Sets, Venn diagrams, Operations on Sets Laws of set theory, Power set and Products Partitions of sets, The Principle of Inclusion and Exclusion 	4
2	Logic	 Propositions and logical operations, Truth tables Equivalence, Implications Laws of logic, Normal Forms Predicates and Quantifiers Mathematical Induction 	8
3	Relations and Functions	 Relations, Paths and Digraphs Properties and types of binary relations Operations on relations, Closures, Warshall's algorithm Equivalence and partial ordered relations, Poset, Hasse diagram and Lattice Functions: Types of functions - Injective, Surjective and Bijective 	12

		Composition of functions, Identity and Inverse	
		function	
		Pigeon-hole principle	
		Permutations, Combinations	
		• Elements of Probability, Discrete Probability and	
4	Constinue	Conditional Probability	C
4	Counting	Generating Functions and Recurrence Relations	6
		Recursive Functions	
		Introduction to Functional Programming	
		• Definitions, Paths and circuits: Eulerian and	
5	Graphs	Hamiltonian	6
5		• Types of graphs, Sub Graphs	6
		Isomorphism of graphs	
		• Algebraic structures with one binary operation:	
	Algebraic	semigroup, monoid and group, Abelian group	
6	Structures	• Isomorphism, Homomorphism and Automorphism	8
6	and Coding	• Cyclic groups, Normal subgroups,	0
	Theory	Codes and group codes	

- 1. BernadKolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, "Discrete Mathematical Structures", Pearson Education.
- 2. C.L.Liu, Elements of Discrete Mathematics, second edition 1985, McGraw-Hill BookCompany. Reprinted 2000.
- 3. K.H.Rosen, Discrete Mathematics and applications, fifth edition 2003, TataMcGraw Hill publishing Company.
- 4. D.E. Rydeheard University of Manchester, R.M. Burstall, University of Edinburgh "Computational Category Theory".

Reference Books:

- 1. Y N Singh, "Discrete Mathematical Structures", Wiley-India.
- 2. J .L.Mott, A.Kandel, T.P .Baker, Discrete Mathematics for Computer Scientists and Mathematicians, second edition 1986, Prentice Hall of India.
- 3. J. P. Trembley, R. Manohar "Discrete Mathematical Structures with Applications to Computer Science", TataMcgraw-Hill.
- 4. Seymour Lipschutz, Marc Lars Lipson," Discrete Mathematics" Schaum'sOutline, McGraw Hill Education.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

** Tutorial lecture can be conducted for each unit and min 10 problems on the covered unit can be given to the students for practice.

Course Code	Course Name	Credits
CSC304	Electronic Circuits and Communication Fundamentals	4

Course Objectives:

- 1. To develop the knowledge of semiconductor devices and circuits, and explain their use in communication applications.
- 2. To inculcate circuit analysis capabilities in students.
- 3. To gain knowledge in electronic devices and circuits that is useful in real life applications.
- 4. To understand the fundamental concepts of electronic communication and their use in computer applications.

Course Outcomes: At the end of the course student should be able

- 1. To understand the use of semiconductor devices in circuits and analyze them.
- 2. To understand importance of oscillators and power amplifiers in communication system.
- 3. To understand basic concepts of operational amplifier and their applications.
- 4. To understand the fundamental concepts of electronic communication
- 5. To apply knowledge of electronic devices and circuits to communication applications.
- 6. To study basic concepts of information theory.

Prerequisite: Basic electrical engineering

Module	Detailed Content	Hours
1	Electronic Circuits:Bipolar junction transistor.	
	Input and Output characteristics, Types of Biasing - Fixed bias, self-bias,	08
1	voltage divider bias, DC load line and significance, CE amplifier using re	08
	model, (Analysis based Numericals)	
	Power Amplifiers:	
2	Introduction, Class A and Class C power amplifier.	04
2	Oscillators: Introduction, Barkhausen criteria, Colpitts oscillator and Crystal	04
	oscillator	
	Electronic Circuits : Operational Amplifier and its applications	
3	Op-amp – block diagram, parameters and characteristics, applications-	
	Inverting and Non inverting amplifier, Summing Amplifier(Numerical),	10
	Difference amplifier, Basic Integrator and Differentiator, Comparator, Zero	
	Crossing Detector (only theory)	

	Communication Fundamentals: Analog Communication	
	Block diagram and elements of analog communication systems, Theory of	
	amplitude modulation and types of AM (Numerical)	
4	Generation of DSB SC using diode based balanced modulator, Generation of	10
4	SSB using phase shift method, Introduction of FM, and its mathematical	10
	representation, Statement of Carson's Rule Comparison of AM, FM, Block	
	diagram of AM transmitter (HLM and LLM)	
	Block diagram of AM Superheterodyne receiver.	
	Pulse Modulation and Multiplexing.	
5	Statement of Sampling Theorem, Generation and detection of PAM, PWM,	10
5	PPM, PCM, DM and ADM.	10
	Principle of TDM using PCM and FDM	
6	Communication Fundamentals: Information theory.	
	Amount of information, average information, information rate, Statement of	06
	Shannon's theorem, channel capacity (Numericals)	

- 1. Robert Boylestad, 'Electronic Devices and circuit Theory', Prentice Hall.
- 2. D Roy Choudhury, ' Linear integrated Circuits' New Age International Ltd
- 3. G. Kennedy, B. Davis, S R M Prasanna, 'Electronic Communication Systems', McGraw Hill, 5th Edition.
- 4. Wayne Tomasi, 'Electronic Communication Systems (fundamentals through advanced)', Pearson Education, 4th Edition.
- 5. K. Sam Shanmugam,' Digital and analog communication systems', Wiley.

Reference Books:

- 1. Donald Neamen, 'Electronic Circuit Analysis and Design', Tata McGraw Hill,2nd Edition.
- 2. K. R. Botkar, 'Integrated Circuits', Khanna Publishers, 9th Edition
- 3. Simon Haykin, 'Digital Communication systems', Wiley.
- 4. David Bell, 'Electronic Devices and Circuits', Oxford, 5th Edition.
- 5. Ramakant A. Gayakwad, 'Op-amp and linear integrated circuits', PHI, 3rd edition.

Internal Assessment

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

Theory Examination:

- 2 Question paper will comprise of 6 questions, each carrying 20 marks.
- 5. The students need to solve total 4 questions.
- 6. Question No.1 will be compulsory and based on entire syllabus.
- 7. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSC305	Data Structures	4

Course Objectives:

- 1. To teach various storage mechanisms of data.
- 2. To design and implement various data structures.
- 3. To introduce various techniques for representation of the data in the real world.
- 4. To teach different sorting techniques.
- 5. To teach different searching techniques.

Course Outcomes:

- 1. Students will be able to implement various linear and nonlinear data structures.
- 2. Students will be able to handle operations like insertion, deletion, searching and traversing on various data structures.
- 3. Students will be able to select appropriate sorting technique for given problem.
- 4. Students will be able to select appropriate searching technique for given problem.
- 5. Students will be able to apply the learned concepts in various domains like DBMS and Compiler Construction.
- 6. Students will be able to choose appropriate data structure for specified problem domain.

Module	Detailed Content	Hours
01	Introduction to Data Structures	03
	Introduction, Types of Data Structures – Linear and Nonlinear,	
	Operations on Data Structures, Concept of ADT, Arrays.	
02	Stack and Queues	10
	Introduction, ADT of Stack, Operations on Stack, Array Implementation	
	of Stack, Applications of Stack – Well form-ness of Parenthesis, Infix to	
	Postfix Conversion and Postfix Evaluation, Recursion.	
	ADT of Queue, Operations on Queue, Array Implementation of Queue,	
	Circular Queue, Priority Queue, Double Ended Queue, Applications of	
	Queue.	
03	Linked List	10
	Introduction, Representation of Linked List, Linked List v/s Array,	
	Implementation of Linked List, Linked Implementation of Stack and	
	Queue, Circular Linked List, Doubly Linked List, Application –	
	Polynomial Representation and Addition.	
04	Trees	12
	Introduction, Tree Terminologies, Binary Tree, Representation, Types of	
	Binary Tree, Binary Tree Traversals, Binary Search Tree, Implementation	
	of Binary Search Tree, Applications – Expression Tree, Huffman	
	Encoding.	
	Search Trees – AVL, B Tree, B+ Tree, Splay Tree and Trie.	

Prerequisite: C Programming

05	Graphs	06
	Introduction, Graph Terminologies, Representation, Graph Traversals –	
	Depth First Search (DFS) and Breadth First Search (BFS), Application –	
	Topological Sorting	
06	Sorting and Searching	07
	Introduction, Bubble Sort, Insertion Sort, Merge Sort, Quick Sort.	
	Linear Search, Binary Search, Hashing – Concept, Hash Functions,	
	Collision Handling Techniques.	

- 1. Data Structures using C, Reema Thareja, Oxford
- 2. Data Structures using C and C++, Rajesh K Shukla, Wiley India
- 3. Data Structures Using C, Aaron M Tenenbaum, Yedidyah Langsam, Moshe J Augenstein, Pearson
- 4. Data Structures: A Pseudocode Approach with C, Richard F. Gilberg & Behrouz A., Forouzan, Second Edition, CENGAGE Learning
- 5. Introduction to Data Structure and Its Applications, JeanPaul Tremblay, P. G. Sorenson

Reference Books:

- 1. C & Data Structures, Prof. P.S. Deshpande, Prof. O.G. Kakde, DreamTech press.
- 2. Data Structure Using C, Balagurusamy.
- 3. Data Structures Using C, ISRD Group, Second Edition, Tata McGraw-Hill.
- 4. Data Structures, Adapted by: GAV PAI, Schaum's Outlines.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules

Lab Code	Lab Name	Credits
CSL301	Digital System Lab	1

Lab Outcome:

- 1. Understand the basics of various digital components.
- 2. Understand the principles of design of combinational logic and sequential logic circuits using basic components.
- 3. Recognize the importance of digital systems in computer architecture.
- 4. Design and simulate the basic digital circuit.

Description

Experiments with Logic Building Blocks using SSI/MSI, Experiments on Design and/or use Minimization tools. Use of VHDL and simulation in Logic Design. Experiment on design using MSI and/or PLDs tools.

Suggested List of Experiments:

Sr. No.	Title of Experiments
1	To study and verify the truth table of various logic gates using ICs and realize Boolean expressions using gates
2	To realize basic gates using universal gates
4	To realize binary to gray code and gray code to binary converter.
5	To realize parity generator and detector.
6	To realize arithmetic circuits i) Half adder ii) Full adder iii) Half subtractor iv) Full subtractor
7	To realize 2 bit magnitude comparator.
8	To Study multiplexer IC and realization of full adder using multiplexer IC
9	To Study decoder IC and realization of combinational logic using decoder IC
10	Study of flip-flops using IC's
11	To realize asynchronous 3 bit up counter.
12	To realize shift registers using flip flops
13	To realize basic gates using VHDL

14	To realize 4:1 multiplexer using VHDL
15	To realize 4 bit counter using VHDL

Term Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Oral & Practical exam will be based on the above and CSC302: Digital Logic Design and Analysis syllabus.

Lab Code	Lab Name	Credits
CSL302	Basic Electronics Lab	1

Lab Outcome:

- 1. Understand the basics of various semiconductor devices, electronic components and instruments.
- 2. Understand the working of electronic circuits using components
- 3. Recognize the importance of electronic circuits in electronic communications.
- 4. Study the fundamental concepts of various modulation methods.

Description

Experiments with semiconductor devices, ICs, electronic component and various measuring instruments. Study experiments on various modulation methods.

Suggested List of Experiments:

Sr. No.	List Experiments
1	Study of electronic components and measuring instruments.
2	Implementation of single stage BJTamplifier.
3	Implementation of oscillators.
4	Implementation of inverting, non inverting amplifier using IC741.
5	Implementation of adder and subtractor using IC 741.
6	Implementation of differentiator using IC741.
7	Implementation of integrator using IC741.
8	Modulation and Demodulation of AM.
9	Study of super heterodyne receiver
10	Modulation and Demodulation PAM.
11	Modulation and Demodulation PWM.
12	Modulation and Demodulation PPM.
13	Modulation and Demodulation PCM.
14	Study of TDM.

15	Study of FDM.
16	SPICE based simulation.

Term Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Oral exam will be based on the above mentioned experiment list and CSC304: Electronic circuits and communication fundamentals syllabus.

Lab Code	Lab Name	Credits
CSL303	Data Structures Lab	1

Lab outcomes:

- 1. Students will be able to implement various linear and nonlinear data structures.
- 2. Students will be able to handle operations like insertion, deletion, searching and traversing on various data structures.

Description: Experiments based on creating and manipulating various data structures.

Suggested Experiments:

Students are required to complete at least 12 experiments. Star (*) marked experiments are compulsory.

*1) Array Implementation of Stack.

*2) Conversion of Infix to Postfix.

3) Evaluation of Postfix Expression.

4) Check continuity of different types of parenthesis using stack.

5) Array Implementation of Queue.

*6) Array Implementation of Circular Queue.

7) Array Implementation of Priority Queue

*8) Implementation of Singly Linked List

9) Linked Implementation of Stack

- 10) Linked Implementation of Queue.
- 11) Implementation of Circular Linked List.
- 12) Implementation of Doubly Linked List.
- *13) Implement Binary Search Tree.

14) Implementation of Bubble Sort.

- 15) Implementation of Insertion Sort.
- 16) Implementation of Merge Sort.
- *17) Implementation of Quick Sort.
- *18) Implementation of Binary Search.
- 19) Implementation of Hashing.

20) Implementation of Depth First Search and Breadth First Search.

Term Work:

- 1. Term work should consist of at least 10 experiments.
- 2. Journal must include at least 2 assignments.
- 3. A case study should be conducted using a Mini Project by taking a good problem definition and complete the following phases.
 - a. Decomposing the problem into modules
 - b. Identifying the best suited data structure for solving the sub problems with justification
 - c. Define algorithms for various identified functions
 - d. Implement the modules
- 4. The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.
- 5. Term Work:

Total 25 Marks = (Experiments: 10 mark + Mini Project: 05 mark + Assignments: 05 mark)

Practical and oral examination will be based on the above syllabus.

Lab Code	Lab Name	Credits
CSL304	OOPM (JAVA) Lab	2

Course Objective:

- 1. To learn the object oriented programming concepts.
- 2. To study various java programming concept like multithreading, exception handling, packages etc.
- 3. To explain components of GUI based programming.

Course Outcomes: At the end of the course Student should be able:

- 1. To apply fundamental programming constructs.
- 2. To illustrate the concept of packages, classes and objects.
- 3. To elaborate the concept of strings, arrays and vectors.
- 4. To implement the concept of inheritance and interfaces.
- 5. To implement the notion of exception handling and multithreading.
- 6. To develop GUI based application.

Prerequisite: Structured Programming Approach

Sr. No.	Module	Detailed Content	Hours
1	Introduction to	1.1 OOP Concepts: Object, Class, Encapsulation,	02
	Object Oriented	Abstraction, Inheritance, Polymorphism.	
	Programming	1.2 Features of Java, JVM	
		1.3 Basic Constructs/Notions: Constants, variables and data	
		types, Operators and Expressions, Revision of	
		Branching and looping	
2	Classes, Object and	2.1Class, Object, Method.	05
	Packages	2.2 Constructor, Static members and methods	
		2.3 Passing and returning Objects	
		2.4Method Overloading	
		2.5 Packages in java, creating user defined packages, access	
		specifiers.	
3	Array, String and	3.1 Arrays, Strings, String Buffer	04
	Vector	3.2 Wrapper classes, Vector	
4	Inheritance and	4.1Types of Inheritance, super keyword, Method Overriding,	03
	Interface	abstract class and abstract method, final keyword,	
		4.2 Implementing interfaces, extending interfaces	
5	Exception	5.1 Error vs Exception, try, catch, finally, throw, throws,	04
	Handling and	creating own exception	
	Multithreading	5.2 Thread lifecycle, Thread class methods, creating threads,	
		Synchronization	
6	GUI programming	6.1 Applet: Applet life cycle, Creating applets, Graphics class	08
	in JAVA	methods, Font and Color class, parameter passing.	

6.2 Event Handling: Event classes and event listener	
6.3 Introduction to AWT: Working with windows, Using	3
AWT controls- push Buttons, Label, Text Fields, Tex	xt
Area, Check Box, and Radio Buttons.	
6.4 Programming using JDBC: Introduction to JDBC, JE	DBC
Drivers & Architecture.	

- 1. Herbert Schildt, 'JAVA: The Complete Reference', Ninth Edition, Oracle Press.
- 2. Sachin Malhotra and Saurabh Chaudhary, "Programming in Java", Oxford University Press, 2010

Reference Books:

- 1. Ivor Horton, 'Beginning JAVA', Wiley India.
- 2. DietalandDietal, 'Java: How to Program', 8/e,PHI
- 3. 'JAVA Programming', Black Book, Dreamtech Press.
- 4. 'Learn to Master Java programming', Staredusolutions

Digital Material:

- 1. <u>www.nptelvideos.in</u>
- 2. <u>www.w3schools.com</u>
- 3. <u>http://spoken-tutorial.org</u>
- 4. <u>www.staredusolutions.org</u>

Suggested List of Programming Assignments/Laboratory Work:

1.	Program on various ways to accept data through keyboard and unsigned right shift operator.
2.	Program on branching, looping, labelled break and labelled continue.
3.	Program to create class with members and methods, accept and display details for single object.
4.	Program on constructor and constructor overloading
5.	Program on method overloading
6.	Program on passing object as argument and returning object
7.	Program on creating user defined package
8.	Program on 1D array
9.	Program on 2D array

10.	Program on String
11.	Program on StringBuffer
12.	Program on Vector
13.	Program on single and multilevel inheritance (Use super keyword)
14.	Program on abstract class
15.	Program on interface demonstrating concept of multiple inheritance
16.	Program on dynamic method dispatch using base class and interface reference.
17.	Program to demonstrate try, catch, throw, throws and finally.
18.	Program to demonstrate user defined exception
19.	Program on multithreading
20.	Program on concept of synchronization
21.	Program on Applet to demonstrate Graphics, Font and Color class.
22.	Program on passing parameters to applets
23.	Program to create GUI application without event handling using AWT controls
24.	Program to create GUI application with event handling using AWT controls
25.	Mini Project based on content of the syllabus. (Group of 2-3 students)

Term Work:

Students will submit term work in the form of journal that will include:

- 1. At least 16-18 programs and mini project
- 2. Two assignments covering whole syllabus

Term Work: 50 Marks (Total Marks) = 20 marks (Experiments) +

20 marks (Mini Project) +

05 marks (Assignments) +

05 marks (Attendance)

Practical and oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Credits	
CSC401	Applied Mathematics-IV	5	

Course Objectives: The objectives of this course are to teach the students:

- 1. Matrix theory, and it's application to find the matrix function. Present methods of computing and using Eigen values and Eigen vectors.
- 2. Set up and directly evaluate contour integrals Cauchy's integral theorem and formula in basic and extended form. Present Taylor and Laurent's series to find singularities zero's and poles also presents residues theory
- 3. Theory of probability, Baye's Theorem, Expectation and Moments and it's application.
- 4. Probability distribution such as Binomial, Poisson and Normal distribution with their properties.
- 5. Sampling theory and it's application for small and large sample and Optimization techniques.

Course Outcomes:

- 1. Students in this course will be able to apply the method of solving complex integration, computing residues & evaluate various contour integrals.
- 2. Demonstrate ability to manipulate matrices and compute Eigen values and Eigen vectors.
- 3. Apply the concept of probability distribution to the engineering problems.
- 4. Apply the concept of sampling theory to the engineering problems.
- 5. Use matrix algebra with its specific rules to solve the system of linear equation, using concept of Eigen value and Eigen vector to the engineering problems.
- 6. Apply the concept of Linear & Non-Linear Programming Problem to the engineering problems.

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Complex Integration	10
	1.1	Complex Integration – Line Integral, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula(without proof)	
	1.2	Taylor's and Laurent's series (without proof)	
	1.3	Zeros, poles of f(z), Residues, Cauchy's Residue theorem.	
	1.4	Applications of Residue theorem to evaluate Integrals of the type $\int_{0}^{2\pi} f(\cos\theta, \sin\theta) d\theta, \int_{-\infty}^{\infty} f(x) dx$	
2.0		Matrices	10
	2.1	Eigen values and Eigen vectors.	
	2.2	Cayley-Hamilton theorem(without proof)	
	2.3	Similar matrices, diagonalisable matrix.	
	2.4	Derogatory and non-derogatory matrices, Functions of square matrix.	

3.0		Probability	10
	3.1	Baye's Theorem	1
	3.2	Random Variables: Discrete & continuous random variables,	l
		expectation, Variance, Probability Density Function &	1
		Cumulative Density Function.	1
	3.3	Moments & Moment generating function.	1
	3.4	Probability distribution: Binomial distribution, Poisson &	1
		Normal distribution. (For detail study)	0.6
4.0		Sampling Theory (Large Sample test)	06
	4.1	Sampling Distribution, Test of Hypothesis, Level of significance,	l
		Critical region, One Tailed and Two Tailed test,	l
	4.2	Test of significant for Large Samples:-Means of the samples and	l
		test of significant of means of two large samples.	ļ
5.0		Sampling Theory (Small Sample test)	06
	5.1	Test of significant for small samples:- Students t- distribution for	l
		dependent and independent samples	l
	5.2	Chi square test:- Test of goodness of fit and independence of	l
		attributes, Contingency table.	l
6.0		Mathematical Programming	10
	6.1	Types of solution, Standard and Canonical form of LPP, Basic	l
		and feasible solutions, simplex method.	1
	6.2	Artificial variables, Big –M method (method of penalty).	1
	6.3	Duality and Dual simplex method.	1
	6.4	Non Linear Programming Problems with equality constrains and	1
		inequality Constrains (two or three variables with one constrains)	l
		(No formulation, No Graphical method).	l
		Total	52

- 1. Higher Engineering Mathematics by Grewal B. S. 38th edition, Khanna Publication 2005.
- 2. Operation Research by Hira & Gupta, S Chand.
- 3. A Text Book of Applied Mathematics Vol. I & II by P.N.Wartilar &
- 4. J.N.Wartikar, Pune, Vidyarthi Griha Prakashan., Pune.
- 5. Probability and Statistics for Engineering, Dr. J Ravichandran, Wiley-India.

Reference Books:

- 1. Probability & Statistics with reliability by Kishor s. Trivedi, Wiley India.
- 2. Advanced Engg. Mathematics by C. Ray Wylie & Louis Barrett.TMH International Edition.
- 3. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 4. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 5. Operations Research by S.D. Sharma Kedar Nath, Ram Nath & Co. Meerat.
- 6. Engineering optimization (Theory and Practice) by Singiresu S.Rao, New Age International publication.

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Course Code	Course Name	Credits
CSC402	Analysis of Algorithms	4

Course Objectives:

- 4. To provide mathematical approach for Analysis of Algorithms
- 5. To solve problems using various strategies
- 6. To analyse strategies for solving problems not solvable in polynomial time.

Course Outcomes: At the end of the course student will be able to

- 1. Analyze the running time and space complexity of algorithms.
- 2. Describe, apply and analyze the complexity of divide and conquer strategy.
- 3. Describe, apply and analyze the complexity of greedy strategy.
- 4. Describe, apply and analyze the complexity of dynamic programming strategy.
- 5. Explain and apply backtracking, branch and bound and string matching techniques to deal with some hard problems.
- 6. Describe the classes P, NP, and NP-Complete and be able to prove that a certain problem is NP-Complete.

Prerequisites: Students should be familiar with concepts of Data structure and discrete structures.

Module	Detailed Content	Hours
<u>1</u>	Introduction to analysis of algorithm Performance analysis , space and time complexity Growth of function – Big –Oh ,Omega , Theta notation Mathematical background for algorithm analysis, Analysis of selection sort , insertion sort. Recurrences: -The substitution method -Recursion tree method -Master method Divide and Conquer Approach: General method Analysis of Merge sort, Analysis of Quick sort, Analysis of Binary search, Finding minimum and maximum algorithm and analysis, Strassen's matrix	12
2	multiplicationDynamic Programming Approach:General MethodMultistage graphssingle source shortest pathall pair shortest pathAssembly-line scheduling0/1 knapsackTravelling salesman problemLongest common subsequence	08
3	Greedy Method Approach:	06

General Method	
Single source shortest path	
Knapsack problem	
Job sequencing with deadlines	
Minimum cost spanning trees-Kruskal and prim's algorithm	
Optimal storage on tapes	
Backtracking and Branch-and-bound:	
General Method	
8 queen problem(N-queen problem)	
Sum of subsets	08
Graph coloring	
15 puzzle problem,	
Travelling salesman problem.	
String Matching Algorithms:	
The naïve string matching Algorithms	
The Rabin Karp algorithm	06
String matching with finite automata	
The knuth-Morris-Pratt algorithm	
Non-deterministic polynomial algorithms:	
Polynomial time,	
Polynomial time verification	
NP Completeness and reducibility	08
NP Completeness proofs	
Vertex Cover Problems	
Clique Problems	
-	Single source shortest pathKnapsack problemJob sequencing with deadlinesMinimum cost spanning trees-Kruskal and prim's algorithmOptimal storage on tapesBacktracking and Branch-and-bound:General Method8 queen problem(N-queen problem)Sum of subsetsGraph coloring15 puzzle problem,Travelling salesman problem.String Matching Algorithms:The naïve string matching AlgorithmsThe Rabin Karp algorithmString matching with finite automataThe knuth-Morris-Pratt algorithmPolynomial time,Polynomial time,Polynomial time, verificationNP Completeness and reducibilityNP Completeness proofs

- 1. T.H.coreman, C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms", 2nd edition, PHI publication 2005.
- 2. Ellis horowitz , Sartaj Sahni , S. Rajsekaran. "Fundamentals of computer algorithms" University Press

Reference Books:

- 1. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-Hill Edition.
- 2. S. K. Basu, "Design Methods and Analysis of Algorithm", PHI.
- 3. John Kleinberg, Eva Tardos, "Algorithm Design", Pearson.
- 4. Michael T. Goodrich, Roberto Tamassia, "Algorithm Design", Wiley Publication.

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules..

CSC403

Course Objectives:

- 1. To have a thorough understanding of the basic structure and operation of a digital computer.
- 2. To discuss in detail the operation of the arithmetic unit including the algorithms & implementation of fixed-point and floating-point addition, subtraction, multiplication & division.
- 3. To study the different ways of communicating with I/O devices and standard I/O interfaces.
- 4. To study the hierarchical memory system including cache memories and virtual memory.

Course Outcomes: At the end of the course student should be able-

- 1. To describe basic structure of the computer system.
- 2. To demonstrate the arithmetic algorithms for solving ALU operations.
- 3. To describe instruction level parallelism and hazards in typical processor pipelines.
- 4. To describe superscalar architectures, multi-core architecture and their advantages
- 5. To demonstrate the memory mapping techniques.
- 6. To Identify various types of buses, interrupts and I/O operations in a computer system

Prerequisite: Digital Logic Design and Application

Sr. No.	Module	e Detailed Content 1	
1	Introduction	 <u>Overview of Computer Architecture & Organization</u> Introduction Basic organization of computer Block level description of the functional units. <u>Data Representation and Arithmetic Algorithms:</u> Integer Data computation: Addition, Subtraction. Multiplication: unsigned multiplication, Booth's algorithm. Division of integers: Restoring and non restoring division Floating point representation. IEEE 754 floating point number representation. Floating point arithmetic: Addition, Subtraction, Multiplication, Division 	08
2	Processor Organization and Architecture	 Von Neumann model, Harvard Architecture Register Organization, Instruction formats, addressing modes, instruction cycle. Instruction interpretation and sequencing. ALU and Shifters Basic pipelined datapath and control, Data dependences, data hazards, Branch hazards, delayed branches, branch prediction Performance measures – CPI, speedup, efficiency, throughput and Amdahl's law 	10

3	<u>Control Unit</u> <u>Design</u>	 Hardwired control unit design methods: State table, delay element, sequence counter with examples like control unit for multiplication and division Microprogrammed control Unit: Microinstruction sequencing and execution. Micro operations, Wilkie's microprogrammed Control Unit, Examples on microprograms 	08
4	Memory Organization	 Classifications of primary and secondary memories. Types of RAM (SRAM, DRAM, SDRAM, DDR, SSD) and ROM, Characteristics of memory, Memory hierarchy: cost and performance measurement. Virtual Memory: Concept, Segmentation and Paging, Address translation mechanism. Interleaved and Associative memory. Cache memory Concepts, Locality of reference, design problems based on mapping techniques. Cache Coherency, Write Policies 	12
5	<u>I/O</u> <u>Organization</u> <u>and</u> <u>Peripherals</u>	 Common I/O device types and characteristics Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA. Introduction to buses, Bus arbitration and multiple bus hierarchy Interrupt types, Interrupts handling 	06
6	Advanced Processor Principles	 Introduction to parallel processing, Flynn's Classification Concepts of superscalar architecture, out-of-order execution, speculative execution, multithreaded processor, VLIW, data flow computing. Introduction to Multi-core processor architecture 	08

Text Books:

- 1. William Stallings, "Computer Organization and Architecture: Designing for Performance", Pearson Publication, 10th Edition, 2013
- 2. John P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1988
- 3. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, McGraw-Hill (India),

Reference Books:

- 1. Andrew S. Tanenbaum "Structured Computer Organization", Pearson, Sixth Edition
- 2. Morris Mano. "Computer System Architecture" Pearson Publication, 3rd Edition, 2007
- 3. Kai Hwang, Fayé Alayé Briggs. "Computer architecture and parallel processing", McGraw-Hill
- 4. P. Pal Chaudhuri. "Computer Organization and Design" Prentice Hall India, 2004
- 5. Dr. M. Usha, T.S. Shrikant. "Computer System Architecture and Organization" Wiley India, 2014.

University of Mumbai, B. E. (Computer Engineering), Rev 2016

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name	Credits
CSC404	Computer Graphics	4

Course Objectives

- 1 To equip students with the fundamental knowledge and basic technical competence in the field of computer graphics.
- 2 To emphasize on implementation aspect of Computer Graphics Algorithms.
- 3 To prepare the student for advance areas like Image Processing or Computer Vision or Virtual Reality and professional avenues in the field of Computer Graphics.

Course Outcomes : At the end of the course , the students should be able to

- 1 Understand the basic concepts of Computer Graphics.
- 2 Demonstrate various algorithms for scan conversion and filling of basic objects and their comparative analysis.
- 3 Apply geometric transformations, viewing and clipping on graphical objects.
- 4 Explore solid model representation techniques and projections.
- 5 Understand visible surface detection techniques and illumination models.

Prerequisite: Knowledge of C Programming, Basic Data Structures and Mathematics.

Module No	Detail Syllabus	Hours
	Introduction and Overview of Graphics System:	03
1	 Definition and Representative uses of computer graphics, classification of application areas, Overview of coordinate systems ,definition of scan conversion, rasterization and rendering. Raster scan & random scan displays, Flat Panel displays like LCD and LED , architecture of raster graphics system with display processor, architecture of random scan systems. 	
	Output Primitives :	12
2	 Scan conversions of point,line, circle and ellipse : DDA algorithm and Bresenham algorithm for line drawing, midpoint algorithm for circle, midpoint algorithm for ellipse drawing (Mathematical derivation for above algorithms is expected) Aliasing, Antialiasing techniques like Pre and post filtering, super sampling, and pixel phasing). Filled Area Primitive: Scan line Polygon Fill algorithm, Inside outside tests, Boundary Fill and Flood fill algorithm. 	
	Two Dimensional Geometric Transformations	06
3	 Basic transformations : Translation , Scaling , Rotation Matrix representation and Homogeneous Coordinates Composite transformation Other transformations : Reflection and Shear Raster method for transformation. 	

University of Mumbai, B. E. (Computer Engineering), Rev 2016

	Two Dimensional Viewing and Clipping	08
	Viewing transformation pipeline and Window to Viewport coordinate	
4	transformation	
4	• Clipping operations – Point clipping, Line clipping algorithms : Cohen –	
	Sutherland, Midpoint subdivision, Liang – Barsky, Polygon Clipping	
	Algorithms : Sutherland – Hodgeman, Weiler – Atherton.	
	Three Dimensional Object Representations, Geometric Transformations	12
	and 3D Viewing	
	Boundary Representation and Space partitioning representation: Polygon	
	Surfaces, Bezier Curve, Bezier Surface, B-Spline Curve, Sweep	
	Representation, Constructive Solid Geometry, Octree, Fractal-Geometry:	
5	Fractal Dimension, Koch Curve.	
	• 3D Transformations : Translation, Rotation, Scaling and Reflection.	
	• Composite transformations :Rotation about an arbitrary axis	
	• 3D transformation pipeline	
	• Projections – Parallel, Perspective.(Matrix Representation)	
	• 3D clipping.	
	Visible Surface Detection	04
	Classification of Visible Surface Detection algorithm	0.
	Back Surface detection method	
6	• Depth Buffer method	
	• Depth Sorting method	
	• Scan line method	
	Area Subdivision method	
	Illumination Models and Surface Rendering	03
	Basic Illumination Models : Diffused reflection, Phong Specular reflection	05
7	Model	
	Halftone and Dithering techniques	
	Polygon Rendering :Constant shading , Gouraud Shading , Phong Shading.	

Text Books:

- 1. "Computer Graphics" C version by Hearn & Baker, 2nd Edition, Pearson
- "Computer Graphics Principles and Practice in C , 2nd Edition ,James D. Foley, Andries van Dam, Steven K Feiner, John F. Hughes, Pearson.
- 3. "Computer Graphics", by Rajesh K. Maurya, Wiley India Publication.
- 4. "Computer Graphics", by Samit Bhattacharya, Oxford Publication.

Reference Books:

- 1. "Procedural Elements for Computer Graphics " by D. Rogers , Tata McGraw-Hill Publications.
- 2. "Computer Graphics", by Zhigang Xiang, Roy Plastock, Schaum's Outlines McGraw-Hill Education
- 3. "Computer Graphics using OpenGL", by F.S.Hill, Jr., Third edition, Pearson Publications.

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Objectives:

- 1. To introduce basic concepts and functions of operating systems.
- 2. To understand the concept of process, thread and resource management.
- 3. To understand the concepts of process synchronization and deadlock.
- 4. To understand various Memory, I/O and File management techniques.

Course Outcomes: At the end of the course student should be able to

- 1. Understand role of Operating System in terms of process, memory, file and I/O management.
- 2. Apply and analyse the concept of a process, thread, mutual exclusion and deadlock.
- 3. Evaluate performance of process scheduling algorithms and IPC.
- 4. Apply and analyse the concepts of memory management techniques.
- 5. Evaluate the performance of memory allocation and replacement techniques.
- 6. Apply and analyze different techniques of file and I/O management.

Prerequisite: Computer Organization & Architecture

Sr No	Module	Detailed Content	Hours
1	Operating System Overview	Operating System Objectives and Functions, The Evolution of Operating Systems, OS Design Considerations for Multiprocessor and Multicore architectures, Operating system structures, System Calls, Linux Kernel and Shell.	8 hrs
2	Process Concept and Scheduling	 Process: Concept of a Process, Process States, Process Description, Process Control Block, Operations on Processes. Threads: Definition and Types, Concept of Multithreading, Multicore processors and threads. Scheduling: Uniprocessor Scheduling - Types of Scheduling: Preemptive and, Non-preemptive, Scheduling Algorithms: FCFS, SJF, SRTN, Priority based, Round Robin, Multilevel Queue scheduling. Introduction to Thread Scheduling, Multiprocessor Scheduling and Linux Scheduling. 	8 hrs

3	Synchronization and Deadlocks	 Concurrency: Principles of Concurrency, Inter- Process Communication, Process/Thread Synchronization. Mutual Exclusion: Requirements, Hardware Support, Operating System Support (Semaphores and Mutex), Programming Language Support (Monitors), Classical synchronization problems: Readers/Writers Problem, Producer and Consumer problem. Principles of Deadlock: Conditions and Resource Allocation Graphs, Deadlock Prevention, Deadlock Avoidance: Banker's Algorithm for Single & Multiple Resources, Deadlock Detection and Recovery. Dining Philosophers Problem. 	12 hrs
4	Memory Management	 Memory Management: Memory Management Requirements, Memory Partitioning: Fixed Partitioning, Dynamic Partitioning, Memory Allocation Strategies: Best-Fit, First Fit, Worst Fit, Next Fit, Buddy System, Relocation. Paging, Segmentation. Virtual Memory: Hardware and Control Structures, Demand Paging, Structure of Page Tables, Copy on Write, Page Replacement Strategies: FIFO, Optimal, LRU, LFU, Approximation, Counting Based. Allocation of frames, Thrashing. 	8 hrs
5	File Management	File Management : Overview, File Organization and Access, File Directories, File Sharing, Secondary Storage Management, Linux Virtual File System.	6 hrs
6	Input /Output Management	I/O Management and Disk Scheduling : I/O Devices, Organization of the I/O Function, Operating System Design Issues, I/O Buffering, Disk Scheduling algorithm: FCFS, SSTF, SCAN, CSCAN, LOOK, C- LOOK. Disk Management, Disk Cache, Linux I/O.	6 hrs

Text Books:

- 1. William Stallings, Operating System: Internals and Design Principles, Prentice Hall, 8th Edition, 2014, ISBN-10: 0133805913 ISBN-13: 9780133805918 .
- 2. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, John Wiley & Sons , Inc., 9th Edition, 2016, ISBN 978-81-265-5427-0
- 3. Andrew Tannenbaum, Operating System Design and Implementation, Pearson, 3rd Edition.
- 4. D.M Dhamdhere, Operating Systems: A Concept Based Approach, Mc-Graw Hill

Reference Books:

- 1. Maurice J. Bach, "Design of UNIX Operating System", PHI
- 2. Achyut Godbole and Atul Kahate, Operating Systems, Mc Graw Hill Education, 3rd Edition
- 3. The Linux Kernel Book, Remy Card, Eric Dumas, Frank Mevel, Wiley Publications.

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

CSL401	Analysis of Algorithms Lab	1
Lab Code	Lab Name	Credit

Lab outcomes: At the end of the course student will be able to

- 1. Analyze the complexities of various problems in different domains.
- 2. Prove the correctness and analyze the running time of the basic algorithms for those classic problems in various domains.
- 3. Develop the efficient algorithms for the new problem with suitable designing techniques.
- 4. Implement the algorithms using different strategies.

Prerequisites: Students should be familiar with concepts of Data structure and Discrete structures.

Description:

Minimum 2 experiments should be implemented using any language on each algorithm design strategy (Divide and conquer, dynamic programming, Greedy method, backtracking and branch & bound, string matching).

Sr. No.	Module Name	Suggested Experiment List
1	Introduction to analysis of algorithm	Selection sort, insertion sort.
1	Divide and Conquer Approach	Merge sort, Quick sort, Binary search.
		Multistage graphs,
		single source shortest path,
2	Dynamic Programming Approach	all pair shortest path,
2		0/1 knapsack,
		Travelling salesman problem,
		Longest common subsequence.
		Single source shortest path,
	Greedy Method Approach	Knapsack problem,
3		Job sequencing with deadlines,
5		Minimum cost spanning trees-Kruskal and
		prim's algorithm,
		Optimal storage on tapes.
		8 queen problem (N-queen problem),
	Paaktrocking and Pronch and bound	Sum of subsets,
4	Backtracking and Branch-and-bound	Graph coloring,
		15 puzzle problem,
		Travelling salesman problem.

Suggested Laboratory Experiments:

		The naïve string matching Algorithms,
5	String Matching Algorithms	The Rabin Karp algorithm,
5		String matching with finite automata,
		The knuth-Morris-Pratt algorithm.
		This will involve implementation of two
		algorithms for problems beyond the scope
6	Any two Experiments	of syllabus.
		The exact set of algorithms to implement is
		to be decided by the course instructor.

Text Books:

- 1. T.H.Coreman, C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms", 2nd edition, PHI publication 2005.
- 2. Ellis horowitz , sartaj Sahni , s. Rajsekaran. "Fundamentals of computer algorithms" University Press

Reference Books:

- 1. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, "Algorithms", Tata McGraw-Hill Edition.
- 2. S. K. Basu, "Design Methods and Analysis of Algorithm", PHI.
- Dana Vrajittoru and William Knight, "Practical Analysis of Algorithms", Springer 2014th Edition.

Term Work:

Laboratory work must contain implementation of minimum 10 experiments. The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing marks in term work. The 25 marks of the term work should be divided as below: 25 Marks (total marks) = 15 Marks Lab. Experiments + 05 Marks Assignments (based on theory syllabus) + 05 (Attendance: theory + practical)

Oral & Practical Exam will be based on the experiments implemented in the Laboratory.

CSL402	Computer Graphics Lab	1
Lab Code	Lab Title	Credit

Lab Objectives

- 1 To emphasize on implementation aspect of Computer Graphics Algorithm.
- 2 To prepare students for advanced areas like Animation, image processing ,virtual reality etc

Lab Outcomes : At the end of the course , the students should be able to

- 1 Explore the working principle, utility of various input/ output devices and graphical tools.
- 2 Implement various output and filled area primitive algorithms using C/ OpenGL
- 3 Apply transformation and clipping algorithms on graphical objects.
- 4 Implementation of curve and fractal generation.
- 5 Develop a Graphical application based on learned concept.

Content:

Scan conversions: lines, circles, ellipses. Filling algorithms, clipping algorithms. 2D and 3D transformation. Curves. Visible surface determination. Simple animations Application of these through exercises in C/C++/ Open GL

List of Desirable Experiments:

- 1. Study and apply basic opengl functions to draw basic primitives. (*)
- 2. Implement sierpinsky gasket using openGL.
- 3. Implement DDA Line Drawing algorithms and Bresenham algorithm(*)
- 4. Implement midpoint Circle algorithm(*)
- 5. Implement midpoint Ellipse algorithm
- 6. Implemen tArea Filling Algorithm: Boundary Fill, Flood Fill ,Scan line Polygon Fill (*)
- 7. Implement Curve : Bezier for n control points , B Spline (Uniform) (atleast one)(*)
- 8. Implement Fractal (Koch Curve)
- 9. Character Generation : Bit Map method and Stroke Method
- 10. Implement 2D Transformations: Translation, Scaling, Rotation, Reflection, Shear.(*)
- 11. Implement Line Clipping Algorithm: Cohen Sutherland / Liang Barsky.(*)
- 12. Implement polygon clipping algorithm(atleast one)
- 13. Program to represent a 3D object using polygon surfaces and then perform 3D transformation.
- 14. Program to perform projection of a 3D object on Projection Plane : Parallel and Perspective.(*)

Term Work

- 1. Term work should consist of at least 12 experiments. (*) \rightarrow Practical to be covered necessarily
- 2. Journal must include at least 2 assignments.
- 3. Mini Project to perform using C / OpenGL.

Possible Ideas:

- a. Animation using multiple object
- b. Graphics editor with following features :

*Draw basic geometrical entities; apply geometrical transformations, Area filling, Clipping against Clip window, displaying the text, displaying bar / line graphs, pie charts etc.

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

Term Work: 25 Marks (Total) = 10 Marks (Experiments) + 5 Marks (Mini Project) + 5 Marks (Assignments) + 5 Marks (Theory + Practical Attendance).

Oral & Practical exam will be based on the above content and CSC404: Computer Graphics.

Lab Code	Lab Name	Credit
CSL403	Processor Architecture Lab	1

Lab Objectives:

- 1. To implement the operation of the arithmetic unit including the algorithms & implementation of fixed-point and floating-point addition, subtraction, multiplication & division.
- 2. To study the different ways of communicating with I/O devices and standard I/O interfaces.
- 3. To design memory subsystem including cache memory
- 4. To have through understanding of various computer buses

Lab Outcomes: At the end of the course student should be

- 1. Assemble personal computer
- 2. Design the basic building blocks of a computer: arithmetic-logic unit, registers, central processing unit, and memory.
- 3. Implement various algorithms like Booth's algorithm for arithmetic operations
- 4. Describe various I/O buses with merits and demerits.

Prerequisite: Digital Logic Design and Applications

Content:

Sr. No.	Module	Detailed Content
1	Overview of Computer Architecture & Organization	 Computer Anatomy- Memory, Ports, Motherboard and add-on cards Dismantling and assembling PC
2	Programs on Data Representation and Arithmetic	 Ripple carry adder, Carry look-ahead adder, registers, Multiplication Booths Algorithm, Restoring and Non restoring Division
3	Processor Organization and Architecture	ALU Design, CPU DesignCase Study on multi-core Processors
4	Memory Organization	Memory design, Cache Memory design
5	I/O Organization and Interrupts	 Case study on buses like ISA, PCI, USB etc Interrupt handling using C/Java Programming

Digital Material:

• Manual to use the simulator for computer organization and architecture. Developed by the Department of CSE, IIT kharagpur (<u>http://cse10-iitkgp.virtual-labs.ac.in/</u>)

Books:

- 1. William Stallings, "Computer Organization and Architecture: Designing for Performance", Pearson Publication, 10th Edition, 2013
- 2. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, McGraw-Hill (India),
- 6. Andrew S. Tanenbaum "Structured Computer Organization", Pearson, Sixth Edition
- 7. Morris Mano. "Computer System Architecture" Pearson Publication, 3rd Edition, 2007
- 8. Kai Hwang, Fayé Alayé Briggs. "Computer architecture and parallel processing", McGraw-Hill
- 9. P. Pal Chaudhuri. "Computer Organization and Design" Prentice Hall India, 2004
- 10. Dr. M. Usha, T.S. Shrikant. "Computer System Architecture and Organization" Wiley India, 2014.

Term Work

Term work should consist of at least 10-12 experiments and 3-4 assignments based on above content and CSC403: Computer Organization and Architecture

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

Term Work: 25 Marks (Total) = 10 Marks (Experiments) + 5 Marks (Mini Project) + 5 Marks (Assignments) + 5 Marks (Theory + Practical Attendance).

Oral exam will be based on the above content and CSC403: Computer Organization and Architecture.

Lab Code	Lab Name	Credit
CSL404	Operating System Lab	1

Lab Outcome:

- 1. Understand basic operating system commands.
- 2. Understand and explore various system calls.
- 3. Write shell scripts and shell commands using kernel APIs.
- 4. Implement and analyze different process scheduling algorithms
- 5. Implement and analyze different memory management algorithms.
- 6. Evaluate process management techniques and deadlock handling using simulator.

Descriptions:

Sr. No	Contents			
1	Explore the internal commands of linux like ls,chdir,mkdir,chown,chmod,chgrp,ps etc			
2	 Write shell scripts to do the following: Display top 10 processes in descending order Display processes with highest memory usage. Display current logged in user and logname. Display current shell, home directory, operating system type, current path setting, current working directory. Display OS version, release number, kernel version. Illustrate the use of sort, grep, awk, etc. 			
3	 a) Create a child process in Linux using the fork system call. From the child process obtain the process ID of both child and parent by using getpid and getppid system call. Explore wait and waitpid before termination of process. b) Explore the following system calls: open, read, write, close, getpid, setpid, getuid, getgid, getegid, geteuid. 			
4	Implement basic commands of linux like ls, cp, mv and others using kernel APIs.			
5	Write a program to implement any two CPU scheduling algorithms like FCFS, SJF, Round Robin etc.			
6	Write a program to implement dynamic partitioning placement algorithms i.e Best Fit, First- Fit, Worst-Fit etc			
7	Write a program to implement various page replacement policies.			
8	 Using the CPU-OS simulator analyze and synthesize the following: a. Process Scheduling algorithms. b. Thread creation and synchronization. c. Deadlock prevention and avoidance. 			

University of Mumbai, B. E. (Computer Engineering), Rev 2016

Digital Materials:

- 1. Download the CPU-OS simulator along with related tutorials from http://www.teach-sim.com
- 2. <u>http://www.teach-sim.com</u>

Books:

- 1. Linux Kernel Book, by Remy Card, Eric Dumas, Frank Mevel, Wiley India
- 2. Unix Concepts and Applications, Sumitabha Das, McGraw Hill.

Term Work:

- Term work should consist of at least 12 experiments and 2-3 assignments on above content.
- The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.
- Term Work: 25 Marks (Total) = 10 Marks (Experiments)
 - + 5 Marks (Mini Project)
 - + 5 Marks (Assignments)
 - + 5 Marks (Theory + Practical Attendance).

Oral & Practical exam will be based on the above content and CSC405: Operating system syllabus.

Lab Code	Lab Name	Credit
CSL405	Open Source Technology Lab	2

Course Outcomes:

- 1. To understand basic concepts in python and perl.
- 2. To explore contents of files, directories and text processing with python
- 3. To develop program for data structure using built in functions in python.
- 4. To explore django web framework for developing python based web application.
- 5. To understand file handling and database handling using perl.
- 6. To explore basics of two way communication between client and server using python and perl

Prerequisites: Knowledge of some programming language like C, Java

Content:

Sr. No	Module Name	Detailed Content
1	Python basics	Data types in python ,Operators in python, Input and Output, Control statement, Arrays in python, String and Character in python, Functions, List and Tuples, Dictionaries Exception, Introduction to OOP, Classes , Objects , Interfaces, Inheritance
2	Advanced Python	Files in Python, Directories, Building Modules, Packages, Text Processing, Regular expression in python.
3	Data Structure in Python	Link List, Stack, Queues, Dequeues
4	Python Integration Primer	Graphical User interface ,Networking in Python , Python database connectivity, Introduction to Django
5	Basics of Perl	Perl Overview, Variables, Control Statements, Subroutines, Objects, Packages and Modules
6	Perl advanced	Working with Files, Data manipulation, Database Systems, Networking

Text Books

- 1. Core Python Programming, Dr. R. Nageswara Rao, Dreamtech Press
- 2. Beginning Python: Using Python 2.6 and Python 3.1. James Payne, Wrox publication
- 3. Perl: The Complete Reference. Second Edition. Martin C. Brown, McGraw-Hill
- 4. Introduction to computing and problem solving using python, E Balagurusamy,McGraw Hill Education

Reference Book

- 1. Perl Black Book, 2nd Edition: Steven Holzner, Dreamtech Press
- 2. Learn Python the Hard Way: (3rd Edition) (Zed Shaw's Hard Way Series)
- 3. Python Projects , Laura Cassell, Alan Gauld, wrox publication

Digital Material:

- 1. "The Python Tutorial", http://docs.python.org/release/3.0.1/tutorial/
- 2. Beginning Perl, https://www.perl.org/books/beginning-perl/
- 3. <u>http://spoken-tutorial.org</u>
- 4. <u>www.staredusolutions.org</u>

Suggested experiments using Python:

- 1. Exploring basics of python like data types (strings,list,array,dictionaries,set,tuples) and control
- 2. statements.
- 3. Creating functions, classes and objects using python. Demonstrate exception handling and inheritance.
- 4. Exploring Files and directories
 - a. Python program to append data to existing file and then display the entire fille
 - b. Python program to count number of lines, words and characters in a file.
 - c. Python program to display file available in current directory
- 5. Creating GUI with python containing widgets such as labels, textbox, radio, checkboxes and custom dialog boxes.
- 6. Menu driven program for data structure using built in function for link list, stack and queues.
- 7. Program to demonstrate CRUD(create, read, update and delete) operations on database (SQLite/ MySQL) using python.
- 8. Creation of simple socket for basic information exchange between server and client.
- 9. Creating web application using Django web framework to demonstrate functionality of user login and registration (also validating user detail using regular expression).

Suggested experiments using Perl:

- 10. Exploring various data type, loops and conditional statement in perl. And Creating functions, packages and modules in perl.
- 11. Program to demonstrate use of objects and classes in perl.
- 12. Program to demonstrate file handling, data manipulation and use of regular expression for text processing in perl
- 13. Program to send email and read content of URL.

Term Work:

Students will submit term work in the form of journal that will include:

- 1. At least 12-14 programs.
- 2. One mini-project in a group 2-3 student.
- 3. Two assignments covering whole syllabus.

Term Work (25) = 15 marks (Experiments & Assignments)

+ 10 marks (Mini Project)

+ 05 marks (Attendance)

Practical and oral examination will be based on suggested practical list and entire syllabus.

AC 7/6/2014 Item 4.26

UNIVERSITY OF MUMBAI

Bachelor of Engineering

Computer Engineering (Third Year Year – Sem. V & VI), Revised course (REV- 2012) from Academic Year 2014 -15, Under FACULTY OF TECHNOLOGY (As per Semester Based Credit and Grading System)

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teachercentric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

The engineering education in India in general is expanding in manifolds. Now, the challenge is to ensure its quality to the stakeholders along with the expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

The Program Educational Objectives finalized for undergraduate program in Computer Engineering are listed below:

- 1. To prepare Learner's with a sound foundation in the mathematical, scientific and engineering fundamentals
- 2. To prepare Learner's to use effectively modern tools to solve real life problems
- **3**. To equip Learner's with broad education necessary to understand the impact of computer Technology in a global and social context
- 4. To encourage, motivate and prepare Learner's for Lifelong-learning
- 5. To inculcate professional and ethical attitude, good leadership qualities and commitment to social responsibilities

In addition to above 2 to3 more program educational objectives of their own may be added by affiliated Institutes.

The Program outcomes are the skils and ability that Learner will demonstrate upon completion of undergraduate degree program in Computer Engineering. Few may be listed as follows:

- 1. Ability to effectively apply knowledge of computing and mathematics to computer science problems.
- 2. Ability to design, implement and evaluate computer-based components, systems, processes or programs to meet desired needs and specifications.
- **3**. Ability and skills to effectively use state-of-the-art techniques and computing tools for analysis, design, and implementation of computing systems.
- 4. Ability to function effectively as a member of a team assembled to undertake a common goal.
- 5. An understanding of professional, ethical, legal, security, and social issues and responsibilities.

- 6. Ability to communicate effectively to both technical and non-technical audiences.
- 7. The ability to successfully pursue professional development thru lifelong learning

In addition to Program Educational Objectives, for each course of undergraduate program, Course Objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

Dr. Prachi Gharpure

Chairperson, Adhoc Board of Studies in Computer Engineering,

University of Mumbai, Mumbai

Program Structure for B.E. Computer Engineering

Third Year (Computer)

(Semester V)

(REV 2012)

Course Code	Course Name	Teaching Scheme (Contact Hours)			C	redits As	signed		
		Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total	
CPC501	Microprocessor	4	2	-	4	1	-	5	
CPC502	Operating Systems	4	2	-	4	1	-	5	
CPC503	Structured and Object Oriented Analysis and Design	4	2	-	4	1	-	5	
CPC504	Computer Networks	4	2	-	4	1	-	5	
CPL501	Web Technologies Laboratory	-	4	-	-	2	-	2	
CPL502	Business Communication and Ethics*	-	2+ 2*	-	-	2		2	
	Total	16	16	-	16	8	-	24	

* 2 hours shown as Practicals to be taken class wise and other 2 hours to be taken as batch wise

Course Code	Course Name	Examination Scheme								
			Interna							
		Internal A	ssesment		End Sem	Exam	TW	Oral	Total	
		Test 1	Test 2	Avg	Exam	Duration (in Hrs)		/ Pract		
CPC501	Microprocessor	20	20	20	80	03	25	25 (prac)	150	
CPC502	Operating Systems	20	20	20	80	03	25	25 (prac)	150	
CPC503	Structured and Object Oriented Analysis and Design	20	20	20	80	03	25	25 (oral)	150	
CPC504	Computer Networks	20	20	20	80	03	25	25 (pract)	150	
CPL501	Web Technologies Laboratory	-	-	-	-	-	25	50 (oral)	75	
CPL502	Business Communication and Ethics	-	-	-	_	-	50	-	50	
	Total	-	-	80	320		175	150	725	

Program Structure for B.E. Computer Engineering

Third Year (Computer) (Semester VI)

Course Code	Course Name		ing Scher act Hour		Credits Assign			
		Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
CPC601	System Programming and Compiler Construction	4	2	-	4	1	-	5
CPC602	Software Engineering	4	2	-	4	1	-	5
CPC603	Distributed Databases	4	2	-	4	1	-	5
CPC604	Mobile Communication and Computing	4	2	-	4	1	-	5
CPE6011	Elective-I	-	2+2*	-	-	2	-	2
CPL601	Network Programming Laboratory	-	4	-	-	2	-	2
	Total	16	16	-	16	8	-	24

(REV 2012)

* Hours shown as Practicals to be taken class wise

Course Code	Course Name	Examination Scheme								
			Inte	ernal A	ssesment					
		Intern	al Assesı	nent	End Sem	Exam	TW	oral	Tot	
		Test 1	Test 2	Avg	Exam	Duration (in Hrs)		/ pract		
CPC601	System Programming and Compiler Construction	20	20	20	80	03	25	25 (pract)	150	
CPC602	Software Engineering	20	20	20	80	03	25	25 (oral)	150	
CPC603	Distributed Databases	20	20	20	80	03	25	25 (oral)	150	
CPC604	Mobile Communication and Computing	20	20	20	80	03	25	25 (pract)	150	
CPE601X	Elective-I	-	-	-	-	-	50	-	50	
CPL601	Network Programming Laboratory	-	-	-	-	-	25	50 (oral)	75	
	Total	-	-	80	320	-	175	150	725	

Elective ISem 6CPE6011Operation ResearchCPE6012Project ManagementCPE6013Foreigh Language – GermanCPE6014Foreigh Language – French

Course Code	Course/Subject Name	Credits
CPC501	Microprocessor	5

Objectives:

- 1. To understand basic architecture of 16 bit and 32 bit microprocessors.
- 2. To understand interfacing of 16 bit microprocessor with memory and peripheral chips involving system design.
- 3. To understand techniques for faster execution of instructions and improve speed of operation and performance of microprocessors.
- 4. To understand RISC and CISC based microprocessors.
- 5. To understand concept of multi core processors.

Outcomes: Learner will be able to...

- 1. Write programs to run on 8086 microprocessor based systems.
- 2. Design system using memory chips and peripheral chips for 16 bit 8086 microprocessor.
- **3.** Understand and devise techniques for faster execution of instructions, improve speed of operations and enhance performance of microprocessors.
- 4. Distinguish between RISC and CISC processors.
- 5. Understand multi core processor and its advantages.

Module	Detailed Contents	Hrs.
01	Intel 8086/8088 Architecture	10
	1.1 8086/8088 Microprocessor Architecture, Pin Configuration,	
	Programming Model, Memory Segmentation, Study of 8284	
	Clock Generator, Operating Modes, Study of 8288 Bus	
	Controller, Timing diagrams for Read and Write operations,	
	Interrupts.	
02	Instruction Set and Programming	08
	2.1 Instruction Set of 8086, Addressing Modes, Assembly	
	Language Programming, Mixed Language Programming	
	with C Language and Assembly Language.	
03	System designing with 8086	12
	3.1 Memory Interfacing: SRAM, ROM and DRAM (using	
	DRAM Controller-Intel 8203).	
	3.2 Applications of the Peripheral Controllers namely 8255-PPI,	
	8253-PIT, 8259-PIC and 8237-DMAC. Interfacing of the	
	above Peripheral Controllers with 8086 microprocessor.	
	3.3 Introduction to 8087 Math Coprocessor and 8089 I/O	
	Processor.	
04	Intel 80386DX Processor	06
	4.1 Study of Block Diagram, Signal Interfaces, Bus Cycles,	
	Programming Model, Operating Modes, Address Translation	
	Mechanism in Protected Mode, Memory Management,	
	Protection Mechanism.	
05	Pentium Processor	08
	5.1 Block Diagram, Superscalar Operation, Integer & Floating	
	Point Pipeline Stages, Branch Prediction, Cache	

	Organization. 5.2 Comparison of Pentium 2, Pentium 3 and Pentium 4 Processors. Comparative study of Multi core Processors i3, i5 and i7.	
06	SuperSPARC Architecture	04
	6.1 SuperSPARC Processor, Data Formats, Registers, Memory	
	model. Study of SuperSPARC Architecture.	

Term Work:

The distribution of marks for term work shall be as follows:

• Laboratory work (experiments/practical & case studies):	Marks.
• Assignments	Marks.
• Attendance	Marks
TOTAL:	Marks.

Practical/Experiments:

- 1. Total eight experiments / practical must be performed out of which five practical must be performed on assemblers for 8086 and three experiments must be performed on interfacing of 8086 with peripheral chips like 8255 PPI, 8253 PIT, 8259 PIC and 8237 DMAC.
- **2.** In addition to eight experiments/practical, two case studies are mandatory, one case study on RISC processor and second case study on CISC processor.

Practical examination will be conducted based on the above syllabus.

Text Books:

- 1. Microprocessor and Interfacing: Douglas Hall, Tata McGraw Hill.
- 2. Microcomputer Systems: 8086/8088 family Architecture, Programming and Design: Liu & Gibson, PHI Publication.
- 3. Pentium Processor System Architecture: Tom Shanley & Don Anderson, Addison-Wesley.
- 4. Advanced Microprocessor: Daniel Tabak, Tata McGraw Hill.
- 5. The 80386DX Microprocessor: Hardware, Software and Interfacing: Walter A Triebel, Prentice Hall.

Reference Books:

- 1. 8086/8088 family: Design Programming and Interfacing: John Uffenbeck, PHI.
- 2. Intel Microprocessors: Barry B. Brey, 8th Edition, Pearson Education India.
- 3. Processor Architecture and Interfacing: Swati Joshi, Atul Joshi, Hemlata Jadhav, Wiley.
- 4. The X86 Microprocessors: Architecture and Programming (8086 to Pentium): Das Lyla B, Pearson Education India.
- 5. The SPARC Architecture Manual
- 6. I Intel Manuals

- Programmer's Reference Manual for IBM Personal Computers: Steven Armbrust, Ted Forgeron, McGraw Hill
 IBM PC Assembly Language and Programming: Peter Abel, 5th Edition, Prentice Hall
- of India

Course Code	Course/Subject Name	Credits
CPC502	Operating Systems	5

Objectives:

- 1. To introduce students with basic concepts of Operating System, its functions and services.
- 2. To familiarize the students with various views and management policies adopted by O.S. as pertaining with processes , Deadlock , memory , File and I/O operations.
- **3**. To brief the students about functionality of various OS like Unix , Linux and Windows 7 as pertaining to resource management.
- 4. To provide the knowledge of basic concepts towards process synchronization and related issues.

Outcomes: Learner will be able to...

1. Appreciate the role of operating system as System software.

2. Compare the various algorithms and comment about performance of various algorithms used for management of memory, CPU scheduling, File handling and I/O operations.

3. Apply various concept related with Deadlock to solve problems related with Resources allocation, after checking system in Safe state or not.

4. To appreciate role of Process synchronization towards increasing throughput of system.

5. Describe the various Data Structures and algorithms used by Different Oss like Windows 7, Linux and Unix pertaining with Process , File , I/O management.

6. To control the behavior of OS by writing Shell scripts.

Module	Detailed Contents	Hrs.
01	Introduction 1.1 Introduction to Operating System, Objectives and Functions of O.S., OS Services, Special purpose systems, Types Of OS, System Calls, types of system calls, Operating system structure ,System Boot.	
02	 Process Management Process concept, operations on process Process scheduling: basic concepts, scheduling criteria, scheduling algorithms, Preemptive, Non-preemptive, FCFS, SJF, SRTN ,Priority based, Round Robin ,Multilevel Queue scheduling,Operating System Examples. 2.2 Synchronization: Background, the critical section problem, Peterson's Solution, Synchronization Hardware Semaphores, classic problems of Synchronization: The Producer Consumer Problem:Readers writers problem, Semaphores, Dinning Philosopher Problem 	
03	Deadlock 3.1 Deadlock Problem, Deadlock Characterization, Deadlock Prevention. Deadlock avoidance Banker's algorithm for single & multiple resources, Deadlock recovery, Deadlock Detection,	

04	Memory Management	05
	4.1 Memory management strategies: background , swapping	
	, contiguous memory allocation, paging , structure of page tables ,	
	segmentation	
	4.2 Virtual memory management: Demand paging , copy-on write, Page replacement, FIFO, Optimal, LRU, LRU	
	Approximation, Counting Based, , Allocation of frames , Thrashing	
05	File Management	06
	5.1 Files-System Structure, File System implementation, Directory implementation, Allocation Methods contiguous allocation, linked list allocation, indexed allocations, Free space management.	
	5.2 Secondary storage : structures: Disks Scheduling Algorithm:	
	FCFS, SSTF, SCAN, CSCAN, LOOK, Disk Management	
06	Input Output Management	02
	6.1 Overview, I/O Hardware, Application I/O Interface	-
07	Case Study of UNIX	08
	7.1 History of UNIX, Overview of UNIX ,UNIX File System, Data	
	structures for process/memory management ,Process states and	
	State Transitions, Using the System(Booting and login), Process	
	scheduling, Memory management, Shell programming	
08	Case Study of Linux	05
	8.1 History, Design Principles, Kernel Modules, Process	
	management, Scheduling, Memory management, File Systems,	
	Input and Output, Inter process communication, Network structure	
	, Security	0.4
09	Case study: Windows 7	04
	9.1 History, Design Principles, System components,	
	environmental subsystems, File System, Networking, Programmer Interface	
	Interface	

Term Work:

The distribution of marks for term work shall be as follows:

Practical/Experiments:

Laboratory work shall consist of minimum $\underline{08}$ experiments and mini project, 2 assignments based on above theory syllabus.

For mini project form a group of maximum 3 students.

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

Practical exam will be based on the above syllabus.

Text Books:

- 1. Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey Eight edition
- 2. Achyut S. Godbole, Atul Kahate "Operating Systems" McGraw Hill Third Edition
- 3. "Operating System-Internal & Design Principles", William Stallings, Pearson
- 4. Andrew S. Tanenbaum, "Modern Operating System", Prentice Hall.

Reference Books:

- 1. "Linux Command Line & Shell Scripting", Richard Blum and Christine Bresnahan, 2nd edition, Wiley.
- 2. "The Design of Unix Operating System", Maurice J. Bach, Prentice Hall.
- 3. Unix and Shell Programming by B. M. Harwani Oxford
- 4. Unix Concept and Application 4th Edition by Sumitabha Das 'Mc Graw Hill'
- 5. Thomas Rebecca : Yates A user guide to the Unix system.

Syllabus for Practical:

Suggested topics for experiment but not limited to:

- 1. *Exploring basic commands for handling File system under Unix/Linux using shell scripts.
 - (creating groups , chown , chmod , directory name, tty , diff, umask ,top)
- 2. *Pattern matching utilities like awk, grep, nroff, troff, sort etc.
- 3. *Exploring the boot process of Unix/Linux and implementing practical on it (for ex. MBR, passing different parameter to kernel, do different activity while booting and power-off).
- 4. Basic Process management algorithms (Any from FCFS , SJF , SRTN, RR , multilevel Queue scheduling)
- 5. Process synchronization algorithms like producer consumer problem , dining philosopher problem
- 6. Implementing Various page replacement policies: FIFO, Optimal, LRU, LFU
- 7. Implementation of Disk scheduling algorithms like FCFS,SSTF,SCAN ,CSCAN,LOOK.
- 8. Implementing Various file allocation methods : Index Allocation , Contiguous allocation.
- 9. Simulating Paging and Segmentation
- 10. Implementation of System calls like printing a file, display file using Unix/Linux internals.
- **11.** Study booting process of Windows 7, Linux, and Unix.

* Marked experiments are mandatory

Course Code	Course/Subject Name	Credits
CPC503	Structured and Object Oriented Analysis and Design	5

Outcomes: Learner will be able to...

Understand and apply techniques to get the system requirements and present it 1. in standard format.

2. Apply key modeling concepts to both the traditional structured approach and the object-oriented approach. 3.

Construct the candidate system following design methodology.

Module		
	Detailed Contents	Hrs.
01	Introduction	06
	1.1 System overview, Types of Systems,	
	1.2 Key Differences Between Structured and Object-Oriented	
	Analysis and Design	
	1.3 Role of the System Analyst	
	1.4 Systems Development Life Cycle	
02	System Analysis	06
	2.1 Business process Reengineering and the Zachman Framework, System	
	Requirement, Stakeholders, Techniques for information gathering,	
	Validating the requirements.	
03	Feasibility Analysis	06
	3.1 Feasibility Analysis, Tests for feasibility, Cost-Benefit Analysis,	
	Feasibility analysis of candidate system.	
	3.2 The system Proposal.	
04	Modeling System Requirements	12
	4.1 Traditional Approach to Requirement: Data Flow Diagrams,	
	Documentation of DFD Components. Information Engineering	
	Models,	
	4.2 Object-Oriented Approach to Requirement: Object-Oriented	
	Requirements, The System Activities, Identifying Input and Outputs,	
	Identifying Object Behavior, Integrating Object-Oriented Models.	
	4.3 Evaluating Alternatives for requirements, Environment and	
	Implementation	
05	System Design	12
	5.1 Moving To Design	
	5.2 The traditional Approach to design	
	5.3 The Object-Oriented Approach to design: Use Case REaliztion	
	5.4 Designing Database, Designing the User Interface, Designing System	
	Interfaces, Controls and security	
06	Application Architecture	06
	6.1 IT Architecture, Application Architecture Strategies, Modeling	
	Application Architecture for Information System.	
	6.2 Deployment using UML diagrams, Component and deployment	
	diagram for various architectures.	

List of Assignment:

Assignments can be based on following topics

- 1. Feasibility analysis
- **2.** Design patterns.

Term Work:

The distribution of marks for term work shall be as follows:

- Mini Project presentation:.....(10) Marks.

Oral exam will be based on the above syllabus and tLaboratory work.

Suggested Practical List:

- 1. Develop Requirement specification document of the selected / alloted project.
- 2. Develop DFD model (level-0, level-1 DFD and Data dictionary) of tselected / alloted project.
- 3. Develop UML Use case model for selected / alloted project. .
- 4. Develop sequence diagram selected / alloted project. .
- 5. Develop Class diagram selected / alloted project.
- 6. Develop prototype of your project selected / alloted project.
- 7. Draw system architecture diagram selected / alloted project.

Text Books:

- 1. System Analysis & Design by Satzinger, Jackson and Burd, Cengage Learning, 2007
- 2. System Analysis and Design Methods by Jeffery I. Whitten, Lonnie D Bentley, McGraw Hill, 7th edition.
- **3.** System Analysis and Design by Alan Dennis, Barbara H. Wixom, Roberta M. Roth, Wiley India 4th edition

Reference Books:

- 1. Systems Analysis and Design by Kendall & Kendall, PHI Publication, 7th Edition.
- 2. Analysis and Design of Information Systems by James a. Senn, 2nd Edition, McGrawHill.
- 3. Object-Oriented Modeling and Design with UML by Michael Blaha, James Rumbaugh, Pearson Education Publication, 2nd Edition.
- 4. The Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Education Publication.
- 5. Modern Systems Analysis and Design by Jeffrey A. Hoffer, Joey F. George, Joseph S. Valacich, Prabin K. Panigrahi, Pearson Education Publication, 4th Edition.
- 6. UML Distilled by Martin Fowler, Pearson Edition, 3rd Edition.

- 7. Object Oriented Systems Development Using the Modified Modeling Language by Ali Bahrami, Tata McGraw Hill Publication.
- 8. Appling UML and Patterns by Craig Larman, Pearson Education, 2nd Edition.

Course Code	Course/Subject Name	Credits
CPC504	Computer Networks	4+1

1. To provide students with an overview of the concepts and fundamentals of data communication and computer networks

2. To familiarize with the basic taxonomy and terminology of computer networking area.

3. To experience the designing and managing of communication protocols while getting a good exposure to the TCP/IP protocol suite.

Outcomes:

After completion of this course learner will be able to:

- 1. Conceptualize all the OSI Layers
- 2. Use appropriate network tools to build network topologies
- 3. Install and configure an open source tool NS2
- 4. Test simple protocols in a laboratory scenario

Module	Detailed Contents	Hrs.
01	Introduction 1.1 History and development of computer network, network application, network software and hardware components, topology, protocol hierarchies, design issues for the layers, connection oriented and connectionless services, reference models: layer details of OSI, TCP/IP models. Communication between layers.	06
02	 Physical Layer 2.1 Guided Transmission Media: Twisted pair, Coaxial, Fiber optics. 2.2 Unguided media (Wireless Transmission): Radio Waves, Bluetooth, Infrared, Virtual LAN. 	06
03	 3.1 Data Link Layer DDL Design Issues, Functionalities of DLL, Flow control algorithms Sliding Window, Error Detection & Correction techniques, SDLC, PPP, Framing. 3.2 MAC Layer Aloha protocols, Control Access Protocol, Carrier Sense Multiple Access(CSMA), Ethernet, Local Area Networks - Ethernet, Token ring, FDDI. 	09
04	Network layer4.1 Communication Primitives: Unicast, Multicast, Broadcast. IP Addressing, Subnetting, IPv4, IPv6, Routing algorithms : Link state routing, Distance Vector Routing, ARP, RARP, ICMP, Routing protocols - RIP, OSPF, BGP, IGRP, Congestion control algorithms: Open Loop congestion control, Closed Loop congestion control.	08

05	Transport Layer 5.1 The Transport Service: Transport service primitives, Berkeley Sockets, Connection management, UDP, TCP, Socket Programming (TCP & UDP), Socket Programming examples, TCP Flow control, TCP Congestion Control, Multiplexing.	08
06	Application Layer 6.1 DNS, HTTP, E-mail, SMTP, Telnet, FTP, Security-PGP-SSH.	06
07	Network Management7.1SNMP Concept, Management Components, SMI, MIB,SNMP Format, Messages.	04

Term work shall consist of minimum <u>12</u> experiments.

Journal must include at least 2 assignments.

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for term work shall be as follows:

Practical exam will be based on the above syllabus.

Suggested Practicals:

- 1. Study of LAN Topology.
- 2. Study of various Network devices.
- 3. Building of any topology using Network tool.
- 4. Installation & Configuration of NS2 in Linux environment.
- 5. Basic wired & wireless topology in NS2.
- 6. Build class A & Class B Network using router in Network tool.
- 7. Implement subnetting concept using Network tool.

8. Write a program to implement find out class of a given IP address, subnet mask & first & last IP address of that block.

9. Write a program to build client-server model on different computers.

10. Congestion Control: Stop & Wait, Sliding Window & Selective Repeat, Go Back n.

11. Datalink Layer : Error Detection and correction, Flow Control, Framing

12. Network Layer : IP Addressing, Routing

13. Transport Layer : Socket Programming, Network Management/ Monitoring Tools.

Text Books:

- 1. A.S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- 2. B.A. Forouzan, "Data Communications and Networking", TMH, Fourth Edition.

Reference Books:

1. M. A. Gallo and W. M. Hancock, Computer Communications and Networking Technologies, Cengage Learning (Indian Edition), First Edition.

2. Natalia Olifer & Victor Olifer, "Computer Networks : Principles, Technologies & Protocols for Network Design", Wiley India, 2011.

3. Computer Networks: A Systems Approach, Second Edition (The Morgan Kaufmann Series in Networking) Larry L.Peterson(Author),Bruce S.Davie(Author)

4. Computer Networking, 6e, James F. Kurose, Keith W. Ross.

5. An Engineering Approach To Computer Networking: Atm Networks, The Internet ...By Keshav

Course Code	Course/Subject Name	Credits
CPL502	Business Communication & Ethics	2

- 1. To inculcate in students professional and ethical attitude, effective communication skills, teamwork, skills, multidisciplinary approach and an ability to understand engineer's social responsibilities.
- 2. To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
- 3. To inculcate professional ethics and codes of professional practice
- **4.** To prepare students for successful careers that meets the global Industrial and Corporate requirement' provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.

Outcomes: A learner will be able to

- 1. communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities
- 2. Participate and succeed in Campus placements and competitive examinations like GATE, CET.
- 3. Possess entrepreneurial approach and ability for life-long learning.
- **4.** Have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.

Module	Detailed Contents	Hrs.
01	Report Writing	08
	1.1 Objectives of report writing	
	1.2 Language and Style in a report	
	1.3 Types of reports	
	1.4 Formats of reports: Memo, letter, project and survey based	
02	Technical Proposals	02
	2.1 Objective of technical proposals	
	2.2 Parts of proposal	
03	Introduction to Interpersonal Skills	08
	3.1 Emotional Intelligence	
	3.2 Leadership	
	3.3 Team Buliding	
	3.4 Assertiveness	
	3.5 Conflict Resolution	
	3.6 Negotiation Skills	
	3.7 Motivation	
	3.8 Time Management	
04	Meetings and Documentation	02
	4.1 Strategies for conducting effective meetings	
	4.2 Notice	
	4.3 Agenda	

	4.4 Minutes of the meeting	
05	Introduction to Corporate Ethics and etiquettes	02
	5.1 Business Meeting etiquettes, Interview etiquettes, Professional	
	and work etiquettes, Social skills	
	5.2 Greetings and Art of Conversation	
	5.3 Dressing and Grooming	
	5.4 Dinning etiquette	
	5.5 Ethical codes of conduct in business and corporate activities	
	(Personal ethics, conflicting values, choosing a moral response, the	
	process of making ethical decisions)	
06	Employment Skills	06
	6.1 Cover letter	
	6.2 Resume	
	6.3 Group Discussion	
	6.4 Presentation Skills	
	6.5 Interview Skills	

List of Assignment:

- 1. Report Writing (Synopsis or the first draft of the Report)
- 2. Technical Proposal (Group activity, document of the proposal)
- 3. Interpersonal Skills (Group activity and Role play)
- 4. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 5. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 6. Corporate ethics and etiquettes (Case study, Role play)
- 7. Cover Letter and Resume
- 8. Printout of the PowerPoint presentation

Term Work:

Term work shall consist of all assignments from the list. The distribution of marks for term work shall be as follows:

- Project Report Presentation...... (15) Marks.

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

References:

- 1. Fred Luthans, "Organisational Behavior", Mc Graw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", Mc Graw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", Mc Graw Hill
- 4. Wallace and Masters, "*Personal Development for Life and Work*", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. R.C Sharma and Krishna Mohan, "Business Correspondence and Report Writing",
- 7. B N Ghosh, "*Managing Soft Skills for Personality Development*", Tata McGraw Hill.Lehman, Dufrene, Sinha, "*BCOM*", Cengage Learning, 2nd edition
- 8. Bell . Smith, "Management Communication" Wiley India Edition, 3rd edition.Dr.K.Alex, "Soft Skills", S Chand and Company
- 9. Dr.K Alex,"Soft Skills", S Chand and Company

Course Code	Course/Subject Name	Credits
CPL501	Web Technologies Laboratory	2

Module	Detailed Contents	Lab Sessions
	Title: Create HTML Forms. Use of various HTML Tag on Web Forms.	
	Concept: Designing of effective web site, Introduction of different Web Technologies: HTML, and Different HTML Tag.	
01	Objective: objective of this module is to provide students an overview of the concepts Web Technologies, and HTML.	01
	Scope: Designing static client side web page using various HTML tags.	
	Technology: HTML	
	Title: Use of CSS on HTML Form.	
	Concept: Cascaded Style Sheets	
02	Objective: In this module student will learn, defining a CSS and unstaring its purpose different syntax and types of CSS.	01
	Scope: Creating web pages and use CSS to control the layout pages.	
	Technology: HTML with Cascade Style Sheet.	
	Title: Use of Java Script functions on Web Forms and Use of Dynamic HTML Page.	
	Concept: Scripting Languages, Dynamic web pages	
03	Objective: in this lab student will learn how to define client side scripting and understand its advantages and disadvantages. Embedding JavaScript code into HTML document using script tag, and will understand dynamic HTML.	
	Scope: Create animation using JavaScript.	
	Technology: HTML with JavaScript.	
	Title: Creation of Web page with the help of Quanta Plus /Aptana /Kompozer. Concept: Web development Environment	
04	Objective: This module students will learn how will introduce editors for development of web pages.	03
	Scope: Development of web pages using any web tool.	
	Technology: Quanta Plus /Aptana /Kompozer	

05	 Title: Write an XML file marksheet.xml representing your semester mark sheet. Concept: Extensible Mark up Language (XML) Objective: is to learn about basics of XML and how it can be used to store information away from the mechanism of processing or formatting of such data. Will also learn how to build simple XML files and be able to manipulate and refer to them. Scope: is to creating an XML file in that it must include basic syntax of an XML doc and DTD for the same. 	03
06	 Title: server side scripting. Use HTML form to accept the two numbers N1 and N2 and using PHP program display only prime numbers in between N1 and N2. Concept: Server side scripting, introduction to PHP Objective: this lab gives a basic introduction of to PHP and dynamic programming on the server side. Scope: creating a server side script using PHP, decisions, looping Technology: PHP, HTML 	

Term work Assessment:

Term work will consist of small assignments testing all the technologies included in syllabus and a Mini project solving an appropriate problem using the above technology

The distribution of marks for term work shall be as follows:

• Assignments:	(20)	Marks.
Project Report Presentation	(15)	Marks.
• Group Discussion	(10)	Marks.
• Attendance	05)	Marks
TOTAL:	(50)	Marks.

End Semester Examination:

Oral examination is to be conducted by pair of internal and external examiners based on the mini projects undertaken by student grooups.

Text Books:

- 1. Ralph Moseley ,M.T. Savaliya "Developing Web Applications ", Willy India, Second Edition , ISBN:978-81-265-3867-6
- 2. "Web Technology Black Book ",Dreamtech Press, First Edition, ISBN 978-7722-997

Course Code		Credits
CPC601	System Programming Compiler Construction	05

- 1. To help students appreciate the role and functioning of various system programs over application program
- 2. To initiate an understanding of compilers in general and brief about phases of compiler.
- 3. To provide a theoretical framework for optimizing the code.
- 4. To familiarize and encourage the students to use various software tools for Developing System programs.

Outcomes: Learner will be able to...

- 1. Identify different system software
- 2. Use Lex tool used for generating lexical analyser.
- 3. Write macros as and when required to increase readability and productivity
- 4. Design hand written lexical analyzer
- 5. Design new language structures with the help of grammars
- 6. Appreciate the role of Operating System functions such as memory management as pertaining to run time storage management
- 7. Appreciate role of Intermediate Code Generation in connection with language designing
- 8. Apply optimization principles on given code
- 9. Implement various parser types and use YACC.

Module	Detailed Contents	Hours
01	System Software 1.1 Concept, introduction to various system programs such as assemblers, loaders, linkers, macro processors, compilers, interpreters, operating systems, device drivers	
02	Assemblers 2.1 General Design Procedure, Design of Assembler (Single Pass – Assembler IBM PC, multi pass Assembler - IBM 360/370 Processor), Statement of Problem, Data Structure, format of Databases, Algorithm , Look for modularity	
03	Macros & Macro processors 3.1 Macro instructions, Features of Macro facility, Design of 2 pass macroprocessor	04
04	Loaders and Linkers 4.1 loader schemes, Design of Absolute loader, Design of Direct linking loader	04
05	Software Tools 5.1 Software Tools for Program development, Editors: Types of Editors, Design of Editor, Debug Monitors	02
06	Compilers 6.1 Introduction to Compilers, Phases of a compiler, comparison of	02

	compilers and interpreters.	
07	Lexical Analysis 7.1 Role of a Lexical analyzer, input buffering, specification and recognition of tokens, Designing a lexical analyzer generator, Pattern matching based on NFA's.	
08	Syntax Analysis 8.1 Role of Parser, Top-down parsing, Recursive descent and predictive parsers (LL), Bottom-Up parsing, Operator precedence parsing, LR, SLR and LALR parsers.	
09	Syntax Directed Translation 9.1 Syntax directed definitions, Inherited and Synthesized attributes, Evaluation order for SDDs, S attributed Definitions, L attributed Definitions	
10	Intermediate Code Generation10.1Intermediate languages: declarations, Assignment statements, Boolean expression, case statements, back patching , procedure calls.	04
11	Code Generation11.1Issues in the design of Code Generator , Basic Blocks and Flow graphs, code generation algorithm , DAG representation of Basic Block	04
12	Code Optimization12.1Principal sources of Optimization, Optimization of Basic Blocks, Loops in Flow graph ,Peephole Optimization	03
13	Run Time storage 13.1 Storage Organization , storage allocation strategies, parameter passing , Symbol table , introduction to garbage collection and compaction	04
14	Compiler-compilers 14.1 JAVA compiler environment, YACC compiler-compiler	01

Journal should include at least 10 experiments (out of which at least 7 from suggested list below) and at least 2 assignments.

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for term work shall be as follows:

- Laboratory work (experiments): (15) Marks.

Practical/Oral examination:

Practical examination will be conducted based on above syllabus

Theory Examination:

In question paper, weight age of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

- 1. Question paper will comprise of total 6 questions, each of 20 Marks.
- 2. Only 4 questions need to be solved.
- 3. Question 1 will be compulsory and based on maximum part of the syllabus.
- 4. Remaining questions will be mixed in nature (for example suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)

Text Books:

- 1. J. J Donovan: Systems Programming Tata McGraw Hill Publishing Company
- 2. A. V. Aho, R. Shethi and J.D. Ulman; Compilers Principles, Techniques and Tools, *Pearson Education*
- 3. A. V. Aho, R. Shethi, Monica Lam, J.D. Ulman : Compilers Principles, Techniques and Tools , Pearson Education , Second Edition.
- 4. D. M Dhamdhere: Systems programming, Tata McGraw Hill

Reference Books:

1. lex & yacc, 2nd Edition by John R. Levine, Tony Mason & Doug Brown O'Reilly

2. D.M. Dhamdhere : Systems programming , Tata McGraw Hill

Syllabus for LAB

Experiments can be conducted based on the suggested topics below:

However list is not limited to mentioned topics.

Use of Open source tools is suggested.

- 1. Lexical analyzer tool : flex
- 2. Parser generator tool : Yacc.
- 3. Find first(), follow() set of given grammer
- 4. removing left recursion direct as well as indirect given the set of production rule
- 5. Assemblers : 2 pass Assembler .
- 6. Macroprocessor : 2 pass Macro processor.
- 7. Syntax Analysis : (any 1 of LL(1) , LR(0) , LR(1) , LALR(1) , operator precedence parser.)
- 8. Create your library in Linux environment and using it.
- 9. Code Generation algorithm.
- 10. Code Optimization techniques.
- 11. Study ld command in Unix/Linux.

Course Code	Course/Subject Name	Credits
CPC602	Software Engineering	05

The main objective is to introduce to the students about the product that is to be engineered and the process that provides a framework for the engineering technology.

- 1. To provide knowledge of software engineering discipline.
- 2. To analyze risk in software design and quality.
- 3. To introduce the concept of advance software methodology.

Outcomes: Learner will be able to...

- 1. Students will demonstrate basic knowledge in software engineering.
- 2. Students will be able to plan, design, develop and validate the software project.
- 3. Students will be apply advance software methodology to create high quality WebApps.
- 4. Students will have an understanding of impact of sound engineering principles.

Module	Detailed Contents	Hrs
01	Introduction	06
	1.1 Software Engineering Process Paradigms	
	1.2 Process Models – Incremental and Evolutionary models,	
	1.3 Typical Application for each model,	
	1.4 Agile methodology	
	1.5 Process and Project Metrics.	
02	Software project scheduling, Control & Monitoring	04
	2.1 Software estimation – Empirical estimation models – Cost/Effort	
	estimation	
	2.2 Planning – Work breakdown Structure, Gantt Chart. Discuss schedule	
	and cost slippage.	
03	Risk Management	04
	3.1 Risk Identification, Risk Assessment, Risk Projection, RMMM	
04	Software Configuration Management	04
	4.1 Software Configuration items, SCM process, Identification of objects	
	in software configuration, version and change control, configuration	
	audit, status reporting, SCM standards and SCM issues.	
05	Software Design Specification	08
	5.1 Software Design – Abstraction, Modularity	
	5.1 Software Architecture – Effective modular design, Cohesion and	
	Coupling, Example of code for cohesion and coupling.	
	5.2 User Interface Design – Human Factors, Interface standards, Design	

	Issues – User Interface Design Process.			
06	Software Quality			
	6.1 Software Quality Assurance – Software standards, Quality metrics			
	Software Reliability, Quality Measurement and Metrics			
07	Software Testing	12		
	7.1 Basic concept and terminology, Verification & validation, White Box			
	Testing- Path Testing, Control Structures Testing, DEF-USE testing,			
	7.2 Black Box Testing – BVA Integration, Validation and system testing.			
	7.3 OO testing methods-Class Testing, Interclass testing, testing architecture,			
	Behavioral testing.			
	7.4 Software Maintenance – Reverse Engineering.			
08	Web Engineering	06		
	8.1 For web based applications – attributes, analysis and design, testing.			
	8.2 Security Engineering,			
	8.3 Service-Oriented Software Engineering.			
	8.4 Test Driven Development			
	8.5 Software engineering with aspects			

Term work shall consist of at least 10 Laboratory assignments and two written tests.

The final certification and acceptance of Term Work ensures the satisfactory performance of laboratory Work and Minimum Passing in the term work.

Practical/Oral examination:

Oral examination will be conducted based on above syllabus.

Suggested List of Experiments:

- 1. SRS in IEEE format for any case study.
- 2. Use project management tool to schedule project plan.
- 3. RMMM plan for case study.
- 4. Develop test cases for white box testing.
- 5. Assignment / code for stubs and drivers.
- 6. Change specifications and make different versions using any SCM tool.
- 7. For one scenario- Implement TDD

Text Books:

1. Roger Pressman, Software Engineering: A Practitioners Approach, (6th Edition), McGraw Hill, 2010 2. Ian Somerville, Software Engineering, 9th edition, Addison Wesley, 2011

Reference Books:

- 1. Eric J. Braude and Micheal E. Bernstein, Software Engineering Modern Approach, 2nd edition, Wiley, 2011.
- 2. Ali Behforooz Fredrick Hudson, Software Engineering Fundamentals, Oxford University Press, 2006.
- 3. James F. Peters and Witold Pedrycz, "Software Engineering An Engineering Approach", Wiley.
- 4. Mouratidis and Giorgini. "Integrating Security and Software Engineering Advances and Future", IGP. ISBN 1-59904-148-0

Course Code	Course/Subject Name	Credits
CPC603	Distributed Databases	05

- 1. To introduce principles and foundations of distributed databases, including architecture, design issues, integrity control, query processing and optimization, transactions, and concurrency control.
- 2. To enable students to understand the difference between different database system and integrate the.

Outcomes: Learner will be able to...

- 1. Design and implement distributed database for enterprise application.
- 2. Provides solutions for heterogeneous database
- 3. Use XML for schema integration.

Module	Detailed Contents	Hrs.
01	Concept and Overview Distributed Database system 1.1 What is Distributed Database System (DDBS), Features of DDBS, promises of DDBS, Design issue in DDBS, Distributed DBMS architecture: Client/server System, Peer-to-Peer, Mutli-Database system.	08
02	Distributed Database Design 2.1 Distributed database design concept, objective of Data Distribution, Data Fragmentation, The allocation of fragment, Transparencies in Distributed Database Design	08
03	 Distributed Transaction and concurrency control 3.1 Basic concept of Transaction management, objective Distributed transaction management, Model for Transaction management 3.2 Distributed Concurrency control: Objective, concurrency control anomalies, Distributed Serializability, Locking based algorithm, Timestamp based algorithm. 	08
04	Distributed Deadlock and Recovery 4.1 Introduction to Deadlock, Distributed Deadlock prevention, avoidance, detection and recovery, Two-Phase and Three-Phase Commit Protocol.	06
05	Distributed query processing and optimization 5.1 Concept, objective, and phases of distributed query processing; join strategies in fragment relation, Global query optimization	04
06	Heterogeneous Database 6.1 Architecture of Heterogeneous Database, Database Integration: Schema Translation and schema Integration, Query processing issues in Heterogeneous database.	06

07	XML	08
	7.1 XML for data integration, structure of XML, XML document schema,	
	Querying and Transformation, storage of XML data, XML application.	

Assign a case study for group of 2/3 students and each group to perform the following experiments on their case-study:

- Creation of centralized database (Global Schema).
- Perform Fragmentation (PHF, DHF, VF, and HF) and allocation in DDBS design.
- Implementation of concurrency control.
- Implementations of two phase or three phases commit protocol.
- Implementations of three deadlock detection.
- Simulation of distributed query processor.
- Implementation of query optimization.
- Implementation any two experiment on XML

The distribution of marks for term work shall be as follows:

• Laboratory work (experiments/assignments):	(10)	Marks.
Course project:	(10)	Marks.
• Attendance	(05)	Marks
TOTAL:	(25)	Marks.

Practical/Oral examination:

An oral exam will be held based on the above syllabus.

Text Books:

- 1. Chhanda Ray, "Distributed Database System", Pearson Education India.
- 2. A. Siberschatz, H. Korth, "Database System", Six Edition, Mc-Graw Hill.
- Seed K. Rahimi and Frank S. Haug, "Distributed Database Management System", Wiley India.

Reference Books:

- 1. M. Tamer Ozsu, Patrick Valduriez, "Principles of Distributed Database", Pearson Education India.
- 2. Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, Pearson Education India.

Course Code	Course/Subject Name	Credits
CPC604	Mobile Communication and Computing	05

- 1. To introduce the basic concepts and principles in mobile computing. This includes the major techniques involved, and networks & systems issues for the design and implementation of mobile computing systems and applications.
- 2. To explore both theoretical and practical issues of mobile computing.
- 3. To provide an opportunity for students to understand the key components and technologies involved and to gain hands-on experiences in building mobile applications.

Outcomes: Learner will be able to...

- 1. Understand GSM and CDMA Cellular architecture.
- 2. Setup and configure wireless access points.
- **3.** Use Network Simulator tool to simulate mobile network.
- 4. Implement small android based applications.

Module	Detailed Contents	Hrs.
01	Introduction to Mobile Computing 1.1 Wireless Communication, Applications, Cellular Systems, Antennas,	05
	satellite system, GEO, LEO, MEO, GPRS:-Architecture, Network nodes, GPRS support nodes.	
02	 GSM cellular telephony-architecture and system aspects 2.1 Introduction, Basic GSM architecture, Basic radio transmission parameters of the GSM system, Logical channel description, GSM time hierarchy, GSM burst structures, Description of the call set-up procedure, Handover, Ensuring privacy and authentication of a user, Modifications and derivatives of GSM 	08
03	Mobile Network 3.1 Mobile IP, IP Packet Delivery, Agent Advertisement and Discovery, Registration, Tunneling and Encapsulation, Optimization, Reverse Tunneling, Mobile TCP, Fast Retransmit/ Fast Recovery, Transmission/Timeout Freezing, Selective Retransmission.	06
04	 Third and Fourth Generation Systems 4.1 W-CDMA, CDMA 2000; Improvements on Core Networks; Quality of Services in 3G; Wireless Local Loop; Wireless Local Loop Architecture; Deployment Issues; TR-45 Service Description; Wireless Local Loop technologies. TETRA, UMTS and IMT-2000;UMTS Basic Architecture, UTRA FDD mode, UTRA TDD mode, 4G Architecture, Comparison between 3G and 4G. 	06
05	Mobility Management 5.1 Co- channel Interference, Mobility: Types of Handoffs; Location Management, HLR-VLR scheme, Hierarchical scheme, Predictive Location management schemes, cellular IP, PSTN.	04

06	Wireless Local Area Networks	08
	6.1 Introduction, Types of WLANs, Hidden station problem, HIPERLAN	
	Type 1: HIPERLAN/1 MAC sublayer, HIPERLAN/1 CAC layer,	
	HIPERLAN/1 physical layer. IEEE 802.11 WLAN standards: IEEE	
	802.11 physical layer, IEEE 802.11 MAC sublayer. IEEE 802.11 and	
	HIPERLAN standards for 5 GHz band: HIPERLAN/2 physical layer,	
	HIPERLAN /2 data link control layer. Bluetooth: Introduction, User	
	Scenario, Architecture, protocol.	
07	Introduction to Android	05
	7.1 Layers, android components, mapping application to process. Android	
	development basics. Hardware tools, Software tools, Android SDK	
	features	
08	Security Issues In Mobile Computing	06
	8.1 Security Issues, Authentication, Encryption, Cryptographic Tools: Hash,	
	Message Authentication Code (MAC), Digital Signature, Certificate.	
	Secure Socket Layer (SSL). Characteristics of SIM, Equipment	
	Identification.	

Term work shall consist of minimum	assignments and		course project. The
distribution of marks for term work shall be as	s follows:		
• Laboratory work (experiments/assignm	nents):	(20)	Marks.
• Attendance		(05)	Marks

Practical/Oral examination:

Practical exam will be held based on the above syllabus.

Suggested Laboratory Exercises of Mobile Computing:

- 1. Setup & Configuration of Wireless Access Point (AP)
- 2. Implementation of WLAN : Ad Hoc & Infrastructure Mode
- 3. Implementation of Bluetooth Protocol and Applications
- 4. GSM modem study (Android based mobile) and SMS client-server application
- 5. Implementation of Mobile Network using Network Simulator (NS2)
- 6. Mobile Internet and WML
- 7. J2ME Program for Mobile Node Discovery
- 8. Mobile protocol study using GNS3.
- 9. Design and Program Income Tax and Loan EMI Calculator for Mobile Phones.
- 10. Wireless Network Security: kismet and Netstumbler

Text Books:

- 1. Jochen Schilller ,"Mobile Communication ", Addision wisely, Pearson Education
- 2. Krzysztof Wesolowski, "Mobile Communication Systems", Wiley publication
- 3. W. Frank Ableson, Robi sen, Chris King, "Android IN ACTION ", Third Edition, Dreamtech Press
- 4. Mobile Computing By Rajkamal (Oxford).

Reference Book:

- 1. Uwe Hansmann, Lothar Merk, Martin S. Nicklous, Thomas Stober, "Principles of Mobile Computing", Springer
- 2. Rappaort, "Wireless Communcations Principles and Practices"
- 3. Yi Bang Lin, "Wireless and Mobile Network Architecture", John Wiley
- 4. P. Nicopolitidis, "Wireless Networks", John Wiley
- 5. K. Pahlavan, P.Krishnamurthy, "Principles of Wireless Networks"
- 6. Introduction to Wireless Telecommunication System and Networks by Mullet (Cengage Learning).
- 7. Beginning for Android 4 Application Development By Wei- Meng Lee, Wiley –India Edition.

Course Code	Course/Subject Name	Credits
CPE6011	Operations Research	02

Outcomes: Learner will be able to

- model and solve problem using linear programming techniques
 Implement algebric solution using simplex method
 Define transportation model and apply transportation algorithm in a known situation.
 Use montecarlo simulation technique.
 Use the spreadsheet as a tool effectively for OR topics

Module	Detailed Contents	Hrs.
01	What is Operations Research	02
	1.1 Introduction.	
02	Modeling with Linear Programming	07
	2.1 Two-Variable LP Model	
	2.2 Graphical LP Solution	
	2.2.1 Solution of a Maximization Model	
	2.2.2 Solution of a Minimization Model	
	2.3 Computer Solution with Solver and AMPL	
	2.3.1 LP solution with Excel Solver	
	2.3.2 LP Solution with AMPL	
	2.4 Linear Programming Applications	
	2.4.1 Investment	
	2.4.2 Product Planning and Inventory Control	
	2.4.3 Manpower Planning	
	2.4.4 Urban Development Planning	
	2.4.5 Blending and Refining	
	2.4.6 Additional LP Applications	
03	The Simplex Method and Sensitivity Analysis	06
	3.1 LP Model in Equation Form	
	3.2 Transition from Graphical to Algebraic Solution	
	3.3 The Simplex Method	
	3.3.1 Iterative Nature of the Simplex Method	
	3.3.2 Computational details of the Simplex algorithm	
	3.3.3Summary of the Simplex Method	
	3.4Artificial Starting Solution	
	3.4.1 M-Method	
	3.4.2 Two-Phase Method	
	3.5 Special Cases in the Simplex Method	
	3.5.1 Degeneracy	
	3.5.2 Alternative Optima	
	3.5.3 Unbounded Solution	

	3.5.4 Infeasible Solution	
	3.6 Sensitivity Analysis	
	3.6.1 Graphical Sensitivity Analysis	
	3.6.2 Algebraic Sensitivity Analysis – Changes in the Right-hand side	
	3.6.3 Algebraic Sensitivity Analysis – Objective function	
	3.6.4 Sensitivity Analysis with Tora, Solver, and Ampl	
	3.7 Computational issues in Linear Programming	
04	Descrites and Desct Orational Association	05
04	Duality and Post-Optimal Analysis	05
	4.1 Definition of the Dual Problem	
	4.2 Primal-Dual Relationships	
	4.2.1 Review of Simplex Matrix Operations	
	4.2.2 Simplex Tableau Layout	
	4.2.3 Optimal Dual Solution	
	4.2.4 Simplex Tableau Computations	
	4.3 Economic Interpretation of Duality	
	4.3.1 Economic Interpretation of Dual Variables	
	4.3.2 Economic Interpretation of Dual Constraints	
	4.4 Additional Simplex Algorithms	
	4.4.1 Dual Simplex Algorithm	
	4.4.2 Generalized Simplex Algorithm	
	I B	
05	Transportation Model and Its Variants	05
	5.1 Definition of the Transportation Model	
	5.2 Nontraditional Transportation Models	
	5.3 The Transportation Algorithm	
	5.3.1 Determination of the Starting Solution	
	5.3.2 Iterative Computations of the Transportation Algorithm	
	5.3.3 Simplex Method Explanation of the Method of Multipliers	
	5.4 The Assignment Model	
	5.4.1 The Hungarian Method	
	5.4.2 Simplex Explanation of the Hungarian Method	
06	Decision Analysis	03
00	6.1 Decision Making under Certainty – Analytic Hierarchy Process (AHP)	
	6.2 Decision Making under Risk	
	e e	
	6.2.1 Decision Tree-Based Expected Value Criterion	
	6.2.1 Decision Tree-Based Expected Value Criterion6.2.2 Variants of the Expected Value Criterion	
	6.2.1 Decision Tree-Based Expected Value Criterion	
07	6.2.1 Decision Tree-Based Expected Value Criterion6.2.2 Variants of the Expected Value Criterion	02
07	 6.2.1 Decision Tree-Based Expected Value Criterion 6.2.2 Variants of the Expected Value Criterion 6.3 Decision under Uncertainty 	02

	7.3 Elements of Discrete Event Simulation	
	7.3.1 Generic Definition of Events	
	7.3.2 Sampling from Probability Distributions	
08	Nonlinear Programming Algorithms	03
	8.1 Unconstrained Algorithms	
	8.1.1 Direct Search Method	
	8.1.2 Gradient Method	
	8.2 Constrained Algorithms	
	8.2.1 Separable Programming	
	8.2.2 Quadratic Programming	
09	Introduction to spreadsheet model	02
09	Introduction to spreadsheet model	0.

List of Assignment:

Atleast **15** assignments based on the above syllabus; Assignments to also include progams wherever applicable.

Term Work:

The distribution of marks for term work shall be as follows:

- Laboratory work (assignments): (25) Marks.
- Case Study Presentations (to be done during semester):... (15) Marks.

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

References:

- 1. Taha, Hamdy A. "Operations Research" Pearson, 2011.
- 2. N.D. Vhora "Quantitative Techniques in Management" TMH, 3rd edition

Course Code	Course/Subject Name	Credits
CPE6012	Software Project Management	02

Outcomes: Learner will be able to...

1. Learner will be able to define characteristics of a project,

2. Learner will be able to appreciate project management principles, risk in

environment and the management challenges for effective project management.

3. Learner will be able to apply the project management principles across all phases of a project.

4. Learner will be able to demonstrate use of tools and techniques for the management of a project plan, monitor and controlling a project schedule and budget, tracking project progress.

Module	Detailed Contents	Hrs.
01	An overview of IT Project Management	02
	1.1 Introduction, the state of IT project management, context of project	
	management, need of project management, project goals, project life cycle	
	and IT development, extreme project management, PMBOK.	
02	Conceptualizing and Initializing the IT Project	04
02	2.1 An information technology project methodology (ITPM), project	01
	feasibility, request for proposal (RFP), the business case, project	
	selection and approval, project contracting, IT governance and the	
	project office.	
03	The Human Side of Project Management	02
	3.1 Introduction, organization and project planning, the project team, the	
04	project environment. Developing the Project Charter and Project Plan	04
04	4.1 Introduction, project management process, project integration	04
	management, the project charter, project planning framework, the	
	contents of a project plan, the planning process.	
	4.2 The Work Breakdown Structure (WBS), the linear responsibility chart,	
	multidisciplinary teams.	
05	The Scope Management Plan	04
	5.1 Introduction, scope planning, project scope definition, project scope	
	verification, scope change control.	
06	The Project is Schedule, Budget and Risk Management	08
	6.1 Introduction, developing the project schedule, project management	
	software tools, methods of budgeting, developing the project budget,	
	improving cost estimates, finalizing the project schedule and budget.	
	6.2 IT project risk management planning process, identifying IT project	
	risks, risk analysis and assessment, risk strategies, risk monitoring, and	

	control, risk responses and evaluation.	
07	Allocating Resources to the Project 7.1 Resource loading, resource leveling, allocating scarce	03
	resources to projects and several projects, Goldrattís critical chain.	
08	The Project Communication Plan	02
	8.1 Introduction, monitoring and controlling the project, the project	
	communications plan, project metric, project control, designing the	
	control system, the plan-monitor-control cycle, data collection	
	and reporting, reporting performance and progress, information	
	distribution.	
09	Managing Change, Resistance and Conflicts	02
10	Managing Project Procurement and Outsourcing	02
	10.1 Introduction, project procurement management, outsourcing.	
11	Project Leadership and Ethics	01
	11.1 Introduction, project leadership, ethics in projects, multicultural	
	projects.	
12	The Implementation Plan and Project Closure	02
	12.1 Introduction, project implementation, administrative closure, project	
	evaluation, project audit.	

Term work shall consist of at least $\underline{10}$ assignments covering all topics and course project by using appropriate tool. The distribution of marks for term work shall be as follows:

1. Assi	gnments:	(25)	Marks.
2.	Case study presentations (to be done during semester):	(15)	
3.	Attendance:	(10)	
TOTAI		(50)Marl	ks.
The final	certification and acceptance of TW ensures the satisfactor	ory Perform	nance

of laboratory Work and Minimum Passing in the term work.

Suggested Assignment List

In practical, a group of maximum three students should be formed. Each group is supposed to complete all lab experiments on the case study given by the subject teacher. In lab experiments students can used the tools like MsWord to prepare document whereas MsProject to preparing WBS, N/w diagram, PERT, CPM, Variance analysis etc.

- 1. Project and System's Management
- 2. Feasibility study document
- 3. Project Proposal
- 4. Project Planning
- 5. Activity Planning
- 6. Analyzing the project network diagram
- 7. Cost estimation and budgeting
- 8. Risk management
- 9. Performance analysis of project
- 10. Project evaluation and closure

Text Book:

1. "Information Technology Project Management", Jack T. Marchewka, 3rd edition, Wiley India, 2009.

Reference Books:

- 1. S. J. Mantel, J. R. Meredith and etl.. "Project Management" 1st edition, Wiley India, 2009.
- 2. John M. Nicholas, "Project Management for Business and Technology", 2nd edition, Pearson Education.
- 3. Joel Henry, "Software Project Management, A real-world guide to success", Pearson Education, 2008.
- 4. Gido and Clements, "Successful Project Management", 2nd edition, Thomson Learning.
- 5. Hughes and Cornell, "Software Project Management", 3rd edition, Tata McGraw Hill
- 6. Joseph Phillips, "IT Project Management", 2nd edition, Tata McGraw Hill
- 7. Robert K. Wyzocki and Rudd McGary, "Effective Project Management", 3rd edition, Wiley
- 8. Brown, K.A. Project Management, McGraw Hill, 2002.
- 9. E-Book Project Management Body of Knowledge.
- 10. Dinsmore, P. C. (Ed.). (1993) The AMA Handbook of Project Management. AMACOM

Course Code	Course/Subject Name	Credits
CPE6013	Elective – Foreign Language – German	02

Course Code	Course/Subject Name	Credits
CPE6014	Elective – Foreign Language – French	02

1. To introduce German language in a holistic manner. The texts and exercises are aimed at developing the students' skills of reading, writing, listening and speaking. The course is divided into units with a thematic and grammatical progression. Scenarios from everyday life and formulated in a manner suitable and especially interesting for beginners. However since most of the students would want to do this course for professional advancement this course scenarios from the professional life are introduced in simple but engaging manner.

Outcomes: Learner will be able to...

- 1. read and understand simple German / French text
- 2. Describe basic family structure , culture and work culture
- 3. Draft e-mails and create simple presentations

Module	Detailed Contents	Hrs.
01	Basic Grammar, pronunciation and basic expression	08
02	Communication	
	2.1 Greetings, begining of conversation, Introduction of oneself, numbers, counting and dates	08
	Reading, Comprehension and writing - (Type of Text)	05
	Dialogs, Monologs , Biodata,	00
04	Family Structures Culture Computer and Multimedia Work culture	10
05	Corporate communication 5.1 Emails , Technical Reports , Making presentations	05

Term work shall consist of minimum $\underline{10}$ assignments of different difficulty level based on above syllabus. The distribution of marks for term work shall be as follows:

• Laboratory work (assignments):	(25)	Marks.
• Presentation:	(15)	Marks.
• Attendance	(10)	Marks
TOTAL:	(50)	Marks.

References:

For German

- 1. German Conversation Demystified with Two Audio CDs / Edition by Ed Swick
- German Conversational: Learn to Speak and Understand French with Pimsleur Language Programs Audio CD – Audiobook by Pimsleur

For French

 French Conversational: Learn to Speak and Understand French with Pimsleur Language Programs Audio CD – Audiobook by Pimsleur

Subject Code	Subject Name	Credits
CPL605	Network Programming Laboratory	02

Laboratory Course Outcomes:

Learner will be able to :

- 1. Configure Linux Network
- 2. View and edit routing tables
- 3. Configure Linux Router
- 4. Configure Linux FTP server
- 5. Install and Configure DNS server
- 6. Install and configure web server

Module	Detailed content	Hours
1	Study of Networking Commands (Ping, Tracert, TELNET,	2
	nslookup, netstat, ARP, RARP) and Network Configuration	
	Files.	
2	Linux Network Configuration.	4
	i. Configuring NIC's IP Address.	
	ii. Determining IP Address and MAC Address using	
	if-config command.	
	iii. Changing IP Addess using ifconfig.	
	iv. Static IP Address and Configuration by Editing.	
	v. Determining IP Address using DHCP.	
	vi. Configuring Hostname in /etc/hosts file.	
3	Setting up multiple IP Addresses on a single LAN.	2
4	Using netstat and route commands to do the following.	2
	i. View current routing table.	
	ii. Add and delete routes.	
	iii. Change default gateway.	
5	Using GUI configuration Tools to add /configure Ethernet Card.	2
6	Configuring Linux as a router by enabling IP Forwarding.	2
7	Configuring remote login Services, telnet & ssh.	2
	i. To install and configure TELNET server.	
	ii. To set up SSH and connect to remote machine.	

8	To configure Linux FTP server using VSFTPD.	2
	i. Set up anonymous access of FTP server.	
	ii. Enable individual logins and add FTP users with	
	Read-	
	only access.	
	iii. Transfer Files.	
9	To install and configure DNS server.	2
10	To install and configure Web server.	2
11	Design TCP iterative Client and Server application to reverse the	2
	given input sentence.	
12	Design TCP concurrent Client and Server application to reverse	2
	the given input sentence.	
13	Design TCP Client and Server application to transfer file.	2
14	Design a TCP concurrent Server to convert a given text into	2
	upper case using multiplexing system call "select".	
15	Design a TCP concurrent Server to echo given set of sentences	2
	using Poll functions.	
16	Design UDP Client and Server application to reverse the given	2
	input sentence.	
17	Design UDP Client Server to transfer a file.	2
18	Design using Poll Client Server application to multiplex TCP	2
-	and UDP requests for 60converting a given text into upper case.	
19	Design a RPC application to add and subtract a given pair of	2
.,	integers.	-
20	Program to determine the host ByteOrder	2
21	Program to set and get socket options	2

Format of Laboratory Course:

The format for the Laboratory Course is

- 1. Atlease 8 small experiments based on above syllabus
- 2. One group Miniproject

A group of 3 students ; 4 Batches per class.

The scope of the miniproject should be such that it completes in 15 hours of actual working.

Termwork Assessment:

Laboratory Experiment: 10

Mini Project presentation : 10

Attendance : 05

End Semester Examination:

Oral examination is to be conducted by pair of internal and external examiners

AC 7/6/2014 Item 4.27

UNIVERSITY OF MUMBAI

Bachelor of Engineering

Computer Engineering (Final Year – Sem. VII & VIII), Revised course

> (REV- 2012) from Academic Year 2015 - 16, Under

FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teachercentric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

The engineering education in India in general is expanding in manifolds. Now, the challenge is to ensure its quality to the stakeholders along with the expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

The Program Educational Objectives finalized for undergraduate program in Computer Engineering are listed below:

- 1. To prepare Learner's with a sound foundation in the mathematical, scientific and engineering fundamentals
- 2. To prepare Learner's to use effectively modern tools to solve real life problems
- **3**. To equip Learner's with broad education necessary to understand the impact of computer Technology in a global and social context
- 4. To encourage, motivate and prepare Learner's for Lifelong-learning
- 5. To inculcate professional and ethical attitude, good leadership qualities and commitment to social responsibilities

In addition to above 2 to3 more program educational objectives of their own may be added by affiliated Institutes.

The Program outcomes are the skils and ability that Learner will demonstrate upon completion of undergraduate degree program in Computer Engineering. Few may be listed as follows:

- 1. Ability to effectively apply knowledge of computing and mathematics to computer science problems.
- 2. Ability to design, implement and evaluate computer-based components, systems, processes or programs to meet desired needs and specifications.
- **3**. Ability and skills to effectively use state-of-the-art techniques and computing tools for analysis, design, and implementation of computing systems.
- 4. Ability to function effectively as a member of a team assembled to undertake a common goal.
- 5. An understanding of professional, ethical, legal, security, and social issues and responsibilities.

- 6. Ability to communicate effectively to both technical and non-technical audiences.
- 7. The ability to successfully pursue professional development thru lifelong learning

In addition to Program Educational Objectives, for each course of undergraduate program, Course Objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

Dr. Prachi Gharpure

Chairperson, Adhoc Board of Studies in Computer Engineering,

University of Mumbai, Mumbai

Program Structure B.E. Computer Engineering

Fourth Year (Computer) (Semester VII)

(REV 2012)

Course Code	Course Name	Teaching (Contact			Credits Assigned		l	
		Theory	Pract	Tut	Theory	TW/ Pract	Tut	Total
CPC701	Digital Signal Processing	4	2	-	4	1	-	5
CPC702	Cryptography and System Security	4	2	-	4	1	-	5
CPC703	Artificial Intelligence	4	2	-	4	1	-	5
CPE7042X	Elective-II	4	2	-	4	1	-	5
CPP701	Project I	-	6#	-	-	3	-	3
CPL701	Network Threats and Attacks Laboratory	-	4	-	-	2	-	2
	Total	16	18	-	16	9	-	25

Course Code	Course Name	Examination Scheme							
		Internal Assesment							
		Intern	al Assesı	nent	End Sem	Exam	TW	oral	Total
		Test 1	Test 2	Avg	Exam	Duration (in Hrs)			
CPC701	Digital Signal Processing	20	20	20	80	03	25	-	125
CPC702	Cryptography and System Security	20	20	20	80	03	25	25	150
CPC703	Artificial Intelligence	20	20	20	80	03	25	25	150
CPE7042X	Elective-II	20	20	20	80	03	25	25	150
CPP701	Project I	-	-	-	-	-	50	50	100
CPL701	Network Threats and Attacks Laboratory	-	-	-	-	-	25	50	75
	Total	-	-	80	320	-	175	175	750

Program Structure for B.E. Computer Engineering

Second Year (Computer) (Semester VIII)

(REV 2012)

Course Code	Course Name		ing Schen tact Hours		C	Credits Assigned		
		Theory	Pract	Tu t	Theory	TW/ Pract	Tut	Total
CPC801	Data Warehouse and Mining	4	2	-	4	1	-	5
CPC802	Human Machine Interaction	4	2	-	4	1	-	5
CPC803	Parallel and distributed Systems	4	2	-	4	1	-	5
CPE803X	Elective-III	4	2	-	4	1	-	5
CPP802	Project II	-	12 #	-	-	6	-	6
CPL801	Cloud Computing Laboratory	-	2	-	-	1	-	1
	Total	16	22	-	16	11	-	27

Course Code	Course Name				on Scheme				
		Internal Assesment							
		Intern	al Assesı	nent	End Sem	Exam	TW		Tot
		Test 1	Test 2	Avg	Exam	Duration (in Hrs)		oral	
CPC801	Data Warehouse and Mining	20	20	20	80	03	25	25	150
CPC802	Human Machine Interaction	20	20	20	80	03	25	25	150
CPC803	Parallel and distributed Systems	20	20	20	80	03	25	25	150
CPE803X	Elective-III	20	20	20	80	03	25	25	150
CPP802	Project II	-	-	-	-	-	50	50	100
CPL801	Cloud Computing Laboratory	-	-	-	-	-	25	-	25
	Total			80	320		175	150	725

Indicate workload for Learner and not for Faculty in semester VII and VIII

Elective II Sem 7

System Group CPE7021		Advance Algorithms
	CPE7022	Computer Simulation and Modeling
Electronics Group	CPE7023	Image Processing
Software Group	CPE7024	Software Architecture
	CPE7025	Soft Computing
DB Group	CPE7026	ERP and Supply Chain Management

Elective III - Sem 8

Electronics Group	CPE8031	Machine Learning
Digital Group	CPE8032	Embedded Systems
Network Group	CPE8033	Adhoc wireless networks
	CPE8034	Digital Forensic
DB Group	CPE8035	Big data Analytics

Course Code	Course/Subject Name	Credits
CPC701	Digital Signal Processing	5

- 1. To learn the fundamental concepts of Digital Signal Processing.
- To explore the properties of DFT in mathematical problem solving. 2.
- To illustrate FFT calculations mathematically and develop FFT based DSP algorithms. 3.
- To introduce DSP processor for real time signal processing application 4.

Outcomes: Learner will be able to...

- **1.** To understand the concept of DT Signal and perform signal manipulation
- **2.** To perform analysis of DT system in time domain
- To develop FFT flow-graph and Fast DSP Algorithms.
 To design DSP system for Real Time Signal Processing.

Module	Detailed Contents	Hrs.
	Discrete Time Signal 1.1 Introduction to Digital Signal Processing, Discrete Time Signals, Sampling and Reconstruction, Standard DT Signals, Concept of Digital Frequency, Representation of DT signal using Standard DT Signals, Signal Manipulations(shifting, addition, subtraction, multiplication), Classification of Signals, Linear Convolution formulation(without mathematical proof), Circular Convolution formulation(without mathematical proof), Matrix Representation of Circular Convolution,	12
02	Linear by Circular Convolution. Auto and Cross Correlation formula evaluation, Discrete Time System	08
	 2.1 Introduction to Discrete Time System, Classification of DT Systems (Linear/Non Linear, Causal/Non Causal, Time Invariant/Time Variant Systems, Stable/ Unstable), BIBO Time Domain Stability Criteria. LTI system, Concept of Impulse Response and Step Response. 2.2 Concept of IIR System and FIR System, Output of IIR and FIR DT system using Time Domain Linear Convolution formula Method. 	
03	 Discrete Fourier Transform 3.1 Introduction to DTFT, DFT, Relation between DFT and DTFT, Properties of DFT without mathematical proof (Scaling and Linearity, Periodicity, Time Shift and Frequency Shift, Time Reversal, Convolution Property and Parsevals' Energy Theorem). DFT computation using DFT properties. 3.2 Transfer function of DT System in frequency domain using DFT. Linear and Circular Convolution using DFT. Response of FIR system calculation in frequency domain using DFT. 	
04	Fast Fourier Transform 4.1 Radix-2 DIT-FFT algorithm, DIT-FFT Flowgraph for N=4, 6 & 8, Inverse	06

	FFT algorithm. Spectral Analysis using FFT, Comparison of complex and	
	real, multiplication and additions of DFT and FFT.	
05	DSP Algorithms	08
	5.1 Carls' Correlation Coefficient Algorithm, Fast Circular Convolution	
	Algorithm, Fast Linear Convolution Algorithm, Linear FIR filtering	
	using Fast Overlap Add Algorithm and Fast Overlap Save Algorithm,	
06	DSP Processors and Application of DSP	06
	6.1 Need for Special architecture of DSP processor, Difference between DSP	
	processor & microprocessor, A general DSP processor TMS320C54XX	
	series, Case study of Real Time DSP applications to Speech Signal	
	Processing and Biomedical Signal Processing.	

List of Experiments:

Implementation of programs must be either in C or C++ only. Application can be developed using open source simulation software such as Scilab. A List of compulsory eight experiments is given below. Additional experiments within the scope of the syllabus can be added.

1. Sampling and Reconstruction

Aim:

To study sampling and reconstruction of signal

Objective:

Develop a program to sample a continuous time signal and convert it to Discrete Time Signal.

Problem Definition:

1. Sample the input signal and display first 50 samples. Calculate data rate and bit rate.

2. Reconstruct the original signal and display the original and reconstructed signals.

3.Vary the sampling frequency and observe the change in the quality of reconstructed signal.

2. To perform Discrete Correlation

Aim:

To study mathematical operation Correlation and measure degree of similarity between two signals

Objective:

- 1. Write a function to find correlation operation.
- 2. Calculate correlation of a DT signals and verify the results using mathematical formulation.
- 3. Measure the degree of similarity using Carl's Correlation Coefficient formula in time domain.

Input Specifications:

- 1. Length of first Signal L and signal values.
- 2. Length of second Signal M and signal values.

Problem Definition:

- 1. Find auto correlation of input signal. What is the significance of value of output signal value at n=0?.
- 2. Find auto correlation of delayed input signal.
- 3. Find cross correlation of input signal and delayed input signal,
- 4. Find cross correlation of input signal and scaled delayed input signal.
- 5. Compare the resultant signals. Give your conclusion.

6. Take two input finite length DT signals and develop a function to find Carl's Correlation Coefficient value. Determine the degree of similarity of two signals from the calculated Carl's Correlation Coefficient value.

3. To perform Discrete Convolution

Aim:

The aim of this experiment is to study mathematical operation such as Linear convolution, Circular convolution, Linear convolution using circular convolution.

Objective:

- 1. Develop a function to find Linear Convolution and Circular Convolution
- 2. Calculate Linear Convolution, Circular Convolution, Linear Convolution using Circular Convolution and verify the results using mathematical formulation.
- 3. Conclude on aliasing effect in Circular convolution

Input Specifications:

- 1. Length of first Signal L and signal values.
- 2. Length of second Signal M and signal values.

Problem Definition:

- 1. Find Linear Convolution and Circular Convolution of L point sequence x[n] and M point sequence h[n].
- 2. Find Linear Convolution of L point sequence x[n] and M point sequence h[n] using Circular convolution.
- 3. Give your conclusion about No of values in linearly convolved signal, and Aliasing effect in Circular Convolution.

4. To perform Discrete Fourier Transform

Aim:

The aim of this experiment is to study magnitude spectrum of the DT signal.

Objective:

- 1. Develop a function to perform DFT of N point signal
- 2. Calculate DFT of a DT signal and Plot spectrum of the signal.
- 3. Conclude the effect of zero padding on magnitude spectrum.
- 4. Calculate the number of real multiplications and real additions required to find DFT.

Input Specifications:

- 1. Length of Signal N
- 2. Signal values

Problem Definition:

- 1. Take any four-point sequence x[n].
- Find DFT X[k].
- Compute number of real multiplications and real additions required to find X[k].
- Plot Magnitude Spectrum of the signal.

2. Append the input sequence by four zeros. Find DFT and plot magnitude spectrum. Repeat the same by appending the sequence by eight zeros. Observe and compare the magnitude spectrum. Give your conclusion.

5. To perform Fast Fourier Transform

Aim:

To implement computationally fast algorithms.

Objective:

- 1. Develop a program to perform FFT of N point signal.
- 2. Calculate FFT of a given DT signal and verify the results using mathematical formulation.
- 3. Illustrate the computational efficiency of FFT.

Input Specifications:

- Length of Signal N
- Signal values

Problem Definition:

Take any eight-point sequence x[n].

- Find FFT X[k].
- Write number of real multiplications and real additions involved in finding X[k].

6. Filtering of long Data Sequence

Aim:

To perform filtering of Long Data Sequence using Overlap Add Method and Overlap Save Method.

Objective:

Develop a function to implement Fast Overlap Add and Fast Overlap Save Algorithm using FFT.

Input Specifications:

- 1. Length of long data sequence and signal values.
- 2. Length of impulse response M and coefficient values of h[n].

Problem Definition:

Find the output of a Discrete Time system using Fast Overlap Add Method OR Fast Overlap Save Method.

7. Real Time Signal Processing

Aim:

To perform real time signal processing using TMS320 Processor.

Objective:

Study real time signal processing.

Input Specifications:

1. Real Time Speech Signal

Problem Definition:

- 1) Capture the real time audio signal.
- 2) Filter it by convolving input signal with the impulse response of FIR filter using Fast Overlap Add filtering Algorithm OR Fast Overlao Save Filtering Algorithm.
- 3) Observe the quality of output signal.

8. Application of Digital Signal Processing

Aim:

To implement any Signal Processing operation on one dimensional signal.

Objective:

To develop application of signal processing.

Input Specifications:

One dimensional signal.

Rules:

- 1. Number of students in one Group : min 2 max -3
 - 2. Decide one DSP application of your choice. Collect the information related to the application from the published granted patents. Download the related published papers from the standard refereed journals and conferences.
- 3. Develop a block diagram of the proposed system and flowchart of proposed system algorithm, implement it using Scilab/C, C++ language and obtain the appropriate results.
- 4. Prepare the three to four pages report on the mini project in IEEE paper format. Report should include Abstract, Introduction, Related Theory, Proposed System Design/Algorithm, Experimentation & Result Analysis, Conclusion, and References.
- 5.

Term Work:

- Term work shall consist of minimum **<u>08</u>** assignments and course project.
- Journal must include at least 1 assignment on each module and two quiz.
- The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for term work shall be as follows:

Laboratory work (experiments):	(15)	Marks.
Assignment:	(05)	Marks.
Attendance (Theory+ Practical)	(05)	Marks
TOTAL:	(25)	Marks.

Text Books :

1. Ashok Ambardar, 'Digital Signal Processing', Cengage Learning, 2007, ISBN : 978-81-315-0179-5.

- 2. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing: A Practical Approach", Pearson Education ISBN 0-201-59619-9
- 3. S. Salivahanan, A. Vallavaraj, C. Gnanapriya, 'Digital Signal Processing' TataMcgraw Hill Publication First edition (2010). ISBN 978-0-07-066924-6.
- 4. Avtar Signh, S.Srinivasan,"Digital Signal Processing', Thomson Brooks/Cole, ISBN : 981-243-254-4

Reference Books :

- 1. B. Venkatramani, M. Bhaskar ,"Digital Signal Processor', TataMcGraw Hill, Second Edition, (2001). ISBN : 978-0-07-070256-1.
- 2. Sanjit Mitra, 'Digital Signal Processing : A Computer Based Approach', TataMcGraw Hill, Third Edition
- 3. Dr, Shaila Apte, "Digital Signal Processing,", Wiley India, Second Edition,2013 ISBN : 978-81-2652142-5
- 4. Proakis Manolakis, 'Digital Signal Processing : Principles, Algorithms and Applications' Fourth 2007, Pearson Education, ISBN 81-317-1000-9.
- 5. Monson H. Hayes, "Schaums Outline of Digital Signal Processing' McGraw Hill International second edition. ISBN : 978-00-7163509-7

Course Code	Course/Subject Name	Credits
CPC702	Cryptography and System Security	5

- 1. To provide students with contemporary knowledge in Cryptography and Security.
- 2. To understand how crypto can be used as an effective tools in providing assurance concerning privacy and integrity of information.
- 3. To provide skills to design security protocols for recognize security problems.

Outcomes: Learner will be able to...

1. Understand the principles and practices of cryptographic techniques.

2. Understand a variety of generic security threats and vulnerabilities, and identify & analyze particular security problems for given application.

3. Appreciate the application of security techniques and technologies in solving reallife security problems in practical systems.

- 4. Apply appropriate security techniques to solve security problem
- 5. Design security protocols and methods to solve the specific security problems.
- 6. Familiar with current research issues and directions of security.

Module	Detailed Contents	Hrs
01	1.1 Security Attacks, Security Goals, Computer criminals, Methods of	06
02	 defense, Security Services, Security Mechanisms Basics of Cryptography 2.1 Symmetric Cipher Model, Substitution Techniques, Transportation Techniques, Other Cipher Properties- Confusion, Diffusion, Block and Cipher Cipher Properties- Ciph	
03	Stream Ciphers. Secret Key Cryptography 3.1 Data Encryption Standard(DES), Strength of DES, Block Cipher Design Principles and Modes of Operations, Triple DES, International Data Encryption algorithm, Blowfish, CAST-128.	
04	Public Key Cryptography 4.1 Principles of Public Key Cryptosystems, RSA Algorithm, Diffie- Hellman Key Exchange	04
05		
06	Authentication Applications 6.1 Kerberos, Key Management and Distribution, X.509 Directory Authentication service, Public Key Infrastructure, Electronic Mail Security: Pretty Good Privacy, S/MIME.	

07	7.1 Program Security	08
	Secure programs, Nonmalicious Program Errors, Malicious Software –	
	Types, Viruses, Virus Countermeasures, Worms, Targeted Malicious	
	Code, Controls against Program Threats.	
	7.2 Operating System Security	
	Memory and Address protection, File Protection Mechanism, User Authentication.	
	7.3 Database Security	
	Security Requirement, Reliability and Integrity, Sensitive data, Inference, Multilevel Databases	
	7.4 IDS and Firewalls	
	Intruders, Intrusion Detection, Password Management, Firewalls- Characteristics, Types of Firewalls, Placement of Firewalls, Firewall Configuration, Trusted systems.	
08	8.1 IP Security	06
	Overview, Architecture, Authentication Header, Encapsulating Security	
	Payload, Combining security Associations, Internet Key Exchange, Web	
	Security: Web Security Considerations, Secure Sockets Layer and	
	Transport Layer Security, Electronic Payment.	
	8.2 Non-cryptographic protocol Vulnerabilities	
	DoS, DDoS, Session Hijacking and Spoofing, Software Vulnerabilities-	
	Phishing, Buffer Overflow, Format String Attacks, SQL Injection.	

Term work should consist of at least 10 experiments, 2 assignments based on above theory syllabus.

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for term work shall be as follows:

Practical/Oral examination:

Practical Exam will be based on above syllabus.

Syllabus for Practical

Suggested topics for experiment but not limited to:

- 1. RSA and MD5 algorithms.
- 2. Packet Analyzer.

- 3. IPSec
- 4. Spoofing
- 5. PGP(Pretty Good Privacy)
- 6. Port Scanning
- 7. Vulnerability scanner
- 8. Buffer Overflow
- 9. Intrusion Detection System
- 10. Password cracking
- 11. Firewall
- 12. SSL

Theory Examination:

- 1. Question paper will comprise of total 6 questions, each of 20 Marks.
- 2. Only 4 questions need to be solved.
- 3. Question 1 will be compulsory and based on maximum part of the syllabus.

4. Remaining questions will be mixed in nature (for example suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)

In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Cryptography and Network Security: Principles and Practice 5th edition, William Stallings, Pearson.
- 2. Network Security and Cryptography 2nd edition, Bernard Menezes, Cengage Learning.
- 3. Cryptography and Network, 2nd edition, Behrouz A Fourouzan, Debdeep Mukhopadhyay, TMH.

Reference Books:

- 1. Cryptography and Network Security by Behrouz A. Forouzan, TMH
- 2. Security in Computing by Charles P. Pfleeger, Pearson Education.
- 3. Computer Security Art and Science by Matt Bishop, Addison-Wesley.

Course Code	Course/Subject Name	Credits
CPC703	Artificial Intelligence	5

- 1. To conceptualize the basic ideas and techniques underlying the design of intelligent systems.
- 2. To make students understand and Explore the mechanism of mind that enable intelligent thought and action.
- 3. To make students understand advanced representation formalism and search techniques.
- 4. To make students understand how to deal with uncertain and incomplete information.

Outcomes: Learner will be able to

- 1. Ability to develop a basic understanding of AI building blocks presented in intelligent agents.
- 2. Ability to choose an appropriate problem solving method and knowledge representation technique.
- 3. Ability to analyze the strength and weaknesses of AI approaches to knowledge– intensive problem solving.
- 4. Ability to design models for reasoning with uncertainty as well as the use of unreliable information.
- 5. Ability to design and develop the AI applications in real world scenario.

Module	Detailed Contents	Hrs
01	Introduction to Artificial Intelligence	04
	1.1 Introduction, History of Artificial Intelligence, Intelligent	
	Systems: Categorization of Intelligent System, Components	
	of AI Program, Foundations of AI, Sub-areas of AI,	
	Applications of AI, Current trends in AI.	
02	Intelligent Agents	04
	2.1 Agents and Environments, The concept of rationality, The	
	nature of environment, The structure of Agents, Types of	
	Agents, Learning Agent.	
03	Problem solving	14
	3.1 Solving problem by Searching : Problem Solving Agent,	
	Formulating Problems, Example Problems.	
	3.2 Uninformed Search Methods: Breadth First Search (BFS),	
	Depth First Search (DFS) , Depth Limited Search, Depth	
	First Iterative Deepening(DFID), Informed Search Methods:	
	Greedy best first Search , A* Search , Memory bounded	
	heuristic Search.	
	3.3 Local Search Algorithms and Optimization Problems: Hill-	
	climbing search Simulated annealing, Local beam search,	

	Genetic algorithms. 3.4 Adversarial Search: Games, Optimal strategies, The minimax algorithm , Alpha-Beta Pruning.	
04	 Knowledge and Reasoning 4.1 Knowledge based Agents, The Wumpus World, The Propositional logic, First Order Logic: Syntax and Semantic, Inference in FOL, Forward chaining, backward Chaining. 4.2 Knowledge Engineering in First-Order Logic, Unification, Resolution, Introduction to logic programming (PROLOG). 4.3 Uncertain Knowledge and Reasoning: Uncertainty, Representing knowledge in an uncertain domain, The semantics of belief network, Inference in belief network. 	12
05	 Planning and Learning 5.1The planning problem, Planning with state space search, Partial order planning, Hierarchical planning, Conditional Planning. 5.2 Learning: Forms of Learning, Inductive Learning, Learning Decision Tree. 5.3 Expert System: Introduction, Phases in building Expert Systems, ES Architecture, ES vs Traditional System. 	10
06	Applications 6.1 Natural Language Processing(NLP), Expert Systems.	04

The distribution of marks for term work shall be as follows:

T	OTAL:	(25)	Marks.
•	Attendance	(05)	Marks
•	Assignment:	(05)	Marks.
•	Laboratory work (experiments/case studies):	(15)	Marks.

There will be at least two assignments covering the above syllabus.

Practical/Oral examination:

Practical examination based on the above syllabus will be conducted.

List of AI Practical / Experiments

<u>All the programs should be implemented in C/C++/Java/Prolog under Windows or Linux</u> <u>environment. Experiments can also be conducted using available open source tools.</u>

1. One case study on NLP/Expert system based papers published in IEEE/ACM/Springer or any prominent journal.

- 2. Program on uninformed and informed search methods.
- 3. Program on Local Search Algorithm.
- 4. Program on Optimization problem.
- 5. Program on adversarial search.
- 6. Program on Wumpus world.
- 7. Program on unification.
- 8. Program on Decision Tree.

Any other practical covering the syllabus topics and subtopics can be conducted.

Reference Books (Practicals):

- 1. Ivan Bratko "PROLOG Programming for Artificial Intelligence", Pearson Education, Third Edition.
- 2. Elaine Rich and Kevin Knight "Artificial Intelligence "Third Edition
- 3. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- 4. Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers.

Text Books:

- 1. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach "Second Edition" Pearson Education.
- 2. Saroj Kaushik "Artificial Intelligence", Cengage Learning.
- 3. George F Luger "Artificial Intelligence" Low Price Edition , Pearson Education., Fourth edition.

Reference Books:

- 1. Ivan Bratko "PROLOG Programming for Artificial Intelligence", Pearson Education, Third Edition.
- 2. Elaine Rich and Kevin Knight "Artificial Intelligence" Third Edition
- 3. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- 4. Hagan, Demuth, Beale, "Neural Network Design" CENGAGE Learning, India Edition.
- 5. Patrick Henry Winston , "Artificial Intelligence", Addison-Wesley, Third Edition.
- 6. Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers.
- 7. N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press.

Course Code	Course/Subject Name	Credits
CPE7021	Advanced Algorithms	5

- 1. To teach fundamentals of analysis of algorithm at depth
- 2. To provide in depth study of advanced data structures and its uses
- 3. To teach analysis of problems from different domains

Outcomes: Learner will be able to...

- 1. Identify and use suitable data structures for given problem from different domains
- 2. Appreciate the role of Graph algorithms in solving variety of problems
- 3. Appreciate the role of Optimization by using linear programing
- 4. Analyze the various algorithms from different domains

Module	Detailed Contents	Hrs
01	Introduction 1.1 Asymptotic notations Big O, Big Θ ,Big Ω , $_0$, $_{\omega}$ notations ,Proofs of master theorem, applying theorem to solve problems	
02	 Advanced Data Structures 2.1 Red-Black Trees: properties of red-black trees, Insertions, Deletions 2.2 B-Trees and its operations 2.3 Binomial Heaps: Binomial trees and binomial heaps, Operation on Binomial heaps 	09
03	Dynamic Programing 3.1 matrix chain multiplication, cutting rod problem and its analysis	06
04	Graph algorithms 4.1 Bellman ford algorithm, Dijkstra algorithm, Johnson's All pair shortest path algorithm for sparse graphs	06
05	Maximum Flow 5.1 Flow networks , the ford Fulkerson method ,max bipartite matching , push Relabel Algorithm , The relabel to front algorithm	08
06	Linear Programing 6.1 Standard and slack forms, Formulating problems as linear programs, simplex algorithm, Duality, Initial basic feasible solution	
07	Computational Ggeometry 7.1 Line Segment properties, Determining whether any pair of segment intersects, finding the convex hull, Finding the closest pair of points.	

Term work should consist of at least 6 experiments, 2 assignments based on above theory syllabus.

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for term work shall be as follows:

Practical/Oral examination:

Oral examination based on above syllabus will be conducted

Syllabus for Practical

Suggested topics for experiment but not limited to:

- 1. Red black trees and its various operations
- 2. Binomial Heaps and its various operations
- 3. Dynamic programing: matrix chain multiplication , cutting rod example
- 4. Bellman ford , Johnson's algorithm for sparse graphs
- 5. Ford Fulkerson algorithm , push relabel to front methods
- 6. Finding closest pair of points, Determining the convex hull
- 7. Implementation of Simplex algorithm

Text Books:

- 1. T.H. Coreman , C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms", 2nd edition , PHI publication 2005
- 2. Ellis Horowitz , Sartaj Sahni , S. Rajsekaran. "Fundamentals of computer algorithms" University press

Course Code	Course/Subject Name	Credits
CPE7023	Image Processing	5

- 1. To learn the fundamental concepts of Digital Image Processing and Video Processing .
- 2. To understand basic image enhancement and segmentation techniques.
- 3. To illustrate Image Transform calculations mathematically and develop fast transform algorithm
- 4. To learn Image Compression and Decompression Techniques

Outcomes: Learner will be able to...

- 1. Understand the concept of Digital Image and Video Image.
- 2. Explain image enhancement and Segmentation technique.
- 3. Develop fast image transform flowgraph
- 4. Solve Image compression and decompression techniques
- 5. Perform Binary Image Processing Operations

Module	Detailed Contents	Hrs.
01	Digital Image and Video Fundamentals	06
	1.1 Introduction to Digital Image, Digital Image Processing System,	
	Sampling and Quantization, Representation of Digital Image,	
	Connectivity, Image File Formats : BMP, TIFF and JPEG. Colour Models	
	(RGB, HSI, YUV) Introduction to Digital Video, Chroma Sub-sampling,	
	CCIR standards for Digital Video	
02	Image Enhancement	09
	2.1 Gray Level Transformations, Zero Memory Point Operations, Histogram Processing, Neighbourhood Processing, Spatial Filtering, Smoothing and Sharpening Filters. Homomorphic Filtering	
03	Image Segmentation and Representation	09
	3.1 Detection of Discontinuities, Edge Linking using Hough Transform,	
	Thresholding, Region based Segmentation, Split and Merge Technique,	
	Image Representation and Description, Chain Code, Polygonal	
04	Representation, Shape Number, Moments. Image Transform	09
04	4.1 Introduction to Unitary Transform, Discrete Fourier Transform(DFT),	09
	Properties of DFT, Fast Fourier Transform(FFT), Discrete Hadamard	
	Transform(DHT), Fast Hadamard Transform(FHT), Discrete Cosine	
	Transform(DCT), Discrete Wavelet Transform(DWT),	
05	Image Compression	09
	5.1 Introduction, Redundancy, Fidelity Criteria,	
	5.2 Lossless Compression Techniques : Run Length Coding, Arithmetic	
	Coding, Huffman Coding, Differential PCM,	

	5.3 Lossy Compression Techniques: Improved Gray Scale Quantization, Vector Quantization, JPEG, MPEG-1.	
06	Binary Image Processing	06
	6.1 Binary Morphological Operators, Hit-or-Miss Transformation, Boundary	
	Extraction, Region Filling, Thinning and Thickening, Connected	
	Component Labeling, Iterative Algorithm and Classical Algorithm	

Term work should consist of at least 08 experiments.

Journal must include at least 1 assignment on each module and two quiz.

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for term work shall be as follows:

Laboratory work (experiments):	(15)	Marks.
Assignment:	(05)	Marks.
Attendance (Theory+ Practical)	(05)	Marks
TOTAL:	(25)	Marks.

Practical/Oral examination:

Oral exam will be based on the above syllabus

Practicals

Implementation of programs must be either in C or C++ only. A List of experiments is given below. Input can be Monochrome OR Colour Image. Additional experiments within the scope of the syllabus can be added.

- 1. Image Enhancement [Any two techniques]
 - (1) using Zero Memory Point Operations.
 - (2) using Histogram Processing Technique
 - (3) using Spatial Filtering [Smoothing Filters/ Sharpening Filters]
 - (4) using Homomorphic Filtering
- 2. Image Segmentation [Any two techniques]
- (1) Horizontal and Vertical Line Detection
- (2) Edge Detection
- (3) Split and Merge Technique
- (4) Edge Linking using Hough Transform

- 3. Image Compression and De-compression [Any two techniques]
- (1) Arithmetic Coding and Decoding
- (2) Huffman Coding and Decoding
- (3) IGS Quantization/ Vector Quantization based Compression and De-compression
- (4) Transform based Image Compression and De-compression [FFT/ FHT/DCT/ DWT]
- 4. Binary Image Processing [Any two techniques]
 - (1) Opening followed by Closing
 - (2) Hit or Miss Transform
 - (3) Thinning/Thickening/ Region Fillling / Boundary Extraction
 - (4) Connected Component Algorithm

Text Books :

1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,

2. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,

3. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

- 4. S. Sridhar, "Digital Image Processing", Oxford University Press, Second Edition, 2012.
- 5. Robert Haralick and Linda Shapiro, "Computer and Robot Vision", Vol I, II, Addison Wesley, 1993.

Reference Books:

1. Dwayne Phillps, "Image Processing in C", BPB Publication, 2006

2. B. Chandra and D.Dutta Majumder, "Digital Image Processing and Analysis", Prentice Hall of India Private Ltd, 2011

3. Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", Prentice Hall of India Private Ltd, Third Edition

4. Fred Halshall, "Multimedia Communications: Applications, Networks Protocols and Standards,", Pearson Education 2001

5. David A. Forsyth, Jean Ponce, "Computer Vision: A Modern Approach", Pearson Education, Limited, 2011

Course Code	Course/Subject Name	Credits
CPE7024	Software Architecture	5

Outcomes:

Software architecture is foundational to the development of large, practical software-intensive applications.

After successful completion of this course learner will be able to:

• Visualize the architectural concepts in development of large, practical softwareintensive applications.

• Rather than focusing on one method, notation, tool, or process, this new course widely surveys software architecture techniques, enabling us to choose the right tool for the job at hand.

Module	Detailed Contents	Hrs.
01	Basic Concepts	03
	1.1 Concepts of Software Architecture	
	1.2 Models.	
	1.3 Processes.	
	1.4 Stakeholders	
02	Designing Architectures	02
	2.1 The Design Process.	
	2.2 Architectural Conception.	
	2.3 Refined Experience in Action: Styles and Architectural Patterns.	
	2.4 Architectural Conception in Absence of Experience.	
03	Connectors	06
	3.1 Connectors in Action: A Motivating Example.	
	3.2 Connector Foundations.	
	3.3 Connector Roles.	
	3.4 Connector Types and Their Variation Dimensions.	
	3.5 Example Connectors.	
04	Modeling	04
	4.1 Modeling Concepts.	
	4.2 Ambiguity, Accuracy, and Precision.	
	4.3 Complex Modeling: Mixed Content and Multiple Views.	
	4.4 Evaluating Modeling Techniques.	
	4.5 Specific Modeling Techniques.	
05	Analysis	08
	5.1 Analysis Goals.	
	5.2 Scope of Analysis.	
	5.3 Architectural Concern being Analyzed.	
	5.4 Level of Formality of Architectural Models.	

	5.5 Type of Analysis.	
	5.6 Analysis Techniques.	
06	Implementation and Deployment	04
	6.1 Concepts.	
	6.2 Existing Frameworks.	
	6.3 Software Architecture and Deployment.	
	6.4 Software Architecture and Mobility.	
07	Conventional Architectural styles	05
	7.1 Pipes and Filters	
	7.2 Event- based, Implicit Invocation	
	7.3 Layered systems	
	7.4 Repositories	
	7.5 Interpreters	
	7.6 Process control	
08	Applied Architectures and Styles	30
	8.1 Distributed and Networked Architectures.	
	8.2 Architectures for Network-Based Applications.	
	8.3 Decentralized Architectures.	
	8.4 Service-Oriented Architectures and Web Services.	
09	Designing for Non-Functional Properties	04
	9.1 Efficiency.	
	9.2 Complexity.	
	9.3 Scalability and Heterogeneity.	
	9.4 Adaptability.	
	9.5 Dependability.	
10	Domain-Specific Software Engineering	04
	10.1 Domain-Specific Software Engineering in a Nutshell.	
	10.2 Domain-Specific Software Architecture.	
	10.3 DSSAs, Product Lines, and Architectural Styles.	

The distribution of marks for term work shall be as follows:

T	OTAL:	(25)	Marks.
•	Attendence:	(05)	Marks.
•	Laboratory work (experiments):	(20)	Marks.

Practical/Oral examination:

An Oral examination is to be conducted based on the above syllabus

Topics For Experiment:

- 1. Modeling using xADL
- 2. Analysis - Case study
- 3. Visualization using xADL 2.0
- 4. Integrate software components using a middleware
- 5. Use middleware to implement connectors
- 6. Wrapper to connect two applications with different architectures
- 7. Creating web service
- 8. Architecture for any specific domain

Books:

Text Books:

- "Software Architecture: Foundations, Theory, and Practice" by Richard N. Taylor, Nenad Medvidovic, Eric Dashofy, ISBN: 978-0-470-16774-8
 M. Shaw: Software Architecture Perspectives on an Emerging Discipline, Prentice-Hall.
 Len Bass, Paul Clements, Rick Kazman: Software Architecture in Practice, Pearson.

References:

- "Pattern Oriented Software Architecture" by Frank Buchnan et al, Wiley India.
 "The Art of Software Architecture" by Stephen T. Albin.

Course Code	Course/Subject Name	Credits
CPE7025	Soft Computing	5

- 1. To Conceptualize the working of human brain using ANN.
- 2. To become familiar with neural networks that can learn from available examples and generalize to form appropriate rules for inference systems.
- 3. To introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience.
- 4. To provide the mathematical background for carrying out the optimization and familiarizing genetic algorithm for seeking global optimum in self-learning situation.

Outcomes: Learner will be able to...

- 1. Ability to analyze and appreciate the applications which can use fuzzy logic.
- 2. Ability to design inference systems.
- 3. Ability to understand the difference between learning and programming and explore practical applications of Neural Networks (NN).
- 4. Ability to appreciate the importance of optimizations and its use in computer engineering fields and other domains.
- 5. Students would understand the efficiency of a hybrid system and how Neural Network and fuzzy logic can be hybridized to form a Neuro-fuzzy network and its various applications.

Module	Detailed Contents	Hours	
01	Introduction to Soft Computing	04	
	1.1 Soft computing Constituents, Characteristics of Neuro Computing and Soft Computing, Difference between Hard Computing and Soft Computing, Concepts of Learning and Adaptation.		
02	02 Neural Networks		
	2.1 Basics of Neural Networks:		
	Introduction to Neural Networks, Biological Neural		
	Networks, McCulloch Pitt model,		
	2.2 Supervised Learning algorithms:		
	Perceptron (Single Layer, Multi layer), Linear separability,		
	Delta learning rule, Back Propagation algorithm,		
	2.3 Un-Supervised Learning algorithms: Hebbian Learning,		
	Winner take all, Self Organizing Maps, Learning Vector		
	Quantization.		

03	Fuzzy Set Theory 3.1 Classical Sets and Fuzzy Sets, Classical Relations and Fuzzy Relations, Properties of membership function, Fuzzy extension principle, Fuzzy Systems- fuzzification, defuzzification and fuzzy controllers.	14	
04	4 Hybrid system		
	4.1 Introduction to Hybrid Systems, Adaptive Neuro Fuzzy		
	Inference System(ANFIS).		
05	5 Introduction to Optimization Techniques		
	5.1 Derivative based optimization- Steepest Descent, Newton		
	method.		
	5.2 Derivative free optimization- Introduction to Evolutionary		
	Concepts.		
06	Genetic Algorithms and its applications:		
	6.1 Inheritance Operators, Cross over types, inversion and		
	Deletion, Mutation Operator, Bit-wise Operators,		
	Convergence of GA, Applications of GA.		

The distribution of marks for term work shall be as follows:

1		(23)	IVIdľKS.
T	OTAL:	(25)	Marks
•	Attendance	(05)	Marks
•	Assignments:	(05)	Marks.
•	Laboratory work (experiments/case studies):	(15)	Marks.

Practical/Oral examination:

Oral examination will be based on the above syllabus.

PRACTICALS:

All the programs should be implemented in C/C++/Java/MATLAB under Windows or Linux environment. Experiments can also be conducted using available open source tools like OCTAVE and SCILAB

LIST OF SC PRACTICAL / EXPERIMENTS

- 1. One case study on Fuzzy/Neural/GA based papers published in IEEE/ACM/Springer or any prominent journal.
- 2. To implement Fuzzy Sets.

- 3. To implement Fuzzy Relations.
- 4. To implement Fuzzy Controllers.
- 5. To implement Basic Neural Network learning rules.
- 6. To implement any Supervised Learning algorithm.
- 7. To implement any Unsupervised Learning algorithm.
- 8. To implement a simple application using Genetic Algorithm.

Any other practical covering the syllabus topics and subtopics can be conducted.

Reference Books (for practicals) :

- 1. S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- 2. S.Rajasekaran and G.A.Vijayalakshmi Pai "Neural Networks, Fuzzy Logic and Genetic Algorithms" PHI Learning.
- 3. Hagan, Demuth, Beale,"Neural Network Design" CENGAGE Learning, India Edition.
- 4. Satish Kumar, "Neural Networks –A classroom approach", Second Edition, TMH Publication.

Text Books:

- 1. Timothy J.Ross "Fuzzy Logic With Engineering Applications" Wiley.
- 2. S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- 3. S.Rajasekaran and G.A.Vijayalakshmi Pai "Neural Networks, Fuzzy Logic and Genetic Algorithms" PHI Learning.
- 4. J.-S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- 5. Jacek.M.Zurada "Introduction to Artificial Neural Sytems" Jaico Publishing House.

Reference Books:

- 1. Satish Kumar "Neural Networks A Classroom Approach" Tata McGrawHill.
- 2. Zimmermann H.S "Fuzzy Set Theory and its Applications" Kluwer Academic Publishers.
- 3. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- 4. Hagan, Demuth, Beale, "Neural Network Design" CENGAGE Learning, India Edition.

Course Code	Course/Subject Name	Credits
CPE7026	Enterprise Resource Planning and Supply Chain	5
	Management (ERP & SCM)	

- 1. To understand the technical aspects of ERP and SCM systems.
- 2. To understand the steps and activities in the ERP and SCM life cycle.
- 3. To identify and describe typical functionality in an ERP and SCM system.
- 4. To understand tools and methodology used for designing ERP and SCM for an Enterprise.

Outcomes: Learner will be able to...

- 1. To conceptualize the basic structure of ERP and SCM
- 2. To identify implementation strategy used for ERP and SCM.
- 3. To apply design principles for various business module in ERP and SCM.
- 4. To apply different emerging technologies for implementation of ERP and SCM.

Module	Detailed Contents	Hours			
Enterpri	Enterprise Resource Planning				
01	Introduction 1.1 What is an Enterprize, Introduction to ERP, Need for ERP, Structure of ERP, Scope and Benefits, Typical business processes.	02			
02	ERP and Technology 2.1 ERP and related technologies, Business Intelligence, E-business and E-commerce, Business Process Reengineering,	04			
03	 ERP and Implementation 3.1 ERP implementation and strategy, Implementation Life cycle, Pre-implementation task, requirement definition, implementation methodology. 	06			
04	ERP Business Modules 4.1 Modules: Finance, manufacturing, human resources, quality management, material management, marketing. Sales distribution and service.	08			
05	Extended ERP 5.1 Enterprise application Integration (EAI), open source ERP, cloud ERP.	04			
Supply Chain Management (SCM)					
06	Introduction and strategic decisions in SCM	08			

	6.1 Introduction to SCM, Generic Types of supply chain, Major	
	Drivers of Supply chain, Strategic decisions in SCM, Business	
	Strategy, CRM strategy, SRM strategy, SCOR model.	
07	Information Technology in SCM	06
	7.1 Types of IT Solutions like Electronic Data Inter change (EDI),	
	Intranet/ Extranet, Data Mining/ Data Warehousing and Data	
	Marts, E-Commerce, E- Procurement, Bar coding, RFID, QR	
	code.	
08	Mathematical modelling for SCM	06
	8.1 Introduction, Considerations in modelling SCM systems,	
	Structuring the logistics chain, overview of models: models on	
	transportation problem, assignment problem, vehicle routing	
	problem, Model for vendor analysis, Make versus buy model.	
09	Agile Supply Chain	02
	9.1 Introduction, Characteristics of Agile Supply Chain, Achieving	
	Agility in Supply Chain.	
10	Cases of Supply Chain	02
	10.1 Cases of Supply Chain like, News Paper Supply Chain, Book	
	Publishing, Mumbai Dabbawala, Disaster management, Organic	
	Food, Fast Food.	

The distribution of marks for term work shall be as follows:

10	OTAL:	(25)	Marks.
	Attendance	` '	
		• •	
•	Mini project:	(20)	Marks.

Practical/Oral examination:

Oral examination will be based on the above syllabus.

The lab will be conducted on mini project which may be conducted on the following:

- 1) Simulating business processes of an Enterprise.
- 2) Designing a web portal for an Enterprise using E-business Models.
- 3) E-procurement model.
- 4) Open source ERP
- 5) Cloud ERP
- 6) Business process agility
- 7) SCM model.
- 8) Implementing Business Intelligence
- 9) Any other relevant topics covering the syllabus.

Text Books:

- 1. Enterprise Resource Planning : concepts & practices, by V.K. Garg & N.K. Venkatakrishnan ; PHI.
- 2. Supply Chain Management Theories & Practices: R. P. Mohanty, S. G. Deshmukh, Dreamtech Press.
- 3. ERP Demystified: II Edition, by Alexis Leon, McGraw Hill .
- 4. Enterprise wide resource planning: Theory & practice: by Rahul Altekar, PHI.

Reference Books:

- 1. ERP to E² ERP: A Case study approach, by Sandeep Desai, Abhishek Srivastava, PHI.
- 2. Managerial Issues of ERP system, by David Olson, McGraw Hill.

Course Code	Course/Subject Name	Credits
CPE7022	Computer Simulation and Modeling	5

Course Objectives:

This course presents an introduction to discrete event simulation systems. Emphasis of the course will be on modeling and the use of simulation languages/software to solve real world problems in the manufacturing as well as services sectors. The course discusses the modeling techniques of entities, queues, resources and entity transfers in discrete event environment. The course will teach the students the necessary skills to formulate and build valid models, implement the model, perform simulation analysis of the system and analyze results properly. The "theory" of simulation involves probability and statistics, thus a good background in probability and statistics is a required prerequisite

Course Outcomes:

- 1. Apply simulation concepts to achieve in business, science, engineering, industry and services goals
- 2. Demonstrate formulation and modeling skills.
- 3. Perform a simulation using spreadsheets as well as simulation language/package
- 4. Generate pseudorandom numbers using the Linear Congruential Method
- 5. Evaluate the quality of a pseudorandom number generator using statistical tests
- 6. Analyze and fit the collected data to different distributions

Module	Detailed Contents	Hours		
Computer Simulation and Modeling				
01	Introduction to Simulation. Simulation Examples. General Principles	15		
02	Statistical Models in simulation. Queuing Models	08		
03	Random Number Generation. Testing random numbers (Refer to Third edition) Random Variate Generation: Inverse transform technique, Direct Transformation for the Normal Distribution, Convolution Method, Acceptance-Rejection Technique (only Poisson Distribution).	09		

04	Analysis of simulation data : Input Modeling ,Verification, Calibration and Validation of Simulation , Models , Estimation of absolute performance.	12
05	Application : Case study on 1. Processor and Memory simulation 2. Manufacturing & Material handling	04

Text Books:

Discrete Event System Simulation; Third Edition, Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, Prentice-Hall

Discrete Event System Simulation; Fifth Edition, Jerry Banks, John Carson, Barry Nelson, and David M. Nicol, Prentice-Hall **References:**

Nererences.

- 4. System Modeling & Analysis; Averill M Law, 4th Edition TMH.
- 5. Principles of Modeling and Simulation; Banks C M , Sokolowski J A; Wiley
- 6. System Simulation ; Geoffrey Gordon ; EEE
- 7. System Simulation with Digital Computer; Narsing Deo, PHI

Term work:

Laboratory work: 10 marks

Mini Simulation Project presentation: 10 marks

Attendance : 5 marks

Suggested Practical List (If Any):

Perform simulation exercises given in the text book (third edition) using spreadsheets and/or simulation language/package

- 5. Queue- single server, multi-server, classic case- dump truck
- 6. Inventory Lead time=0, lead time fixed, lead time probabilistic
- 7. Reliability problem
- 8. Tutorials on statistical models
- 9. Random number generate and test
- 10. Goodness of fit test
- 11. Output analysis Point estimate and Confidence Interval

Simulation: Real World Examples – can be in the field of business, transportation, medical, computing, manufacturing and material handling- Presentation to be taken.

Practical/Oral examination:

Oral examination will be based on the above syllabus.

Course Code	Course/Subject Name	Credits
CPL701	Network threats and attacks Laboratory	02

Outcomes: After completion of this Laboratory course learner will be able To

- Use network-based tools for network analysis
 Use techniques for Network scaning
 Identify network vulnerability
 Use tools to simulate intrusion detection system
 To understand and install a firewall

Module	Detailed Contents
01	1.1 Title: Study the use of network reconnaissance tools like WHOIS, dig, traceroute, nslookup to gather information about networks and domain registrars.
	Objective: Objective of this module to how to gather information about the networks by using different n/w reconnaissance tools.
	Scope: Network analysis using network based tools
	Technology: Networking
02	2.1 Title: Study of packet sniffer tools like wireshark, ethereal, tcpdump etc. You should be able to use the tools to do the following
	 Observer performance in promiscuous as well as non-promiscous mode. Show that packets can be traced based on different filters.
	Objective: Objective of this module is to observer the performanance in promiscuous & non-promiscous mode & to find the packets based on different filters.
	Scope: Packet grapping, message and protocol analysis
	Technology: Networking
03	3.1 Title: Download and install nmap. Use it with different options to scan open ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, etc.
	Objective: objective of this module to learn nmap installation & use this to scan different ports.
	Scope: used for ip spoofing and port scanning
	Technology: Networking

04	4.1 Title: Detect ARP spoofing using open source tool ARPWATCH.
	Objective: Objective of the module to find ARP spoofing using open source.
	Scope: Ip spoofing using arp packaging tool
	Technology: Networking
05	5.1 Title: Use the Nessus tool to scan the network for vulnerabilities.
	Objective: Objective of the module is scan system and network analysis.
	Scope: It used for system analysis, security and process analysis
	Technology: Networking
06	6.1 Title: Implement a code to simulate buffer overflow attack.
	Objective: Objective of the module Is to check buffer overflow in an NS2 environme
	Scope: It uses to analyse memory overflow attack
	Technology: Networking
07	7.1 Title: Set up IPSEC under LINUX
	Objective: Objective of the module for implementing security vulnerabilities
	Scope: to study different ipsec tools.
	Technology: Networking
80	8.1 Title: Install IDS (e.g. SNORT) and study the logs.
	Objective: Simulate intrusion detection system using tools such as snort
	Scope: It is used for intrusion detection system vulnerability scans
	Technology: Networking
09	9.1 Title: Use of iptables in linux to create firewalls.
	Objective: To study how to create and destroy firewall security parameters.
	Scope: system security and network security
	Technology: Networking
10	10.1 Title: Mini project
	Objective: To implement Networking concepts
	objective. To implement retworking concepts

Scope: To understand Network & system tools

Technology: Networking

Term Work:

The distribution of marks for term work shall be as follows:

Lab Assignments:	(10)	
Mini project:	(10)	Marks.
Attendance	(05)	Marks
TOTAL:		Marks.

Oral examination:

Oral examination is to be conducted by pair of internal and external examiners based on above syllabus and the mini projects done.

References:

- 1. Network Security Assessment by Chris McNab, O'Reilly
- 2. Network Security Hacks, Andrew Lockhart, O'Reilly
- 3. The Web Application Hacker's Handbook ^{2nd} Edition by Dafydd Stuttard & Marcus Pinto, Wiley Publication (2014).
- 4. Securing the Virtual Environment by Davi Ottenheimer & Matthew Wallace, Willey Publication(2012).

Course Code	Course/Subject Name	Credits
CPC801	Data Warehousing and Mining	5

- 1. To study the methodology of engineering legacy databases for data warehousing and data mining to derive business rules for decision support systems.
- 2. To analyze the data, identify the problems, and choose the relevant models and algorithms to apply.

Outcomes: Learner will be able to...

1. Enable students to understand and implement classical algorithms in data mining and data warehousing; students will be able to assess the strengths and weaknesses of the algorithms, identify the application area of algorithms, and apply them.

2. Students would learn data mining techniques as well as methods in integrating and interpreting the data sets and improving effectiveness, efficiency and quality for data analysis.

Module	Detailed Contents	Hrs.
01	Introduction to Data Warehousing	04
	1.1 The Need for Data Warehousing; Increasing Demand for Strategic	
	Information; Inability of Past Decision Support System; Operational V/s	
	Decisional Support System; Data Warehouse Defined; Benefits of Data	
	Warehousing ;Features of a Data Warehouse; The Information Flow	
	Mechanism; Role of Metadata; Classification of Metadata; Data Warehouse	
	Architecture; Different Types of Architecture; Data Warehouse and Data	
	Marts; Data Warehousing Design Strategies.	
02	Dimensional Modeling	06
	2.1 Data Warehouse Modeling Vs Operational Database Modeling; Dimensional	
	Model Vs ER Model; Features of a Good Dimensional Model; The Star	
	Schema; How Does a Query Execute? The Snowflake Schema; Fact Tables	
	and Dimension Tables; The Factless Fact Table; Updates To Dimension	
	Tables: Slowly Changing Dimensions, Type 1 Changes, Type 2 Changes,	
	Type 3 Changes, Large Dimension Tables, Rapidly Changing or Large	
	Slowly Changing Dimensions, Junk Dimensions, Keys in the Data	
	Warehouse Schema, Primary Keys, Surrogate Keys & Foreign Keys;	
	Aggregate Tables; Fact Constellation Schema or Families of Star.	
03	ETL Process	06
	3.1 Challenges in ETL Functions; Data Extraction; Identification of Data	
	Sources; Extracting Data: Immediate Data Extraction, Deferred Data	
	Extraction; Data Transformation: Tasks Involved in Data Transformation,	
	Data Loading: Techniques of Data Loading, Loading the Fact Tables and	
	Dimension Tables Data Quality; Issues in Data Cleansing.	
04	Online Analytical Processing (OLAP)	04

	4.1 Need for Online Analytical Processing; OLTP V/s OLAP; OLAP and Multidimensional Analysis; Hypercubes; OLAP Operations in Multidimensional Data Model; OLAP Models: MOLAP, ROLAP, HOLAP, DOLAP;	
05	 Introduction to data mining 5.1 What is Data Mining; Knowledge Discovery in Database (KDD), What can be Data to be Mined, Related Concept to Data Mining, Data Mining Technique, Application and Issues in Data Mining 	02
06	 Data Exploration 6.1 Types of Attributes; Statistical Description of Data; Data Visualization; Measuring similarity and dissimilarity. 	02
07	 Data Preprocessing 7.1 Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data Transformation & Data Discretization: Normalization, Binning, Histogram Analysis and Concept hierarchy generation. 	04
08	 Classification 8.1 Basic Concepts; Classification methods: Decision Tree Induction: Attribute Selection Measures, Tree pruning. Bayesian Classification: Naïve Bayes' Classifier. 8.2 Prediction: Structure of regression models; Simple linear regression, Multiple linear regression. 8.3 Model Evaluation & Selection: Accuracy and Error measures, Holdout, Random Sampling, Cross Validation, Bootstrap; Comparing Classifier performance using ROC Curves. 8.4 Combining Classifiers: Bagging, Boosting, Random Forests. 	06
09	 Clustering 9.1 What is clustering? Types of data, Partitioning Methods (K-Means, K-Medoids) Hierarchical Methods(Agglomerative , Divisive, BRICH), Density-Based Methods (DBSCAN, OPTICS) 	06
10	 Mining Frequent Pattern and Association Rule 10.1 Market Basket Analysis, Frequent Itemsets, Closed Itemsets, and Association Rules; Frequent Pattern Mining, Efficient and Scalable Frequent Itemset Mining Methods, The Apriori Algorithm for finding Frequent Itemsets Using Candidate Generation, Generating Association Rules from Frequent Itemsets, Improving the Efficiency of Apriori, A pattern growth approach for mining Frequent Itemsets; Mining Frequent itemsets using vertical data formats; Mining closed and maximal patterns; Introduction to Mining Multilevel Association Rules and Multidimensional Association Rules; From Association Mining to Correlation Analysis, Pattern Evaluation Measures; Introduction to Constraint-Based Association Mining. 	08

Term work should consist of at least of the following:

- 1. One case study given to a group of 3 /4 students of a data mart/ data warehouse.
 - a. Write Detail Statement Problem and creation of dimensional modeling (creation star and snowflake schema)
 - b. Implementation of all dimension table and fact table
 - c. Implementation of OLAP operations.
- 2. Implementation of classifier like Decision tree, Naïve Bayes, Random Forest using any languages like Java
- 3. Use WEKA to implement like Decision tree, Naïve Bayes, Random Forest
- 4. Implementation of clustering algorithm like K-means, K- Medoids, Agglomerative, Divisive using languages any like Java, C# , etc.
- 5. Use WEKA to implement the following Clustering Algorithms K-means, Agglomerative, Divisive.
- 6. Implementation Association Mining like Apriori, FPM using languages like Java, C#, etc.
- 7. Use WEKA to implement Association Mining like Apriori, FPM.
- 8. Use R tool to implement Clustering/Association Rule/ Classification Algorithms.
- 9. Detailed study of any one BI tool like Oracle BI, SPSS, Clementine, and XLMiner etc. (paper Assignment)

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project

Practical/Oral examination:

An oral exam will be held based on the above syllabus

Text Books:

1) Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann 3nd Edition

- 2) Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India
- 3) Reema Theraja "Data warehousing", Oxford University Press.
- 4) M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education

Reference Books:

- 1) Randall Matignon, "Data Mining using SAS enterprise miner ", Wiley Student edition.
- 2) Alex Berson , S. J. Smith, "Data Warehousing, Data Mining & OLAP" , McGraw Hill.
- 3) Vikram Pudi & Radha Krishna, "Data Mining", Oxford Higher Education.
- 4) Daniel Larose, "Data Mining Methods and Models", Wiley India.

Course Code	Course/Subject Name	Credits
CPC802	Human Machine Interaction	5

- 1. To stress the importance of a good interface design.
- 2. To understand the importance of human psychology in designing good interfaces.
- 3. To motivate students to apply HMI in their day to day activities.
- 4. To bring out the creativity in each student build innovative applications that are user friendly.
- 5. To encourage students to indulge into research in Machine Interface Design.

Outcomes: Learner will be able to...

- 1. To design user centric interfaces.
- 2. To design innovative and user friendly interfaces.
- 3. To apply HMI in their day-to-day activities.
- 4. To criticise existing interface designs, and improve them.
- 5. To Design application for social and technical task.

Module	Detailed Contents	Hrs.
01	 Introduction 1.1 Introduction to Human Machine Interface, Hardware, software and operating environment to use HMI in various fields. 1.2 The psychopathology of everyday things – complexity of modern devices; human-centered design; fundamental principles of interaction; Psychology of everyday actions- how people do things; the seven stages of action and three levels of processing; human error; 	
02	Understanding goal directed design 2.1 Goal directed design; Implementation models and mental models; Beginners, experts and intermediates – designing for different experience levels; Understanding users; Modeling users – personas and goals.	
03	GUI 3.1 benefits of a good UI; popularity of graphics; concept of direct manipulation; advantages and disadvantages; characteristics of GUI; characteristics of Web UI; General design principles.	
04	 Design guidelines 4.1 perception, Gesalt principles, visual structure, reading is unnatural, color, vision, memory, six behavioral patterns, recognition and recall, learning, factors affecting learning, time. 	08
05	Interaction styles 5.1 menus; windows; device based controls, screen based controls;.	06
06	Communication 6.1 text messages; feedback and guidance; graphics, icons and images; colours.	08

The distribution of marks for term work shall be as follows:

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project

Practical/Oral examination:

Oral examination will be based on the above syllabus.

Laboratory:

Students are free to choose any tool that they feel appropriate for a given experiment. Each experiment will involve research about a certain category of people, and then developing an appropriate interface.

Students are expected to perform at least eight experiments from the given list.

LIST OF HMI PRACTICAL / EXPERIMENTS

- 1. Know your client
 - a. Children (4-5 years of age): An application to teach math.

b. Teenagers: Design a digital diary for young teens to help them overcome various social pressures they deal with during their teen years. The diary should also be like a self help tool which would help them deal with incidents like bullying, peer pressure, etc.. This is an open project and you can think in any direction to make the children sail through their teen years while trying to discover life around them.

c. Older generation: Folks from the older generation has been very wary of using their credit card on the Internet. They have various concerns when it comes to paying their bills. Also because of their old age, it will be beneficial for them to use the internet and pay their phone, electricity, gas, etc. bills

d. Rural people: ATVM for train ticketing in rural area

2. Understand the trouble of interacting with machines - Redesign interfaces of home appliances like microwave oven, land-line phone, fully automatic washing machine.

3. Learn HCI design principles – heuristic evaluation: Identify 5 different websites catering to one specific goal (eg. Goal – on-line shopping and 5 different websites – ebay, amazon, flipkart, zovi, myntra) and perform a competitive analysis on them to understand how each one caters to the goal, the interactions and flow of the payment system and prepare a report on the same..

4. Learn the importance of menus and navigation – website redesign: News websites like CNN are always cluttered with information. It takes the user a few minutes to find his way through and maybe more minutes to look for some specific information. Redesign the news websites to make it look less cluttered, provide relevant information (a person sitting in Russia should not get US news as top news), intelligently dig information that he might be interested in based on his searches on the web.

5. Learn the importance of connecting humans – service design : How often have you found yourself waiting at the airport for a flight that is delayed or you've missed it and the next one is 4 hours from now, or waiting for a connecting flight? Design an experience for passengers to deal with the long waiting hours.

6. Learn the use of statistical graphics – expense tracker: Matt is a young engineer who just finished his summer internship at a leading Software Company in the United States. He has never been independent in handling his own finances and after this internship his father has asked him to start managing his money on his own. He is looking for a tool/app/software that would help him budget his finances, create goals and track them, categorize and track his credit card spending and also get insights on the various types of categories he's spending on. Design a tool/app/software that would help Matt manage his personal finances given the above requirement.

7. Learn the importance of graphics – way finding: Design a map for someone who is new to the city/town/village and is trying to understand how to commute from one place to another (inspired by New York Subway Maps, London Subway Maps)

8. Icon designing: Choose a unique domain, design a few icons and show how it can be accommodated on an interface.

9. Understand the need of colors and animation – web site for an artist: A celebrity in some form of art like music, dance, painting, martial arts, etc (not actors). This site will be used to display his works and should portray his character.

10. Understand the various input methods available for interaction – concept generation: Study the various technologies for typing – standard keyboards QWERTY, T9 (predictive text), multi-touch (SYWPE, etc.), gestures and brainstorm on the various ways in which you could improve one of the existing technologies. You could choose any of the different input types.

11. Any other new relevant topics covering the above syllabus.

Text Books:

- 1. Alan Dix, J. E. Finlay, G. D. Abowd, R. Beale "Human Computer Interaction", Prentice Hall.
- 2. Wilbert O. Galitz, "The Essential Guide to User Interface Design", Wiley publication.
- 3. Alan Cooper, Robert Reimann, David Cronin, "About Face3: Essentials of Interaction design", Wiley publication.
- 4. Jeff Johnson, "Designing with the mind in mind", Morgan Kaufmann Publication.
- 5. Donald A. Normann, "Design of everyday things", Basic Books; Reprint edition 2002.

Reference Books:

- 1. Donald A. Norman, "The design of everyday things", Basic books.
- 2. Rogers Sharp Preece, "Interaction Design:Beyond Human Computer Interaction", Wiley.
- 3. Guy A. Boy "The Handbook of Human Machine Interaction", Ashgate publishing Ltd.

Course Code	Course/Subject Name	Credits
CPC803	Parallel and Distributed Systems	5

- 1. To provide students with contemporary knowledge in parallel and distributed systems
- 2. To equip students with skills to analyze and design parallel and distributed applications.
- 3. To provide master skills to measure the performance of parallel and distributed algorithms

Outcomes: Learner will be able to...

- 1. Apply the principles and concept in analyzing and designing the parallel and distributed system
- 2. Reason about ways to parallelize problems.
- 3. Gain an appreciation on the challenges and opportunities faced by parallel and distributed systems.
- 4. Understand the middleware technologies that support distributed applications such as RPC, RMI and object based middleware.
- 5. Improve the performance and reliability of distributed and parallel programs.

Module	Detailed Contents	Hrs.
01	Introduction	06
	1.1 Parallel Computing, Parallel Architecture, Architectural Classification	L
	Scheme, Performance of Parallel Computers, Performance Metrics for	•
	Processors, Parallel Programming Models, Parallel Algorithms.	
02	Pipeline Processing	06
	2.1 Introduction, Pipeline Performance, Arithmetic Pipelines, Pipelined	
	Instruction Processing, Pipeline Stage Design, Hazards, Dynamic	
	Instruction Scheduling,	
03	Synchronous Parallel Processing	06
	3.1 Introduction, Example-SIMD Architecture and Programming Principles,	
	SIMD Parallel Algorithms, Data Mapping and memory in array	
	processors, Case studies of SIMD parallel Processors	
04	Introduction to Distributed Systems	06
	4.1 Definition, Issues, Goals, Types of distributed systems, Distributed	
	System Models, Hardware concepts, Software Concept, Models of	
	Middleware, Services offered by middleware, Client Server model.	
05	Communication	04
	5.1 Layered Protocols, Remote Procedure Call, Remote Object Invocation,	
	Message Oriented Communication, Stream Oriented Communication	
06	Resource and Process Management	06
	6.1 Desirable Features of global Scheduling algorithm, Task assignment	
	approach, Load balancing approach, load sharing approach, Introduction	
	to process management, process migration, Threads, Virtualization,	
	Clients, Servers, Code Migration	
07	Synchronization	08

	7.1 Clock Synchronization, Logical Clocks, Election Algorithms, Mutual Exclusion, Distributed Mutual Exclusion-Classification of mutual Exclusion Algorithm, Requirements of Mutual Exclusion Algorithms,	
	Performance measure, Non Token based Algorithms: Lamport Algorithm,	
	Ricart–Agrawala's Algorithm, Maekawa's Algorithm	
	7.2 Token Based Algorithms: Suzuki-Kasami's Broardcast Algorithms,	
	Singhal's Heurastic Algorithm, Raymond's Tree based Algorithm,	
	Comparative Performance Analysis.	
08	Consistency and Replication	06
	8.1 Introduction, Data-Centric and Client-Centric Consistency Models,	
	Replica Management.	
	Distributed File Systems	
	8.2 Introduction, good features of DFS, File models, File Accessing models,	
	File-Caching Schemes, File Replication, Network File System(NFS),	
	Andrew File System(AFS), Hadoop Distributed File System and Map	
	Reduce.	

Term work should consist of at least 10 experiments, 2 assignments based on above theory syllabus.

The final certification and acceptance of term work ensures that satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for term work shall be as follows:

Laboratory work (experiments):	(15)	Marks.
Assignments:	(05)	Marks.
Attendance	(05)	Marks
TOTAL:	(25)	Marks.

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project

Practical/Oral examination:

Oral Examination will be based on above syllabus

Syllabus for Practical

Suggested topics for experiment but not limited to:

- 1. Load Balancing Algorithm.
- 2. Scalability in Distributed Environment
- 3. Client/server using RPC/RMI.
- 4. Inter-process communication
- 5. Election Algorithm.
- 6. Distributed Deadlock.
- 7. Name Resolution protocol.
- 8. Clock Synchronization algorithms.
- 9. Mutual Exclusion Algorithm.
- 10. Group Communication.
- 11. CORBA architecture.
- 12. Parallel Algorithms.
- 13. Message Passing Interface.

Text Books

- 1. M.R. Bhujade, "Parallel Computing", 2nd edition, New Age International Publishers 2009.
- 2. Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems: Principles and Paradigms, 2nd edition, Pearson Education, Inc., 2007, ISBN: 0-13-239227-5.

Reference Books

- 1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems: Concepts and Design" (4th Edition), Addison Wesley/Pearson Education.
- 2. Pradeep K Sinha, "Distributed Operating Systems : Concepts and design", IEEE computer society press

Course Code	Course/Subject Name	Credits
CPE8031	Elective-III Machine Learning	5

- 1. To introduce students to the basic concepts and techniques of Machine Learning.
- 2. To become familiar with regression methods, classification methods, clustering methods.
- 3. To become familiar with support vector machine and Dimensionality reduction Techniques.

Outcomes: Learner will be able to...

- 1. Ability to analyze and appreciate the applications which can use Machine Learning Techniques.
- 2. Ability to understand regression, classification, clustering methods.
- 3. Ability to understand the difference between supervised and unsupervised learning methods.
- 4. Ability to appreciate Dimensionality reduction techniques.
- 5. Students would understand the working of Reinforcement learning.

Module	Detailed Contents	Hrs.
01	Introduction to Machine Learning	06
	1.1 What is Machine Learning?, Key Terminology, Types of Machine	
	Learning, Issues in Machine Learning, Application of Machine Learning,	
	How to choose the right algorithm, Steps in developing a Machine	
	Learning Application.	
02	Learning with Regression	04
	2.1 Linear Regression, Logistic Regression.	
03	Learning with trees	08
	3.1 Using Decision Trees, Constructing Decision Trees, Classification and	
	Regression Trees (CART).	
04	Support Vector Machines(SVM)	06
	4.1 Maximum Margin Linear Separators, Quadratic Programming solution to	
	finding maximum margin separators, Kernels for learning non-linear	
	functions.	
05	Learning with Classification	06
	5.1 Rule based classification, classification by backpropoagation, Bayesian	
	Belief networks, Hidden Markov Models.	
06		06
	6.1 Dimensionality Reduction Techniques, Principal Component Analysis,	
	Independent Component Analysis.	
07	8 8	06
	7.1 K-means clustering, Hierarchical clustering, Expectation Maximization	

	Algorithm, Supervised learning after clustering, Radial Basis functions.	
08	Reinforcement Learning	06
	8.1 Introduction, Elements of Reinforcement Learning, Model based learning,	
	Temporal Difference Learning, Generalization, Partially Observable	
	States.	

The distribution of marks for term work shall be as follows:

T	OTAL:	(25)	Marks.
•	Attendance	(05)	Marks
•	Assignments:	(05)	Marks.
•	Laboratory work (experiments):	(15)	Marks.

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project

Practical/Oral examination:

Oral examination will be based on the above syllabus.

LIST OF ML PRACTICAL / EXPERIMENTS

- 1. To implement Linear Regression
- 2. To implement Logistic Regression
- 3. To implement ID3.
- 4. To implement Support Vector Machine.
- 5. To implement Bayesian Classification.
- 6. To implement K-Nearest Neighbour.
- 7. To implement k-means Clustering.
- 8. To implement Agglomerative Clustering.

Any other practical covering the syllabus topics and subtopics can be conducted.

Text Books:

- 1. Peter Harrington "Machine Learning In Action", DreamTech Press
- 2. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press
- 3. Tom M.Mitchell "Machine Learning" McGraw Hill
- 4. Stephen Marsland, "Machine Learning An Algorithmic Perspective" CRC Press

Reference Books:

1. William W.Hsieh, "Machine Learning Mehods in the Environmental Sciences", Cambridge

2. Han Kamber, "Data Mining Concepts and Techniques", Morgann Kaufmann Publishers

3. Margaret.H.Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education

Course Code	Course/Subject Name	Credits
CPE8032	Elective-III Embedded Systems	5

1. Develop, among students, an understanding of the technologies behind the embedded computing systems; and to differentiate between such technologies.

2. Make aware of the capabilities and limitations of the various hardware or software components.

- 3. Evaluate design tradeoffs between different technology choices.
- 4. Complete or partial design of such embedded systems

Outcomes: Learner will be able to...

- 1. Describe the special requirements that are imposed on embedded systems
- 2. Describe the key properties of microprocessor and digital signal processor
- 3. Sketch a design of an embedded system around a microprocessor or DSP

4. Explain how microprocessor, memory, peripheral components and buses interact in an embedded system

5. Evaluate how architectural and implementation decisions influence performance and power dissipation

- 6. Produce efficient code for embedded systems
- 7. Point out the role of the compiler in the embedded system design process
- 8. Define the properties of a real-time operating system
- 9. Estimate the requirement for additional hardware for optimized performance
- 10. Understand and distinguish between the RISC and the Advanced RISC architecture

11. Utilize embedded systems to perform operations such as signal processing in real time

12. Develop drivers for external peripheral devices as per requirement.

Module	Detailed Contents	Hrs.
01	Introduction to computational technologies	08
	1.1 Review of computation technologies (ARM, RISC, CISC, PLD, SOC), architecture, event managers, hardware multipliers, pipelining. Hardware/Software co-design. Embedded systems architecture and design process.	
02	Program Design and Analysis	08
	2.1 Integrated Development Environment (IDE), assembler, linking and loading. Program-level performance analysis and optimization, energy and power analysis and program size optimization, program validation and testing. Embedded Linux, kernel architecture, GNU cross platform tool chain. Programming with Linux environment.	
03	Process Models and Product development life cycle management	08
	3.1 State machine models: finite-state machines (FSM), finite-state machines with data-path model (FSMD), hierarchical/concurrent state machine	

04	 model (HCFSM), program-state machine model (PSM), concurrent process model. Unified Modeling Language (UML), applications of UML in embedded systems. IP-cores, design process model. Hardware software co-design, embedded product development life cycle management. High Performance 32-bit RISC Architecture 4.1 ARM processor family, ARM architecture, instruction set, addressing modes, operating modes, interrupt structure, and internal peripherals. ARM coprocessors, ARM Cortex-M3. 	08
05	 Processes and Operating Systems 5.1 Introduction to Embedded Operating System, multiple tasks and multiple processes. Multi rate systems, preemptive real-time operating systems, priority-based scheduling, inter-process communication mechanisms. Operating system performance and optimization strategies. Examples of real-time operating systems. 	08
06	Real-time Digital Signal Processing (DSP)	08
	6.1 Introduction to Real-time simulation, numerical solution of the mathemat model of physical system. DSP on ARM, SIMD techniques. Correlati Convolution, DFT, FIR filter and IIR Filter implementation on ARM. O Multimedia Applications Platform (OMAP)	on,

Term work should consist of at least 10 practicals and one mini project. Objective type term work test shall be conducted with a weightage of 10 marks.

The distribution of marks for term work shall be as follows:

- Laboratory work (experiments/projects): (10) Marks.

The final certification and acceptance of Term Work ensures the satisfactory performance of laboratory work and minimum passing in term work.

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project

Practical/Oral examination:

Oral examination will be based on the above syllabus.

List of Experiments:

Topic-1: Troubleshooting Tools [Any One]

In-Circuit Emulator (ICE) and In-Circuit Debugger (ICD), Logic Analyzer, Spectrum Analyzer, Pattern generator and Digital Storage Oscilloscope.

Topic -2: ARM Processors & Interfaces [Any Four]

LEDs and Keyboard Interface, LCD Interface, Counting external events with on chip counters, Real Time Clock (RTC), Pulse Width Modulation (PWM), Relay and Buzzer Control for alarm events, Stepper Motor Control , On chip ADC/DAC SPI / I2C / UART Interface, Bluetooth/Zig-bee interface.

Topic-3: Real-time Signal Processing ARM-DSP [Any Two]

Real-time physical model simulation, Correlation, convolution, DFT, FIR or IIR design, Real-time DAS and GUI using PC and ARM, Design with Programmable Logic Devices (CPLD/FPGA).

Topic-4: Device Driver Development [Any One]

Drivers for CAN, Drivers for USB, Drivers for Ethernet, SVGA, Drivers for Graphics TFT LCD.

Topic-5: Real Time Operating System (RTOS) [Any Two]

RTLinux , MicroC/OS_II, VxWorks, WIN CE, QNX, Palm OS, Symbian OS, Android OS or equivalent OS.

Text Books:

- 1. Embedded Systems an Integrated Approach Lyla B Das, Pearson
- 2. Computers as Components Marilyn Wolf, Third Edition Elsevier
- 3. Embedded Systems Design: A Unified Hardware/Software Introduction Frank Vahid and Tony Givargis, John Wiley & Sons
- 4. An Embedded Software Primer David E. Simon Pearson Education Sough Asia
- 5. ARM System Developer's Guide Designing and Optimizing System Software –

Andrew N. Sloss, Dominic Sysmes and Chris Wright – Elsevier Inc.

Reference Books:

1. Embedded Systems, Architecture, Programming and Design – Raj Kamal – Tata McGraw Hill

2. Embedded Linux – Hollabaugh, Pearson Education

3. Embedded Realtime Systems Programming – Sriram V Iyer, Pankaj Gupta – Tata McGRaw Hill.

4. Fundamentals of Microcontrollers and Applications in Embedded Systems – Ramesh Gaonkar – Penram International Publishing (India) Pvt. Ltd.

5. Embedded / Real-Time Systems: Concepts, Design & Programming – Dr. K. V. K. K. Prasad – Dreamtech Press, India.

Course Code	Course/Subject Name	Credits
CPE8033	Elective-III Adhoc Wireless Networks	5

1. To Identify the major issues associated with ad-hoc networks

2. To identify the requirements for protocols for wireless ad-hoc networks as compared to the protocols existing for wired network.

3. To explore current ad-hoc technologies by researching key areas such as algorithms, protocols, hardware, and applications.

4. To Provide hands-on experience through real-world programming projects

5. To provide advanced in –depth networking materials to graduate students in networking research.

Outcomes: Learner will be able to...

- 1. Define characteristics and features of Adhoc Networks
- 2. Appreciate the designing of MAC protocol for Adhoc networks
- 3. Implement few protocols
- 4. Apply security principles for routing

Module	Detailed Contents	Hrs.
01	 Introduction 1.1 Introduction to wireless Networks. Characteristics of Wireless channel, Issues in Ad hoc wireless networks, Adhoc Mobility Models:- Indoor and outdoor models. 1.2 Adhoc Networks: Introduction to adhoc networks – definition, characteristics features, applications. 	04
02	 MAC Layer 2.1 MAC Protocols for Ad hoc wireless Networks: Introduction, Issues in designing a MAC protocol for Ad hoc wireless Networks, Design goals and Classification of a MAC protocol, Contention based protocols with reservation mechanisms. 2.2 Scheduling algorithms, protocols using directional antennas. IEEE standards: 802.11a, 802.11b, 802.11g, 802.15, 802.16, HIPERLAN. 	10
03	 Network Layer 3.1 Routing protocols for Ad hoc wireless Networks: Introduction, Issues in designing a routing protocol for Ad hoc wireless Networks, Classification of routing protocols, Table driven routing protocol, Ondemand routing protocol. 3.2 Proactive Vs reactive routing, Unicast routing algorithms, Multicast routing algorithms, hybrid routing algorithm, Energy aware routing algorithm, Hierarchical Routing, QoS aware routing. 	10
04	Transport Layer 4.1 Transport layer protocols for Ad hoc wireless Networks: Introduction, Issues in designing a transport layer protocol for Ad hoc wireless Networks, Design goals of a transport layer protocol for Ad hoc wireless	

	Networks, Classification of transport layer solutions, TCP over Ad hoc wireless Networks, Other transport layer protocols for Ad hoc wireless Networks.	
05	Security 5.1 Security: Security in wireless Ad hoc wireless Networks, Network security requirements, Issues & challenges in security provisioning, Network security attacks, Key management, Secure routing in Ad hoc wireless Networks.	07
06	QoS 6.1 Quality of service in Ad hoc wireless Networks: Introduction, Issues and challenges in providing QoS in Ad hoc wireless Networks, Classification of QoS solutions, MAC layer solutions, network layer solutions.	

- Term work should consist of at least 12 experiments.
- Journal must include at least 2 assignments.
- The final certification and acceptance of term work indicates that performance in laboratory work is satisfactory and minimum passing marks may be given in term work.

The distribution of marks for term work shall be as follows:

- 1		(-5)	1. Lai no.
Т	OTAL:	(25)	Marks.
•	Attendance	(05)	Marks
•	Assignment:	(05)	Marks.
•	Laboratory work (experiments):	(15)	Marks.

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project

Practical/Oral examination:

oral examination based on above syllabus will be conducted **Suggested Practicals for Adhoc Wireless**

- 1. Installation of NS2 in Ubuntu 12.04 Linux.
- 2. Build and exchange data in simple infrastructure and Adhoc network by using personal computer and Android based mobile.
- 3. Develop sample wireless network in which
 - a. implement AODV and AOMDV protocol

- b. Calculate the time to receive reply from the receiver using NS2.
- c. Generate graphs which show the transmission time for packet.
- 4. Implement wireless network. Capture data frame and identify fields using NS2.
- 5. Configure Wireless Access Point (WAP) and build different networks.
- 6. Implement Mobile device as a wireless access point.
- 7. Communicate between two different networks which has following

specifications:

- a. One network has Class A network with "Tora protocol"
- b. Second has Class B network "AODV protocol"

Practical exam will be based on the above syllabus.

Text Books:

1. Siva Ram Murthy and B.S.Manoj, "Ad hoc Wireless Networks Architectures and protocols", 2nd edition, Pearson Education, 2007

- 2. Charles E. Perkins, "Adhoc Networking", Addison Wesley, 2000
- 3. C. K. Toh,"Adhoc Mobile Wireless Networks", Pearson Education, 2002

Reference Books:

1. Matthew Gast, "802.11 Wireless Networks: The Definitive Guide", 2nd Edition, O'Reilly Media, April 2005.

- 2. Stefano Basagni, Marco Conti, Silvia Giordan and Ivan Stojmenovic, "Mobile Adhoc Networking", Wiley-IEEE Press, 2004.
- 3. Mohammad Ilyas, "The handbook of Adhoc Wireless Networks", CRC Press, 2002

Course Code	Course/Subject Name	Credits
CPE8034	Elective-III Digital Forensics	5

- 1. To focus on the procedures for identification, preservation, and extraction of electronic evidence, auditing and investigation of network and host system intrusions, analysis and documentation of information gathered, and preparation of expert testimonial evidence.To provide hands on experience on various forensic tools and resources for system
- administrators and information system security officers.

Module	Detailed Contents	Hrs.
01	Introduction:	09
	1.1 Introduction of Cybercrime: Types, The Internet spawns crime, Worms versus viruses, Computers' roles in crimes, Introduction to digital forensics, Introduction to Incident - Incident Response Methodology – Steps - Activities in Initial Response, Phase after detection of an incident.	
02	Initial Response and forensic duplication	08
	 2.1 Initial Response & Volatile Data Collection from Windows system - Initial Response & Volatile Data Collection from Unix system - Forensic Duplication: Forensic duplication: Forensic Duplicates as Admissible Evidence, Forensic Duplication Tool Requirements, Creating a Forensic. 2.2 Duplicate/Qualified Forensic Duplicate of a Hard Drive. 	
03	Preserving and Recovering Digital Evidence	09
	3.1 File Systems: FAT, NTFS - Forensic Analysis of File Systems - Storage Fundamentals: Storage Layer, Hard Drives Evidence Handling: Types of Evidence, Challenges in evidence handling, Overview of evidence handling procedure.	
04	Network Forensics	07
	4.1 Intrusion detection; Different Attacks in network, analysis Collecting Network Based Evidence - Investigating Routers - Network Protocols - Email Tracing- Internet Fraud.	
05	System investigation	
	 5.1 Data Analysis Techniques - Investigating Live Systems (Windows & Unix) Investigating 5.2 Hacker Tools - Ethical Issues – Cybercrime. 	08
06	Bodies of law	07
	6.1 Constitutional law, Criminal law, Civil law, Administrative regulations, Levels of law: Local laws, State laws, Federal laws, International laws, Levels of culpability: Intent, Knowledge, Recklessness, Negligence Level and burden of proof : Criminal versus civil cases ,Vicarious liability, Laws related to computers: CFAA, DMCA, CAN Spam, etc.	

- Term work should consist of at least 12 experiments.
- Journal must include at least 2 assignments.
- The final certification and acceptance of term work indicates that performance in laboratory work is satisfactory and minimum passing marks may be given in term work.

The distribution of marks for term work shall be as follows:

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project.

Practical/Oral examination:

Oral exam will be based on the above syllabus.

Text Books:

- 1. Kevin Mandia, Chris Prosise, "Incident Response and computer forensics", Tata McGrawHill, 2006
- 2. Peter Stephenson, "Investigating Computer Crime: A Handbook for Corporate Investigations", Sept 1999
- 3. Eoghan Casey, "Handbook Computer Crime Investigation's Forensic Tools and Technology", Academic Press, 1st Edition, 2001

References:

- 1. Skoudis. E., Perlman. R. Counter Hack: A Step-by-Step Guide to Computer Attacks and Effective Defenses.Prentice Hall Professional Technical Reference. 2001
- 2. Norbert Zaenglein, "Disk Detective: Secret You Must Know to Recover Information From a Computer", Paladin Press, 2000
- 3. Bill Nelson, Amelia Philips and Christopher Steuart, "Guide to computer forensics investigation "Course technology, 4th edition

Course Code	Course/Subject Name	Credits
CPE8035	Elective III - Big Data Analytics	5

- 1. To provide an overview of an exciting growing field of big data analytics.
- 2. To introduce the tools required to manage and analyze big data like Hadoop, NoSql Map-Reduce.
- 3. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems in for decision support.

Outcomes: Learner will be able to...

1. Understand the key issues in big data management and its associated applications in intelligent business and scientific computing.

2. Acquire fundamental enabling techniques and scalable algorithms like Hadoop, Map Reduce and NO SQL in big data analytics.

3. Interpret business models and scientific computing paradigms, and apply software tools for big data analytics.

4. Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.

Module	Detailed Contents	Hrs.
01	Introduction to Big Data 1.1 Introduction to Big Data, Big Data characteristics, types of Big Data,	03
	Traditional vs. Big Data business approach, Case Study of Big Data Solutions.	
02	Introduction to Hadoop	03
	2.1 What is Hadoop? Core Hadoop Components; Hadoop Ecosystem; Physical Architecture; Hadoop limitations.	
03	NoSQL	04
	3.1 What is NoSQL? NoSQL business drivers; NoSQL case studies;	
	3.2 NoSQL data architecture patterns: Key-value stores, Graph stores,	
	Column family (Bigtable) stores, Document stores, Variations of NoSQL architectural patterns;	
	3.3 Using NoSQL to manage big data: What is a big data NoSQL solution? Understanding the types of big data problems; Analyzing big data with a shared-nothing architecture; Choosing distribution models: master-slave versus peer-to-peer; Four ways that NoSQL systems handle big data problems	
04	MapReduce and the New Software Stack	06
	4.1 Distributed File Systems : Physical Organization of Compute Nodes, Large-	
	Scale File-System Organization.	
	4.2 MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks,	

	Combiners, Details of MapReduce Execution, Coping With Node Failures.	
	4.3 Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce ,	
	Relational-Algebra Operations, Computing Selections by MapReduce,	
	Computing Projections by MapReduce, Union, Intersection, and Difference by	
	MapReduce, Computing Natural Join by MapReduce, Grouping and	
	Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with	
	One MapReduce Step.	
05	Finding Similar Items	03
	5.1 Applications of Near-Neighbor Search, Jaccard Similarity of Sets,	
	Similarity of Documents, Collaborative Filtering as a Similar-Sets	
	Problem .	
	5.2 Distance Measures: Definition of a Distance Measure, Euclidean	
	Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming	
	Distance.	
06	Mining Data Streams	06
	6.1 The Stream Data Model : A Data-Stream-Management System,	
	Examples of Stream Sources, Stream Querie, Issues in Stream Processing.	
	6.2 Sampling Data in a Stream : Obtaining a Representative Sample , The	
	General Sampling Problem, Varying the Sample Size.	
	6.3 Filtering Streams:	
	The Bloom Filter, Analysis.	
	6.4 Counting Distinct Elements in a Stream	
	The Count-Distinct Problem, The Flajolet-Martin Algorithm, Combining	
	Estimates, Space Requirements .	
	6.5 Counting Ones in a Window:	
	The Cost of Exact Counts, The Datar-Gionis-Indyk-Motwani Algorithm,	
	Query Answering in the DGIM Algorithm, Decaying Windows.	
07	Link Analysis	05
	7.1 PageRank Definition, Structure of the web, dead ends, Using Page rank	
	in a search engine, Efficient computation of Page Rank: PageRank	
	Iteration Using MapReduce, Use of Combiners to Consolidate the Result	
	Vector.	
	7.2 Topic sensitive Page Rank, link Spam, Hubs and Authorities.	
08	Frequent Itemsets	05
	8.1 Handling Larger Datasets in Main Memory	
	Algorithm of Park, Chen, and Yu, The Multistage Algorithm, The Multihash	
	Algorithm.	
	8.2 The SON Algorithm and MapReduce	
	8.3 Counting Frequent Items in a Stream	
	Sampling Methods for Streams, Frequent Itemsets in Decaying Windows	
09	Clustering	05
	9.1 CURE Algorithm, Stream-Computing, A Stream-Clustering Algorithm,	
	Initializing & Merging Buckets, Answering Queries	

10	Recommendation Systems			
	10.1 A Model for Recommendation Systems, Content-Based			
	Recommendations, Collaborative Filtering.			
11	Mining Social-Network Graphs			
	11.1 Social Networks as Graphs, Clustering of Social-Network Graphs, Direct			
	Discovery of Communities, SimRank, Counting triangles using Map-			
	Reduce			

Assign a case study for group of 2/3 students and each group to perform the following experiments on their case-study; Each group should perform the exercises on a large dataset created by them.

The distribution of marks for term work shall be as follows:

٠	Programming Exercises:	(10)	Marks.
•	Mini project:	(10)	Marks.
•	Attendance	(05)	Marks
T	OTAL:	(25)	Marks.

Internal Assessment:

Internal Assessment consists of two tests. Test 1, an Institution level central test, is for 20 marks and is to be based on a minimum of 40% of the syllabus. Test 2 is also for 20 marks and is to be based on the remaining syllabus. Test 2 may be either a class test or assignment on live problems or course project.

Practical/Oral examination:

An oral exam will be held based on the above syllabus.

Suggested Practical List: Students will perform at least 8 programming exercises and implement one mini-project. The students can work in groups of 2/3.

- 1. Study of Hadoop ecosystem
- 2. programming exercises on Hadoop
- 3. programming exercises in No SQL
- 4. Implementing simple algorithms in Map- Reduce (3) Matrix multiplication, Aggregates, joins, sorting, searching etc.
- 5. Implementing any one Frequent Itemset algorithm using Map-Reduce
- 6. Implementing any one Clustering algorithm using Map-Reduce
- 7. Implementing any one data streaming algorithm using Map-Reduce
- 8. Mini Project: One real life large data application to be implemented (Use standard Datasets available on the web)

- a. Twitter data analysis
- b. Fraud Detection
- c. Text Mining etc.

Text Books:

- 1. Anand Rajaraman and Jeff Ullman "Mining of Massive Datasets", Cambridge University Press,
- 2. Alex Holmes "Hadoop in Practice", Manning Press, Dreamtech Press.
- 3. Dan McCreary and Ann Kelly "Making Sense of NoSQL" A guide for managers and the rest of us, Manning Press.

References:

- 1. Bill Franks , "Taming The Big Data Tidal Wave: Finding Opportunities In Huge Data Streams With Advanced Analytics", Wiley
- 2. Chuck Lam, "Hadoop in Action", Dreamtech Press

Course Code	Course/Subject Name	Credits
CPL801	Cloud Computing Laboratory	1

Outcomes: Learner will be able to...

- 1. Appreciate cloud architecture
- 2. Create and run virtual machines on open source OS
- 3. implement Infrastructure , storage as a Service.
- 4. Install and appreciate security features for cloud

Module	Detailed Contents	Lab Session
01	Title: Study of Cloud Computing & Architecture.	01
	Concept: Cloud Computing & Architecture.	
	Objective: Objective of this module is to provide students an overview of the Cloud Computing and Architecture and different types of Cloud Computing	
	Scope: Cloud Computing & Architecture Types of Cloud Computing .	
	Technology:	
02	Title: Virtualization in Cloud.	02
	Concept: Virtualization	
	Objective: In this module students will learn, Virtualization Basics, Objectives of Virtualization, and Benefits of Virtualization in cloud.	
	Scope: Creating and running virtual machines on open source OS.	
	Technology: KVM, VMware.	
03	Title: Study and implementation of Infrastructure as a Service .	02
	Concept: Infrastructure as a Service.	
	Objective: In this module student will learn Infrastructure as a Service and implement it by using OpenStack.	
	Scope: Installing OpenStack and use it as Infrastructure as a Service $\ .$	
	Technology: Quanta Plus /Aptana /Kompozer	
04	Title: Study and installation of Storage as Service.	02

	Concept: Storage as Service (SaaS)	
	Objective: is that, students must be able to understand the concept of SaaS , and how it is implemented using ownCloud which gives universal access to files through a web interface.	
	Scope: is to installation and understanding features of ownCloud as SaaS.	
	Technology: ownCloud	
05	Title: Implementation of identity management.	02
	Concept: Identity Management in cloud	
	Objective: this lab gives an introduction about identity management in cloud and simulate it by using OpenStack	
	Scope: installing and using identity management feature of OpenStack	
	Technology: OpenStack	
06	Title: Write a program for web feed. Concept: Web feed and RSS	02
	Objective: this lab is to understand the concept of form and control validation	
	Scope: Write a program for web feed	
	Technology: PHP, HTML	
07	Title: Study and implementation of Single-Sing-On.	02
	Concept: Single Sing On (SSO),openID	
	Objective: is to understand the concept of access control in cloud and single sing on (SSO), Use SSO and advantages of it, and also students should able to implementation of it.	
	Scope: installing and using JOSSO	
	Technology: JOSSO	
08	Title: Securing Servers in Cloud.	02
	Concept: Cloud Security	

	Technology: ownCloud	
)9	Title: User Management in Cloud.	02
	Concept: Administrative features of Cloud Managenet ,User Management	
	Objective: is to understand how to create, manage user and group of users accounts.	
	Scope: Installing and using Administrative features of ownCloud	
	Technology: ownCloud	
10	Title: Case study on Amazon EC2. Concept: Amazon EC2	01
	Objective: in this module students will learn about Amazon EC2. Amazon Elastic Compute Cloud is a central part of Amazon.com's cloud computing platform, Amazon Web Services. EC2 allows users to rent virtual computers on which to run their own computer applications	
11	Title: Case study on Microsoft azure.	
	Concept: Microsoft Azure	
	Objective: students will learn about Microsoft Azure is a cloud computing platform and infrastructure, created by Microsoft, for building, deploying and managing applications and services through a global network of Microsoft-managed datacenters. How it work, different services provided by it.	
	Technology: Microsoft azure	
	Title: Mini project.	05
12		
12	Concept: using different features of cloud computing creating own cloud for institute, organization etc.	
12		
12	cloud for institute, organization etc. Objective: is student must be able to create own cloud using different	

- Term work should consist of at least 6 experiments and a mini project.
- Journal must include at least 2 assignments.
- The final certification and acceptance of term work indicates that performance in laboratory work is satisfactory and minimum passing marks may be given in term work.

The distribution of marks for term work shall be as follows:

Text Books:

1. Enterprise Cloud Computing by Gautam Shroff, Cambridge,2010

2. Cloud Security by Ronald Krutz and Russell Dean Vines, Wiley - India, 2010, ISBN:978-0-470-58987-8

- **3**. Getting Started with OwnCloud by Aditya Patawar , Packt Publishing Ltd, 2013
- 4. www.openstack.org

Course Code	Course/Subject Name	Credits
CP701 / CP802	Project I/ II	3 / 6

Guidelines for Project

O Students should do literature survey/visit industry/analyze current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem.

o Students should attempt solution to the problem by experimental/simulation methods.

o The solution to be validated with proper justification and report to be compiled in standard format.

Guidelines for Assessment of Project I

- O Project I should be assessed based on following points
 - IQuality of problem selected
 - IClarity of Problem definition and Feasibility of problem solution
 - IRelevance to the specialization
 - Clarity of objective and scope
 - Breadth and depth of literature survey

O Project I should be assessed through a presentation by the student project group to a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Project II

- O Project II should be assessed based on following points
 - IQuality of problem selected
 - IClarity of Problem definition and Feasibility of problem solution
 - IRelevance to the specialization / Industrial trends
 - Clarity of objective and scope
 - IQuality of work attempted
 - IValidation of results
 - IQuality of Written and Oral Presentation
- **o** Report should be prepared as per the guidelines issued by the University of Mumbai.

O Project II should be assessed through <mark>a presentation by the student project group to a panel of</mark> Internal and External Examiners approved by the University of Mumbai

o Students should be motivated to publish a paper based on the work in Conferences/students competitions

THADOMAL SHAHANI ENGINEERING COLLEGE

Electronics and Telecommunication

EGE

THADOMAL SHAHANI

Sr. No.	Subject Code	Subject Name	Count
1	ELL301	Electronics Devices and Circuits - I Lab	1
2	ELL302	Digital Logic Circuits Lab	1
3	ELL303	Electronic Instruments and Measurements Lab	1
4	ELC304	Electrical Networks Analysis and Synthesis	1
5	ELL304	Skill base Lab OOPM: (C++ and Java)	1
6	ELM301	Mini Project – 1A	1
7	ELL401	Electronics Devices and Circuits - II Lab	1
8	ELL402	Microcontroller Applications Lab	1
9	ELL403	Analog Communication Lab	1
10	ELL404	Skill Base Lab : Python Programming	1
11	ELM401	Mini Project - 1B	1
12	ETS506	Business Communication and Ethics	1
13	ETL501	Microcontrollers and Applications Laboratory	1
14	ETL502	Communication Engineering Laboratory I	1
15	ETL503	Communication Engineering Laboratory II	1
16	ETL504	Mini Project I	1
17	ETL601	Discrete Time Signal Processing Laboratory	1
18	ETL602	Communication Engineering Laboratory III	1
19	ETL603	Communication Engineering Laboratory IV	1
20	ETL604	Mini Project II	1
21	ETL701	Image and Video Processing Laboratory	1
22	ETL702	Advanced communication Engineering. Laboratory I	1
23	ETL703	Advanced communication Engineering. Laboratory II	1
24	ETEL70X	Elective	1
25	ETP701	Project (Stage I)	1
26	ETL801	Wireless Networks Laboratory	1
27	ETL802	Satellite communication and Networks Laboratory	1
28	ETL803	Internet and Voice Communication Laboratory	1
29	ETEL80X	Elective Laboratory	1
30	ETP801	Project (Stage II)	1
		Total	30

AC-11.05.2017 Item No. 4.307

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics and Telecommunication Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Chairman's Preamble:

The curriculum in higher education is a living entity. It evolves with time; it reflects the ever changing needs of the society and keeps pace with the growing talent of the students and the faculty. The engineering education in India is expanding in manifolds and the main challenge is the quality of education. All stakeholders are very much concerned about it. The curriculum of Electronics & Telecommunication in Mumbai University is no exception. In keeping with the demands of the changing times, it contains innovative features. The exposure to the latest technology and tools used all over the world is given by properly selecting the subjects. It is designed in such a way to incorporate the requirements of various industries. The major emphasis of this process is to measure the outcomes of the program. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of post-graduation. So the curriculum must be refined and updated to ensure that the defined objectives and outcomes are achieved.

I, as Chairman Ad-hoc Board of Studies in Electronics and Telecommunication Engineering, University of Mumbai, happy to state here that, the heads of the department and senior faculty from various institutes took timely and valuable initiative to frame the Program Educational objectives as listed below.

Objectives:

- 1. To produce Electronics & Telecommunication engineers, having strong theoretical foundation, good design experience and exposure to research and development.
- 2. To produce researcher who have clear thinking, articulation and interest to carry out theoretical and/or applied research resulting in significant advancement in the field of specialization.
- 3. To develop an ability to identify, formulate and solve electronics and telecommunication engineering problems in the latest technology.
- 4. To develop the ability among students to synthesize data and technical concepts from applications to product design.

These are the suggested and expected main objectives, individual affiliated institutes may add further in the list. I believe that the small step taken in the right direction will definitely help in providing quality education to the stake holders.

This book of curricula is the culmination of large number of faculty members and supporting staff. It also reflects the creative contribution of hundreds of teachers – both serving and retired. I sincerely hope that the faculty and students of Electronics and Telecommunication in Mumbai University will take full advantage of dynamic features of curriculum and make teaching-learning process a truly sublime experience for all.

At the end I must extend my gratitude to all experts and colleagues who contributed to make curriculum competent at par with latest technological development in the field of Electronics & Telecommunication Engineering.

Dr. Uttam D. Kolekar Chairman, Ad-hoc Board of Studies in Electronics and Telecommunication Engineering

Program Structure for B.E. Electronics & Telecommunication Engineering (Rev. 2016) University of Mumbai (With Effect from 2017-2018)

	Semester III											
Course	Course Name	Teaching Scheme (Contac Hours)			Credits Assigned							
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total					
ECC301	Applied Mathematics- III	4	-	2@	4	1	5					
ECC302	Electronic Devices and Circuits I	4	-	-	4	-	4					
ECC303	Digital System Design	4	-	-	4	-	4					
ECC304	Circuit Theory and Networks	4	-	2@	4	1	5					
ECC305	Electronic Instrumentation and Control	4	-	2@	4	1	5					
ECL301	Electronic Devices and Circuits I Laboratory	-	2	-	-	1	1					
ECL302	Digital System Design Laboratory	-	2	-	-	1	1					
ECL303	OOP using JAVA Laboratory	-	2	-	-	1	1					
	Total	20	6	6	20	6	26					

@ 2 hour to be taken as tutorial classwise

				I	Examinati	ion Scheme	9		
Course Code	Course Name	Internal Assessment			End Sem Exam	Exam Duration	TW	Oral/ Prac	Total
		Test1	Test 2	Avg	Exam	(Hrs)			
ECC301	Applied Mathematics-III	20	20	20	80	03	25		125
ECC302	Electronic Devices and Circuits I	20	20	20	80	03			100
ECC303	Digital System Design	20	20	20	80	03			100
ECC304	Circuit Theory and Networks	20	20	20	80	03	25		125
ECC305	Electronic Instrumentation and Control	20	20	20	80	03	25		125
ECL301	Electronic Devices and Circuits I Laboratory						25	25	50
ECL302	Digital System Design Laboratory						25	25	50
ECL303	OOP using JAVA Laboratory						25	25	50
	Total			100	400		150	75	725

Semester IV

Course Code	Course Name		ning Sche tact Hou		Credits Assigned			
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total	
ECC401	Applied Mathematics- IV	4	-	2@	4	1	5	
ECC402	Electronic Devices and Circuits II	4	-	-	4	-	4	
ECC403	Linear Integrated Circuits	4	-	-	4	-	4	
ECC404	Signals & Systems	4	-	2@	4	1	5	
ECC405	Principles of Communication Engineering	4	-	-	4	-	4	
ECL401	Electronic Devices and Circuits II Laboratory	-	2	-	-	1	1	
ECL402	Linear Integrated Circuits Laboratory	-	2	-	-	1	1	
ECL403	Principles of Communication Engineering Laboratory	-	2	-	-	1	1	
	Total	20	6	4	20	5	25	

@ 2 hour to be taken as tutorial classwise

					Examina	tion Schem	ie		
	Course Name			The					
Course Code	Course Name	Internal Assessment			End Sem Exam	Exam Duration	TW	Oral & Prac	Total
		Test1	Test 2	Avg	L'Adhi	(Hrs)			
ECC401	Applied Mathematics- IV	20	20	20	80	03	25		125
ECC402	Electronic Devices and Circuits	20	20	20	80	03			100
ECC403	Linear Integrated Circuits	20	20	20	80	03			100
ECC404	Signals & Systems	20	20	20	80	03	25		125
ECC405	Principles of Communication Engineering	20	20	20	80	03			100
	Electronic Devices and Circuits II Laboratory						25	25	50
ECL402	Linear Integrated Circuits Laboratory						25	25	50
	Principles of Communication Engineering Laboratory						25	25	50
	Total			100	400		125	75	700

		Semester V	V					
Course	Course Name	Teaching	Scheme Hours)	(Contact	Credits Assigned			
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total	
ECC501	Microprocessor & Peripherals Interfacing	4	-	-	4	-	4	
ECC502	Digital Communication	4	-	-	4	-	4	
ECC503	Electromagnetic Engineering	4	-	1@	4	1	5	
ECC504	Discrete Time Signal Processing	4	-	-	4	-	4	
ECCDLO 501X	Department Level Optional Course I	4	-	-	4	-	4	
ECL501	Microprocessor & Peripherals Interfacing Lab	-	2	-	-	1	1	
ECL502	Digital Communication Lab	-	2	-	-	1	1	
ECL503	Business Communication & Ethics Lab	-	2+2*	-	-	2	2	
ECL504	Open Source Technology for Communication Lab	-	2	-	-	1	1	
ECLDLO 501X	Department Level Optional Lab I	-	-	2#	-	1	1	
	Total	20	10	3	20	7	27	

@ 1 hour to be taken as tutorial classwise #2 hours to be taken as either lab or tutorial based on subject requirement
*2 hours to be taken as tutorial batchwise

				E	Cxaminati	on Scheme			
				Theory					
Course Code	Course Name	Internal Assessment			End Sem Exam	Exam Duration	TW	Oral/ Prac	Total
		Test1	Test 2	Avg	Exam	(Hrs)			
	Microprocessor & Peripherals Interfacing	20	20	20	80	03			100
ECC502	Digital Communication	20	20	20	80	03			100
	Electromagnetic Engineering	20	20	20	80	03	25		125
	Discrete Time Signal Processing	20	20	20	80	03			100
	Department Level Optional Course I	20	20	20	80	03			100
	Microprocessor & Peripherals Interfacing Lab						25	25	50
ECL502	Digital Communication Lab						25	25	50
ECT DUS	Business Communication & Ethics Lab						50		50
	Open Source Technology for Communication Lab						25	25	50
	Department Level Optional Lab I						25		25
	Total			100	400		175	75	750

Course Code	Department Level Optional Course I
ECCDLO 5011	Microelectronics
ECCDLO 5012	TV & Video Engineering
ECCDLO 5013	Finite Automata Theory
ECCDLO 5014	Data Compression and Encryption

Course	Course Name		hing Scho ntact Hou			Credits Assigne	d
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total
ECC601	Microcontrollers & Applications	4	-		4		4
ECC602	Computer Communication Networks	4	-	-	4	-	4
ECC603	Antenna & Radio Wave Propagation	4	-	-	4	-	4
ECC604	Image Processing and Machine Vision	4	-		4		4
ECCDLO 602X	Department Level Optional Course II	4	-	-	4	-	4
ECL601	Microcontroller & Applications Lab	-	2	-	-	1	1
ECL602	Computer Communication Network Lab	-	2	-	-	1	1
ECL603	Antenna & Radio Wave Propagation Lab	-	2	-	-	1	1
ECL604	Image Processing and Machine Vision Lab	-	2	-	-	1	1
ECLDLO 602X	Department Level Optional Lab II	-	2	-	-	1	1
	Total	20	10	-	20	5	25

					Examin	ation Scher	ne		
Course		Theory							
Code	Course Name	Internal Assessment			End Exam		TW	Oral &	Total
coue		Test1	Test 2	Avg	Sem Exam	Duration (Hrs)	1 ***	Prac	
ECC601	Microcontroller& Applications	20	20	20	80	03			100
	Computer Communication Network	20	20	20	80	03	-		100
FCC603	Antenna & Radio Wave Propagation	20	20	20	80	03			100
ECC604	Image Processing and Machine Vision Lab	20	20	20	80	03			100
	Department Level Optional Course II	20	20	20	80	03			100
ECT001	Microcontroller & Applications Lab						25	25	50
	Computer Communication Network Lab						25	25	50
FC1 603	Antenna & Radio Wave Propagation Lab						25	25	50
	Image Processing and Machine Vision Lab						25	25	50
	Department Level Optional Lab II						25		25
	Total			100	400		125	100	725

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016

Semester VI

8

Course Code	Department Level Optional Course II
ECCDLO 6021	Digital VLSI Design
ECCDLO 6022	Radar Engineering
ECCDLO 6023	Database Management System
ECCDLO 6024	Audio Processing

		Semester '	VII					
Course	Course Name	Teaching	Scheme Hours)	(Contact	Credits Assigned			
Code		Theory	Pracs	Tut	Theory	TW/ Pracs	Total	
ECC701	Microwave Engineering	4	-	-	4	-	4	
ECC702	Mobile Communication System	4	-	-	4	-	4	
ECC703	Optical Communication	4	-		4	-	4	
ECCDLO 703X	Department Level Optional Course III	4	-	-	4	-	4	
ILO701X	Institute Level Optional Course I	3	-	-	3	-	3	
ECL701	Microwave Engineering Lab	-	2	-	-	1	1	
ECL702	Mobile Communication System Lab	-	2	-	-	1	1	
ECL703	Optical Communication Lab	-	2	-	-	1	1	
ECLDLO 703X	Department Level Optional Lab III	-	2	-	-	1	1	
ECL704	Project-I	-	6	-	-	3	3	
	Total	19	14	-	19	7	26	

					Examin	ation Scher	ne		
Course		Theory							
Code	Course Name	Internal Assessment			End	Exam	TW	Oral &	Total
Coue					Sem	Duration	1 **	Prac	Totai
		Test1	Test 2	Avg	Exam	(Hrs)			
ECC701	Microwave Engineering	20	20	20	80	03			100
ECC702	Mobile Communication System	20	20	20	80	03			100
ECC703	Optical Communication	20	20	20	80	03			100
ECCDLO	Department Level Optional	20	20	20	80	03			100
703X	Course III	20	20	20	80	03			100
ILO701X	Institute Level Optional Course I	20	20	20	80	03			100
ECL701	Microwave Engineering Lab						25	25	50
ECL702	Mobile Communication System						25	25	50
LCL/02	Lab						25	23	50
ECL703	Optical Communication Lab						25	25	50
ECLDLO	Department Level Optional Lab						25	25	50
703X	III						23	23	50
ECL704	Project-I						50	50	100
	Total			100	400		150	150	800

Course Code	Department Level Optional Course III	Course Code	Institute Level Optional Course I [#]
ECCDLO7031	Neural Networks and Fuzzy Logic	ILO7011	Product Lifecycle Management
ECCDLO7032	Big Data Analytics	ILO7012	Reliability Engineering
ECCDLO7033	Internet Communication Engineering	ILO7013	Management Information System
ECCDLO7034	CMOS Mixed Signal VLSI	ILO7014	Design of Experiments
ECCDLO7034	Embedded System	ILO7015	Operation Research
		ILO7016	Cyber Security and Laws
		ILO7017	Disaster Management and Mitigation Measures
		ILO7018	Energy Audit and Management
		ILO7019	Development Engineering

Common with all branches

Semester VIII

Course Code	Course Name		Teaching Scheme (Contact Hours)			Credits Assigned			
Coue		Theory	Pracs	Tut	Theory	TW/ Pracs	Total		
ECC801	RF Design	4	-		4		4		
ECC802	Wireless Networks	4	-	-	4	-	4		
ECCDLO 804X	Department Level Optional Course IV	4	-	-	4	-	4		
ILO802X	Institute Level Optional Course II	3	-	-	3	-	3		
ECL801	RF Design Lab	-	2	-	-	1	1		
ECL802	Wireless Networks Lab	-	2	-	-	1	1		
ECLDLO 804X	Department Level Optional Lab IV	-	2	-	-	1	1		
ECL803	Project-II	-	12	-	-	6	6		
	Total	15	18	-	15	15 9 24			

					Examin	ation Scher	ne		
Course				The					
Code	Course Name	Interna	al Assess	sment	End	Exam	TW	Oral &	Total
Coue					Sem	Duration	1 **	Prac	Iotai
		Test1	Test 2	Avg	Exam	(Hrs)			
ECC801	RF Design	20	20	20	80	03			100
ECC802	Wireless Networks	20	20	20	80	03			100
ECCDLO	Department Level Optional	20	20	20	80	03			100
804X	Course IV	20	20 20	20	80	05			100
ILO802X	Institute Level Optional Course	20	20	20	80	03			100
ECL 001							25	25	50
	RF Design Lab						25	25	50
ECL802	Wireless Networks Lab						25	25	50
ECLDLO	Department Level Optional Lab						25	25	50
804X	IV						23	23	50
ECL803	Project-II						100	50	150
	Total			80	320		175	125	700

Course Code	Department Level Elective Course IV	Course Code	Institute Level Elective Course II [#]
ECCDLO8041	Optical Networks	ILO8021	Project Management
ECCDLO8042	Advanced Digital Signal Processing	ILO8022	Finance Management
ECCDLO8043	Satellite Communication	ILO8023	Entrepreneurship Development and Management
ECCDLO8044	Network management in Telecommunication	ILO8024	Human Resource Management
		ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
		ILO8027	IPR and Patenting
		ILO8028	Digital Business Management
		ILO8029	Environmental Management

Common with all branches

Subject Code	Subject Name	T	Teaching Scheme (Hrs.)			Credi	ts Assigned	d	
		Theory	Practic	al Tutorial	Theory	Practi	cal Tuto	rial /	Гotal
ECC301	Applied	04 @2 04 01					05		
	Mathematics-								
	III								
	-	•	-	-	-	-	-		
				Exami	nation Sch	eme			
Subject	Subject		Theorem	ry Marks					
Code	Name	Inte	ernal asse	ssment		Term	Practical	Oral	Total
Coue				Avg. Of Test	End Sem.	Work	& Oral	Ulai	10141
		Test 1	Test2	Avg. Of Test 1 and Test 2	Exam				
ECC301	Applied	20	20	20	80	25			125
	Mathematics-								
	III								

@ 2 hour to be taken as tutorial classwise

Course Pre-requisite:

- Applied Mathematics I
- Applied Mathematics II

Course Objectives:

- 1. To build the strong foundation in Mathematics of students needed for the field of electronics and Telecommunication Engineering
- 2. To provide students with mathematics fundamentals necessary to formulate, solve and analyses complex engineering problems.
- 3. To prepare student to apply reasoning informed by the contextual knowledge to engineering practice.
- 4. To prepare students to work as part of teams on multi-disciplinary projects.

Course Outcome:

After successful completion of the course student will be able to

- 1. Students will demonstrate basic knowledge of Laplace Transform. Fourier series, Bessel Functions, Vector Algebra and Complex Variable.
- 2. Students will demonstrate an ability to identify and Model the problems of the field of Electronics and Telecommunication and solve it.
- 3. Students will be able to apply the application of Mathematics in Telecommunication Engineering

Module No.	Unit No.	Detailed Content	Hours
1		Laplace Transform	07
	1.1	Laplace Transform (LT) of Standard Functions: Definition of Laplace transform, Condition of Existence of Laplace transform, Laplace transform of <i>E</i> , Sicher Sine Sine Sine Figure 1 function, Dirac-delta function, Laplace transform of Periodic function	
	1.2	Properties of Laplace Transform: Linearity, first shifting theorem, second shifting theorem, multiplication by t^n , Division by <i>t</i> , Laplace Transform of derivatives and integrals, change of scale, convolution theorem, Evaluation of integrals using Laplace transform.	
2		Inverse Laplace Transform & its Applications	06
	2.1	Partial fraction method, Method of convolution, Laplace inverse by derivative	
	2.2	Applications of Laplace Transform: Solution of ordinary differential equations, Solving RLC circuit differential equation of first order and second order with boundary condition using Laplace transform (framing of differential equation is not included)	
3		Fourier Series	11
	3.1	Introduction: Orthogonal and orthonormal set of functions, Introduction of Dirchlet's conditions, Euler's formulae.	
	3.2	Fourier Series of Functions: Exponential, trigonometric functions of any period =2L, even and odd functions, half range sine and cosine series	
	3.3	Complex form of Fourier series, Fourier integral representation, Fourier Transform and Inverse Fourier transform of constant and exponential function.	
4		Vector Algebra & Vector Differentiation	07
	4.1	Review of Scalar and Vector Product: Scalar and vector product of three and four vectors, Vector differentiation, Gradient of scalar point function, Divergence and Curl of vector point function	
	4.2	Properties: Solenoidal and irrotational vector fields, conservative vector field	

5		Vector Integral	06
	5.1	Line integral	
	5.2	Green's theorem in a plane, Gauss' divergence theorem and Stokes' theorem	
6		Complex Variable & Bessel Functions	11
	6.1	Analytic Function: Necessary and sufficient conditions (No Proof), Cauchy Reiman equation Cartesian form (No Proof) Cauchy Reiman Equation in polar form (with Proof), Milne Thomson Method and it application, Harmonic function, orthogonal trajectories	
	6.2	Mapping: Conformal mapping, Bilinear transformations, cross ratio, fixed points	
	6.3	Bessel Functions: Bessel's differential equation, Properties of Bessel function of order $+1/2$ and $-1/2$, Generating function, expression of $\cos(x\sin\theta)$, $\sin(x\sin\theta)$ in term of Bessel functions	

Note: Term Work should be based on Tutorials.

Textbooks :

- 1. H.K. Das, "Advanced engineering mathematics", S. Chand, 2008
- 2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

Reference Books:

- 1. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 2. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 3. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 4. Murry R. Spieget, "Vector Analysis", Schaum's outline series, Mc-Graw Hill Publication

Subject Code	Subject Name	Te	eaching Sc (Hrs.)			Credi	ts Assigned	ssigned	
		Theory	Practica	al Tutorial	Theory	Practi	cal Tut	orial	Total
ECC302	Electronic	04			04			-	04
	Devices &								
	Circuits-I								
				Exami	nation Sch	eme			
Subject	Subject		Theor	y Marks					
Subject Code	Subject Name	Inte	ernal asses	sment		Term	Practical	Oral	Total
Coue	i (unic		A	Avg. Of Test	End Sem.	Work	& Oral	Ulai	Total
		Test 1	Test2 1	Avg. Of Test and Test 2	Exam				
ECC302	Electronic	20	20	20	80				100
	Devices &								
	Circuits-I								

Course Pre-requisite:

- Basic Electrical Engineering
- Applied Physics

Course Objectives:

- 1. To understand operation of semiconductor devices.
- 2. To understand DC analysis and AC models of semiconductor devices.
- 3. To apply concepts for the design of Regulators and Amplifiers
- 4. To verify the theoretical concepts through laboratory and simulation experiments.
- 5. To implement mini projects based on concept of electronics circuit concepts.

Course Outcome:

After successful completion of the course student will be able to

- 1. Understand the current voltage characteristics of semiconductor devices,
- 2. Analyze dc circuits and relate ac models of semiconductor devices with their physical Operation,
- 3. Design and analyze of electronic circuits,
- 4. Evaluate frequency response to understand behaviour of Electronics circuits.

Module No.	Unit No.	Detailed Content	Hours
1		Diode and material science	06
	1.1	Study of various types of resistor, capacitor and inductors	
	1.2	Basic fabrication steps of passive elements.	
	1.3	PN junction Diode characteristics, small signal model	
2		Rectifier, Filters and Regulator	08
	2.1	Analysis and design of rectifier circuit with Filters (L, LC, C,CLC,CRC)	
	2.2	Concept of load and line regulation in power supply circuits.	
	2.3	Analysis and design of zener voltage regulator	
3		Transistor biasing and design	08
	3.1	Operation of BJT, FET (N-CHANNEL, P-CHANNEL) with characteristics and equation.	
	3.2	Bipolar Junction Transistor: BJT characteristics, DC/AC load line, DC analysis and design of fixed bias, collector to base bias and voltage divider bias, stability factor analysis	
	3.3	Junction Field Effect Transistor: Analysis and design of self- bias and voltage divider bias, zero temp drift biasing.	
4		Transistor modeling and Small signal analysis of amplifier	12
	4.1	Hybrid and hybrid-pi model of BJT with graphical representation.	
	4.2	Small signal model of FET with graphical representation.	
	4.3	Small signal analysis (Zi, Zo, Av and Ai) of CE, CB, and CC configurations using hybrid-pi model of BJT	
	4.4	small signal (mid-frequency) analysis of CS, CD and CG amplifiers using FET	
5		High frequency response of BJT and FET amplifiers	08
	5.1	High frequency hybrid-pi equivalent Circuits of BJT and FET, Miller effect and Miller capacitance, gain bandwidth product	
	5.2	Effects of capacitors on frequency response of single stage amplifier using BJT and FET	
	5.3	Analysis of single stage amplifiers at HF and gain bandwidth product.	

6		Design of small signal amplifiers	06
	6.1	Design of single stage RC Coupled CE amplifier.	
	6.2	Design of single stage RC Coupled CS amplifier. (USE of parameters from data sheet compulsory)	

Textbooks :

- 1. D. A. Neamen, "*Electronic Circuit Analysis and Design*," Tata McGraw Hill, 2ndEdition.
- 2. A. S. Sedra, K. C. Smith, and A. N. Chandorkar, *"Microelectronic Circuits Theory and Applications,"* International Version, OXFORD International Students, 6thEdition
- 3. R. S. Dudhe and M. Farhan, "*Electronic Devices and Circuits*," Synergy Knowledgeware, 1st Edition, 2013.

Reference Books:

- 1. Boylestad and Nashelesky, "*Electronic Devices and Circuits Theory*," Pearson Education, 11th Edition.
- 2. A. K. Maini, "Electronic Devices and Circuits," Wiley.
- 3. T. L. Floyd, "*Electronic Devices*, "Prentice Hall, 9th Edition, 2012.
- 4. A. Rockett, "Material Science of Semiconductors,", Springer, 1st Edition, 2009
- 5. A. Mottershead, "Electronic Devices and Circuits; An Introduction,"

Subject Code	Subject Name	T	eaching So (Hrs.			Credits Assi			gned	
		Theory	Practic	al Tutorial	Theory	Practi	cal Tute	orial	Total	
ECC303	Digital	04			04			-	04	
	System									
	Design									
				Exami	nation Sch	eme				
Subject	Subject		Theor	y Marks						
Subject Code	Subject Name	Inte	ernal asses	sment		Term	Practical	Oral	Total	
Coue	i (unic			Avg. Of Test	End Sem.	Work	& Oral	Ulai	Total	
		Test 1	Test2	Avg. Of Test 1 and Test 2	Exam					
ECC303	Digital	20	20	20	80				100	
	System									
	Design									

Course Objectives:

- 1. To understand number representation and conversion between different representation in digital electronic circuits.
- 2. To analyze logic processes and implement logical operations using combinational logic circuits.
- 3. To understand characteristics of memory and their classification.
- 4. To understand concepts of sequential circuits and to analyze sequential systems in terms of state machines.
- 5. To understand concept of Programmable Devices, PLA, PAL, CPLD and FPGA and implement digital system using VHDL.
- 6. To implement combinational and sequential circuits using VHDL.

Course Outcome:

After successful completion of the course student will be able to

- 1. Develop a digital logic and apply it to solve real life problems.
- 2. Analyze, design and implement combinational logic circuits.
- 3. Classify different semiconductor memories.
- 4. Analyze, design and implement sequential logic circuits.
- 5. Analyze digital system design using PLD.
- 6. Simulate and implement combinational and sequential circuits using VHDL systems.

Module No.	Unit No.	Detailed Content	Hours
1		Number Systems and Codes	04
	1.1	Review of Number System, Binary Code, Binary Coded Decimal, Octal Code, Hexadecimal Code and their conversions, Binary Arithmetics, Gray Code	
2		Logic Gates and Combinational Logic Circuits	18
	2.1	Analog and Digital signals and systems, Logic levels, TTL and CMOS Logic families and their characteristics	
	2.2	Digital logic gates, Realization using NAND, NOR gates, Boolean Algebra, De Morgan's Theorem, SOP and POS representation, K Map up to four variables and Quine- McClusky method	
	2.3	Arithmetic Circuits: Half adder, Full adder, Half Subtractor, Full Subtractor, Serial and Parallel Addition, Carry Look ahead adder and BCD adder. Binary Multiplier, Magnitude Comparator,	
	2.4	Multiplexer and De-multiplexer: Multiplexer operations, cascading of Multiplexer, Boolean Function implementation using multiplexer and basic gates, de-multiplexer, encoder and decoder	
3		Different Types of Memory	02
		Classification and Characteristics of memory, SRAM, DRAM, ROM, PROM, EPROM and Flash memories	
4		Sequential Logic Circuits:	12
	4.1	Flip flops: RS, JK, Master slave flip flops; T & D flip flops with various triggering methods, Conversion of flip flops, Registers: SISO, SIPO, PISO, PIPO, Universal shift registers.	
	4.2	Counters: Asynchronous and Synchronous, Up/Down, MOD N, BCD	
	4.3	Applications of Sequential Circuits: Frequency division, Ring Counter, Johnson Counter. models, State transition diagram, Design of Moore and Mealy circuits-Design of Serial Adder and vending Machine	
	4.4	State Reduction Techniques: Row elimination and Implication table methods	
5		Programmable Logic Devices:	09
		Introduction : Programmable Logic Devices (PLD),	

		Programmable Logic Array (PLA), Programmable Array Logic(PAL), CPLD and FPGA, Keyboard Encoder system design using PLD	
6		VHSIC Hardware Description Language (VHDL)	03
	6.1	Data types, Structural modeling using VHDL, Attributes, Data Flow behavioral, Implementation of Priority Encoder- combinational circuit and Fibonacci Series Generator- sequential circuits using VHDL	

Textbooks :

- 1. John F. Warkerly, "*Digital Design Principles and Practices*", Pearson Education, Fourth Edition (2008).
- 2. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Third Edition (2003).
- 3. J. Bhaskar, "VHDL Primer", PHI, Third Edition (2009).
- 4. Volnei A. Pedroni, "Digital Electronics and Design with VHDL" Morgan Kaufmann Publisher (2008)

Reference Books:

- 1. Morris Mano / Michael D. Ciletti, "Digital Design", Pearson Education, Fourth Edition (2008).
- 2. Thomas L. Floyd, "Digital Fundamentals", Pearson Prentice Hall, Eleventh Global Edition (2015).
- 3. Mandal, "*Digital Electronics Principles and Applications*", McGraw Hill Education, First Edition (2010).
- 4. Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL", Second Edition, TMH (2009).
- 5. Ronald J. Tocci, Neal S. Widmer, "Digital Systems Principles and Applications", Eighth Edition, PHI (2003)
- 6. Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications", The McGraw Hill, Seventh Edition (2011).

Subject Code	Subject Name	Te	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practic	al Tutorial	Theory	Practi	cal Tute	orial	Total		
ECC304	Circuit	04		@2	04		1		05		
	Theory and										
	Networks										
			Examination Scheme								
Subject	Subject		Theor	y Marks	<u>.</u>						
Code	Name	Inte	ernal asses	sment		Term	Practical	Oral	Total		
Coue			1	Avg. Of Test	End Sem.	Work	& Oral	Ulai	Total		
		Test 1	Test2	and Test 2	Exam						
ECC304	Circuit	20	20	20	80	25			125		
	Theory and										
	Networks										

@ 2 hour to be taken as tutorial classwise

Course Pre-requisite:

- Basic Electrical Engineering
- Solution to Differential Educations and Laplace Transform

Course Objectives:

- 1. To analyze the Circuits in time and frequency domain
- 2. To study network Topology, network Functions, two port network
- 3. To synthesize passive network by various methods

Course Outcome:

After successful completion of the course student will be able to

- 1. Apply their knowledge in analysing Circuits by using network theorems.
- 2. Apply the time and frequency method of analysis.
- 3. Find the various parameters of two port network.
- 4. Apply network topology for analyzing the circuit
- 5. Synthesize the network using passive elements.

Module No.	Unit No.	Detailed Content	Hours
1		Electrical circuit analysis	08
	1.1	Analysis of DC & AC Circuits: Analysis of Circuits with and without controlled sources using generalized loop and node matrix methods	
		Circuit Theorems: Superposition, Thevenin's, Norton's, maximum power transfer and reciprocity theorems	
	1.2	Magnetic circuits: Concept of Self and mutual inductances, coefficient of coupling, dot convention, equivalent circuit	
		Coupled circuit- solution using mesh analysis	
2		Graph Theory	08
	2.1	Objectives of graph theory, Linear Oriented Graphs, graph terminologies	
		Matrix representation of a graph: Incidence matrix, Circuit matrix, Cut-set matrix, reduced incident matrix, tieset matrix, f-cutset matrix.	
	2.2	Relationship between sub matrices A, B & Q.	
	2.3	KVL & KCL using matrix	
3		Time and frequency domain analysis	08
	3.1	Time domain analysis of R-L and R-C Circuits: Forced and natural response, initial and final values Solution using first order differential equation for impulse, step, ramp, exponential & sinusoidal signals	
	3.2	Time domain analysis of R-L-C Circuits: Forced and natural response, effect of damping factor. Solution using second order equation for step, ramp, exponential & sinusoidal signals.	
	3.3	Frequency domain analysis: Frequency - domain representation of R, L,C, initial value theorem & final value theorem, applications of Laplace Transform in analyzing electrical circuits	
4		Network functions	08
	4.1	Network functions for the one port and two port networks, Driving point and transfer functions, Poles and Zeros of Network functions, necessary condition for driving point functions, necessary condition for transfer functions, calculation of residues by analytical and graphical methods,	

	4.2	Time domain behavior as related to the Pole-Zero plot Stability & causality, testing for Hurwitz polynomial Analysis of ladder & symmetrical lattice network	
5		Two port Networks	08
	5.1	Parameters: Open Circuits, short Circuit, Transmission and Hybrid parameters, relationship among parameters, conditions for reciprocity and symmetry	
	5.2	Interconnections of Two-Port networks T & π representation.	
	5.3	Terminated two-port networks	
6		Synthesis of RLC circuits	08
	6.1	Positive Real Functions: Concept of positive real function, testing for necessary and sufficient conditions for Positive real Functions	
	6.2	Synthesis of LC, RC & RL Circuits: properties of LC, RC & RL driving point functions, LC, RC & RL network Synthesis in Cauer-I & Cauer-II, Foster-I & Foster-II forms	

Note: Term Work should be based on Tutorials.

Textbooks :

- 1. Franklin F Kuo, "Network Analysis and Synthesis", Wiley Toppan, 2nd.ed. 1966
- 2. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 26th Indian Reprint, 2000

Reference Books:

- 1. A Chakrabarti, "Circuit Theory", Dhanpat Rai & Co., Delhi, 6h Edition
- 2. A. Sudhakar, Shyammohan S. Palli "circuits and Networks, Tata McGraw-Hill education
- 3. Smarajit Ghosh, Network Theory Snallysis & Syntshesis, PHI learning
- 4. K.S. Suresh Kumar, Elecric circuit analysis, Pearson (2013)
- 5. D Roy Choudhury, Networks and Systems, New Age International 1998.

TUTORIALS: At least 10 tutorials covering various topics of the syllabus.

Subject Code	Subject Name	T	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practic	al Tutorial	Theory	Practi	cal Tut	orial	Total		
	Electronic Instrumentation & Control	04		@2	04		1		05		
	Examination Scheme										
Subject Code	Subject Name	Inte	Theor ernal asses	y Marks sment		Term	Practical	Oral	Total		
Coue		Test 1	Test2	Avg. Of Test l and Test 2	End Sem. Exam	Work	& Oral	Oral	Total		
ECC305	Electronic	20	20	20	80	25			125		
	Instrumentation & Control										

@ 2 hour to be taken as tutorial classwise

Course Pre-requisite:

• Basic Electrical Engineering

Course Objectives:

- 1. To provide basic knowledge about the various sensors and data acquisition systems applied in Wireless sensor network.
- 2. To provide fundamental concepts of control system such as mathematical modeling, time response and frequency response.
- 3. To develop concepts of stability and its assessment criteria.

Course Outcome:

After successful completion of the course student will be able to

- 1. Students will be able to explain principle of operation for various sensors.
- 2. Students will be able to describe functional blocks of data acquisition system.
- 3. Students will be able to find transfer functions for given system.
- 4. Students will be able to calculate time domain and frequency domain parameter for given system
- 5. Students will be able to predict stability of given system using appropriate criteria.

Module No.	Unit No.	Detailed Content	Hours
1		Principle of Measurement, Testing and Measuring instruments	07
	1.1	Introduction to Basic instruments: Components of generalized measurement system Concept of accuracy, precision, linearity, sensitivity, resolution, hysteresis, calibration.	
	1.2	Measurement of Resistance: Kelvin's double bridge, Wheatstone bridge and Mega ohm bridge	
		Measurement of Inductance: Maxwell bridge and Hey bridge	
		Measurement of Capacitance: Schering bridge	
		Q-Meter: Operating principle and applications	
		Energy and power meters: Working of energy and power meter	
2		Sensors and Transducers	08
	2.1	Basics of sensors and Transducers-Active and passive transducers, characteristics and selection criteria of transducers, working principle of Eddy-current sensors, Pizoelectric transducers, photoelectric and photovoltaic sensors, capacitive sensors	
	2.2	Displacement and pressure- Potentiometers, pressure gauges, linear Variable differential transformers(LVDT) for measurement of pressure and displacement strain gauges	
	2.3	Temperature Transducers- Resistance temperature detectors(RTD). Thermistors and thermocouples , their ranges and applications	
3		Telemetry and Data Acquisition System	08
	3.1	Introduction and characteristics, Landline Telemetry, Radio Telemetry Types of Multiplexing Systems,	
	3.2	Data Acquisition: Components of Analog and Digital Data Acquisition System,	
	3.3	Uses of Data Acquisition System, Use of recorders in Digital systems, Modern Digital Data Acquisition System.	
4		Introduction to control system Analysis	07

	4.1	Introduction: Open and closed loop systems, example of control systems Modelling: Modelling, Transfer function model of electrical systems, Block diagram reduction techniques and Signal flow graph	
	4.3	Dynamic Response: Standard test signals, transient and steady state behaviour of first and second order systems, steady state errors in feedback control systems and their types	
5		Stability Analysis in Time Domain	08
	5.1	Concept of stability: Routh and Hurwitz stability criterion	
	5.2	Root locus Analysis: Root locus concept, general rules for constructing root-locus ,root locus analysis of control system, concept of design of lag and lead compensator	
6		Stability Analysis in frequency domain	10
	6.1	Introduction: Frequency domain specification, Relationship between time and frequency domain specification of system, stability margins	
	6.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode plot,Stability margins and analysis using bode plot. Frequency response analysis of RC,RL,RLC circuits	
	6.3	Nyquist Criterion: Concept of Polar plot and Nyquist plot, Nyquist stability criterion ,gain and phase margin	

Note: Term Work should be based on Tutorials.

Textbooks :

- 1. A.K. Sawhney, "Electrical & Electronic Measurement & Instrumentation" DRS . India
- 2. M.M.S. Anand, "Electronic Instruments and instrumentation Technology".
- 3. H.S.Kalsi, "Electronic Instrumentation"-TMH, 2nd Edition.
- 4. Nagrath, M.Gopal, "Control System Engineering", Tata McGraw Hill.
- 5. K.Ogata, "Modern Control Engineering, Pearson Education", IIIrd edition.

Reference Books:

- 1. Helfrick&Copper, "Modern Electronic Instrumentation & Measuring Techniques" PHI
- 2. W.D. Cooper, "Electronic Instrumentation And Measuring Techniques" PHI
- 3. Benjamin C.Kuo, "Automatic Control Systems, Eearson education", VIIth edition

- 4. Rangan C. S., Sarma G. R. and Mani V. S. V., "Instrumentation Devices And Systems", Tata McGraw-Hill, 2nd Ed., 2004.
- 5. Bell David A."*Electronic Instrumentation and Measurements*", PHI Pearson Education, 2006.
- 6. Madan Gopal, "Control Systems Principles and Design", Tata McGraw hill, 7th edition, 1997.
- 7. Normon, "Control System Engineering", John Wiley & sons, 3rd edition.

Subject Code	Subject Name	Teaching Scheme(Hrs.)TheoryPracticalTutorial			Credits Assigned			
					Theory	TW/Pracs	Tutorial	Total
ECL301	Electronic Devices & Circuits-I Laboratory		02			1		1

		Examination Scheme								
Subject	Subject		Theory Marks							
Code	Subject Name	Internal asse		essment	End Sem.	Term Work	Practical & Oral	Oral	Total	
Coue	Coue		Test2	Avg. Of Test 1 and Test 2	End Sem. Exam				Tuai	
ECL301	Electronic Devices & Circuits-I Laboratory					25	25		50	

Laboratory plan

Maximum of 8 practicals including minimum 2 simulations should be conducted based on following topics

- Study of different measuring instruments such as CRO, Function Generator, Multimeter, and Power Supply. (Compulsory)
- Filter circuits
- Biasing of BJT and FET
- Frequency response
- Zener regulator
- Single stage amplifiers

Minimum One project based on:

- Design of single stage CE and CS amplifier
- Design of filter and regulator circuits
- Design of power supply
- Any other relevant topic based on syllabus

Note : Small project should be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "**Laboratory session batch wise**". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects are graded from time to time. The grades will be converted to marks as per "**Choice Based Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done. **The practical and oral examination will be based on entire syllabus.**

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total	
ECL302	Digital System Design Laboratory		02			1		1	

		Examination Scheme								
Subject	Subject	Theory Marks								
Code	Subject Name	Inte	Internal assessment		End Sem.	Term Work	Practical & Oral	Oral	Total	
Coue		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Ulai	TUtai	
ECL302	Digital System Design Laboratory					25	25		50	

Laboratory plan

Maximum of 8 practicals including minimum 2 simulations should be conducted.

Suggested list of experiments:

- 1. Verify different logic gates.
- 2. Simplification of Boolean functions.
- 3. Verify Universal gates NAND and NOR and design EXOR and EXNOR gates using Universal gates.
- 4. Implement Half adder, Full adder, Half subtractor and Full subtractor circuits.
- 5. Implement BCD adder using four bit binary adder IC-7483.
- 6. Flip flops conversion JK to D, JK to T and D to TFF.
- 7. Implement logic equations using Multiplexer.
- 8. Design synchronous MOD N counter using IC-7490.
- 9. Verify encoder and decoder operations.
- 10. Implement digital circuits to perform binary to gray and gray to binary operations.
- 11.Verify truth table of different types of flip flops.
- 12.Verify different counter operations.
- 13.Write VHDL simulation code for different logic gates.
- 14.Write VHDL simulation code for combinational and sequential circuits
- 15.Write VHDL simulation code for 4:1 Multiplexer, 2 line to 4 line binary decoder

Minimum One project

Suggested list of Mini Projects:

- 1. Design Clock pulse generator.
- 2. Design Clap operated remote control for Fan.
- 3. Design BCD counter and show operation on Seven Segment Display.
- 4. Design digital stop watch.
- 5. Write VHDL code to implement traffic light controller.
- 6. Design water level indicator for overhead water tank.
- 7. Design frequency divider circuit.
- 8. Design switch debounce circuit.
- 9. Design sequence generator circuit.
- 10. Design sequence detector circuit.
- 11. Design Even/Odd parity generator/checker circuit.
- 12. Design simple LED flasher circuit.
- 13. Design digital dice.
- 14. Design fastest finger first indicator.
- 15. Design Toggle switch using TFF.

Note : Small project should be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects are graded from time to time. The grades will be converted to marks as per "**Choice Based Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done. **The practical and oral examination will be based on entire syllabus.**

Subject Code	Subject Name	Teaching Scheme(Hrs.)TheoryPracticalTutorial			Credits Assigned			
					Theory	TW/Pracs	Tutorial	Total
ECL303	OOP using		02			1		1
	JAVA							
	laboratory							

	Subject Name	Examination Scheme							
Subject Code		Theory Marks							
		Internal assessment			End Sem.	Term	Practical & Oral	Oral	Total
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral	Oran	TUtai
ECL303	OOP using JAVA					25	25		50
	laboratory								

Course Pre-requisites:

- Fundamentals of C-Programming
- Control Structures
- Arrays and String

Course Objectives:

- 1. To understand Object Oriented Programming and its principles.
- 2. To describe & explain keywords and Data types.
- 3. Able to implement Methods, Constructors, Arrays, Multithreding and Applet
- **4.** To help students to understand how to use a programming language to resolve problems.

Course Outcomes:

- 1. Students will be able to code a program using JAVA constructs.
- 2. Students will be able to understand fundamental features of an object oriented language: object classes and interfaces, exceptions and libraries of object collections.
- 3. Students will be able to develop a program that efficiently implements the algorithm for given tasks.
- 4. Students will be able to utilize the knowledge acquired in this course to develop higher level algorithms.

Module No.			Hours	
1		Fundamental Concepts of Object Oriented Programming		
	1.1	Introduction to Object-Oriented Programming		
	1.2	Classes, Objects, Creating Classes and Objects,		
		Principles of OOP: Abstraction, Encapsulation, Inheritance, Polymorphism		
	1.3	Differences And Similarity Between C and Java		
2		Fundamental Of Java Programming		
	2.1	Features of Java, JDK Environment & Tools, Structure of Java Program		
	2.2	Java Keywords, Super Keyword, Final Keyword, Abstract Class	-	
	2.3	Data Types, Variables, Operators, Expressions		
	2.4	Input Output Using Scanner Class		
	2.5	Exception Handling, Object-Oriented Containers		
3		Method, Constructors, Destructors And Arrays	04	
	3.1	Passing and Returning Parameters to Methods		
	3.2	Constructor and Types, Destructor		
	3.3	Arrays and Types: Create, One Dimensional Arrays, Two Dimensional Array, Multidimensional Array, String Array		
4		Inheritance, Interface And Package	04	
	4.1	Types of Inheritance: Single, Multilevel, Hierarchical		
	4.2	Method Overloading and Method Overriding		
	4.3	Interface		
	4.4	Packages		
5		Multithreading And Applet		
	5.1	1 Life Cycle Of Thread		
	5.2	Priority In Multithreading	1	
	5.3	Applet Life Cycle		
	5.4	Creating Applet, Applet Tag	1	

Textbooks :

- 1. Herbert Schidt, "*The Complete Reference*", Tata McGraw-Hill Publishing Company Limited, Ninth Edition
- 2. D.T. Editorial Services ,"Java 8 Programming Black Book", Dreamtech Press, Edition: 2015
- 3. Yashwant Kanitkar,"Let Us Java", BPB Publications; 2nd Edition edition.

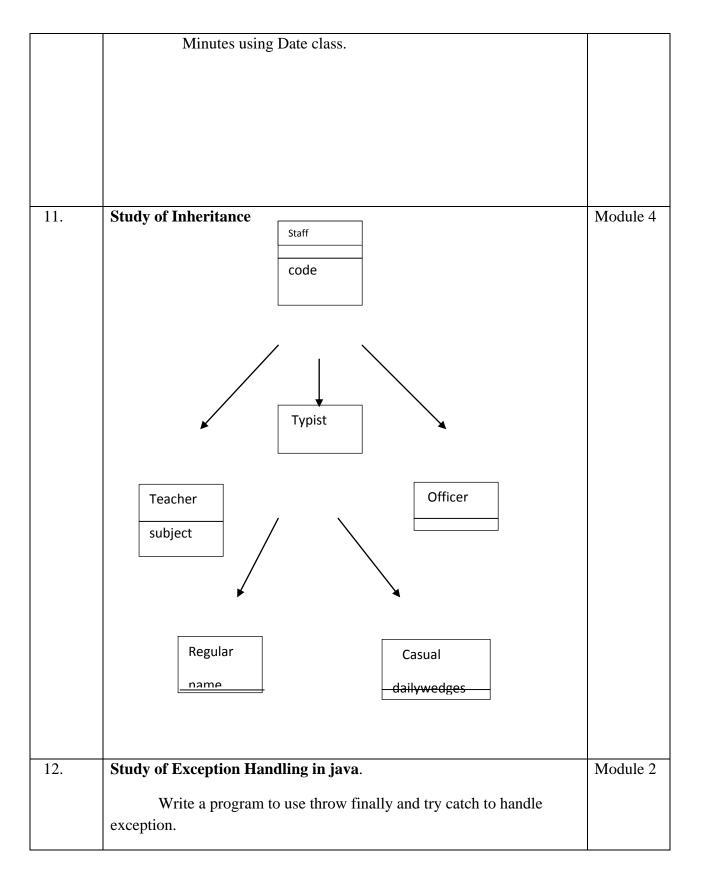
Reference Books:

- 1. Java: How to Program, 8/e, Dietal, Dietal, PHI
- 2. Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Languageser Guide", Pearson Education
- 3. Sachin Malhotra, Saurabh Chaudhary "Programming in Java", Oxford University Press, 2010

Software Tools:

- 1. Raptor-Flowchart Simulation: http://raptor.martincarlisle.com/
- 2. Eclipse: <u>https://eclipse.org/</u>
- 3. Netbeans: https://netbeans.org/downloads/
- 4. CodeBlock:<u>http://www.codeblocks.org/</u>
- **5.** J-Edit/J-Editor/Blue J

Online Repository:


- 1. Google Drive
- 2. GitHub
- 3. Code Guru

Laboratory plan

Maximum of 8 practicals including minimum 2 simulations should be conducted based on following topics

Section	Experiment Name	Module			
1.	Write a program using command line argumentin java.				
	• Echoing Command-Line Arguments.				
	• Parsing Numeric Command-Line arguments.				
2.	Study of simple java programs				
	• WAP to calculate area & circumference of circle				
	• WAP to swap given two strings				
	• WAP to separate out digits of a number				
	• WAP to convert temperature from Fahrenheit to Celsius				
	• WAP to find a square , squarroot, and Cube of a given no. using abstraction				
3.	Study of different operators in java	Module 1			
	• WAP to compare two numbers.				
	• WAP to print truth table for java logical operators				
	• WAP to read the number & shift left & right by 3 bits.				
4.	Write a program for various ways of accepting data through	Module 2			
	keyboard & display its content.				
	Read through DataInputstream.				
	• Read input through Scanner.				
	Read input through BufferedReader.				
5.	Study of Arrays	Module 3			
	Write a program for addition, subtraction and				
	multiplication of two matrices.				
6.	Study of Objects and Classes				
	• Define a class to represent a bank account. Include the following members: Data:				
	name of the depositor				
	account number				

	type of account		
	balance amount in the account		
	Methods:		
	1.to assign initial values		
	2.to deposit an amount		
	3.to withdraw an amount after checking balance.		
	4.to display the name & balance		
	• WAP using this keyword		
7.	Study of Strings.	Module 2	
	Accept the two strings from user & do the following operations		
	• convert to lowercase		
	 convert to uppercase 		
	• Replace all appearance of one character by another		
	Compare two strings		
	• Derive the substring of a string		
	• Derive the position of a character in a string		
	• Calculate the length of a string		
	Derive the nth character of a string		
8.	WAP to implement following constructors	Module 3	
	Default constructor		
	Parameterized constructor		
9.	Study of Interface.	Module 4	
	Create an interface Area & implement the same in different classes		
	Rectangle, circle, triangle.		
10.	Study of utility package	Module 4	
	• WAP to generate a year using random class and check whether it is leap or not.		
	 Write a program to display current date. Also display Time in hours & 		

University of Mumbai, B. E. (Electronics & Telecommunication Engineering), Rev 2016 39

13.	Study of Multithreading.	Module 5
	WAP to illustrate function yield(), isAlive(), sleep(), join(). Create three threads as P,Q,R. Thread P has maximum priority, thread Q has minimum priority, thread R has normal priority.	
14.	Study graphics using applet.	Module 5
	WAP to draw all geometric shapes and fill them with different colors.	

Minimum One project Suggested list of mini projects

- 1. Inventory Control System
- 2. Develop Calculator
- 3. Develop Editor (Example: Notepad)
- 4. Devlop Multimedia App to teach primary students (Sahpes, Colors, etc.)

5. Create an audio or video applet or swing based application with play, pause and stop options.

Note : Small project should be considered as a part of term-work.

Term Work:

At least **10** experiments covering entire syllabus should be set to have well predefined inference and conclusion.

The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects are graded from time to time. The grades will be converted to marks as per "Choice Based Credit and Grading System" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done. The practical and oral examination will be based on entire syllabus.

Students are encourages to share their experiments/mini project codes on online repository.

Practical from any 10 sections out of 14 sections is compulsory . Practical exam slip should cover all at least 10 sections.

Subject Code	Subject Name	Т	eaching So (Hrs.		Credits Assigned				
		Theory	Practic	al Tutorial	Theory	Practi	cal Tutor	rial /	Fotal
ECC401	Applied Mathematics- IV	04		@2	04		01		05
				Exami	nation Sch	eme			
Subject	Subject			ry Marks					
Code	Name	Inte	ernal asses	ssment		Term	Practical	Oral	Total
		Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Work	& Oral		1 otur
ECC401	Applied Mathematics- IV	20	20	20	80	25			125

@2 hour to be taken as tutorial classwise

Course Pre-requisite:

- Applied Mathematics I
- Applied Mathematics II
- Applied Mathematics III

Course Objectives:

- 1. To build the strong foundation in Mathematics of students needed for the field of Electronics and Telecommunication Engineering
- 2. To provide students with mathematics fundamentals necessary to formulate, solve and analyses complex engineering problems.
- 3. To prepare student to apply reasoning informed by the contextual knowledge to engineering practice.
- 4. To prepare students to work as part of teams on multi-disciplinary projects

Course Outcome:

After successful completion of the course student will be able to

- 1. Demonstrate basic knowledge of Calculus of variation, Vector Spaces, Matrix Theory, Random Variables, Probability Distributions, Correlation and Complex Integration.
- 2. Demonstrate an ability to identify and Model the problems in the field of Electronics and Telecommunication and solve it.
- 3. Apply the application of Mathematics in Telecommunication Engineering.

Module No.	Unit No.	Detailed Content	Hours
1		Calculus of Variation:	06
	1.1	Euler's Langrange equation, solution of Euler's Langrange equation (only results for different cases for Function) independent of a variable, independent of another variable, independent of differentiation of a variable and independent of both variables	
	1.2	Isoperimetric problems, several dependent variables	•
	1.3	Functions involving higher order derivatives: Rayleigh-Ritz method	
2		Linear Algebra: Vector Spaces	06
	2.1	Vectors in n-dimensional vector space: properties, dot product, cross product, norm and distance properties in n-dimensional vector space.	
	2.2	Vector spaces over real field, properties of vector spaces over real field, subspaces	
	2.3	The Cauchy-Schwarz inequality, Orthogonal Subspaces, Gram-Schmidt process	
3		Linear Algebra: Matrix Theory	10
	3.1	Characteristic equation, Eigen values and Eigen vectors, properties of Eigen values and Eigen vectors.	
	3.2	Cayley-Hamilton theorem (without proof), examples based on verification of Cayley- Hamilton theorem.	
	3.3	Similarity of matrices, Diagonalisation of matrices.	
	3.4	Functions of square matrix, derogatory and non-derogatory matrices.	
4		Probability	10
	4.1	Baye's Theorem (without proof)	
	4.2	Random variable: Probability distribution for discrete and continuous random variables, Density function and distribution function, expectation, variance.	
	4.3	Moments, Moment Generating Function.	

	4.4	Probability distribution: Binomial distribution, Poisson & normal distribution (For detailed study)					
5		Correlation	04				
	5.1	Karl Pearson's coefficient of correlation, Covariance, Spearman's Rank correlation,					
	5.2	Lines of Regression.					
6		Complex integration	12				
	6.1	Complex Integration:Line Integral, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula.					
	6.2	Taylor's and Laurent's Series					
	6.3	Zeros, singularities, poles of f(z), residues, Cauchy's Residue theorem.					
	6.4	Applications of Residue theorem to evaluate real Integrals of different types.					

Note: Term Work should be based on Tutorials.

Textbooks :

- 1. H.K. Das, "Advanced engineering mathematics", S. Chand, 2008
- 2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication
- 4. P.N.Wartilar&J.N.Wartikar, "A *Text Book of Applied Mathematics*" Vol. I & II, Vidyarthi Griha Prakashan, Pune

Reference Books:

- 1. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 2. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 3. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 4. Seymour Lipschutz "Beginning Linear Algebra" Schaum's outline series, Mc-Graw Hill Publication
- 5. SeymourLipschutz "Probability" Schaum's outline series, Mc-Graw Hill Publication

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
cout	1 (unite	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC402	Electronic Devices & Circuits-II	04			04			04	
~ • •			Theory]	Marks					

Subject	Subject Name	Theory Marks					Practical & Oral	Oral	Total
Code		Internal assessment				Term			
Coue				Avg. Of Test	End Sem.	Work	& Oral	Orai	Total
		Test 1	Test2	1 and Test 2	Exam				
ECC402	Electronic	20	20	20	80				100
	Devices &								
	Circuits-II								

Course Pre-requisite:

• Electronic Devices & Circuits-I

Course Objectives:

- 1. To understand the operation of the various bias circuits of MOSFET and Analyze and design MOSFET bias circuits.
- 2. To understand the operation and design of multistage amplifier for a given specification.
- 3. To understand the operation and design of transformer coupled various types of power amplifier circuits.
- 4. To understand the effects of negative feedback on amplifier circuits.
- 5. To analyze the different RC and LC oscillator circuits to determine the frequency of oscillation.

Course Outcome:

After successful completion of the course student will be able to

- 1. Design and analyse the basic operations of MOSFET.
- 2. Know about the multistage amplifier using BJT and FET in various configuration to determine frequency response and concept of voltage gain.
- 3. Know about different power amplifier circuits, their design and use in electronics and communication circuits.
- 4. Know the concept of feedback amplifier and their characteristics.
- 5. Design the different oscillator circuits for various frequencies

Module No.	Unit No.	Detailed Content	Hours
1		Introduction to MOSFET	08
	1.1	MOSFET - Symbol, Types of MOSFET - Depletion and Enhancement type MOSFET (N channel and P channel),	
	1.2	Construction, Operation, and V-I characteristics of MOSFET	
	1.3	MOSFET biasing - Types of Depletion & enhancement MOSFET biasing,	
	1.4	MOSFET as amplifier	
2		Introduction of Multistage amplifiers	06
	2.1	RC coupled, transformer coupled, direct coupled,	
	2.2	Low and high frequency considerations of cascade amplifier, cascode amplifier (CE-CB), Darlington pair amplifier.	
3		Design of Multistage amplifiers	10
		Analysis and design considerations of multistage amplifiers (CE-CE, CS-CS, CS-CE,), effect of source and load resistance	
4		Large signal amplifiers	08
	4.1	Harmonic distortion and power efficiency of Class A, B, AB, and C amplifiers	
	4.2	Design of Class A, Class B, and Push-Pull Power amplifier design.	
	4.3	Thermal considerations and design selection of heat sinks.	
5		Feedback amplifiers	08
	5.1	Feedback concept, ideal feedback amplifier, classification of feedbacks, Various topologies	
	5.2	Analysis and design of different types of negative feedback.	
6		Oscillators	08
	6.1	Principle of oscillation, RC oscillator, twin T oscillator	
	6.2	Oscillator with LC feedback. Colpitts oscillator, Hartley oscillator, Crystal controlled oscillator.	
	6.3	Design of different oscillator circuits.	

Textbooks :

- 1. D. A. Neamen, "*Electronic Circuit Analysis and Design*," Tata McGraw Hill, 2ndEdition.
- 2. R. L. Boylestad, "Electronic Devices and Circuit Theory," Pearson, 11thEdition.
- 3. T. F. Bogart, "Electronic Devices And Circuit," Merrill, 6thEdition.
- 4. R. S. Dudhe and M. Farhan, "Electronic Devices and Circuits," Synergy Knowledgeware, 1st Edition

Reference Books:

- 1. Salivahanan, N. Suresh Kumar, "*Electronic Devices and Circuits*," Tata McGraw Hill, 3rdEdition
- 2. J. Millman, Christos CHalkias, and Satyabratatajit, Millman's, "*Electronic Devices and Circuits*," McGrawHill, 3rdEdition
- 3. Muhammad H. Rashid, "*Microelectronics Circuits Analysis and Design*," Cengage Learning, 2ndEdition.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC403	Linear Integrated Circuits	04			04			04	

		Examination Scheme								
Subject	Subject Name		The							
Subject Code		Int	Internal assessment			Term	Practical	Oral	Total	
Code					End Sem.	d Sem. Work	& Oral	Ulai	10141	
		Test 1	Test2	1 and Test 2	Exam					
ECC403	Linear	20	20	20	80				100	
	Integrated									
	Circuits									

Course Pre-requisite:

- Basic Electrical Engineering
- Electronic Devices & Circuits-I

Course Objectives:

- 1. To understand the concepts, working principles and key applications of linear integrated circuits.
- 2. To perform analysis of circuits based on linear integrated circuits.
- 3. To design circuits and systems for particular applications using linear integrated circuits.

Course Outcome:

After successful completion of the course student will be able to

- 1. Understand the fundamentals and areas of applications for the integrated circuits.
- 2. Analyze important types of integrated circuits.
- 3. Demonstrate the ability to design practical circuits that perform the desired operations.
- 4. Understand the differences between theoretical, practical & simulated results in integrated circuits.
- 5. Select the appropriate integrated circuit modules to build a given application.

Module No.	Unit No.	Detailed Content	Hours
1		Introduction to operational amplifiers	08
	1.1	Analysis of differential amplifier circuit configurations using FETs, Effect of Swamping resistor, Current sources using FETs, Widlar current source, Wilson current source, Voltage sources and references, DC level shifters.	
	1.2	Ideal & Practical Operational Amplifiers, Operational amplifier characteristics, Operational amplifier parameters, Operational amplifier open loop and closed loop configurations.	
2		Applications of Operational Amplifier	08
	2.1	Amplifiers: Inverting, non-inverting, buffer, summing & difference amplifiers, integrator & differentiator (ideal & practical), current amplifier, instrumentation amplifier, log and antilog amplifiers	
	2.2	Converters: Current to voltage converters, voltage to current converters, voltage to frequency converter, frequency to voltage converter.	
	2.3	Active Filters: Second order active low pass, high pass, band pass and band reject filters, Introduction to switch capacitor filters.	
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator.	
3		Non-Linear Applications of Operational Amplifier	08
	3.1	Comparators: Inverting comparator, non-inverting comparator, zero crossing detector, window detector, peak detector, sample & hold circuits.	
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger.	
	3.3	Waveform Generators: Square wave generator and triangular wave generator.	
	3.4	Precision Rectifiers: Half wave and full wave precision rectifiers.	
4		Analog to Digital and Digital to Analog Convertors	08
	4.1	Performance specifications of ADC, single ramp ADC, ADC using DAC, dual slope ADC, successive approximation ADC.	
	4.2	Performance specifications of DAC, binary weighted resistor DAC, R/2R ladder DAC, inverted R/2R ladder DAC.	
5		Special Purpose Integrated Circuits	08
	5.1	Functional block diagram and working of IC 555, design of astable and monostable multivibrator using IC 555, application	

		of IC 555 as pulse position modulator, pulse width modulator	
		and Schmitt Trigger.	
	5.2	Functional block diagram and working of VCO IC 566 and application as frequency modulator, Functional block diagram and working of PLL IC 565 and application as FSK Demodulator, Functional block diagram and working of multiplier IC 534andapplication as a phase detector, Functional block diagram and working of waveform generator XR 2206 and application as sinusoidal FSK generator.	
6		Voltage Regulators	08
6	6.1		08

Textbooks :

- 1. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- 2. K. R. Botkar, "Integrated Circuits", Khanna Publishers (2004)
- 3. D. Roy Choudhury and S. B. Jain, "*Linear Integrated Circuits*", New Age International Publishers, 4th Edition.

Reference Books:

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, 3rd Edition.
- 2. David A. Bell, "*Operation Amplifiers and Linear Integrated Circuits*", Oxford University Press, Indian Edition.
- 3. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- 4. "J. Millman, Christos CHalkias, and Satyabratatajit, Millman's, "Electronic Devices and Circuits," McGrawHill, 3rdEdition".

Subject Code	Subject Name	T	eaching So (Hrs.			Credits Assigned					
		Theory	Practic	al Tutorial	Theory	Practi	cal Tute	orial	Total		
ECC404	Signals and Systems	04		2@	04		0	1	05		
			Examination Scheme								
Subject		Theory Marks									
Subject Code	Subject Name	Internal assessment				Term	Practical	Oral	Total		
Coue		Test 1	Test2		End Sem. Exam	Work	& Oral	Ulai	10181		
ECC404	Signals and Systems	20	20	20	80	25			125		

@2 hour to be taken as tutorial classwise

Course Pre-requisite:

- Applied Maths-III
- Circuit Theory and Networks

Course Objectives:

- 1. To introduce students the concept and theory of signals and systems needed in electronics and telecommunication engineering fields.
- 2. To introduce students to the basic idea of signal and system analysis and its characterization in time and frequency domain

Course Outcome:

After successful completion of the course student will be able to

- 1. Understand about various types of signals and systems, classify them, analyze them, and perform various operations on them,
- 2. Understand use of transforms in analysis of signals and system in continuous and discrete time domain.
- 3. Observe the effect of various properties and operations of signals and systems.
- 4. Evaluate the time and frequency response of Continuous and Discrete time systems which are useful to understand the behaviour of electronic circuits and communication systems.

Module No.	Unit No.	Detailed Content	Hours
1		Introduction to signals and systems	08
	1.1	Introduction to signals: Definition, sampling theorem, sampling of continuous time signals, elementary signals: exponential, sine, step, impulse, ramp, rectangular, triangular, signum, sinc, operations on signals,	
	1.2	Classification of signals: Continuous and discrete time, deterministic and non-deterministic, periodic and aperiodic, symmetric (even) and asymmetric (odd), energy and power, causal and anti-causal signal, Case study of different signals from communication and biomedical field	
	1.3	Introduction to systems: Definition, Classification of systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non-causal, stable and unstable systems., communication and control system as examples	
2		Time domain analysis of continuous time and discrete time systems	08
	2.1	Representation of systems using differential /difference equation, Impulse, step and exponential response, system stability	
	2.2	Use of convolution integral and convolution sum for analysis of LTI systems, properties of convolution integral/sum, impulse response of interconnected systems	
	2.3	Correlation and spectral Density: auto-correlation, cross correlation, analogy between correlation and convolution, energy spectral density, power spectral density, relation of ESD,PSD with auto-correlation	
3		Frequency domain analysis of continuous and discrete signals:	10
	3.1	Review of Fourier series: Trigonometric and exponential Fourier series representation of signals, Gibbs phenomenon, Discrete Time Fourier Series, properties, analogy between Continuous Time Fourier Series (CTFS) and Discrete Time Fourier Series (DTFS).	
	3.2	Fourier Transform (FT): Fourier Transform and Inverse Fourier Transform on periodic and non-periodic signals, limitations of CT/DT Fourier Transform and need for Laplace/Z Transform.	
	3.3	Overview of Laplace Transform: Need of Laplace Transform, review of unilateral and bilateral Laplace	

	Γ		r
		Transform, properties, inverse of Laplace Transform, concept	
		of Region of Convergence (ROC), poles and zeros, relation	
		between continuous time Fourier Transform and Laplace	
		Transform.	
4		Z-Transform	08
	4.1	Need of Z-Transform, definition of unilateral and bilateral Z-	
		Transform, Z-Transform of finite and infinite duration	
		sequences, properties, Inverse Z-Transform, relation between	
		discrete time Fourier Transform and Z-Transform, Z-	
		Transform of standard signals, ROC for ZT, plotting poles and	
		zeros of transfer function.	
	4.2	Analysis of discrete time LTI systems using Z-Transform:	
	1.4	Transfer Function, causality and stability of systems,	
		frequency response (impulse and step), relation between	
		Laplace Transform and Z–Transform.	
5			08
3	5.1	State Space Analysis and Realization Structures	00
	5.1	State Variable Analysis: Introduction to the notion of 'state',	
		systematic procedure for determining state equations, solution	
		of state equations using Laplace transform, definition of	
		exp(A) where A is a matrix, time domain solution of state	
		equations.	
	5.2	Systems with finite duration and infinite duration, impulse	
		response, recursive and non-recursive discrete time system,	
		realization structures: direct form–I, direct form–II, Transpose,	
		cascade, and parallel forms.	
6		Applications of Signals and Systems	06
	6.1	Signal Processing Applications: Speech and Audio	
		Processing, Multimedia (image & video) processing,	
		Underwater acoustic signal processing, Biological signal	
		analysis	
	6.2	Communication and Control System Application: Modulation	
	0	(Analog and Digital) process, Feedback/Feedforward Control	
		system	
	1		

Textbooks :

- 1. NagoorKani, "Signals and Systems", Tata McGraw Hill, Third Edition, 2011.
- 2. B.P. Lathi, "Principles of Linear Systems and Signals", Oxford, Second Edition, 2010.
- 3. S. L. Nalbalwar, A. M. Kulkarni and S. P. Sheth, "*Signals and Systems*", Synergy Knowledgeware, 2016.
- 4. Simon Haykin and Barry Van Veen, "Signals and Sytems", John Wiley and Sons, Second Edition, 2004.

Reference Books:

- 1. Hwei. P Hsu, "Signals and Systems", Tata McGraw Hill, Third edition, 2010
- 2. V. Krishnaveni and A.Rajeshwari, "Signals and Systems", Wiley-India, First Edition 2012.
- 3. Narayanalyer, "Signals and Systems", Cenage Learning, First Edition 2011.
- 4. Michael J Roberts, "*Fundamentals of Signals and systems*", Tata McGraw Hill, special Indian Economy edition, 2009.
- 5. Rodger E Ziemer, William H. Tranter and D. Ronald Fannin, "Signals and Systems", Pearson Education, Fourth Edition 2009.
- 6. Alan V. Oppenhiem, Alan S. Willsky and S. Hamid Nawab, "Signals and Systems", Prentice-Hall of India, Second Edition, 2002.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
	Principles of Communication Engineering	04			04			04		

		Examination Scheme									
Subject Code		Theory Marks									
	Subject Name	Int	ernal ass	essment		Term	Practical & Oral	Oral	Total		
				Avg. Of Test	End Sem. Work		& Oral	Orai	10141		
		Test 1	Test2		Exam						
ECC405	Principles of	20	20	20	80				100		
	Communication										
	Engineering										

Course Pre-requisite:

- Applied Maths III
- Electronic Devices and Circuits I

Course Objectives:

- 1. To introduce students to various modulation and demodulation techniques of analog communication.
- 2. To analyze different parameters of analog communication techniques.
- 3. To study pulse modulation and demodulation.

Course Outcome:

After successful completion of the course student will be able to

- 1. Use different modulation and demodulation techniques used in analog communication
- 2. Identify and solve basic communication problems
- 3. Analyze transmitter and receiver circuits
- 4. Compare and contrast design issues, advantages, disadvantages and limitations of analog communication systems

Module No.	Unit No.	Detailed Content	Hours
1		Basics of Communication System	06
	1.1	Block diagram, electromagnetic spectrum, signal bandwidth and power, types of communication channels, Introduction to time and frequency domain.	
	1.2	Types of noise, signal to noise ratio, noise figure and noise temperature, Friss transmission formula.	
2		Amplitude Modulation and Demodulation	12
	2.1	Basic concepts, signal representation, need for modulation	
	2.2	Spectrum, waveforms, modulation index, bandwidth, voltage distribution and power calculations	
	2.3	DSBFC: Principles, modulating circuits, low level and high level transmitters DSB suppressed carrier :Multiplier modulator, nonlinear modulator and switching modulator	
	2.4	Amplitude demodulation: Diode detector, practical diode detector, square law detector	
	2.5	Comparison of different AM techniques, Applications of AM and use of VSB in broadcast television	
3		Angle Modulation and Demodulation	12
	3.1	Frequency modulation (FM): Basic concept, mathematical analysis, spectrum of FM wave, sensitivity, phase deviation and modulation index, deviation and percent modulated waves, bandwidth requirement of angle modulated waves, deviation ratio, narrowband FM and wideband FM	
	3.2	Varactor diode modulator, FET reactance modulator, stabilized AFC, Direct FM transmitter, indirect FM Transmitter, noise emphasis and de-emphasis	
	3.3	Phase modulation (PM): Principle and working of transistor direct PM modulator and relationship and comparison between FM and PM	
	3.4	FM demodulation: Balance slope detector, Foster-Seely discriminator, ratio detector, FM demodulator using Phase lock loop (PLL), amplitude limiting and thresholding, comparison between FM demodulators, comparison between AM, FM and PM	
	3.5	Applications of FM and PM	

4		Radio Receivers	06
	4.1	TRF, Super - heterodyne receiver, receiver parameters and choice of IF	
	4.2	AM receiver circuits and analysis, simple AGC, delayed AGC, forward AGC, and communication receiver	
	4.3	FM receiver circuits, comparison with AM receiver	
	4.4	Single and independent sideband (SSB and ISB) receivers	
5		Analog Pulse Modulation & Demodulation	08
	5.1	Sampling theorem for low pass signal, proof with spectrum, Nyquist criteria	-
	5.2	Sampling techniques, aliasing error and aperture effect	
	5.3	PAM,PWM, PPM generation and detection	
	5.4	Applications of Pulse Communication	
6		Multiplexing & De-multiplexing	04
	6.1	Frequency Division Multiplexing transmitter & receiver block diagram	•
	6.2	Time Division Multiplexing transmitter & receiver block diagram	
	6.3	Examples and applications of FDM and TDM	

Textbooks :

- 1. Kennedy and Davis, "*Electronics Communication System*", Tata McGraw Hill, Fourth edition.
- 2. B.P. Lathi, Zhi Ding "Modern Digital and Analog Communication system", Oxford University Press, Fourth edition.
- 3. Wayne Tomasi, "Electronics Communication Systems", Pearson education, Fifth edition.

Reference Books:

- 1. Taub, Schilling and Saha, "*Taub's Principles of Communication systems*", Tata McGraw Hill, Third edition.
- 2. P. Sing and S.D. Sapre, "Communication Systems: Analog and Digital", Tata McGraw Hill, Third edition.
- 3. Simon Haykin, Michel Moher, "Introduction to Analog and Digital Communication", Wiley, Second edition.

- 4. Dennis Roddy and John Coolen, "*Electronic Communication*", Prentice Hall, Third Edition.
- 5. Louis Frenzel, "Communication Electronics", Tata McGraw Hill, Third Edition.
- 6. Roy Blake, "Electronic Communication Systems", Delmar Publication, Second edition

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned				
		Theory	Theory Practical Tutorial Theory TW/Pracs Tut					Total	
ECL401	Electronic Devices & Circuits-II Laboratory		02			1		1	

		Examination Scheme									
~ • •			The	ory Marks							
Subject Code	Subject	Internal assessment				Term	Practical	• •			
	Name	Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Term Work	& Oral	Oral	Total		
ECL401	Electronic Devices & Circuits-II Laboratory					25	25		50		

Laboratory plan

Minimum 8 practicals including minimum 2 simulations should be conducted.

Suggested list of experiments

- 1. Design and Analyze two stage BJT amplifier (Frequency response and performance parameters)
- 2. Design and Analyze two stage FET amplifier (Frequency response and performance parameters)
- 3. Design Multistage BJT amplifier and finding its parameters, Verify.
- 4. Design and Analyze Voltage series feedback amplifier using BJT/FET and verify its effect on frequency response. x
- 5. Design and Analyze Current series feedback using BJT/FET and verify its effect on frequency response.
- 6. Design Multistage JFET amplifier and finding its parameters, verify.
- 7. Design and Analyze RC Phase shift oscillator for different amplitude and frequency.
- 8. Design and Analyze Colpitt / Hartley oscillator for different amplitude and frequency.
- 9. Class C power amplifier and its efficiency

Minimum One project based on:

- 1. Simple Emergency light.
- 2. DC servo amplifier using MOSFET.
- 3. Audio tone control circuit.
- 4. Public address system.
- 5. Automatic Door Bell

- 6. Clapp Switch
- **7.** Topic related to syllabus

Note :Small project should be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects are graded from time to time. The grades will be converted to marks as per "Choice Based Credit andGrading System" manual and should be added and averaged. Based on above scheme gradingand term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total		
ECL402	Linear Integrated Circuits Laboratory		02			1		1		

		Examination Scheme									
	~ • • •		The								
Subject Code	Subject	In	Internal assessment			Term	Practical				
	Name	Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Wo Exam	Term Work	Practical & Oral	Oral	Total		
ECL402	Linear Integrated Circuits Laboratory					25	25		50		

Laboratory plan

Minimum 8 practicals including minimum 2 simulations should be conducted.

Suggested list of experiments

- 1. Discrete Differential Amplifier
- 2. Inverting, Non inverting, Buffer, Summing & Difference amplifiers
- 3. Differentiator & Integrator
- 4. Instrumentation amplifier
- 5. I to V and V to I converters
- 6. V to F and F to V convertors
- 7. Active Filters
- 8. Wien Bridge Oscillator
- 9. RC Phase shift Oscillator
- 10. Inverting & Non inverting Schmitt trigger
- 11. Square & Triangular wave generator
- 12. Precision rectifiers
- 13. Peak detector & Sample & Hold Circuits
- 14. Analog to Digital converter

- 15. Digital to Analog converter
- 16. Multivibrators using IC 555
- 17. PPM, PWM and Schmitt trigger using 555
- 18. Frequency modulatorusing VCO IC 566.
- 19. FSK DemodulatorusingPLL IC 565.
- 20. Phase detectorusing multiplier IC 534.
- 21. Sinusoidal FSK generator using XR 2206
- 22. Voltage Regulators using 78XX/79XX, 317/337, 723

Minimum One project based on:

- 1. Variable Power Supply
- 2. Data Acquisition System
- 3. Function Generator
- **4.** Topic related to syllabus

Note :Small project should be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects are graded from time to time. The grades will be converted to marks as per "Choice Based Credit andGrading System" manual and should be added and averaged. Based on above scheme gradingand term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Pracs	Tutorial	Total		
ECL403	Principles of Communication Engineering Laboratory		02			1		1		

			Examination Scheme									
	~ • •		The									
Subject	Subject	In	Internal assessment			Term	Practical					
Code	Name	Test 1	Test2	Avg. Of Test 1 and Test 2	End Sem. Exam	Term Work	& Oral	Oral	Total			
ECL403	Principles of Communication Engineering Laboratory					25	25		50			

Laboratory plan

Minimum 8 practicals including minimum 2 simulations should be conducted.

Suggested list of experiments

- 1. Generation and detection of AM (DSB-FC, DSB-SC, SSB) signal.
- 2. Generation and detection of FM signal.
- 3. Study of AM broadcast receiver (Super heterodyne).
- 4. Generation of PAM signal and verify the sampling theorem.
- 5. Generation of PPM, PWM signal.
- 6. Study of TDM and FDM multiplexing techniques.

Suggested list of Minimum projects

- 1. AM transmitter /receiver.
- 2. FM transmitter /receiver.
- 3. PAM, PPM, PWM circuits with IC 555
- 4. FM remote encoder/decoder circuits,
- 5. Transistor Intercom circuit
- 6. Walkie Talkie Circuit
- 7. Arduino based communication circuits

- 8. Electronic voting machine.
- 9. Electronic Notice Board Using Android.
- 10. Home security system.

Note :Small project should be considered as a part of term-work.

Term Work:

At least 08 Experiments including 02 simulations covering entire syllabus must be given during the "Laboratory session batch wise". Computation/simulation based experiments are also encouraged. The experiments should be students centric and attempt should be made to make experiments more meaningful, interesting and innovative. Application oriented one mini-project can be conducted for maximum batch of four students.

Term work assessment must be based on the overall performance of the student with every experiments/tutorials and mini-projects are graded from time to time. The grades will be converted to marks as per "**Choice Based Credit and Grading System**" manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

The practical and oral examination will be based on entire syllabus.

<u>AC 7/6/2014</u> Item No. 4.21

UNIVERSITY OF MUMBAI

Bachelor of Engineering Electronics and Telecommunication Engineering

Third Year Engineering

(Sem. V and Sem. VI), (Rev-2012) effective from Academic Year 2014 -15

Under FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

From Dean's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education. Semester based Credit and Grading System enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3-2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

In the process of change in the curriculum there is a limited scope to have major changes in the fundamental subjects which are mainly part of second year of engineering. The exposure to the latest technology and tools used all over the world is given by properly selecting subjects and their hierarchy in pre-final and final year. Thus this syllabus is made to groom the undergraduate students best suited and competent in all respect with best possible efforts put in by the experts in framing detail contents of individual subjects.

The engineering education in India is expanding in manifolds and the main challenge is the quality education. All the stakeholders are very much concerned about it. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner.

An engineering program must ensure that its graduates understand the basic concepts of science and mathematics have gone through one engineering field and have acquired skills for life-long learning.

An engineering program must therefore have a mission statement which is in conformity with program objectives and program outcomes that are expected of the educational process. The outcomes of a program must be measureable and must be assessed regularly through proper feedback for improvement of the programme. There must be a quality assurance process in place within the institute to make use of the feedback for improvement of the programme. The curriculum must be constantly refined and updated to ensure that the defined objectives and outcomes are achieved. Students must be encouraged to comment on the objectives and outcomes and the role played by the individual courses in achieving them. In line with this Faculty of Technology, University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, the Chairman, Board of Studies in Electronics and Telecommunication Engineering University of Mumbai, am happy to state that, heads of the department and senior faculty from various Institutes took timely and valuable initiative to frame Program Educational Objectives as listed below.

- To provide students with a strong foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.
- To prepare students to demonstrate an ability to identify, formulate and solve electronics and telecommunication engineering problems.
- To prepare students to demonstrate ability to design electrical and electronics systems and conduct experiments, analyze and interpret data.
- To prepare students to demonstrate for successful career in industry to meet needs of Indian and multi-national companies.
- To develop the ability among students to synthesize data and technical concepts from applications to product design.
- To provide opportunity for students to work as part of teams on multidisciplinary projects.
- To promote awareness among students for the life-long learning and to introduce them to professional ethics and codes of professional practice.

These are the suggested and expected main objectives and individual affiliated institute may add further in the list. In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

At the end, I must extend my gratitude to all the experts who contributed to make curriculum competent at par with latest technological development in the field of Electronics and Telecommunication Engineering.

Dr. Udhav Bhosle Chairman, Board of Studies in Electronics and Telecommunication Engineering

SEMESTER V

Course	Course Name	Teach	ing Scheme	e (Hrs.)		Credits A	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC501	Microcontrollers and	04			04			04
	Applications							
ETC502	Analog Communication	04			04			04
ETC503	Random Signal	04		01	04		01	05
	Analysis							
ETC504	RF Modeling and	04			04			04
	Antennas							
ETC505	Integrated Circuits	04			04			04
ETS506	Business		04 *			02		02
	Communication and							
	Ethics							
ETL501	Microcontrollers and		02			01		01
	Applications Laboratory							
ETL502	Communication		02			01		01
	Engineering Laboratory							
	Ι							
ETL503	Communication		02			01		01
	Engineering Laboratory							
	II							
ETL504	Mini Project I		02			01		01
Total		20	12	01	20	06	01	27

* Out of 4 hours, 2 hours class wise theory and 2 hours batch wise practical

Course	Course Name			Ex	aminati	on Schei	ne		
Code			Theo	ry Marks		Term	Practical	Oral	Total
		Inter	rnal ass	essment	End	Work	and Oral		
		Test	Test	Ave. of	Sem.				
		1	2	Test 1 &	Exam				
				Test 2					
ETC501	Microcontrollers and	20	20	20	80				100
	Applications								
ETC502	Analog Communication	20	20	20	80				100
ETC503	Random Signal Analysis	20	20	20	80	25			125
ETC504	RF Modeling and Antennas	20	20	20	80				100
ETC505	Integrated Circuits	20	20	20	80				100
ETS506	Business Communication					50			50
	and Ethics								
ETL501	Microcontrollers and					25	25		50
	Applications Laboratory								
ETL502	Communication					25	25		50
	Engineering Laboratory I								
ETL503	Communication					25	25		50
	Engineering Laboratory II								
ETL504	Mini Project I					25	25		50
Total		100	100	100	400	175	100		775

TE Electronics and Telecommunication Engineering (R 2012)

SEMESTER VI

Course	Course Name	Teach	ing Scheme	e (Hrs.)		Credits As	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC601	Digital Communication	04			04			04
ETC602	Discrete Time Signal	04			04			04
	Processing							
ETC603	Computer Communication	04			04			04
	and Telecom Networks							
ETC604	Television Engineering	04			04			04
ETC605	Operating Systems	04			04			04
ETC606	VLSI Design	04			04			04
ETL601	Discrete Time Signal		02			01		01
	Processing Laboratory							
ETL602	Communication		02			01		01
	Engineering Laboratory III							
ETL603	Communication		02			01		01
	Engineering Laboratory IV							
ETL604	Mini Project II		02			01		01
Total		24	08		24	04		28

Course	Course Name			Ι	Examinatio	on Schem	e		
Code			The	ory Marks		Term	Practical	Oral	Total
		Inte	rnal asso	essment	End	Work	And		
		Test	Test	Ave. of	Sem.		Oral		
		1	2	Test 1 &	Exam				
				Test 2					
ETC601	Digital Communication	20	20	20	80				100
ETC602	Discrete Time Signal	20	20	20	80				100
	Processing								
ETC603	Computer	20	20	20	80				100
	Communication and								
	Telecom Networks								
ETC604	Television Engineering	20	20	20	80				100
ETC605	Operating Systems	20	20	20	80				100
ETC606	VLSI Design	20	20	20	80				100
ETL601	Discrete Time Signal					25	25		50
	Processing Laboratory								
ETL602	Communication					25	25		50
	Engineering Laboratory								
	III								
ETL603	Communication					25	25		50
	Engineering Laboratory								
	IV								
ETL604	Mini Project II					25	25		50
Total		120	120	120	480	100	100		800

Course	Course Name	Te	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/ Practical	Tutorial	Total	
ETC501	Microcontroller & Applications	04			04			04	

Course	Course Name				Examination S	Scheme			
Code				Theory Ma	rks	Term	Practical	Oral	Total
		Inte	rnal ass	sessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1					
				and					
				Test 2					
ETC501	Microcontroller	20	20	20	80	-	-	-	100
	& Applications								

Course Pre – requisite:

- ETC303: Digital electronics
- ETC403: Microprocessor and Peripherals

Course Objectives:

- To develop background knowledge and core expertise of microcontroller.
- To know the importance of different peripheral devices and their interfacing to microcontrollers.
- To know the design aspects of microcontrollers.
- To write assembly language programs of microcontrollers for various applications.

Course Outcomes: At the end of course, a student will be able to

- Draw and describe architecture of 8051 and ARM7 microcontroller.
- Interface various peripheral devices to the microcontrollers.
- Write assembly language program for microcontrollers.
- Design microcontroller based system for various applications.

Module No.		Topics	Hrs
1.	8051 N	Microcontroller	12
	1.1	Comparison between Microprocessor and Microcontroller	
	1.2	Features, architecture and pin configurations	
	1.3	CPU timing and machine cycle	
	1.4	Input / Output ports	
	1.5	Memory organization	
	1.6	Counters and timers	
	1.7	Interrupts	
	1.8	Serial data input and output	
2.	8051 A	Assembly Language Programming.	
	2.1	Instruction set	08
	2.2	Addressing mode	
	2.3	Assembler directives	
	2.4	Programs related to: arithmetic, logical, delay, input, output port, serial	
	-	communication, and interrupts	
3	8051 I	nterfacing and Applications	12
	3.1	Interfacing of display: LED, LCD, and seven segment display	
	3.2	Keyboard Interfacing	
	3.3	Interfacing of ADC and DAC (0808/09)	
	3.4	Stepper motor and relay	
	3.5	Connection to RS 232 for serial communication	
	3.6	Manual and auto reset	
	3.7	IR based wireless communication system design	
4		ARM7: A 32-bit Microcontroller	08
	4.1	The RISC design philosophy	
	4.2	Concept of Cortex-A, the Cortex-R, and the Cortex-M	
	4.3	Features of ARM Microcontroller	
	4.4	Operating modes	
	4.5	Architecture (ARM core dataflow model)	
	4.6	Registers	
	4.7	Current program status register	
	4.8	Pipeline	
	4.9	Exceptions, interrupt and vector table	
	4.0	Memory management	
	4.11	ARM7 processor families	
5		ARM7 Programming	08
	5.1	Instruction set for data processing, branching, load-store, software interrupt,	
		and program status register	
	5.2	Addressing modes	
	5.3	Programming for ARM7	1
6		Introduction to Embedded Systems	04
	6.1	Concepts of embedded systems	1
	6.2	Optimizing design matrices and common design matrices	1
	6.3	Study of embedded systems 1) Digital camera 2) Stepper motor controller	
	1	Total	52

Recommended Books:

- 1. M. A. Mazidi, J. G. Mazidi and R. D. Mckinlay, "*The 8051 Microcontroller & Embedded systems*", Pearson Publications, Second Edition 2006.
- 2. C. Kenneth J. Ayala and D. V. Gadre, "The 8051 Microcontroller & Embedded system using assembly & 'C' ", Cengage Learning, Edition 2010.
- 3. Satish Shah, "The 8051 Microcontrollers", Oxford publication first edition 2010.
- 4. Andrew Sloss, Dominic Symes, and Chris Wright, "ARM System Developer's Guide" Morgan Kaufmann Publishers, First Edition 2004.
- 5. James A. Langbridge, "*Professional Embedded Arm Development*", Wrox, John Wiley Brand& Sons Inc., Edition 2014
- 6. Frank Vahid& tony Gavages "*Embedded system design A unified hardware / software introduction*", Wiley publication, Third edition 2002.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course Name	Te	Teaching Scheme			Credits Assigned			
Code		Theory	heory Practical Tutorial Th			TW/Practical	Tutorial	Total	
ETC502	Analog	04			04			04	
	Communication								

Course	Course Name				Examination	on Scheme				
Code			Т	heory Mar	ks	Term	Practical	Oral	Total	
		Inte	Internal assessment End Sem.			Work				
		Test	Test	Ave. Of	Exam					
		1	2	Test 1						
				and						
				Test 2						
ETC502		20	20	20	80	-	-	-	100	
	Communication									

Course Pre-requisite:-

- ETC302: Analog Electronics-I
- ETC405: Signals and Systems

Course Objective: To teach students

- The fundamentals of basic communication system.
- Various modulation and demodulation techniques used in analog communication, noise handling and multiplexing.
- The working principles of transmitters and receivers used in analog communication systems.

Course Outcomes: After successful completion of the course students will able to

- The different modulation and demodulation techniques used in analog communication.
- Identify and solve basic communication problems, analyze transmitter and receivers.
- Detect the errors that occur due to noise during transmission.
- Compare and contrast advantages and limitations of analog communication systems.

Module No.		Topics	Hrs			
1		Basics of Communication System	04			
	1.1	Block diagram, electromagnetic spectrum, signal bandwidth and power, types of communication channels				
	1.2	Types of noise, signal to noise ratio, noise figure, and noise temperature	-			
2	1.2	Amplitude Modulation and Demodulation	12			
-	2.1	Basic concept, signal representation, need for modulation				
	2.2	Spectrum, waveforms, modulation index, bandwidth, voltage distribution, and power calculation	-			
	2.3	DSBFC : Principles, modulating circuits, low level and high level transmitters DSB suppressed carrier :- Multiplier modulator, nonlinear modulator, and switching modulator, Single Side Band (SSB):- Principle, Filter method, phase shift method and third method				
		Quadrature amplitude modulation (QAM), Independent sideband (ISB) and Vestigial Side Band (VSB) principles and transmitters				
	2.4	Amplitude demodulation: Diode detector, practical diode detector, and square law detector.				
	2.5	Applications of AM and use of VSB in broadcast television				
3		Angle Modulation and Demodulation	14			
	3.1	Frequency modulation (FM): Basic concept, mathematical analysis, frequency spectrum of FM wave, sensitivity, phase deviation and modulation index, frequency deviation and percent modulated waves, bandwidth requirement of angle modulated waves, deviation ratio, narrow Band FM, and Wide Band FM.				
	3.2	Varactor diode modulator, FET reactance modulator, stabilized reactance modulator- AFC, Direct FM transmitter, indirect FM Transmitter, noise triangle in FM, pre- emphasis and de-emphasis.				
	3.3	Phase modulation (PM): P rinciple and working of Transistor direct PM modulator and relationship and comparison between FM and PM				
	3.4	FM demodulation: Balance slope detector, Foster-Seely discriminator, ratio detector, Phase lock loop(PLL) FM demodulator, amplitude limiting and thresholding, comparison between FM demodulators, comparison between AM, FM and PM.				
	3.5	Applications of FM and PM				
4		Radio Receivers	10			
	4.1	TRF, Super-heterodyne receiver, receiver parameters, and choice of IF.	-			
	4.2	AM receiver circuits and analysis, simple AGC, delayed AGC, forward AGC, and communication receiver				
	4.3	FM receiver circuits, comparison with AM receiver				
	4.4	Single and independent sideband (SSB and ISB) receivers	04			
5						
	5.1	Theorem for low pass and band pass signals, proof with spectrum, Nyquist criteria	-			
	5.2	Sampling techniques, aliasing error, and aperture effect				
6		Pulse Modulation and Demodulation	08			
U	6.1	PAM, PWM, PPM generation and detection	4			
0		Data modulation adaptive data modulation principle concretion and detection				
0	6.2	Delta modulation, adaptive delta modulation, principle, generation and detection				
Ū	6.2 6.3	TDM and FDM basic concepts and block diagram Applications of pulse communication				

TE Electronics and Telecommunication Engineering (R 2012)

2) Page 11

Recommended Books:

- 1. WayneTomasi, "Electronics Communication Systems", Pearson education, Fifth edition.
- 2. Kennedy and Davis, "*Electronics Communication System*", Tata McGraw Hill, Fourth edition.
- 3. B.P. Lathi, Zhi Ding, "Modern Digital and Analog Communication system", Oxford University Press, Fourth edition
- 4. Taub, Schilling and Saha, "*Taub's Principles of Communication systems*", Tata McGraw Hill, Third edition.
- 5. P. Sing and S.D. Sapre, "Communication Systems: Analog and Digital", Tata McGraw Hill, Third edition.
- 6. Simon Haykin, Michel Moher, "Introduction to Analog and Digital Communication", Wiley, Second edition.
- 7. Dennis Roddy and John Coolen, "*Electronic Communication*", Prentice Hall, Third Edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course	Te	aching Sch	eme	Credits Assigned				
Code	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC503	Random	04		01	04		01	05	
	Signal								
	Analysis								

Course	Course				Examination Sc	heme			
Code	Name			Theory Marl	KS	Term	Practical	Oral	Total
		In	ternal a	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC503	Random	20	20	20	80	25	-	-	125
	Signal								
	Analysis								

Course Pre – requisite:

- ETC 405: Signals and Systems
- ETC 401: Applied Mathematics IV

Course Objective: To teach students

- Random Variables and Random Process
- The design of the systems which involves randomness using mathematical analysis and computer simulations.

Course Outcome : At the end of the course, students will able to

- Apply theory of probability in identifying and solving relevant problems.
- Define and differentiate random variables and vector through the use of cumulative distribution function (CDF), probability density function (PDF), probability mass function (PMF) as well as joint, marginal and conditional CDF, PDF and PMF.
- Show probability and expectation computations using important discrete and continuous random variable types.
- Define and specify random processes and determine whether a given process is stationary or wide sense stationary.
- Determine the response of a linear time invariant system to such a random process.
- Describe basic concepts related to Markov chains and queuing theory and relate it to seal world applications.

Module No.		Overview of Probability Theory and Basics of Random Variables	Hrs
1	1.1	Sample space, events, set operations, the notion and axioms of probability.	10
-	1.2	Conditional probability, Joint probability, Baye's rule, Independence of events,	
		Sequential Experiments.	
	1.3	Notion of random variable.	
	1.4	Continuous random variables, probability density function, probability distribution	
		function, Uniform, Exponential and Gaussian continuous random variables and	
		distributions.	
	1.5	Discrete random variables, probability mass function, probability distribution	
		function, binomial, Poisson and geometric discrete random variables and	
		distributions	
2		Operations on One Random Variable	07
-	2.1	Functions of a random variable and their distribution and density functions.	0.
	2.2	Expectation, Variance and Moments of random variable.	
	2.2	Transformation of a random variable, Markov, Chebyshev and Chernoff bounds,	
	2.3	characteristic functions, moment theorem	
3		Multiple of Random Variables And Convergence	08
5	3.1	Vector random variables, Pairs of random variables, Joint CDF, Joint PDF	00
	3.1	Independence, Conditional CDF and PDF, Conditional Expectation	
	3.2	One function of two random variable, two functions of two random variables; joint	
	3.2	moments, joint characteristic function, covariance and correlation-independent,	
		uncorrelated and orthogonal random variables.	
4		Sequence Of Random Variables And Convergence:	05
-	4.1	Random sequences, Limit theorems; Strong and weak laws of large numbers,	03
	4.2	Central limit theorem and its significance.	
5		Random Process	10
5	5.1	Random process: Definition, realizations, sample paths, discrete and continuous	10
	5.1	time processes	
	5.2	Probabilistic structure of a Random process; mean, correlation and covariance	
	3.2	functions, stationarity of random process.	
	5.3	Ergodicity, Transmission of WSS random process through LTI system	
	5.4	Spectral analysis of random processes, power density spectrum bandwidth, cross-	
	5.4	power density spectrum.	
	5.5	Gaussian and Poisson random process	
6	5.5	Markov Chains And Introduction To Queuing Theory	12
U	6.1	Markov chans And Infoduction To Queung Theory Markov processes	14
	6.2	Discrete Markov chains, The n-step transition probabilities, steady state	
	0.2	probabilities.	
	6.3	Introduction to Continuous time Markov chains.	
	6.4	Classifications of states.	
	6.5	Markovian models	
	6.6	Birth and death queuing models	
	6.7	Steady state results	
	6.8	Single and Multiple server Queuing models	
	6.9	Finite source models	
	6.10	Little's formula	
		Total	52

- 1. Alberto Leon Garcia, "*Probability And Random Processes For Electrical Engineering*", second edition Low price edition Pearson education.
- 2. Miller, "Probability And Random Processes-With Applications to Signal Processing and Communication", first edition 2007, Elsevier.
- 3. Papoulis and S. Unnikrishnan Pillai, "*Probability, Random Variables and Stochastic Processes*," Fourth Edition, McGraw Hill.
- 4. H. Stark and J. Woods, "Probability and Random Processes with Applications to Signal Processing," Third Edition, Pearson Education.
- 5. Hwei Hsu, "Probability Random Variable,s Random Process, Schaulm's Outlines, Tata McGraw Hill, 2004.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total	
						Practical			
ETC504	RF Modeling and Antennas	04			04			04	

Course	Course Name				Examination	Scheme				
Code				Theory Mar	ks	Term	Practical	Oral	Total	
		Int	ernal as	ssessment	End Sem.	Work				
		Test	Test	Ave. Of	Exam					
		1	2	Test 1 and						
				Test 2						
ETC504	RF Modeling	20	20	20	80	-	-	-	100	
	and Antennas									

Course Pre – requisite: : ETC 404: Wave Theory and Propagation

Course Objective: To teach students

- Design of different types of passive filters used for radio frequency application.
- Radiation phenomena and pattern of various antennas.
- The various characteristics of different types of antennas.

Course Outcome: On Completion of this course Student will be able to

- Analyze and design RF Filters
- Analyze the radiation mechanisms of antennas
- Demonstrate knowledge of antennas in communication systems. Ability to discriminate between antennas on the basis of their electrical performance.
- Discriminate various antennas on the basis of their electrical performance.

Module No.		Topics	Hr
1.		Behavior of Active and Passive Components in RF range	04
	1.1	Frequency Spectrum, hazards of Electromagnetic Radiations, and fundamentals of radio frequency design	-
	1.2	High Frequency behavior, equivalent circuit and frequency response of resistor, capacitor, inductor, diode, BJT, and FET	
	1.3	Characteristics, structure and applications of coaxial line, stripline, microstrip line, and coplanar lines	
2		Filter Design	12
	2.1	Analysis of infinite periodic structures terminated Periodic structures, k - β diagrams and wave velocities.	
	2.2	Image Parameter Method: Image impedances and transfer functions for two port networks, constant-k filter sections, m-derived filter sections, and composite filters	
	2.3	Insertion Loss Method: Characterization by power loss ratio, maximally flat, equal ripple, and linear phase low pass filter prototype.	
	2.4	Filter transformations: impedances, frequency scaling, and band pass and band stop]
	2.5	Richard's transformation, Kuroda's identity, impedance, and admittance inverters	
3		Fundamentals of Antenna	1
	3.1	Conceptual understanding and radiation mechanism]
	3.2	Fundamental Parameters of Antennas: Radiation pattern, radiation power density, radiation intensity, beam width, directivity, antenna efficiency, gain, beam efficiency, bandwidth, input impedance, antenna radiation efficiency, antenna vector effective length and equivalent areas, maximum directivity and maximum effective areas.	
	3.3	Friss transmission equation, antenna temperature	
	3.4	Vector potential A for an electric current source J , vector potential F for an magnetic current source M , electric and magnetic fields for electric J and Magnetic M current sources, and concept of near and far field radiation.	
4		Wire Antennas	1
4	4.1	Infinitesimal dipole and small dipole: Radiation field, near field, far field directivity, region separation	
	4.2	Finite Length dipole: Basic parameters of half wavelength dipole, folded dipole	
	4.3	Monopole antenna	
	4.4	Ground Effects	
	4.5	Linear elements near or on infinite perfect conductors	
	4.6	Loop antennas: Basic parameters	
5		Antenna Arrays:	0
	5.1	Linear arrays, planner arrays, and circular arrays]
	5.2	Array of two isotropic point sources, non-isotropic sources]
	5.3	Principle of pattern multiplication,	
	5.4	Linear arrays of n elements, broadside, radiation pattern, directivity, beam width and null directions, array factor	
	5.5	Antenna analysis using Binomial, Dolph-Tschebyscheff, Yagi Uda antenna	
6		Special types of antennas	0
	6.1	Frequency Independent Antennas: Log periodic and helical antennas Microstrip Antennas: Characteristics, applications and limitations	-
	6.2	Reflector Antennas and Horn Antennas: Characteristics, applications and limitations	
		Total	5

TE Electronics and Telecommunication Engineering (R 2012) Page 17

- 1. David M Pozar, "*Microwave Engineering*", John Wieley and Sons, Inc. Hobokenh, New Jersey, Fourth Edition, 2012
- 2. Costantine A. Balanis, "Antenna Theory Analysis And Design", John Wiley Publication
- 3. John D. Kraus, "Antennas", Tata McGraw Hill publication
- 4. Annapurna Das and Sisir K Das, "*Microwave Engineering*", Tata McGraw Hill,New Delhi, Second Edition, 2009
- 5. Reinhold Ludwig and Pavel Bretchko, "RF Circuit Design", Pearson Education Asia.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Te	eaching Sche	eme	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC505	Integrated	04			04			04	
	Circuits								

Course	Course				Examination	Scheme			
Code	Name]	Fheory Marks		Term	Practical	Oral	Total
		In	ternal a	ssessment	End Sem.	Work			
		Test	Test	Avg. of Test	Exam				
		1	2	1 and Test 2					
ETC505	Integrated	20	20	20	80				100
	Circuits								

Course Pre-requisite:

- FEC105: Basic Electrical & Electronics Engineering
- ETC302: Analog Electronics-I
- ETC303: Digital Electronics
- ETC402: Analog Electronics-II

Course Objectives: To teach students

- Fundamentals of analog and digital integrated circuits.
- Design methodologies using practical integrated circuits.
- The application areas of integrated circuits.

Course Outcomes: After successful completion of the course student will be able to

- Understand the fundamentals and areas of applications for the Integrated Circuits.
- Analyze important types of integrated circuits of day-to-day requirements.
- Demonstrate the ability to design practical circuits that perform the desired operations.
- Understand the differences among theoretical, practical & simulated results in integrated circuits.
- Choose the appropriate integrated circuit modules to build a given application.

Module No.		Topics	Hrs.
1.		Review of Operational Amplifier	04
	1.1	Operational amplifier overview: parameters, open loop and closed loop	
		configurations	
2		Applications of Operational Amplifier	12
	2.1	Amplifiers: Current amplifier, difference amplifier, instrumentation amplifier,	
		and programmable gain amplifier	
	2.2	Converters: Current to voltage converters, voltage to current converters,	
		generalized impedance converter, voltage to frequency converter, frequency to	
		voltage converter, logarithmic converters and antilog converters	
	2.3	Active Filters: Second order active finite and infinite gain low pass, high pass,	
		band pass and band reject filters	
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator,	
	2.4	Quadrature oscillator	
3			10
3	3.1	Non-Linear Applications of Operational AmplifierComparators: Inverting comparator, non-inverting comparator, zero crossing	10
	3.1	detector, window detector and level detector	
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger, and	
	3.2	adjustable threshold levels	
	3.3	Waveform Generators: Square wave generator, triangular wave generator, and	
	5.5	duty cycle modulation	
	3.4	Precision Rectifiers: Half wave, full wave, and applications	
	3.5	Peak detectors, sample and hold circuits	
4	5.5	Special Purpose Integrated Circuits	08
-	4.1	Functional block diagram, working, design and applications: Timer 555	00
	4.2	Functional block diagram, working and applications: VCO 566, PLL 565,	
	7.2	multiplier 534, waveform generator XR 2206, power amplifier LM380	
5		Voltage Regulators	08
J	5.1	Functional block diagram, working and design of three terminal fixed (78XX,	00
	5.1	79XX series) and three terminal adjustable (LM 317, LM 337) voltage regulators.	
	5.2	Functional block diagram, working and design of general purpose 723 (LVLC,	
	3.2	LVHC, HVLC and HVHC) with current limit and current fold-back protection,	
		Switching regulator topologies, Functional block diagram and working of LT1070	
		monolithic switching regulator	
6		Counters, Shift Registers and ALU (Logic Diagram and applications)	10
U	6.1	MSI Counters: Ripple counters (7490 decade, 7492 modulus-12, 7493 4-	Ĩ
	0.1	bitbinary), synchronous counters (74162 decade, 74163 4-bit binary, 74169 4-bit	
		up/down binary)	
	6.2	MSI Shift Registers: 74164 serial input parallel output, 74166 parallel input	
	0.4	serial output, 74191 serial input serial output, 74194 universal shift register	
	6.3	Arithmetic Logic Unit: 74181 ALU	
	0.0	Total	52

- 1. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Tata McGraw Hill, 3rd Edition
- 2. John F. Wakerly, "Digital Design Principles & Practices", Pearson Education, 3rd Edition
- 3. J. Millman and A. Grabel, "*Microelectronics*", Tata McGraw Hill, 2nd Edition.
- 4. D. Roy Choudhury and S. B. Jain, "*Linear Integrated Circuits*", New Age International Publishers, 4th Edition
- 5. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition
- 6. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition
- 7. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition
- 8. J. G. Graeme, G. E. Tobey and L. P. Huelsman, "*Operational Amplifiers- Design & Applications*", New York: McGraw-Hill, Burr-Brown Research Corporation

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Te	Teaching Scheme			Credits Assigned			
Code		Theory	Theory Practical Tutorial			TW/Practical	Tutorial	Total	
ETS506	Business		2 + 2			02		02	
	Communication								
	and Ethics								

Course	Course Name				Examinatio	n Schem	e		
Code			r	Theory Ma	arks	Term	Practical	Oral	Total
		Inter	rnal ass	essment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1					
				and					
				Test 2					
ETS506	Business					50			50
	Communication								
	and Ethics								

Course Pre-requisite : FEC206 Communication Skills

Course Objective :

- To inculcate in students professional and ethical attitude, effective communication skills, teamwork, multidisciplinary approach and an ability to understand engineer's social responsibilities.
- To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
- To inculcate professional ethics and codes of professional practice and leadership.
- To prepare students for successful careers that meets the global Industrial and Corporate requirement' provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.

Expected Outcomes

After completion of this course students will be able to:

- Communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities
- Participate and succeed in Campus placements and competitive examinations like GATE, CET.
- Possess entrepreneurial approach and ability for life-long learning.
- Have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.

Module	Unit	Topics	Hrs
No.	No.		
1.0	1.0	Report Writing	08
	1.1	Objectives of report writing	
	1.2	Language and style in a report	
	1.3	Types of reports	
	1.4	Formats of reports: Memo, letter, project and survey based	
2.0	2.0	Technical Proposals	02
	2.1	Objective of technical proposals	
	2.2	Parts of proposal	
3.0	3.0	Introduction to Interpersonal Skills	08
	3.1	Emotional Intelligence	_
	3.2	Leadership	
	3.3	Team building	
	3.4	Assertiveness	
	3.5	Conflict Resolution	
	3.6	Negotiation Skills	
	3.7	Motivation	
	3.8	Time Management	
4.0	4.0	Meetings and Documentation	02
	4.1	Strategies for conducting effective meetings	
	4.2	Notice	
	4.3	Agenda	
	4.4	Minutes of the meeting	
5.0	5.0	Introduction to Corporate Ethics and etiquettes	02
	5.1	Business meeting etiquettes, interview etiquettes, professional	
		and work etiquettes, social skills	
	5.2	Greetings and art of conversation	
	5.3	Dressing and grooming	
	5.4	Dinning etiquette	
	5.5	Ethical codes of conduct in business and corporate activities	
		(Personal ethics, conflicting values, choosing a moral response,	
		the process of making ethical decisions)	
6.0	6.0	Employment Skills	06
	6.1	Cover letter	
	6.2	Resume	
	6.3	Group Discussion	
	6.4	Presentation Skills	
	6.5	Interview Skills	
		Total	28

Reference Books:

- 1. Fred Luthans, "Organisational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "*Personal Development for Life and Work*", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", McGraw Hill, edition
- 6. R.C Sharma and Krishna Mohan, "Business Correspondence and Report Writing"
- B N Ghosh, "Managing Soft Skills for Personality Development", Tata McGraw Hill.Lehman, Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 8. Bell . Smith,"Management Communication" Wiley India edition, 3rd edition.

Internal Assessment (IA):

There will be no IA written examination

End Semester Examination:

There will be no ESE written examination.

List of assignments:

Term work shall consist of assignments as listed below:

- 1. Report writing (Synopsis or the first draft of the Report)
- 2. Technical Proposal (Group activity, document of the proposal
- 3. Interpersonal Skills (Group activity and Role play)
- 4. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 5. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 6. Corporate ethics and etiquettes (case study, Role play)
- 7. Cover Letter and Resume Printout of the Power Point presentation

The distribution of marks for term work shall be as follows.

- 1. Assignments 20 marks
- 2. Project Report Presentation 15 marks
- 3. Group Discussion 10 marks
- 4. Attendance 5 marks

At least total 08 assignments, project report presentation and group discussion covering entire syllabus must be given during the batch wise practical. The assignments and project work should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment / project / group discussion graded from time to time. The average of grades converted in to marks should be taken into account for term work assessment.

Course	Course Name	Te	aching Sch	eme	Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ETL501	Microcontrollers		02			01		01
	and Applications							

Course	Course Name				Examinatio	on Schem	ie		
Code]	Theory Ma	rks	Term	Practical	Oral	Total
		Inter	rnal ass	essment	End Sem.	Work	and		
		Test Test Ave. Of			Exam		Oral		
		1	2	Test 1					
				and					
				Test 2					
ETL501	Microcontrollers					25	25	-	50
	and								
	Applications								

At least ten experiments covering entire syllabus of ETC501 Microcontrollers and Applications should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and averaged. Based on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus.

Course	Course Name	Te	eaching Scher	ne		Credits Assi	gned	
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ETL502	Communication		02			01		01
	Engineering							
	Laboratory I							

Course	Course Name				Examination S	Scheme			
Code				Theory Mark	s	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem.	Work	and		
		Test	Test	Ave. Of	Exam		Oral		
		1	2	Test 1 and					
				Test 2					
ETL502	Communication					25	25	-	50
	Engineering								
	Laboratory I								

At least ten experiments covering entire syllabus of ETC502: Analog Communication should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Based on above scheme grading and term work assessment should be done.

Practical and oral examination will be based on entire syllabus.

Course	Course Name	Tea	ching Sche	me	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETL503	Communication		02			01		01	
	Engineering								
	Laboratory II								

Course	Course Name				Examinatio	n Scheme			
Code			r	Fheory Mark	S	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem.	Work	and Oral		
		Test Test Ave. Of			Exam				
		1	2	Test 1 and					
				Test 2					
ETL503	Communication					25	25	-	50
	Engineering								
	Laboratory II								

At least ten experiments covering entire syllabus for ETC 504: RF Modeling and antenna and ETC 505: Integrated circuits should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Based on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus.

ſ	Course Code	Course Name	Teaching Scheme				Credits Assi	gned	
			Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total
	ETL504	Mini Project 1		02			01		01

Course	Course Name		Examination Scheme									
Code				Theory Marks	Term	Practical	Total					
		Ir	nternal a	assessment	Work	and						
		Test	Test	Ave. Of Test	Exam		Oral					
		1 2 1 and										
				Test 2								
ETL504	Mini Project 1					25	25	50				

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The students undergo various laboratory/tutorial/simulation laboratory/work shop courses in which they do experimentation based on the curriculum requirement. The Mini Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group

The group may be maximum **four** (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The final examination will be based on demonstration in front of internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed.

The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Mini Projects.

Course Code	Course Name	Te	aching Sche	eme		Credits Assi	gned	
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ETC601	Digital	04			04			04
	Communication							

Course	Course Name				Examination	Scheme			
Code				Theory Mar	ks	Term	Practical	Oral	Total
		Internal assessment End Ser				Work			
		Test Test Ave. Of			Exam				
		1 2 Test 1							
			and						
		Test 2							
ETC601	Digital	20	20	20	80	-	-	-	100
	Communication								

Pre-requisite:

- ETC405 Signal and System,
- ETC502 Analog Communication,
- ETC503 Random Signal Analysis

Course Objective:

- Aim is to identify the functions of different components
- Learn about theoretical bounds on the rates of digital communication system and represent a digital signal using several modulation methods
- Draw signal space diagrams, compute spectra of modulated signals and apply redundancy for reliable communication.

Course Outcome: At the end of course, student will be able to :

- Understand the basics of information theory and coding techniques.
- Determine the minimum number of bits per symbol required to represent the source and the maximum rate at which a reliable communication can take place over the channel.
- Describe and determine the performance of different waveform techniques for the generation of digital representation of signals.
- Determine methods to mitigate inter symbol interference in baseband transmission system.
- Describe and determine the performance of different error control coding schemes for the reliable transmission of digital representation of signals and information over the channel.
- Understand various spreading techniques and determine bit error performance of various digital communication systems.

Module		Topics	Hrs.
No.			
1.		Information theory and source coding	6
	1.1	Block diagram and sub-system description of a digital communication system,	
		measure of information and properties, entropy and it's properties	
	1.2	Source Coding, Shannon's Source Coding Theorem, Shannon-Fano Source Coding,	
		Huffman Source Coding	
	1.3	10, 5	
		capacity, channel coding theorem, channel capacity theorem	
2		Baseband Modulation and Transmission	6
	2.1	Discrete PAM signals and it's power spectra	
	2.2	Inter-symbol interference, Nyquist criterion for zero ISI, sinusoidal roll-off filtering,	
		correlative coding, equalizers, and eye pattern	
3		Base band Detection	5
	3.1	Orthogonality, representation of signals	
	3.2	Maximum likelihood decoding	
	3.3	Correlation receiver, equivalence with matched filter	
4	0.0	Bandpass Modulation and Demodulation	12
-	4.1	Bandpass digital transmitter and receiver model, digital modulation schemes	
	4.2		-
		probability of error analysis of:	
		Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary	
		Phase Shift Keying (BPSK) Modulation, Quaternary Phase Shift Keying QPSK), M-	
		ary PSK Modulations, Quadrature Amplitude Modulation (QAM), Minimum Shift	
		Keying (MSK)	
	4.3	Comparison between bandwidth and bit rate, applications of digital modulation	
	-112	schemes	
5		Error Control Systems	10
C C	5.1	Types of error control, error control codes, linear block codes, vector spaces vector	10
	5.1	sub spaces, generator matrix, systematic linear block codes, parity check matrix,	
		syndrome testing ,error correction, and decoder implementation	
	52	Cyclic codes: Algebraic structure of cyclic codes, binary cyclic code properties,	
	5.2	encoding in systematic form, circuits for dividing polynomials, systematic encoding	
		with shift register and error detection	
	5.3	Convolution Codes: Time domain and transform domain approach, graphical	7
	5.5	representation, code tree, trellis, state diagram, decoding methods, maximum	
		likelihood decoding, and free distance	
	5.4		
	5.4	Viterbi decoding, hard decision viterbi decoding , decoding window, soft decision Viterbi decoding, code spectra, recursive systematic codes, code transfer function,	
		and application areas	
6			6
6	6.1	Spread Spectrum Spread Spectrum (SS) concept, PN Sequences, Direct Sequence(DS), Frequency	6
	0.1		
	()	Hopping (FH), and Time Hopping	-
	6.2		
		Coherent BPSK, Processing Gain, Probability of Error of FHSS Transmitter and	
		FHSS Receiver	=-
		Total	52

TE Electronics and Telecommunication Engineering (R 2012)

- 1. Sklar B, and Ray P. K., "Digital Communication: Fundamentals and applications," Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 2. Haykin Simon, "Digital Communication Systems," John Wiley and Sons, New Delhi, Forth Edition, 2014.
- 3. H. Taub, D. Schlling, and G. Saha, "*Principles of Communication Systems*," Tata Mc-Graw Hill, New Delhi, Third Edition, 2012.
- 4. Lathi B P, and Ding Z., "*Modern Digital and Analog Communication Systems*," Oxford University Press, Forth Edition, 2009.
- 5. T L Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 6. P Ramakrishna Rao, "Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 7. M F Mesiya, "Contempory Communication systems", Mc-Graw Hill, Singapore, First Edition, 2013.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Te	eaching Sch	eme		Credits Assi	igned	
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ETC602	Discrete Time Signal Processing	04			04			04

Course	Course				Examination S	Scheme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC602	Discrete	20	20	20	80	-	-	-	100
	Time Signal								
	Processing								

Course Prerequisite: ETC 405: Signals and System

Course Objectives:

- To develop a thorough understanding of the central elements of discrete time signal processing theory and the ability to apply this theory to real-world signal processing applications.
- Use z-transforms and discrete time Fourier transforms to analyze a digital system.
- Understand the discrete Fourier transform (DFT), its applications and its implementation by FFT techniques.
- Design and understand finite & infinite impulse response filters for various applications.
- The course is a prerequisite course for further studying of other multimedia related courses, such as speech processing, image processing, audio and video data compression, pattern recognition, communication systems and so forth.

Course Outcomes: Student will able to

- Formulate engineering problems in terms of DSP tasks
- Apply engineering problem solving strategies to DSP problems
- Design and test signal processing algorithms for various applications
- Recover information from signals
- Design and simulate digital filters

Module No.		Topics	Hrs.
1		Transform Analysis of Linear Time Invariant System	04
	1.1	Review of Z transform and its properties, response to sinusoidal and complex	
		exponential signals, steady-state response to periodic input signals, response to	
		aperiodic input signals, relationships between the system function and the frequency	
		response function, computation of the frequency response function	
	1.2	LTI systems as frequency-selective filters like; low pass, high pass, band pass, notch,	
		comb, all-Pass filters, and digital resonators.	
	1.3	Invertibility of LTI systems, minimum-phase, maximum-phase, mixed-phase systems	
2		The Discrete Fourier Transform and Efficient Computation.	12
	2.1	Frequency domain sampling and reconstruction of discrete time signals, discrete	
		Fourier transform (DFT), DFT as a linear transformation, properties of the DFT,	
		relationship of the DFT to other transforms	
	2.2	Fast Fourier Transform: Radix-2 and split-radix fast Fourier transform (FFT)	
	22	algorithms and their applications	
3	2.3	Quantization effects in the computation of the DFT	10
3	3.1	Design of Digital filters and Implementation Design of Infinite Impulse Response (IIR) filters using impulse invariant method and	12
	3.1	bilinear transformation method, Butterworth and Chebyshev filter approximation.	
	3.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and anti symmetric FIR	
	3.4	filter, FIR filter design using window method and frequency sampling method.	
	3.3	Realization structures for IIR and FIR filters using direct form structures, cascade,	
	5.5	parallel structures, and lattice, ladder structure (only conceptual understanding)	
4		Multi rate Signal Processing	08
•	4.1	Decimation by a factor <i>D</i> , interpolation by I, sampling rate conversion by a rational	
		factor I/D	
	4.2	Polyphase filter structures, interchange of filers and down samplers/up samplers,	
		sampling rate conversion with cascade integrator comb filters, polyphase structures for	
		decimation and interpolation filters, structures for rational sampling rate conversion	
	4.3	Multistage implementation of sampling rate conversion.	
	4.4	Sampling rate conversion of band pass signals	
	4.5	Sampling rate conversion by an arbitrary factor – arbitrary re-sampling with polyphase	
		interpolators, narrow band filter structures.	
	4.6	Application of Multirate Signal Processing for design of phase shifters, interfacing of	
		digital systems with different sampling rates, implementation of narrowband low pass	
		filters, sub band coding of speech signals	
5		Analysis of Finite Word length effects	08
	5.1	Quantization process and errors, quantization of fixed-point numbers, quantization of	
		floating-point numbers, analysis of coefficient quantization effects	
	5.2	A/D Conversion Noise Analysis, Analysis of Arithmetic Round-Off Errors and	
		dynamic range scaling	
6		Applications of Digital Signal processing:	08
	6.1	Dual –Tone multi frequency signal detection, spectral analysis of sinusoidal signals, spectral analysis of non stationary signals, and spectral analysis of random signals	
	6.2	Musical sound processing, digital music synthesis, discrete time analytic signal generation.	
	6.3	Trans-multiplexers, oversampling ADC and DAC and sparse antenna array design	
	0.5	Trans maniplexers, oversampning tide and drie and sparse and mana aray design	l

TE Electronics and Telecommunication Engineering (R 2012) Page 33

- 1. Alan V. Oppenheim and Ronald Schafer, "Discrete Time Signal Processing", Pearson Education
- 2. J. Proakis, D. G. Manolakis, and D. Sharma, "Digital Signal Processing: Principles, Algorithms and Applications", Pearson Education.
- 3. P.P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson.
- 4. Robert Schilling and Sandra Harris, "Fundamentals of Digital Signal Processing using MATLAB", Cengage Learning.
- 5. Sanjit K.Mitra, "Digital Signal Processing", McGrawHill education

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teaching Scheme	Credits Assigned							
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total		
						Practical				
ETC603	Computer	04			04			04		
	Communication									
	Networks									

Course	Course Name		Examination Scheme							
Code			Theory Marks				Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test	Test	Ave. Of	Exam					
		1	2	Test 1 and						
				Test 2						
ETC603	Computer	20	20	20	80	-	-	-	100	
	Communication									
	Networks									

Course pre requisite: ETC 502 Analog Communication

Course Objective:

- To introduce analysis and design of computer and communication networks.
- To understand the network layered architecture and the protocol stack.

Course Outcomes:

Upon completion of the subject, students will be able to:

- Assemble the components of a PC and install one or more network operating systems resulting in a functioning
- Design a small or medium sized computer network including media types, end devices, and interconnecting devices that meets a customer's specific needs.
- Perform basic configurations on routers and Ethernet switches.
- Demonstrate knowledge of programming for network communications
- Learn to simulate computer networks and analyze the simulation results
- Troubleshoot connectivity problems in a host occurring at multiple layers of the OSI model
- Develop knowledge and skills necessary to gain employment as computer network engineer and network administrator.

Module No.		Topics	Hrs.
1.		Network Architectures, Protocol layers, and their Service Models:	04
	1.1	OSI-RM model and TCP/IP protocol	
2		Principles of Network Applications:	10
	2.1	Application layer protocols such as HTTP, FTP, and SMTP.	
	2.2	Peer-to-Peer File Sharing Protocols and Architectures	
	2.3	ISPs and Domain name systems, Socket API and network socket programming	
3	3.1	Reliable and Unreliable Transport-layer protocols:	10
	3.2	TCP and UDP, Port numbers, Multiplexing and de-multiplexing	
	3.3	Flow control and congestion control. fairness delay, jitter, and loss in packet-	
		switched networks	
	3.4	Bandwidth, throughput, and quality-of-service	
4	4.1	Network layer Services and Protocols	10
	4.2	Switching fabric, routing and forwarding, queues and buffering	
	4.3	Virtual-circuit and datagram networks, internet protocol. IPv4 and IPv6 tunneling	
	4.4	Link State and Distance Vector algorithms, Routing in the Internet RIP, OSPF, and	
		BGP	
	4.5	Broadcast and multicast, handling mobility	
5		Data link layer Services and Protocols:	10
	5.1	Link-layer and its services, Ethernet, hubs, bridges, and switches	
	5.2	Link-layer addressing, ATM and MPLS	
	5.3	Local area networks and IEEE 802.11 wireless LANs, multiple-access protocols.	
		Random access, efficiency of pure and slotted ALOHA, CSMA, CSMA/CD, and	
		CSMA/CA	
6		Introduction to Physical-layer Services and Systems	08
	6.1	Introduction to physical media, Coax, fiber, twisted pair, DSL, HFC, WiMax,	
		cellular, satellite, and telephone networks, bit transmission, frequency division	
		multiplexing. time division multiplexing	
		Total	52

- 1. Andrew Tanenbaum, "Computer Networks", PHI New Dehli,
- 2. Natalia Olifer and Victor Olifer, "Computer Networks", Wiley India, New Delhi
- 3. J. F. Kurose and K. W. Ross, "*Computer Networking: A Top-Down Approach*", Pearson Publication , 5th Edition, March 2009
- 4. L.Garcia et al, "Communication Networks", McGraw Hill Publication, 2nd Edition
- 5. B. Forouzan, "Data Communication and Networking", McGraw Hill Publication, 5th edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3 Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course	Teaching Scheme			Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC 604	Television	04			04			04	
	Engineering								

Course	Course		Examination Scheme									
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total			
		Int	ernal as	ssessment	End Sem.	Work						
		Test	Test	Ave. Of	Exam							
		1	2	Test 1 and								
				Test 2								
ETC	Television	20	20	20	80	-	-	-	100			
604	Engineering											

Pre requisite : ETC 502 Analog Communication

Course Objective:

- To introduce the basics of picture transmission and reception.
- To become well conversant with new development in video engineering.
- To introduce most latest and revolutionary ideas in the field of digital TV, HDTV, WDTV.

Course outcome: The students will be able to

- Describe and differentiate working principles of latest digital TV, HDTV, WDTV.
- Understand, use and working principles of latest display like LCD, LED, Plasma and large plat panel monitors

Module No.		Topics	Hrs
1		Fundamentals of Analog T V system	10
	1.1	Transmitter and receiver- block diagram approach, interlaced scanning, composite video signal, VSB transmission and reception (CCIR-B standards)	
	1.2	Camera tubes: basic principle, Vidicon and Image orthicon	
2		Color T V	
	2.1	Compatibility considerations, Color theory, chromaticity diagram, generation of color TV signals, luminance signal, chrominance signal, frequency interleaving process, color subcarrier frequency.	10
	2.2	NTSC system- transmitter and receiver, PAL system- transmitter and receiver	
		Fundamental Concept of Digital Video	
3	3.1	Digitization, pixel array, scanning notation, viewing distance and angle, aspect ratio, frame rate and refresh rate.	12
	3.2	Raster scanning, scan line waveform, interlace, scanning standards.	
	3.3	Sync structure, data rate, linearity, bandwidth and data rate, resolution, luma, color	
		difference coding, chroma sub sampling	
	3.4	Component digital video, composite video	
4		Advanced TV systems	6
	4.1	Digital video and audio signals	
	4.2	MAC signal, D2-MAC/packet signal, MAC decoding and interfacing, advantages of MAC signal	
	4.3	Direct-to-home TV(DTH)	
5		High definition televisions	8
	5.1	High definition TV systems, HDTV standards and compatibility, resolution and	
	5.2	working.	
	5.2	Wide dimensions high definition TV Standards of wide dimensions UDTV	
	5.3	Standards of wide dimensions HDTV	
(5.4	MUSE system	
6	6.1	Displays Principle, working, advantages and disadvantages of Plasma, LED,LCD	6
		TELECIDIE WORKING AUVANIAGES AND DISADVANIAGES OF PLASMA LEDITUD	1

- 1. Gulati R.R, "Monochrome and Color Television," Wiley Eastern Limited publication.
- 2. R.G.Gupta, "Television and Video Engineering", Tata Mc Graw Hill publication.
- 3. Dhake A.M, "Television and Video Engineering", Tata McGraw Hill publication.
- 4. Keith Jack, "Video Demystified", 4e, , Elsevier
- 5. Charles Poynton, "San Francisco, Digital video and HDTV, Algorithms And Interfaces," Morgan Kaufmann publishers, 2003.
- 6. Stan Prentiss, "High Definition TV", second edition, , Tata McGraw Hill publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Course Code	Course	Teaching Scheme			Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC 605	Operating	04			04			04	
	System								

Course	Course				Examination	Scheme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC	Operating	20	20	20	80	-	-	-	100
605	System								

Course Pre-requisite: Basic concepts of computer systems

Course Objectives:

- To introduce operating system as a resource manager, its evolutions and fundamentals.
- To help student understand concept of process and different process (linear and concurrent) Scheduling policies.
- To help student familiar with memory, file and I/O management policies.

Course Outcomes: On completing this course Student will able to:

- Understand the role of an operating system, its function and issues.
- Compare between different algorithms used for management and scheduling of processes, Memory and input-output operation.
- Appreciate the role of various productivity enhancing tools.

Module No.		Topics	Hrs.
1		Fundamental of Operating System(OS)	06
-	1.1	Definition, objectives, functions, evolution, services, types, and different views of OS	-
	1.2	Operating System as a resource manager, system calls, and shell	-
	1.3	Monolithic systems, layered systems, client server model, monolithic kernel and	-
		microkernel	
2		Process Management and Memory Management	10
	2.1	Process, process creation, process control block, process states, process state transition	
		diagram	
	2.2	Scheduling queues and schedulers, preemptive and non- preemptive scheduling algorithms,	
		types of threads, multithreading models	
	2.3	Race condition, critical section, mutual exclusion, semaphores, monitors	
	2.4	Multiprogramming with fixed and variable partitions, memory allocation strategies	
	2.5	Logical and physical address space, paging and segmentation	
	2.6	Concept, performance of demand paging, page replacement algorithms.	
	2.7	Deadlock Problem, deadlock characterization, deadlock prevention and deadlock avoidance	
		deadlock detection and recovery	
3		File Management and Input Output Management	10
	3.1		
		Memory Mapped Files, Implementing Files, contiguous allocation, linked list allocation,	
		indexed allocations, Inode	
	3.2	Single level directory system, Two level directory system, Hierarchical Directory System	
	3.3	Principles of Input/output H/W: I/O Devices, Device Controllers, Direct Memory Access.	
	3.4	Principles of Input/output S/W: Goals Of I/O S/W, Interrupt Handler, Device Driver,	
		Device Independent I/O Software	_
	3.5	Disks : RAID levels, Disks Arm Scheduling Algorithms	_
	3.6	Management of free blocks.	_
4		Unix Operating System	_
	4.1		_
		Traditional UNIX Kernel, Modern UNIX Systems	06
		Unix process management: Concept, Scheduling in Unix	_ 00
	4.4	Unix Memory management: Paging, Page replacement strategies	_
	4.5	Unix file management: I-node, File allocation, I/O management	_
	4.6	Unix Security measures	
5		Linux Operating System	10
	5.1	History, Linux Processes and Thread management	_
	5.2	Scheduling in Linux, Linux System calls	_
	5.3	Memory management: Virtual memory, Buddy Algorithm, Page replacement policy	4
	5.4	Linux File System	4
	5.5	I/O management: Disk Scheduling	4
	5.6	Advantages of Linux and Unix over Windows	

TE Electronics and Telecommunication Engineering (R 2012)

6		Real Time Operating System(RTOS)	10						
	6.1	Introduction, Characteristics of real-time operating systems							
	6.2	Real Time task Scheduling, Modeling Timing constraints, Table-driven scheduling							
	6.3 Cyclic schedulers								
	6.4	Earliest Deadline First (EDF) scheduling							
	6.5	Rate Monotonic Algorithm(RMA)							
		Total	52						

- 1. Tanenbaum, "Modern Operating Systems", IIIrd Edition, PHI
- 2. Silberschatz A., Galvin P., and Gagne G, "Operating Systems Concepts", VIIIth Edition Wiley.
- 3. William Stallings, "Operating System-Internal & Design Principles", VIth Edition, , Pearson
- 4. Rajib Mall, "Real-Time Systems: Theory and Practice," Pearson, 2008.
- 5. Maurice J. Bach, "The Design of Unix Operating System", Prentine Hall
- 6. Achyut S. Godbole, "Operating Systems", 2nd edition, Tata McGraw Hill
- 7. Richard Blum and Christine Bresnahan, "Linux Command Line & Shell Scripting", 2nd edition, Wiley

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course	Teaching Scheme			Credits Assigned					
Code	Name	Theory	Practical	Tutorial	Theory TW/Practical Tutorial					
ETC606	VLSI Design	04			04			04		

Course	Course Name		Examination Scheme								
Code				Theory Mar	ks	Term	Practical	Oral	Total		
		Internal assessment End Sem.				Work					
		Test	Test	Avg. of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC606	VLSI Design	20	20	20	80				100		

Course Pre-requisite:

- ETC303: Digital Electronics
- ETC302: Analog Electronics-I
- ETC402: Analog Electronics-II
- ETC505: Integrated Circuits

Course Objectives:

- To teach fundamentals of VLSI circuit design and implementation using circuit simulators and layout editors.
- To highlight the circuit design issues in the context of VLSI technology.

Course Outcomes: After successful completion of the course student will be able to

- Demonstrate a clear understanding of CMOS fabrication flow and technology scaling.
- Design MOSFET based logic circuit
- Draw layout of a given logic circuit
- Realize logic circuits with different design styles
- Demonstrate an understanding of working principle of operation of different types of memories
- Demonstrate an understanding of working principles of clocking, power reduction and distribution

Module No.		Topics	Hrs.
1		MOSFET Fabrication and Scaling	08
	1.1	Fabrication: Fabrication process flow for NMOS and CMOS, CMOS Latch-up	
	1.2	MOSFET Scaling: Types of scaling, short channel effects, Level 1 and Level 2 MOSFET Models	
	1.3	Layout: Lambda based design rules, MOSFET capacitances	
2		MOSFET Inverters	10
	2.1	Circuit Analysis: Static and dynamic analysis (Noise, propagation delay and power dissipation) of resistive load and CMOS inverter. Comparison of all types of MOS inverters. Design of CMOS inverters and its layout.	
	2.2	Logic Circuit Design: Analysis and design of 2-I/P NAND and NOR using equivalent CMOS inverter.	
3		MOS Circuit Design Styles	10
	3.1	Design Styles: Static CMOS, Pass Transistor Logic, Transmission Gate, Pseudo NMOS, Domino, NORA, Zipper, C ² MOS	
	3.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, Decoder using above design styles and their layouts	
4		Semiconductor Memories	08
	4.1	SRAM: ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits), DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits), Flash (mechanism, NOR flash, NAND flash), layout of SRAM and DRAM	
	4.2	Peripheral Circuits: Sense Amplifier, Decoder	
5		Data Path Design	08
	5.1	Adder: Bit adder circuits, Ripple carry adder, CLA adder	
	5.2	Multipliers and shifter: Partial-product generation, partial-product accumulation, final addition, Barrel Shifter	
6		VLSI Clocking and System design	08
	6.1	Clocking: CMOS clocking styles, Clock generation, stabilization and distribution	
	6.2	Low Power CMOS Circuits: Various components of power dissipation in CMOS, Limits on low power design, low power design through voltage scaling.	
	6.3	IO pads and Power Distribution: ESD protection, Input circuits, Output circuits, Simultaneous switching noise, power distribution scheme	
	6.4	Interconnect: Interconnect delay model, interconnect scaling and crosstalk	
		Total	52

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition, 2012.
- 2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.
- 3. John P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley, Student Edition, 2013.
- 4. Neil H. E. Weste, David Harris and Ayan Banerjee, "*CMOS VLSI Design: A Circuits and Systems Perspective*", Pearson Education, 3rd Edition.
- 5. R. Jacob Baker, "CMOS Circuit Design, Layout and Simulation", Wiley, 2nd Edition, 2013

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory TW/Practical Tutorial				
ETL601	Discrete Time		02			01		01	
	Signal								
	Processing								

Course	Course Name		Examination Scheme							
Code				Theory Mar	ks	Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work	and			
		Test	Test	Ave. Of	Exam		Oral			
		1	2	Test 1 and						
				Test 2						
ETL601	Discrete Time					25	25	-	50	
	Signal									
	Processing									

At least ten experiments covering entire syllabus of ETC 602:Discrete Time Signal Processing on should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done.

Practical and oral examination will be based on entire syllabus.

Course Code	Course Name	Teaching Scheme			Credits Assigned					
		Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total		
ETL602	Communication		02			01		01		
	Engineering Laboratory III									

Course	Course Name		Examination Scheme							
Code				Theory Ma	rks	Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work	and			
		Test	Test	Ave. Of	Exam		Oral			
		1	2	Test 1						
				and Test						
				2						
ETL602	Communication					25	25	-	50	
	Engineering									
	Laboratory III									

At least ten experiments covering entire syllabus for ETC 601: Digital Communication and ETC 603 Computer Communication and Networks should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus of ETC 601 and ETC 603

Course	Course Name	Teaching Scheme				Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ETL604	Communication		02			01		01		
	Engineering									
	Laboratory IV									

Course	Course Name		Examination Scheme								
Code				Theory Ma	rks	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work	and				
		Test	Test	Ave. Of	Exam		Oral				
		1	2	Test 1							
				and Test							
				2							
ETL604	Communication					25	25	-	50		
	Engineering										
	Laboratory -IV										

Term Work:

At least six experiments covering entire syllabus for ETC 606:VLSI Design and minimum four experiments for ETC 604: Television Engineering. should be set to have well predefined inference and conclusion. The experiments should be student's centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on overall performance of the student with every experiment graded. The grade must be converted to marks as per credit and grading system manual, and should be added and average. Base on above scheme grading and term work assessment should be done. Practical and oral examination will be based on entire syllabus for ETC 606 and ETC 604.

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total	
ETL605	Mini Project II		02			01		01	

Course	Course Name		Examination Scheme								
Code				Theory Ma	Term	Practical/	Total				
		Internal assessment End Sem. Exam				Work	Oral				
		Test	Test	Ave. Of							
		1	2	Test 1 and							
				Test 2							
ETL605	Mini Project II					25	25	50			

Term Work:

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The students undergo various laboratory/tutorial/simulation laboratory/work shop courses in which they do experimentation based on the curriculum requirement. The mini Project may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning.
- Learn the behavioral science by working in a group

The group may be maximum **four** (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The final examination will be based on demonstration in front of internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the task completed.

The topic of Mini Project I and II may be different and / or may be advancement in the same topic. The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Mini Projects.

<u>AC 7/6/2014</u> <u>Item No. 4.22</u>

UNIVERSITY OF MUMBAI

Bachelor of Engineering Electronics and Telecommunication Engineering

Final Year Engineering (Sem. VII and VIII), Revised Course (REV- 2012) effective from Academic Year 2015 -16

Under FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

From Dean's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education. Semester based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3-2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

In the process of change in the curriculum there is a limited scope to have major changes in the fundamental subjects which are mainly part of second year of engineering. The exposure to the latest technology and tools used all over the world is given by properly selecting subjects and their hierarchy in pre-final and final year. Thus this syllabus is made to groom the undergraduate students best suited and competent in all respect with best possible efforts put in by the experts in framing detail contents of individual subjects.

The engineering education in India is expanding in manifolds and the main challenge is the quality education. All the stakeholders are very much concerned about it.

The institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this process is to measure the outcomes of the program. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation.

So the curriculum must be constantly refined and updated to ensure that the defined objectives and outcomes are achieved. Students must be encouraged to comment on the objectives and outcomes and the role played by the individual courses in achieving them. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Electronics and Telecommunication Engineering University of Mumbai, happy to state here that, heads of the department and senior faculty from various institute took timely and valuable initiative to frame Program Educational Objectives as listed below.

- 1. To provide students with a strong foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.
- 2. To prepare students to demonstrate an ability to identify, formulate and solve electronics and telecommunication engineering problems.
- 3. To prepare students to demonstrate ability to design electrical and electronics systems and conduct experiments, analyze and interpret data.
- 4. To prepare students to demonstrate for successful career in industry to meet needs of Indian and multi-national companies.
- 5. To develop the ability among students to synthesize data and technical concepts from applications to product design.
- 6. To provide opportunity for students to work as part of teams on multidisciplinary projects.
- 7. To promote awareness among students for the life-long learning and to introduce them to professional ethics and codes of professional practice.

These are the suggested and expected main objectives and individual affiliated institute may add further in the list. In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

The subjects offered to undergraduate students in final year are at par to the requirement of industry. The students are also made competent to appear for various competitive examination conducted in India and abroad. The subjects offered are at enough level to prepare a base of the students to understand and learn latest state of technology. The students are trained in such a way that they become versatile in hardware and software simulation. Some subjects offered upgrades them in the field of information and technology which is a need of today's' era.

At the end I must outset extend my gratitude to all experts who contributed to make curriculum competent at par with latest technological development in the field of electronics and telecommunication engineering.

Dr. Udhav Bhosle Chairman, Board of Studies in Electronics and Telecommunication Engineering

Semester VII

Course	Course Name	Teach	ing Scheme	e (Hrs.)		Credits A	ssigned	
Code		Theory		Tutorial	Theory	Practical	Tutorial	Total
ETC701	Image and Video	04			04			04
	Processing							
ETC702	Mobile	04			04			04
	Communication							
ETC703	Optical	04		-	04		-	04
	Communication and							
	Networks							
ETC704	Microwave and	04			04			04
	Radar Engineering							
ETE70X	Elective	04			04			04
ETL701	Image and Video		02			01		01
	Processing							
	Laboratory							
ETL702	Advanced		02			01		01
	communication							
	Engineering.							
	Laboratory I							
ETL703	Advanced		02			01		01
	communication							
	Engineering.							
	Laboratory II							
ETEL70X	Elective		02			01		01
ETP701	Project (Stage I)		*			03		03
Total		20	08		20	07		27

Course Code (ETE70X)	Sem. VII Elective
ETE 701	Data Compression and Encryption
ETE 702	Statistical Signal Processing
ETE 703	Neural Network and Fuzzy Logic
ETE 704	Analog and Mixed Signal VLSI

• Work load of learner in Semester VII is equivalent to 6 hours /week

Semester VII

Course	Course Name			Exam	ination	Scheme		
Code			Theo	ry Marks		Term	Practical	Total
		Inte	rnal ass	essment	End	Work	and Oral	
		Test	Test	Ave. of	Sem.			
		1	2	Test 1 &	Exam			
				Test 2				
ETC701	Image and Video	20	20	20	80			100
	Processing							
ETC702	Mobile	20	20	20	80			100
	Communication							
ETC703	Optical	20	20	20	80	-		100
	Communication and							
	Networks							
ETC704	Microwave and Radar	20	20	20	80			100
	Engineering							
ETE70X	Elective	20	20	20	80			100
	T 1 T 7' 1					25	25	50
ETL701	Image and Video					25	25	50
	Processing Laboratory					25	25	50
ETL702	Advanced					25	25	50
	communication							
	Engineering.							
	Laboratory I					25	25	50
ETL703	Advanced					25	25	50
	Communication							
	Engineering.							
ETEL70X	Laboratory II Elective					25	25	50
ETEL/0X ETP701						25 25	25 25	<u> </u>
Total	Project (Stage I)	100	100	100	400	125	125	<u>50</u> 750
Total		100	100	100	400	125	125	/50

Semester VIII

Course	Course Name	Teach	ing Scheme	e (Hrs.)		Credits A	ssigned	
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC801	Wireless Networks	04			04			04
ETC802	Satellite communication and Networks	04			04			04
ETC803	Internet and Voice Communication	04			04			04
ETE80X	Elective	04			04			04
ETL801	Wireless Networks Laboratory		02			01		01
ETL802	Satellite communication and Networks Laboratory		02			01		01
ETL803	Internet and Voice Communication Laboratory		02			01		01
ETEL80X	Elective Laboratory		02			01		01
ETP801	Project (Stage II)		**			06		06
Total		16	08		16	10		26

Course Code (ETE 80X)	Sem. VIII Elective
ETE 801	Speech Processing
ETE 802	Telecom Network Management
ETE 803	Microwave Integrated Circuits
ETE 804	Ultra Wideband Communication

** Work load of learner in Semester VIII is equivalent to 12 hours /week.

Semester `	VIII
------------	------

Course	Course Name			Ε	xaminati	ion Sche	me		
Code			Theor	y Marks		Term	Practical	Oral	Total
		Inter	nal asse	essment	End	Work	and Oral		
		Test 1	Test	Ave. of	Sem.				
			2	Test 1	Exam				
				& Test 2					
ETC801	Wireless Networks	20	20	20	80				100
ETC802	Satellite communication and Networks	20	20	20	80				100
ETC803	Internet and Voice Communication	20	20	20	80				100
ETE80X	Elective	20	20	20	80				100
ETL801	Wireless Networks Laboratory					25		25	50
ETL802	Satellite communication and Networks Laboratory					25		25	50
ETL803	Internet and Voice Communication Laboratory					25		25	50
ETEL80X	Elective Laboratory					25		25	50
ETP801	Project (Stage II)					<mark>50</mark>		<mark>50</mark>	<mark>100</mark>
Total		80	80	80	320	150		150	700

Course Code	Course Name	Tea	ching Sche	me		Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETC701	Image and Video Processing	04			04			04	

Course	Course			Exa	neme				
Code	Name		The	eory Marks		Term	Practical	Oral	Total
		In	ternal asse	essment	End Sem.	Work			
		Test 1	Test 2	Ave. Of	Exam				
				Test 1 and					
				Test 2					
ETC701	Image and	20	20	20	80	-	-	-	100
	Video								
	Processing								

Course pre-requisite:

- ETC 405: Signals and Systems
- ETC 602: Discrete Time Signal Processing

Course Objectives:

- To cover the fundamentals and mathematical models in digital image and video processing.
- To develop time and frequency domain techniques for image enhancement.
- To expose the students to current technologies and issues in image and video processing.
- To develop image and video processing applications in practice.

Course outcomes: Students will be able to

- Understand theory and models in Image and Video Processing.
- Interpret and analyze 2D signals in frequency domain through image transforms.
- Apply quantitative models of image and video processing for various engineering applications.
- Develop innovative design for practical applications in various fields.

Module No.		Topics	Hrs.
1		Image Fundamentals	04
	1.1	Image acquisition, sampling and quantization, image resolution, basic	
		relationship between pixels, color images, RGB, HSI and other models	
2		Two Dimensional Transforms	06
	2.1	Discrete Fourier Transform, Discrete Cosine Transform, KL Transform, and	
		Discrete Wavelet Transform	
3		Image Enhancement	
	3.1	Spatial Domain	08
		Point Processing: Digital Negative, contrast stretching, thresholding, gray	
		level slicing, bit plane slicing, log transform and power law transform.	
		Neighborhood Processing: Averaging filters, order statistics filters, high pass	
		filters and high boost filters	
	3.2	Frequency Domain: DFT for filtering, Ideal, Gaussian and Butterworth filters	
		for smoothening and sharpening, and Homomorphic filters	
	3.3	Histogram Modeling: Histogram equalization and histogram specification	
4		Image Segmentation and Morphology	07
	4.1	Point, line and edge detection, edge linking using Hough transform and graph	
		theoretic approach, thresholding, and region based segmentation.	
	4.2	Dilation, erosion, opening, closing, hit or miss transform, thinning and	
		thickening, and boundary extraction on binary images	
5		Image Restoration:	07
-	5.1	Degradation model, noise models, estimation of degradation function by	
		modeling, restoration using Weiner filters and Inverse filters	
6		Video Formation, Perception and Representation	08
Ū	6.1	Digital Video Sampling, Video Frame classifications, I, P and B frames,	00
	011	Notation, ITU-RBT 601Digital Video formats, Digital video quality measure.	
	6.2	Video Capture and display: Principle of colour video camera, video camera,	
	0.1	digital video	
	6.3	Sampling of video Signals: Required sampling rates, sampling in two	
	0.0	dimensions and three dimensions, progressive virus interlaced scans	
7		Two Dimensional Motion Estimation	12
	7.1	Optical Flow: 2-D motion Vs optical flow, optical flow equations, motion	
		representation, motion estimation criteria, optimization method.	
	7.2	Pixel based motion estimation: Regularization using motion smoothing	
		constraints, using multipoint neighborhood.	
	7.3	Block Matching Algorithms: Exhaustive block matching algorithms, phase	
		correlation method, Binary feature matching.	
	7.4	Multi resolution Motion Estimation: General formulation, Hierarchical	
		blocks matching Algorithms.	
		Total	52
			_

- 1. Gonzales and Woods, "Digital Image Processing", Pearson Education, India, Third Edition,
- 2. Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First Edition, 1989.
- 3. Murat Tekalp, "Digital Video Processing", Pearson, 2010.
- 4. John W. Woods, "Multidimensional Signal, Image and Video Processing", Academic Press 2012
- 5. J.R.Ohm, "Multimedia Communication Technology", Springer Publication.
- 6. A.I.Bovik, "Handbook on Image and Video Processing", Academic Press.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final internal assessment.

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETC702	Mobile	04			04			04	
	communication								

Course	Course Name		Examination Scheme									
Code		Theory Marks				Term	Practical	Oral	Total			
		Internal assessment End Sem.			Work							
		Test	Test	Ave. Of	Exam							
		1	2	Test 1 and								
				Test 2								
ETC702	Mobile	20	20	20	80	-	-	-	100			
	communication											

Prerequisites:

- ETC 601 Digital Communication
- ETC 603 Computer Communication and Networks

Course Objective:

- To study the concept of Mobile radio propagation, cellular system design.
- To understand mobile technologies like GSM and CDMA.
- To know the mobile communication evolution of 2G, 3G and 3 GPP in detail.
- To have overview of immerging technologies for 4 G standards.

Course Outcomes: Students will be able to:

- Understand GSM, CDMA concepts and architecture, frame structure, system capacity, services provided.
- Study of evolution of mobile communication generations 2G, 2.5G, 3G with their characteristics and limitations.
- Understand emerging technologies required for fourth generation mobile systems such as SDR, MIMO etc.
- Understand different indoor and outdoor propagation models related to losses and different types of fading.

Module No.		Topics	Hrs.
1.0		Fundamentals of Mobile Communication	10
	1.1	Introduction to wire1ess communication	
	1.2	Frequency Division Multiple access, Time Division Multiple access, Spread	
		Spectrum Multiple access, Space Division Multiple access, and OFDM	
	1.3	Frequency reuse, channel assignment strategies, handoff strategies,	
		interference and system capacity, trunking and grade of service, improving the	
		capacity of cellular systems. and related design problems	
2.0		2G Technologies	13
	2.1	GSM Network architecture, signaling protocol architecture, identifiers,	
		channels, introduction frame structure, speech coder RPE-LTP,	
		authentication and security, call procedure, handoff procedure, services and	
	2.2	features	
	2.2	GSM evolution in GPRS and EDGE: Architecture and services offered	
	2.3	IS-95 A& B(CDMA-1): Frequency and channel specifications of forward and	
		reverse CDMA channel, packet and frame formats, mobility and radio	
		resource management	
3.0		3G Technology	09
	3.1	IMT-2000/UMTS: Network architecture, air Interface specification, forward	
		and reverse channels in W-CDMA and CDMA 2000, spreading and	
		modulation.	
	3.2	Cell search and synchronization, establishing a connection, hand off and	
		power control in 3G system	
4.0		3GPP LTE	08
	4.1	Introduction and system overview	
	4.2	Frequency bands and spectrum ,network structure, and protocol structure	
	4.3	Frame slots and symbols, modulation, coding, multiple antenna techniques	
	4.4	Logical and Physical Channels: Mapping of data on to logical sub-channels	
		physical layer procedures, establishing a connection, retransmission and	
		reliability, power control.	
5.0		Emerging Technologies for 4G	06
	5.1	4G Introduction and vision	
	5.2	Multi antenna Technologies: MIMO; software defined radio	
	5.3	Adaptive multiple antenna techniques, radio resource management, QOS	
		requirements	
	5.4	Overview of 4G research initiatives and developments.	
6.0		Mobile Radio Propagation	06
	6.1	Study of indoor and outdoor propagation models	
	6.2	Small scale fading and multi-path Small-scale multi-path propagation,	
		parameter of multi-path channels, types of small scale fading, Raleigh and	
		Ricean distribution,	
		Total	52

- **1.** Theodore S. Rappaport , "*Wireless Communications*", Prentice Hall of India, PTR publication
- 2. Andreas Molisch, "Wireless Communications", Wiley, Student second Edition.
- 3. Vijay Garg, "Wireless Network Evolution 2G-3G", Pearson Education.
- 4. Young Kyun Kim and Ramjee Prasad, "4 G Roadmap and Emerging Communication Technologies ", Artech house.:
- 5. Raj Pandya, "Mobile And Personal Communications Systems And Services", Prentice hall.
- 6. Singhal, "Wireless Communication", TMH
- 7. C.Y Lee, "Mobile Communication", Wiley

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
ETC703	Optical	04			04			04	
	Communication								
	and Networks								

Course	Course Name				Examination	n Scheme					
Code				Theory Mark	S	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC703	Optical	20	20	20	80	-	-	-	100		
	Communication										
	and Networks										

Pre requisites:

- ETC404 Wave Theory and Propagation
- ETC502 Analog Communication
- ETC601 Digital Communication.

Course Objective: To teach students

- Optical fiber structures wave guide, fabrication and signal degradation in fiber.
- The characteristics of optical sources and detectors.
- Link budged and optical networks, design and management.
- Study the multiplexing schemes.

Course Outcome: This course enables the students to:

- Apply the fundamental principles of optics and light wave to design optical fiber communication systems.
- Identify structures, functions, materials, and working principle of optical fibers, light sources, couplers, detectors, and multiplexers.
- Design optical fiber communication links using appropriate optical fibers, light sources, couplers, detectors, and multiplexers.
- Explore concepts of designing and operating principles of modern optical communication systems and networks.
- Apply the knowledge developed in-class to contemporary optical fiber communication research and industrial areas.

Module No.		Topics	Hrs.
1.		Optical Fiber Communication Technology	10
	1.1	Block diagram, advantages, loss and bandwidth window, ray theory transmission,	
		total internal reflection, acceptance angle, numerical aperture, and skew rays	
	1.2	EM waves, modes in planer guide, phase and group velocities, types of fibers	
		according to refractive index profile and mode transmission.	
	1.3	Fiber material, fiber cables and fiber fabrication, fiber joints, fiber connectors,	
2		splices.	00
2	2.1	Transmission Characteristic of Optical FiberAttenuation, absorption, linear and nonlinear scattering losses, bending losses, modal	08
	2.1	dispersion, waveguide dispersion, dispersion and pulse broadening, dispersion shifted	
		and dispersion flattened fibers, and non linear effects	
	2.2	Measurements of attenuation, dispersion and OTDR	
3	_,_	Optical Communication Systems	08
-	3.1	Working principle and characteristics of sources (LED, LASER), and optical	
		amplifiers	
	3.2	Working principle and characteristics of detectors (PIN, APD), noise analysis in	
		detectors, coherent and non-coherent detection, receiver structure, bit error rate of	
		optical receivers, and receiver performance.	
	3.3	Point to point links system considerations, link power budget, and rise time budget	
4		Optical Network System Components and Optical Networks	10
	4.1	Couplers, isolators, circulators, multiplexers, filters, fiber gratings, Fabry Perot	
		filters, a rrayed waveguide grating, switches and wavelength converters	
	4.2	SONET and SDH standards, architecture of optical transport networks (OTNs),	
		network topologies, protection schemes in SONET/SDH, and wavelength routed architectures.	
	4.3	Operational principle of WDM, WDM network elements and Architectures,	
	т.Ј	Introduction to DWDM, Solitons.	
5		Packet Switching and Access Networks	08
	5.1	OTDM, multiplexing and de-multiplexing, synchronization and broadcast OTDM	
		networks.	
	5.2	Network architecture overview, OTDN networks, optical access networks, and future	
		access networks.	
6		Network Design and Management	08
	6.1	Transmission system model, power penalty-transmitter, receiver optical amplifiers,	
		crosstalk, dispersion, wavelength stabilization.	
	6.2	Network management functions, configuration management, performance	
		management, fault management, optical safety, and service interface	52
		Total	52

- 1. John M. Senior, "*Optical Fiber Communication*", Prentice Hall of India Publication, Chicago, 3rd Edition, 2013
- 2. Gred Keiser, "Optical Fiber Communication", Mc-Graw Hill Publication, Singapore, 4th Edition, 2012
- 3. G Agrwal, "*Fiber optic communication Systems*", John Wiley and Sons, 3rd Edition, New York 2014
- 4. Rajiv Ramaswami and Kumar N. Sivarajan, "*Optical Networks: A Practical Perespective*", Elsevier Publication Elsevier India Pvt.ltd, 3rd Edition, 2010
- 5. P.E.Green, "Optical Networks", Prentice Hall, 1994
- 6. Biswanath Mukherjee, "Optical Communication Networks", McGraw-Hill, 1997.
- 7. Le Nguyen Binh, "Optical Fiber Communication System: Theory and Practice with MATLAB and Simulink", CRC Press, 2010

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETC704	Microwave	04			04			04	
	and Radar								
	Engineering								

Course	Course Name				Examination S	Scheme					
Code			Theory Marks				Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC704	Microwave	20	20	20	80	-	-	-	100		
	and Radar										
	Engineering										

Pre requisite :

- ETC 404 Wave Theory and Propagation
- ETC 504 RF Modeling and Antenna

Course Objective: To teach the students

- Radio-frequency spectrum space, microwave communication.
- Microwave principles, working of microwave devices.
- RADAR and their applications.

Course Outcome: After Completing this course student will be able to

- Analyze the microwave passive circuit components and design the tunning and matching networks.
- Identify the state of art in microwave tubes and semiconductors and their uses in real life.
- Apply the microwave devices and RADAR for industrial and scientific purposes

Module No.		Topics	Hrs.
1.		Waveguides and Microwave Components	10
	1.1	Frequency bands and characteristics of microwaves	
	1.2	Rectangular and circular waveguides, mode analysis	
	1.3	Resonators, reentrant cavities, scattering parameters, tees, hybrid ring,	
		directional couplers, phase shifters, terminations attenuators, ferrite devices	
		such as isolators, gyrators, and circulators.	
2		Impedance Matching and Tuning	08
	2.1	Lumped element matching	
	2.2	Single stub tuning, double stub tuning, triple stub tuning	
	2.3	Quarter wave transformer	
3		Generation and Amplification of Microwaves	10
	3.1	Two Cavity Klystron and Reflex Klystron	
	3.2	Helix Travelling Wave Tube and Backward Wave Oscillator	
	3.3	Cross Field Amplifier, Cylindrical Magnetron, and Gyrotrons	
4		Semiconductor Microwave Devices (construction, working, equivalent circuit and performance characteristics)	10
	4.1	Varactor, PIN, Tunnel, Point Contact, Schottky Barrier, Gunn, IMPATT, TRAPATT, and BARITT.	
	4.2	BJT, Hetro junction BJT, MESFET, and HEMT	
	4.3	Parametric Amplifiers	
5		RADAR	08
	5.1	Basics of RADAR and RADAR range equation	
	5.2	Types of RADAR: Pulsed, Continuous wave and FMCW, Doppler, MTI, and Phased Array	
	5.3	Types of displays and Clutter	
	5.4	Tracking RADAR: Monopulse, Conical, Sequentiallobing	
6		Microwave Applications	06
	6.1	Microwave heating and bio-medical applications	
	6.2	Remote sensing RADAR, MSTRADAR, radiometer, instrumentation landing	
		system, and RADAR based navigation	
		Total	52

- 1. David M Pozar, "*Microwave Engineering*", John Wieley & Sons,Inc. Hobokenh,New Jersey, Fourth Edition, 2012.
- 2. Samuel YLiao, "Microwave Devices and Circuits", Pearson Education, Third Edition
- 3. Merill Skolnik, "Introduction to RADAR Systems", TataMcgraw Hill, Third Edition
- 4. Annapurna Das and Sisir K Das, "*Microwave Engineering*", Tata McGraw Hill,New Delhi, Second Edition, 2009
- 5. K. T. Matthew, "Microwave Engineering", Wieleyindia, ,2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETE701	Data	04			04			04	
	Compression								
	and								
	Encryption								

Course	Course				Examination So	cheme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	est Test Ave. Of		Exam				
		1	2	Test 1					
				and Test					
				2					
ETE701	Data	20	20	20	80	-	-	-	100
	Compression								
	and								
	Encryption								

Pre requisite :

- ETC 503 Random Signal Analysis
- ETC 601 Digital Communication
- ETC 603 Computer Communication and Networks

Course Objective: To teach the students

- Lossless and Lossy compression techniques for different types of data.
- Understand data encryption techniques
- Network security and ethical hacking.

Course Outcome : Student will able to

- Implement text, audio and video compression techniques.
- Understand symmetric and asymmetric key cryptography schemes.
- Understand network security and ethical hacking.

Module No.		Topics	Hrs.
1.		Data Compression	08
	1.1	Compression Techniques: Loss less compression, Lossy compression, measure of performance, modeling and coding, different types of models, and coding techniques	
	1.2	Text Compression : Minimum variance Huffman coding, extended Huffman coding, Adaptive Huffman coding. Arithmetic coding, Dictionary coding techniques ,LZ 77, LZ 78, LZW	
2		Audio Compression	04
	2.1	High quality digital audio, frequency and temporal masking, lossy sound compression, μ -law and A-law companding, and MP3 audio standard	
3		Image and Video Compression	12
	3.1	PCM, DPCM JPEG, JPEG –LS, and JPEG 2000 standards	
	3.2	Intra frame coding, motion estimation and compensation, introduction to MPEG - 2 H-264 encoder and decoder	
4		Data Security	12
	4.1	Security goals, cryptography, stenography cryptographic attacks, services and mechanics.	
	4.2	Integer arithmetic, modular arithmetic, and linear congruence	
	4.3	Substitution cipher, transposition cipher, stream and block cipher, and arithmetic modes for block ciphers	
	4.4	Data encryption standard, double DES, triple DES, attacks on DES, AES, key distribution center.	
5		Number Theory and Asymmetric Key Cryptography	12
	5.1	Primes, factorization, Fermat's little theorem, Euler's theorem, and extended Euclidean algorithm	
	5.2	RSA, attacks on RSA, Diffie Hellman key exchange, key management, and basics of elliptical curve cryptography	
	5.3	Message integrity, message authentication, MAC, hash function, H MAC, and digital signature algorithm	
6		System Security	
	6.1	Malware, Intruders, Intrusion detection system, firewall design, antivirus techniques, digital Immune systems, biometric authentication, and ethical hacking.	04
		Total	52

- 1. Khalid Sayood, "Introduction to Data Compression", Morgan Kaufmann, 2000
- 2. David Saloman, "Data Compression: The complete reference", Springer publication
- 3. Behrous Forouzen, "Cryptography and Network Security", Tata Mc Graw –Hill Education 2011
- 4. Berard Menezes, "Network Security and Cryptography", learning publication Cengage
- 5. William Stallings, "Cryptography and Network Security", Pearson Education Asia Publication, 5th edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Te	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ETE702	Statistical	04			04			04		
	Signal									
	Processing									

Course	Course		Examination Scheme								
Code	Name	Theory Marks					Practical	Oral	Total		
		Ι	nternal a	ssessment	End Sem.	Work					
		Test	Test 2	Ave. Of Test	Exam						
		1		1 and Test 2							
ETE702	Statistical	20	20	20	80	-	-	-	100		
	Signal										
	Processing										

Course Prerequisite:

- ETC 405 Signals and Systems,
- ETC503 Random Signal Analysis

Course Objective:

- To enable the student to understand the basic principles of random signal processing.
- To study spectral detection and estimation methods used in communication system design and their applications.

Course Outcome Students will able to:

- Design System for estimation, spectral estimation
- To perform wave formation analysis of the system
- Understand role of statistical fundamentals in real world applications.

Module No.		Topics	Hrs.							
1.		Review of Signals and Systems	6							
	1.1	Review of stochastic Processes								
	1.2	Gauss-Markow models, representation of stochastic process, likelihood and sufficiency								
2		Detection Theory	8							
	2.1	One way, two way ANOVA table, hypothesis testing, decision criteria								
	2.2	Multiple measurements, multiple-hypothesis testing, and composite								
	2.3	Chi-square testing, asymptotic error rate of LRT for simple hypothesis testing, CFAR detection, sequential detection and Wald's test.								
3		Detection of Signals in Noise	8							
		Detection of known signals in white noise								
	3.2	Correlation receiver and detection of known signals in colored noise								
		Detection of known signals in noise and maximum SNR criterion								
	3.4 Solution of integral equations and detection of signals parameters									
4		Estimation Theory	10							
		Estimation of Parameters								
		Bayes Estimates and estimation of nonrandom parameters								
	4.3	Properties of estimators, linear mean-square estimation, and reproducing densities								
5		Estimation of Waveforms	10							
		Linear MMSE Estimation of Waveforms								
	5.2	The Wiener Filter for estimation of stationary processes								
	5.3	Kalman Filter for estimation of non-stationary processes								
	5.4	Relation between the Kalman and Wiener Filters, nonlinear estimation, and nonparametric detection								
6		Applications	10							
	6.1	Spread spectrum communications								
	6.2	RADAR target models, and target detection								
	6.3	Parameter estimation in RADAR systems								
	6.4	Dynamic Target Tracking, pattern classification and system								
		identification Total	52							
		10141	54							

- 1. M.D. Srinath, P.K. Rajasekaran, and R. Viswanathan, "Introduction to Statistical Signal Processing with Application", Pearson Education
- 2. Robert M. Gray and Lee D. Davisson, "An Introduction to Statistical Signal Processing", Pearson Education
- 3. Steven Kay, "Fundamentals of Statistical Signal Processing Volume-I: Estimation Theory", Prentice hall publication
- 4. Steven Kay, "Fundamentals of Statistical Signal Processing Volume-II: Detection Theory", Prentice hall publication
- 5. Steven Kay, "Fundamentals of Statistical Signal Processing Volume-III: Practical Algorithm Development", Prentice hall publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

	Course Name	Teaching Scheme			Credits Assigned				
Course Code									
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETE703	Neural	04			04			04	
	Networks								
	and Fuzzy								
	Logic								

Course	Course				Examination S	Scheme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETE703	Neural	20	20	20	80	-	-	-	100
	Networks								
	and Fuzzy								
	Logic								

Prerequisites: FEC 101 Applied Mathematics I

Course Objective: To teach students

- Concepts and understanding of artificial neural networks
- Fuzzy logic basic theory and algorithm formulation
- To solve real world problems.

Course Outcome: Students will get:

- Knowledge about different neural networks, their architecture and training algorithm
- Concept of Fuzzy logic, Fuzzy Sets, fuzzy rules and fuzzy reasoning
- Exposure to the applicability of neural networks and fuzzy logic

Module No.		Topics	Hrs.
1.		Introduction to Neural Networks and its Basic Concepts:	08
	1.1	Biological neurons and McCulloch and Pitts models of neuron	
	1.2	Types of activation functions	
	1.3	Neural networks architectures	
	1.4	Linearly separable and linearly non-separable systems and their examples	
	1.5	Features and advantages of neural networks over statistical techniques	
	-		
		concepts of supervised learning, and unsupervised learning	
2		Supervised Learning Neural Networks:	07
	2.1	Single layer perception and multilayer perceptron neural networks, their	
		architecture	
	2.2	Error back propagation algorithm, generalized delta rule, learning factors,	
		step learning	
	2.3	Momentum learning	
	2.4	Concept of training, testing and cross-validation data sets for design and	
		validation of the networks	
3		Unsupervised Learning Neural Networks:	09
	3.1	Competitive earning networks, kohonen self-organizing networks	
	3.2	K-means and LMS algorithms	
	3.3	RBF neural network, its structure and Hybrid training algorithm for RBF	
		neural networks	
	3.4	Comparison of RBF and MLP networks Learning	
	3.5	Vector Quantization neural network architecture and its training algorithm	
	3.6	Hebbian learning, Hopfield networks.	
4		Applications of Neural Networks:	06
•	4.1	Pattern classification	00
		Handwritten character recognition	
	-	Image compression and decompression	
5		Fuzzy logic	14
U	5.1	Basic Fuzzy logic theory, sets and their properties	11
	5.2	Operations on fuzzy sets	
	5.3	Fuzzy relation and operations on fuzzy relations and extension principle	
	5.4	Fuzzy membership functions and linguistic variables	
	5.5	Fuzzy rules and fuzzy reasoning	
		Fuzzification and defuzzification and their methods	
	5.6		
	5.7	Fuzzy inference systems, Mamdani Fuzzy models, and Fuzzy knowledge	
(based controllers	00
6	(1	Applications of Fuzzy Logic and Fuzzy Systems:	08
	6.1	Fuzzy pattern recognition	
	6.2	Fuzzy image processing	
	6.3	Simple applications of Fuzzy knowledge based controllers like washing machines, traffic regulations, and lift control	

- 1. S. Rajsekaran and G. A. Vijaylakshmi Pai, "Neural Networks, Fuzzy Logic, and Genetic Algorithms", PHI
- 2. Simon Haykin, "Neural Network- A Comprehensive Foundation", Pearson Education
- 3. Thimothy J. Ross, *"Fuzzy Logic with Engineering Applications"*, Wiley India Publications
- 4. Laurence Fausett, "Fundamentals of Neural Networks", Pearson Education
- 5. S. N. Sivanandam, S. Sumathi, and S. N. Deepa, "*Introduction to Neural Network Using MATLAB*", Tata McGraw-Hill Publications
- 6. Bart Kosko, "Neural networks and Fuzzy Systems", Pearson Education

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Course Name	Te	eaching Sche	eme	Credits Assigned				
		Theory Practical Tutorial 7			Theory	Practical	Tutorial	Total	
ETE704	CMOS Analog and Mixed Signal VLSI Design	04	02		04	01		05	

Course	Course				Examination Sc	heme			
Code	Name			Theory Mai	:ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem. Exam	Work			
		Test	Test Test Avg. of						
		1	2	Test 1 and					
				Test 2					
ETE704	CMOS	20	20	20	80				100
	Analog and								
	Mixed								
	Signal VLSI								
	Design								

Course Pre-requisite:

- ETC302: Analog Electronics I
- ETC303. Digital Electronics
- ETC402: Analog Electronics II
- ETC 505: Integrated Circuits
- ETC 606 :VLSI Design

Course Objectives: To teach the students

- Importance of CMOS and Mixed Signal VLSI design in the field of Electronics and Telecommunication.
- Underlying methodologies for analysis and design of fundamental CMOS Analog and Mixed signal Circuits like Current and Voltage references, Single stage Amplifiers, Operational Amplifiers, Data Converters.
- The issues associated with high performance Mixed Signal VLSI Circuits.

Course Outcomes: After successful completion of the course student will be able to

- Differentiate between Analog, Digital and Mixed Signal CMOS Integrated Circuits.
- Analyze and design current sources and voltage references for given specifications.
- Analyze and design single stage MOS Amplifiers.
- Analyze and design Operational Amplifiers.
- Analyze and design data converter circuits.

Module No.		Topics	Hrs.
1		Fundamental Analog Building Blocks	08
	1.1	MOS Transistor as sampling switch, active resistances, current source and sinks,	
		current mirror and current amplifiers	
	1.2	Voltage and current references, band gap voltage reference, Beta-Multipler	
		referenced self-biasing	
2		Single Stage MOS Amplifiers	14
	2.1	Common-source stage (with resistive load, diode connected load, current-source load, triode load, source degeneration), source follower, common-gate stage, cascode stage, folded cascade stage, simulation of CMOS amplifiers using SPICE	
	2.2	Single-ended operation, differential operation, basic differential pair, large-signal and small-signal behavior, common-mode response, differential pair with MOS loads, simulation of differential amplifiers using SPICE	
	2.3	Noise characteristics in the frequency and time domains, thermal noise, shot noise,	
		flicker noise, popcorn noise, noise models of IC components, representation of noise	
		in circuits, noise in single-stage amplifiers (CS, CD and CG stages), noise in	
		differential pairs, noise bandwidth, noise figure, noise temperature.	
3		MOS Operational Amplifiers Desing	08
	3.1	Trans-conductance operational amplifier (OTA), two stage CMOS operational amplifier	
	3.2	CMOS operational amplifiers compensation, cascade operational amplifier and folded cascade	
4		Non-Linear & Dynamic Analog Circuits	08
	4.1	Switched capacitor amplifiers (SC), switched capacitor integrators, first and second order switched capacitor circuits.	
	4.2	Basic CMOS comparator design, adaptive biasing, analog multipliers	
5		Data Converter Fundamentals	06
	5.1	Analog versus digital discrete time signals, converting analog signals to data signals,	
		sample and hold characteristics	
	5.2	DAC specifications, ADC specifications, mixed-signal layout issues	
6		Data Converter Architectures	08
	6.1	DAC architectures, digital input code, resistors string, R-2R ladder networks, current steering, charge scaling DACs, Cyclic DAC, pipeline DAC,	
	6.2	ADC architectures, flash, 2-step flash ADC, pipeline ADC, integrating ADC, and	
		successive approximation ADC	
		Total	52

- 1. B. Razavi, "Design of Analog CMOS Integrated Circuits", first edition, McGraw Hill,2001.
- 2. Harry W. Li and David E Boyce, "CMOS Circuit Design, Layout, Stimulation", PHI Edn, 2005
- 3. P.E.Allen and D R Holberg, "*CMOS Analog Circuit Design*", second edition, Oxford University Press, 2002.
- 4. Gray, Meyer, Lewis and Hurst "Analysis and design of Analog Integrated Circuits", 4th Edition Willey International, 2002

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
ETL701	Image and Video Processing		02			01		01	

Course	Course	Examination Scheme						
Code	Name	Theory Mar			·ks	Term	Practical and Oral	Total
		Internal assessment			End Sem. Exam	Work		
		Test	Test	Ave. Of				
		1	2	Test 1 and				
				Test 2				
ETL701	Image and					25	25	50
	Video							
	Processing							

Term Work:

At least ten experiments covering entire syllabus for ETC 701: Image and Video Processing be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment.

Practical and Oral examination will be based on entire syllabus.

	Course Name	Teaching Scheme			Credits Assigned			
Course Code								
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETL702	Advanced		02			01		01
	Communication							
	Engineering							
	Laboratory I							

Course	Course Name				Examination	Scheme		
Code				Theory Mark	s	Term	Practical	Total
		Int	Internal assessment End Sem.				And	
		Test	est Test Ave. Of		Exam		Oral	
		1	2	Test 1 and				
				Test 2				
ETL702	Advanced					25	25	50
	Communication							
	Engineering							
	Laboratory I							

At least ten experiments covering entire syllabus for ETC 702: Mobile Communication be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment.

Practical and Oral examination will be based on entire syllabus.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total	
ETL703	Advanced		02			01		01	
	Communication								
	Engineering								
	Laboratory II								

Course	Course Name				Examination Scher	ne		
Code				Theory Mai	rks	Term	Practical	Total
		Internal assessment			End Sem. Exam	Work	and Oral	
		Test	Test	Ave. Of				
		1	2	Test 1 and				
				Test 2				
ETL703	Advanced					25	25	50
	Communication							
	Engineering							
	Laboratory II							

At least ten experiments covering entire syllabus for ETC 703: Optical Communication and Network and ETC 704: Microwave and Radar Engineering be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The average of grades converted in to marks should be taken into account for term work assessment.

Practical and Oral examination will be based on entire syllabus of ETC 703 and ETC 704

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETL70X	Elective		02			01		01	

Course	Course				Examination Sch	neme		
Code	Name			Theory Ma	rks	Term	Practical	Total
		Int	ernal as	ssessment	End Sem. Exam	Work	and Oral	
			Test	Ave. Of				
		1	2	Test 1 and				
				Test 2				
ETL70X	Elective					25	25	50

At least ten experiments covering entire syllabus for respective elective subject be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment.

Practical and Oral examination will be based on entire syllabus.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETP701	Project (Stage I)		02			01		01

Course	Course Name		Examination Scheme							
Code				Theory Ma	Term	Practical	Oral	Total		
		Inte	ernal as	sessment	End Sem.	Work				
		Test Test Ave. Of			Exam					
		1	2	Test 1						
				and Test						
				2						
ETP701	Project					25	-	25	50	
	(Stage I)									

The final year students have already under gone project assignment in their pre-final year in Mini Project I and II. In final year group of maximum **four** students will be completing a comprehensive project work based on the courses studied. The project work may be internally assigned or may be externally assigned by the research institutes, industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year may be extension of the Mini Project work done in pre-final year.

The main intention of Project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The Project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group
- The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self employment
- The topic of project should be different and / or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Project work.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

Subject Code	Course Name	Teaching Scheme		Credits Assigned								
		Theory	Practical	Practical Tutorial Theory TW/ Tutorial Total Practical								
ETC801	Wireless Networks	04			04			04				

Course	Course				heme				
Code	Name			Theory Mar	Term	Practical	Oral	Total	
		Int	ernal as	ssessment	End Sem. Exam	Work			
		Test Test Avg. of							
		1	1 2 Test 1 and						
				Test 2					
ETC801	Wireless	20	20	20	80				100
	Networks								

Course Pre requisites :

- ETC 603 Computer Communication and Networks
- ETC 702 Mobile Communication

Course Objectives:

- Introduction to planning and design of wireless networks
- Introduction to HSPA systems
- To study emerging technologies like Bluetooth, zigbee, Wimax
- Understanding the wireless sensor network architecture and the protocol stack and WSN applications.

Course Outcomes: The students will be able to:

- Describe the phases of planning and design of mobile wireless networks
- List and compare personal area network (PAN) technologies such as Zigbee, Bluetooth etc
- Students will details of sensor network architecture, traffic related protocols, transmission technology etc
- Understand middleware protocol and network management issues of sensor networks

Module No.		Topics	Hrs.
1		Overview of Cellular Systems	08
	1.1		
	1.2	Universal mobile telecommunication system	
	1.3	Introduction to HSPA, Advanced Antenna Systems for HSPA + and LTE	
2		Planning and Design of Wide-Area Wireless Networks	12
	2.1	Basics of indoor RF planning	
	2.2	Three phases of wireless network design	
	2.3	Indoor coverage from the macro layer	
	2.4	Link budgets for GSM, CDMA, CDMA2000, HSDPA systems, indoor UMTS/HSPA	
		challenge, common UMTS rollout mistake	
3		Emerging Wireless Technologies	10
	3.1		
		network connection establishments, usage models, etc.	
	3.2	ZigBee: components, architecture, network topologies, protocol stack etc.	
	3.3	UWB and RFID: technical requirements, components and characteristics, applications	
	3.4	WiMAX: 802.16 based protocol architecture, physical layer, fixed and mobile WiMAX	
4		Overview of Wireless Sensor Network	12
-	4.1	Background of sensor network technology, sensor network architectural elements,	
	4.2	historical survey of sensor networks Applications of wireless sensor network, range of applications, examples of category 1 and 2 WSN Applications	-
	4.3	Technologies for wireless sensor network, sensor node technology, hardware and software, sensor taxonomy	-
	4.4	Wireless network, operating environment, wireless network trends, transmission technology	
	4.5	Medium access control protocols, routing protocols, transport control protocols	
6		Middleware for Sensor Networks & Network Management	10
	6.1	Middleware principles	1
	6.2	Middleware architecture, existing middleware	1
	6.3	Network management, requirements	1
	6.4	Network management models, design issues	1
	1 0.1	Total	52

- 1. Indoor Radio Planning: A Practical Guide for GSM, DCS, UMTS, HSPA and LTE, 2nd Edition Morten Tolstrup ISBN: 978-0-470-71070-8 480 July 2011 -Wiley
- 2. Vijay K. Garg, "*Wireless Communication and Networking*", Morgan -Kaufmann Series in Networking—Elsevier
- 3. Kazem Sohraby, Daniel Minoli, and Taieb Znati, "Wireless Sensor Networks: Technology, Protocols, and Applications", Wiley Student Edition
- 4. Feng Zhao and Leonidas Guibas, "Wireless Sensor Networks, An Information Processin Approach",--Morgan Kaufmann
- 5. Holger and Andreas Willig, "Protocols and Architectures for WSN", Wiley student edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETC 802	Satellite	04			04			04	
	Communication and Network								

Course	Course Name		Examination Scheme								
Code			Th	eory Marks		Term	Practical	Oral	Total		
		Int	ternal ass	sessment	End	Work					
		Test 1	Test 2	Ave. Of	Sem.						
				Test 1 and	Exam						
				Test 2							
ETC 802	Satellite	20	20	20	80	-	-	-	100		
	Communication										
	and Network										

Pre-requisites:

- ETC 502: Analog communication
- ETC 601: Digital Communication

Course Objective:

- To provide an in-depth understanding of different concepts used in a satellite communication system.
- To explain the tools necessary for the calculation of basic parameters in a satellite communication system.
- To get knowledge of every aspects of satellite communication like orbital mechanics, launching techniques, satellite link design, earth station technology and different access system towards a satellite.

Course Outcome: The Students will be able to

- Explain the basics of satellite communication
- Explain and analyzes link budget of satellite signal for proper communication
- Use the system for the benefit of society
- Use the different application of satellite communication

Module		Topics	Hrs.
No.			10
1.		Overview of Satellite Systems, Orbits and Launching	10
	1.1	Frequency allocation for satellite services, system design consideration, satellite services-	
		VSAT, global positioning satellite system, maritime satellite services, gateways	-
	1.2	Polar orbiting satellites, Kepler's First, second and third law, orbital elements, apogee,	
		perigee heights, orbital perturbations, effects of a non-spherical earth, atmospheric drag	_
	1.3	Sub-satellite Point, predicting satellite position, antenna look angels, polar mount antenna,	
		limits of visibility, near geostationary orbits, earth eclipse of satellite, sun transit outage	_
	1.4	Selection of launching site, launch window, zero and non-zero degree latitude launching,	
		sea launch, launch vehicles; satellite launch vehicle (SLV), augmented satellite launch	
-		vehicle (ASLV), polar SLV, geostationary satellite launch vehicle (GSLV)	
2		Space Segment	8
	2.1	Attitude control, spinning satellite stabilization, momentum wheel stabilization, station	
		keeping, thermal control, TT and C subsystem, transponders, wideband receiver, input de-	
		multiplexer, power amplifier, antenna subsystem	
	2.2	Equipment reliability and space qualification	
3		Satellite Links	12
	3.1	Isotropic radiated power, transmission losses, free-space transmission, feeder losses,	
		antenna misalignment losses, fixed atmospheric and ionospheric losses, link power budget	_
	3.2	System noise, antenna noise, amplifier noise temperature, amplifiers in cascade, noise	
		factor, noise temperature of absorptive networks, overall system noise temperature, carrier	
		to noise ratio	_
	3.3	Uplink: Saturation flux density, input back off, earth station HPA,	
		Downlink: Output back off, satellite TWTA output	_
	3.4	Effects of rain, uplink rain-fade margin, downlink rain-fade margin, combined uplink and	
		downlink C/N ratio, inter-modulation noise	0.1
4	4.4	Earth Station.	04
	4.1	Design considerations, receive-only home TV systems, outdoor-indoor unit for analog	
	1.0	(FM) TV, master antenna TV system, transmit-receive earth stations	-
_	4.2	Community antenna TV systems	0
5		The Space Segment Access and Utilization.	8
		Space segment access methods, pre-assigned FDMA, demand assigned FDMA, SPADE	
		system, bandwidth-limited and power-limited TWT amplifier operation	
		TDMA: Reference Burst; Preamble and Postamble, carrier recovery, network	
		synchronization, unique word detection, traffic date, frame efficiency, channel capacity,	
		preassigned TDMA, demand assigned TDMA, satellite switched TDMA Code Division Multiple Access: Direct-sequence spread spectrum–acquisition and	_
		trackling, spectrum spreading and dispreading – CDMA throughput	
6		Satellite Networking	10
U	6.1	Satellite Network: net work reference models and protocols, layering principle, open	10
	0.1	system interconnection (OSI), reference model, IP reference model, reference architecture	
		for satellite networks, basic characteristics of satellite networks, onboard connectivity with	
		transparent processing, analogue transparent switching, Frame organization, Window	
		organization, On board connectivity with beam scanning	
	6.1	Laser Satellite Communication: Link analysis, optical satellite link transmitter, optical	
	0.1	satellite link receiver, satellite beam acquisition, tracking & positioning, deep space optical	
		communication link	
		Total	52
		10(4)	54

- 1. Dennis Roddy, "Satellite Communications", 3rd Ed., Mc. Graw-Hill International Ed. 2001.
- 2. Wilbur L. Pritchard, Henri G. Suyderehoud, and Robert A. Nelson, "Satellite Communication systems Engineering", Pearson Publication
- 3. Gerard Maral and Michel Bousquet, *"Satellite Communication Systems"*, 4th Edition Wiley Publication
- 4. Timothy Pratt, Charles Bostian, and Jeremy Allmuti, "Satellite Communications", John Willy & Sons (Asia) Pvt. Ltd. 2004
- 5. M. Richharia, "Satellite Communication Systems Design Principles", Macmillan Press Ltd. Second Edition 2003.
- 6. Gerard Maral, "VSAT Networks", John Willy & Sons

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the module

Course	Course Name				Examination	1 Scheme					
Code			Theory Marks				Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC803	Internet and	20	20	20	80	-	-	-	100		
	Voice										
	Communication										

Course	Course Name		Examination Scheme								
Code			Theory Marks				Practical	Oral	Total		
		Internal assessment En			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETC803	Internet and	20	20	20	80	-	-	-	100		
	Voice										
	Communication										

Course Pre requisite :

- ETC 502: Analog communication
- ETC 601: Digital Communication
- ETC 604: Computer Communication and Networks

Course Objectives:

- To focus on Internet protocol, standards, services and administration.
- To discuss voice over IP as a real-time interactive audio/video service.

Course Outcomes: The students will be able to:

- Implement local area networks using both static and dynamic addressing techniques including sub netting.
- Install, configure, and troubleshoot server and client operating systems.
- Disassemble, troubleshoot/debug, upgrade, replace basic components, and reassemble servers and client systems.
- Explain the concept of encapsulation and its relationship to layering in the network models.
- Explain how TCP's byte-stream sliding window is related to a traditional packet-based sliding window algorithm.
- Explain the operation of the components of a router including, DHCP, NAT/PAT, Routing function, Switching function.
- Describe how DNS works in the global Internet including caching and root servers.

Module No.		Topics	Hrs.
1.		Review of TCP /IP:	06
	1.1	TCP /IP networking model, layer functions.	
	1.2	TCP/IP protocols, services, sockets and ports, encapsulations, difference between ISO	
		and Internet layering.	
2		Application Layer:	08
	2.1	Host configuration, DHCP	
	2.2	Domain Name System (DNS), remote Login, TELNET and SSH	
	2.3	FTP and TFTP, World Wide Web, HTTP, electronic mail, SMTP, POP, IMAP, and MIME	
3		Transport Layer:	12
	3.1	User datagram protocol(UDP) header fields and their functions, pseudo header	
	3.2	Transmission control protocol (TCP), need for stream delivery, properties of reliable stream delivery, TCP header fields, ports, connections, end points, passive and active open, segment, stream and sequence numbers, variable window size and flow control.	
	3.3	Out of band data, checksum, acknowledgement and retransmission, round trip samples	
	3.4	Karn's algorithm, timer back off, response to delay variation and congestion, TCP state machine, connection establishment	
4		Internetworking layer:	08
	4.1	Internet protocol (IP) datagram, header fields and their functions	
	4.2	Internet control message protocol, IP address classes, broadcast, multicast and special addresses, network space and host space, subnets and supernets	
	4.3	Private IP addresses, classless inter domain routing (CIDR), CIDR subnet addressing, variable length in CIDR subnet addressing	
5.		Voice Communication	04
	5.1	Digitizing audio and video, audio compression, video compression	
6.		Real-Time Interactive Audio and Video	16
	6.1	Characteristics, RTP, RTP packet format	
	6.2	UDP port, RTCP, sender report, receiver report, source description message, bye	
		message, application-specific message, UDP port	
	6.3	SIP,H.323	
	6.4	Flow characteristics, flow classes, techniques to improve QOS, resource reservation,	
		admission control	50
		Total	52

- B. Forouzan, "*TCP/IP Protocol Suite*", 4th Edition, McGraw-Hill Publication
 Leon Garcia, "*Communication Networks*", 2nd Edition McGraw-Hill Publication
- 3. Kurose and Ross, "Computer Networking", 5th Edition Pearson Publication
- 4. Ted Wallingford, "Switching to VoIP", Oreilly Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Cou	irse Code	Course Name	Te	aching Sch	eme	Credits Assigned				
			Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
E	TE801	Speech Processing	04			04			04	

Course	Course								
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETE801	Speech	20	20	20	80	-	-	-	100
	Processing								

Course Pre-Requisites:

- ETC405 Signals and Systems
- ETC602 Discrete Time Signal Processing

Course Objective:

- To introduce the models of speech production and acoustic phonetics
- To teach time and frequency domain techniques for estimating speech parameters
- To teach predictive techniques for speech coding
- To introduce speech recognition and speech synthesis applications

Course Outcomes: Students will be able to:

- Demonstrate basic knowledge in speech production mechanism, phoneme classification, digital models for speech production, Homomorphic speech processing and LPC analysis
- Demonstrate applications of signal processing theory for estimation of speech parameters in time and frequency domain including pitch and formants
- Analyze application of speech processing in speech compression, speech recognition, and speech synthesis
- Enhance their written and oral technical communication skills related to speech processing subject and will be better prepared for higher study and lifelong learning

Module No.		Topics	Hrs.
1.		Speech Production, Acoustic Phonetics and Auditory Perception	10
	1.1	Anatomy and physiology of speech organs, articulatory phonetics, acoustic phonetics,	
		acoustic theory of speech production, discrete time model for speech production	
	1.2	Ear physiology and psychoacoustics	
2		Speech Analysis in Time Domain	06
	2.1	Time energy, average magnitude, and zero-crossing rate, speech vs silence discrimination	
	2.1	Short-time autocorrelation, pitch period estimation using short-time autocorrelation,	
		median smoothing	06
3		Speech Analysis in Frequency Domain:	06
	3.1	Time dependent Fourier representation for voiced and unvoiced speech signals, linear filtering interpretation, spectrographic displays	
	3.2	Pitch period estimation based on FFT and harmonic peak detection method, estimation	
		of formants using log spectrum	
4		Homomorphic Speech Processing	08
	4.1	Cepstral analysis of speech, mel frequency cepstral coefficients (MFCC), perceptual	
		linear prediction (PLP)	
	4.2	Pitch period estimation in cepstral domain, evaluation of formants using cepstrum	
5		LPC and Parametric Speech Coding	12
	5.1	Review of lattice structure realization, forward and backward error filters, normal equations & its solutions, levinson-durbin algorithm, covariance method, Berg's	
		algorithm	
	5.2	Channel Vocoders, linear prediction (LP) based vocoders, residual excited LP (RELP)	
		based Vocoders, voice Excited LP (VELP) based vocoders, multi-pulse LP (MPLP)	
		based vocoders, code excited LP (CELP) based vocoders	
6		Speech Processing Applications	10
	6.1	Speech recognition systems, deterministic sequence recognition for ASR, statistical	
		sequence recognition for ASR (Hidden Markov Model (HMM))	
	6.2	Text to speech system (TTS), concatenative synthesis, synthesis using formants, LPC synthesizer	
		Total	52

- 1. Rabiner and Schafer, "Digital Processing of Speech Signals", Pearson Education, Delhi, 2004.
- 2. Shaila D. Apte, "Speech and Audio Processing", Wiley India, New Delhi, 2012.
- 3. Douglas O'Shaughnessy, "Speech Communications: Human & Machine", Universities Press, Hyderabad, Second Edition, 2001.
- 4. Ben Gold and Nelson Morgan, "Speech and Audio Signal Processing", Wiley India (P) Ltd, New Delhi, 2006.
- 5. Thomas F. Quatieri, "Discrete-Time Speech Signal Processing: Principles and Practice", Prentice Hall, 2001.
- 6. J. L. Flanagan, "Speech Analysis Synthesis and Perception", Second edition, Springer-Verlag (1972).

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETE802	Telecom	04			04			04	
	Network								
	Management								

Course	Course				Examination S	on Scheme						
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total			
		Internal assessment			End Sem.	Work						
		Test	Test	Ave. Of	Exam							
		1	2	Test 1 and								
				Test 2								
ETE802	Telecom	20	20	20	80	-	-	-	100			
	Network											
	Management											

Prerequisite: ETC 603: Computer Communication and Networks

Course Objective:

- To familiarize the student with the design, analysis operation and management of modern data communications networks.
- To provide the student with a working knowledge of the types of communications network management systems and their strengths and limitations in solving various information network management problems.

Course Outcomes: The students will be able to:

- Demonstrate broad knowledge of fundamental principles and technical standards underlying
- Understand basic of telecommunication, networking and information technologies.
- Architect and implement networked informative systems.
- Continuously improve their technology knowledge and communication skills.
- Anticipate the way technological change and emerging technologies might alter the assumptions underlying architectures and systems.

Modul e No.		Topics	Hrs
1.		Overview of Network Management	06
	1.1	Case histories on network, system and service management, challenges of IT managers	
	1.2	Network Management: Goals, organization and functions	
	1.3	Network management architecture and organization network management perspectives	
2		OSI Network Management	08
	2.1	Network management standards	
	2.2	Network management models	
	2.3	Organization model	
	2.4	Information model	
	2.5	Communication model and functional model	
	2.6	Abstract syntax notation – encoding structure, macros functional model CMIP/CMISE	
3		Internet Management (SNMP)	13
	3.1	SNMP-organizational model-	
	3.2	System overview.	
	3.3	Information model, communication model, functional model	
	3.4	SNMP proxy server, Management information, Protocol	
	3.5	Remote monitoring. RMON	
4		Broadband Network Management	10
	4.1	Broadband networks and services, ATM Technology – VP, VC, ATM Packet, Integrated service, ATM LAN emulation, Virtual LAN	
	4.2	 ATM Network Management – ATM network reference model, integrated local management interface. ATM management information base, role of SNMP and ILMI in ATM management. M1, M2, M3, M4 interface. ATM digital exchange interface management 	
5	-110	Network Management Applications	08
-	5.1	Configuration management.	
	5.2	Fault management	1
	5.3	Performance management	1
	5.4	Event correlation techniques	1
	5.5	Security management	
	5.6	Accounting management, report management, policy based management services	-
	5.7	Level management	
6		Telecommunication Management Networks(TMN)	07
	6.1	Need for TMN	-
	6.2	Conceptual model	1
	6.3	TMN standards	1
	6.4	TMN management services architecture and TMN implementation	1
		Total	52

- 1. Mani Subramaniam, "Network Management Principles and Practise", Addison Wisely, New York, 2000.
- 2. Lakshmi G. Raman, "Fundamental of Telecommunications Network Management" Eastern Economy Edition, IEEE Press New Delhi.
- 3. Salh Aiidarons, Thomas Plevoyak "*Telecommunications Network Technologies and implementations*" Eastern Economy Edition, IEEE press New Delhi-1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETE803	Microwave	04			04			04	
	Integrated Circuit								

Course	Course				Examination S	cheme			
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETE803	Microwave	20	20	20	80	-	-	-	100
	Integrated								
	Circuit								

Course pre requisite:

- ETC 403: Wave Theory and Propagation
- ETC 504: RF Modeling and Antennas
- ETC 704: Microwave and Radar Engineering
- •

Course Objective:

- To understand the integration of microwave devices in the form of IC.
- To understand the basic principles and advanced applications of Microwave Engineering,
- To design different amplifier, oscillator and mixers for various applications.

Course outcome: The students will be able to

- Design and implement the microwave layouts.
- Design and implement the microwave amplifier, oscillator, and mixer circuits.

Module		Topics	Hrs.
No. 1.		Hybrid MICs And Monolithia MICs	08
1.	1.1	Hybrid MICs And Monolithic MICs Definition, characteristics, comparison with conventional circuits, field of application	Vð
	1.1	and limitations and criteria for the choice of substrate material in HMICS and MMICS.	1
	1.2	Thin film hybrid circuits, thick film hybrid circuits, art work, masking,	I
		photolithography, resistor stabilization, sawing, brazing process, wire bonding.	I
	1.3	Monolithic MICs: Doping by ion implantation, Ohmic contacts, metal resistive layers,	I
		gate metal, dielectric and air-bridge vias, wafer process steps.	
2		Micro Strip Lines	08
	2.1	Planar wave guides, non-tem propagation, line impedance definitions, quasi-static	
		approximations, quasi-static line parameters.	I
	2.2	Micro strip open circuits and gaps, micro strip corners, step change in width.	I
	2.3	Dispersion analysis, micro strip characteristic impedance, symmetric t junction, green's	I
		functions, millimeter wave modeling of micro strip lines.	10
3	0.1	Coupled Line Propagation	10
	3.1	Coupled line propagation: wave equations for coupled lines, propagation models,	I
		coupled line parameters, coupled line parameter variations with frequency, directional	I
	3.2	couplings, lange coupler, coupled line pair operated as a four port. Coplanar wave guides: design considerations and coplanar line circuits.	I
4	5.2	Microwave Amplifier Design	12
-	4.1	Introduction, derivation of transducer power gain, stability, power gains, voltage gains,	14
	1.1	and current gains, single-stage transistor amplifier design.	
	4.2	Power amplifier design: device modeling and characteristics, optimum loading.	
	4.3	Single-stage power amplifier design and multi-stage design.	
	4.4	Power distributed amplifiers. class of operation, power amplifier stability, amplifier	
		linearization methods.	
5		Microwave Oscillator Design	08
	5.1	Introduction, compressed smith chart, series of parallel resonance, resonators, two-port	I
		oscillator design, negative resistance from transistor model, oscillator q and output	I
		power.	1
	5.2	Noise in oscillators: linear approach, analytical approach to optimum oscillator design	
	5.0	using s parameters, nonlinear active models for oscillators.	I
	5.3	Microwave oscillator performance, design of an oscillator using large single y	I
		parameters, example for large single design based on bessel functions, design examples for best phase noise and good output power.	I
6		Microwave Mixer Design	06
U	6.1	Introduction, diode mixer theory, single-diode, single-balanced and double-balanced	UU
	0.1	mixers.	
	6.2	FET mixer theory, balanced FET mixers, special mixer circuits, mixer noise.	
		Total	52

- 1. D. H. Schrader, "Microstrip Circuit Analysis", Prentice Hall PTR, New Jersey.
- 2. D. M. Pozar, "Microwave Engineering", John Wiley & Sons Publication, 2013.
- 3. K. C. Gupta, R. Garg, and I. J. Bahl, "Microstrip Lines and Slot Lines", Artech House.
- 4. M. M. Radmanesh, "*Radio Frequency and Microwave Electronics*", Pearson Education, 2006.
- 5. D. Vendelin, A. M. Pavio, and U. L. Rohde, "*Microwave Circuit Design*", John Wiley & Sons Publication.
- 6. Sweet, "MIC and MMIC Amplifier and Oscillator Design", 1990 Edition, Artech House.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Te	aching Sche	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETE804	Ultra Wide Band Communication	04			04			04	

Course	Course Name		Examination Scheme								
Code			The	ory Marks		Term	Practical	Oral	Total		
		Int	ernal ass	essment	End	Work					
		Test 1	Test 2	Ave. Of	Sem.						
				Test 1 and	Exam						
				Test 2							
ETE804	Ultra Wide	20	20	20	80	-	-	-	100		
	Band										
	Communication										

Prerequisite: ETC 504: RF Modeling and Antennas.

Course Objective:

- To focuses on the basic techniques that concerns present and future dynamic UWB communication systems.
- To encompass all areas of design and implementation of UWB systems.
- To develop a comprehensive overview of UWB system design that spans propagation, transmit and receive antenna implementations, standards and advanced topics, modulation and multiple access, network issues, and applications.

Course Outcomes: Students will be able to;

- Understand nuances of planning and design of RF network
- Work professionally in the area of Antenna design and Radio Propagation.
- Apply the knowledge of mathematics and engineering to solve practical EM engineering problems.

Module No.		Topics	Hrs.
1.		Introduction	10
	1.1	UWB BASICS.	
	1.2	Regulatory bodies	
	1.3	UWB signals and systems with UWB waveforms	
	1.4	Power spectral density, Pulse shape, Pulse trains, Spectral masks	
	1.5	Multipath, penetration characteristics, spatial and spectral capacities – speed of data	
	110	transmission	
	1.6	Gaussian waveforms, Designing waveforms for specific spectral masks.	
	1.7	Practical constraints and effects of imperfections.	
2		Signal Processing Techniques For UWB Systems And UWB Channel Modeling	10
	2.1	Effects of lossy medium on UWB transmitted signal	
	2.2	Time domain analysis, frequency domain analysis	
	2.3	Detection and Amplification,	
	2.4	Two ray UWB propagation model,	
	2.5	Frequency domain auto regressive model, IEEE proposals for UWB channel models	
3		UWB Communications	05
	3.1	UWB modulation methods, pulse trains	
	3.2	UWB transmitter/receiver	
	3.3	Multiple access techniques in UWB, capacity of UWB systems	
4		Advanced UWB Pulse Generation	05
	4.1	Comparison of UWB with other wideband communication systems	
	4.2	Interference and coexistence of UWB with other systems	
	4.3	Hermite pulses: orthogonal prolate spheroidal wave functions	
	4.4	Wavelet packets in UWB PSM	
	4.5	Applications of UWB communication systems	
5		UWB Antennas and Arrays, Position and Location with UWB Signals	10
	5.1	Antenna fundamentals: Antenna radiation for UWB signals	
	5.2	Conventional antennas and Impulse antennas for UWB systems	
	5.3	Beam forming for UWB signals: radar UWB array systems	
	5.4	Wireless positioning and location: GPS techniques, Positioning techniques	
		time resolution issues, UWB positioning and communications	
6		UWB Communication Standards and Systems	12
	6.1	UWB standardization in wireless personal area networks	
	6.2	DS-UWB proposal, MB-OFDM UWB proposal: IEEE proposals for UWB channel models	
	6.3	UWB ad-hoc and sensor networks	
	6.4	MIMO and Space-time coding for UWB systems	
	6.5	Self-interference in high data-rate UWB communications, coexistence of DS-UWB with WIMAX	
		Total	52

- 1. M. Ghavami, L. B. Michael and R. Kohno, "Ultra Wideband Signals and Systems In Communication Engineering", 2nd Edition, John Wiley & Sons, NY, USA, 2007.
- 2. Jeffrey H. Reed, "An Introduction To Ultra Wideband Communication Systems", Prentice Hall Inc., NJ, USA, 2005.
- 3. Ian Oppermann, Matti Hamalainen and Jari Iinatti "*UWB Theory and Applications*", John Wiley & Sons Ltd, 2004

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ETL 801	Wireless		02			01		01		
	Networks									
	Laboratory									

Course	Course		Examination Scheme								
Code	Name			Theory Marks		Term	Practical	Oral	Total		
			Interna	l assessment	End Sem.	Work	and				
		Test	Test	Ave. Of Test 1	Exam		Oral				
		1	2	and Test 2							
ETL801	Wireless					25		25	50		
	Networks										
	Laboratory										

At least ten experiments covering entire syllabus of ETC 801: Wireless Network be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment

Oral examination will be based on entire syllabus.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned					
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total		
ETL 802	Satellite		02			01		01		
	Communication									
	and Networks									
	Laboratory									

Course	Course Name			E	xamination	Scheme			
Code				Theory Marks		Term		Oral	Total
		I	internal	assessment	End Sem.	Work	and		
		Test	Test	Ave. Of Test 1	Exam		Oral		
		1	2	and Test 2					
ETL802	Satellite					25		25	50
	Communication								
	and Networks								
	Laboratory								

At least ten experiments covering entire syllabus of ETC 802: Satellite Communication and Network be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment. Oral examination will be based on entire syllabus.

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total	
ETL 803	Internet and		02			01		01	
	Voice								
	Communication								
	Laboratory								

Course	Course Name		Examination Scheme								
Code]	Theory Marks		Term	Practical	Oral	Total		
		Ir	nternal	assessment	Work	and					
		Test	Test	Ave. Of Test	Sem.		Oral				
		1	2	1 and Test 2	Exam						
ETL803	Internet and					25		25	50		
	Voice										
	Communication										
	Laboratory										

At least ten experiments covering entire syllabus of ETC 803: Internet and Voice Communication Laboratory be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment Oral examination will be based on entire syllabus.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Theory Practical Tutorial			Practical	Tutorial	Total	
ETEL 80X	Elective		02			01		01	

Course	Course Name	Examination Scheme								
Code				Theory Marks	Term	Practical	Oral	Total		
		Iı	nternal	assessment	End Sem.	Work	and			
		Test	Test	Ave. Of Test 1	Exam		Oral			
		1	2	and Test 2						
ETEL	Elective					25		25	50	
80X										

At least ten experiments covering entire syllabus of respective Elective subject be set to have predefined inference and conclusion. Simulation based experiments are also encouraged. An attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded. The average of grades converted in to marks should be taken into account for term work assessment

Oral examination will be based on entire syllabus.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETP801	Project (Stage II)		04			02		02	

Course	Course Name		Examination Scheme								
Code				Theory Marl	Term	Practical	Oral	Total			
		Int	ernal a	ssessment	Work						
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
ETP801	Project (Stage					50	-	50	100		
	II)										

The final year students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Design, implementation, and analysis of the project work.
- Results, conclusions and future scope.
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

THADOMAL SHAHANI ENGINEERING COLLEGE

Chemical Engineering

EGE

THADOMAL SHAHANI

Sr. No.	Subject Code	Subject Name	Count
1	CHL301	Industrial and Engineering Chemistry I Lab	1
2	CHL302	Fluid Flow Operation Lab	1
3	CHL303	Basic Chemical Engineering Lab	1
4	CHL304	Skilled Based Lab: Chemical Technology Lab	1
5	CHM301	Mini Project 1A	1
6	CHL401	Industrial and Engineering Chemistry II Lab	1
7	CHL402	Numerical Method in Chemical Engineering Lab	1
8	CHL403	Solid Fluid Mechanical Operation Lab	1
9	CHL404	Skilled based lab: Design Calculation of Auxiliary Plant	1
		Equipment	
10	CHM401	Mini Project 1B	1
11	CHC506	Business Communication & Ethics	1
12	CHL507	Chemical Engg Lab (MTO-I)	1
13	CHL508	Chemical Engg Lab (CRE-I)	1
14	CHL509	Chemical Engg Lab (HTO-I)	1
15	CHL510	Chemical Engg Lab (Synthesis)	1
16	CHL607	Chemical Engg Lab (MTO-II)	1
17	CHL608	Chemical Engg Lab (CRE-II)	1
18	CHL609	Chemical Engg Lab (HTO-II)	1
19	CHL707	Chemical Engg Lab (PED)	1
20	CHL708	Chemical Engg Lab (PDC)	1
21	CHL807	Chemical Engineering Lab (EE)	1
22	CHL808	Chemical Engg Lab (MSO)	1
		Total	22

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17

Chemical Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

Under

FACULTY OF TECHNOLOGY

As per **Choice Based Credit and Grading System** With effect from the AY 2016–17

University of Mumbai

Page 1

From Coordinator's Desk

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) give freedom to affiliated Institutes to add few (PEO's) course objectives course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enables a much-required shift in focus from teachercentric to learner-centric education since the workload estimated is based on the investment of time in learning not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. Credit grading based system was implemented for Second Year of B.E. in Chemical Engineering from the academic year 2017-2018. This system is carried forward for Third Year of B.E. in Chemical Engineering in the academic year 2018-2019 and will be implemented for Fourth Year B.E. in the year 2019-2020 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

University of Mumbai

Page 2

Preamble to the Revision of Syllabus in Chemical Engineering

To match the increasing pace of development in all fields including Chemical Engineering and Biotechnology along with use of softwares for process plant and process engineering, there is demand on academician to upgrade the curriculum in Education. The availability of free software such as Scilab, DW SIM expand the boundaries of learning. Hence, the Undergraduate Curriculum in Chemical Engineering must provide the necessary foundation for a Chemical Engineer to be able to specialize in any area as and when the need and opportunity arise. The Curriculum must integrate knowledge of the basic and advanced sciences with problem solving abilities and inclusion of technological development. The Curriculum must be broad enough to cover all areas from design to operation of Process plants. It should be deep enough to enable the learners to carry out research and develop products to meet rapidly changing needs and demands. The major challenge in the current scenario is to ensure quality to the stakeholders along with expansion. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program.

With these objectives, a meeting was organized at Thadomal Shahani Engineering College Bandra on 17th November 2016 which was attended by Industries experts, heads of the departments and subject faculty of affiliating Institutes. The program objectives and outcomes were thoroughly discussed in this meeting and the core structure of the syllabus was formulated keeping in mind choice based credit and grading system curriculum to be introduced in this revised syllabus for B.E. (Chemical Engineering) for all semesters. Views from experts and UG teachers were taken into consideration and final Academic and Exam scheme was prepared with the consent of all the members involved. Subject wise meetings were held to finalize the detail syllabus in Bharati Vidyapeeth College of Engineering on 13th Jan 2017, SS Jondhale College of Engineering on 27th Jan 2017, Datta Meghe College of Engineering Airoli on 20th February 2017 and 13th April 2017 and in D. J. Sanghavi College of Engineering on 17th April 2017.

The Program Educational Objectives finalized for the undergraduate program in Chemical Engineering are:

- 1. To prepare the student for mathematical, scientific and engineering fundamentals
- 2. To motivate the student to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities.
- 4. To prepare the student in achieving excellence in their career in Indian and Global Market.

Dr. Kalpana S. Deshmukh,

Chairman, Board of Studies in Chemical Engineering (Adhoc), University of Mumbai

General Guidelines

Tutorials

- The number of tutorial batches can be decided based on facilities available in the institution.
- Tutorials can be creative assignments in the form of models, charts, projects, etc.

Term Work

- Term work will be an evaluation of the tutorial/practical done over the entire semester.
- It is suggested that each tutorial/practical be graded immediately and an average be taken at the end.
- A minimum of eight tutorials/ten practical will form the basis for final evaluation.
- The total 25 marks for term work (except project and seminar) will be awarded as follows:

Tutorial / Practical Journal – 20 marks

Overall Attendance – 05

Further, while calculating marks for attendance, the following guidelines shall be adhered to:

75 % to 80%. – 03 marks

- 81% to 90% 04 marks
- 91% onwards 05 marks

Theory Examination

- In general all theory examinations will be of 3 hours duration.
- Question paper will comprise of total six questions, each of 20 Marks.
- Only four questions need to be solved.
- Question one will be compulsory and based on maximum part of the syllabus.

Note:

In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus as far as possible.

Practical Examination:

- Duration for practical examination would be the same as assigned to the respective Lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Project and Seminar Guidelines

- Project Groups: Students can form groups with minimum 2 (Two) and not more than 3 (Three)
- The load for projects may be calculated proportional to the number of groups, not exceeding two hours per week.
- The load for projects may be calculated as: Sem VII: ¹/₂ hr for teacher per group. Sem VIII: 1 hr for teacher per group.
- Each teacher should have ideally a maximum of three groups and only in exceptional cases four groups can be allotted to the faculty.
- Seminar topics will be the consensus of the project guide and the students. Each student will work on a unique topic.
- The load for seminar will be calculated as one hour per week irrespective of the number of students
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, eight hours each were allotted in Project A, B and three hours for Seminar to the students.

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) S.E. Semester III (w.e.f 2017-2018)

Course	Course Name	T (Contact	eaching Sche Hours)	eme	0			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC301	Applied Mathematics-III	3	-	1	3	-	1	4
CHC302	Engineering Chemistry I	4	-	-	4	-	-	4
CHC303	Fluid Flow Operations (FFO)	4	-	-	4	-	-	4
CHC304	Chemical Engineering Thermodynamics I	3	-	1	3	-	1	4
CHC305	Process Calculations	3	-	1	3	-	1	4
CHC306	Chemical Technology	4	-	-	4	-	-	4
CHL301	Engineering Chemistry-I Lab	-	3	-	-	1.5	-	1.5
CHL302	Chemical Engineering Lab I (FFO)	-	3	-	-	1.5	-	1.5
CHL303	Chemical Engineering Lab II (Synthesis)	-	2	-	-	1	-	1
	Total	21	8	3	21	4	3	28

					Exa	mination Sch	eme			
Course code	Course Name			Theo	ry	Term	Pract		T (1	
coue		Intern	Internal Assessment End Exam					/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC301	Applied Mathematics-III	20	20	20	80	3	25	-	-	125
CHC302	Engineering Chemistry I	20	20	20	80	3	-	-	-	100
CHC303	Fluid Flow (FF)	20	20	20	80	3	-	-	-	100
CHC304	Chemical Engineering Thermodynamics I	20	20	20	80	3	25	-	-	125
CHC305	Process Calculations	20	20	20	80	3	25	-	-	125
CHC306	Chemical Technology	20	20	20	80	3	-	-	-	100
CHL301	Engineering Chemistry-I Lab	-	-	-	-	3	-	25	-	25
CHL302	Chemical Engineering Lab I (FFO)	-	-	-	-	3	25	25	-	50
CHL303	Chemical Engineering Lab II (Synthesis)	-	-	-	-	-	25	-	25	50
	Total			120	480	-	125	50	25	800

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) S.E. Semester IV (w.e.f 2017-2018)

Course code	Course Name		eaching Sche Contact Hou		0			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC401	Applied Mathematics-IV	3	-	1	3	-	1	4
CHC402	Engineering Chemistry II	4	-		4	-	-	4
CHC403	Chemical Engineering Thermodynamics II	3	-	1	3	-	1	4
CHC404	Solid Fluid Mechanical Operations (SFMO)	4	-	-	4	-	-	4
CHC405	Mechanical Equipment Design (MED)	4	-	-	4	-	-	4
CHC406	Chemical Engineering Economics	3	-	1	3	-	1	4
CHL401	Engineering Chemistry-II Lab	-	3	-	-	1.5	-	1.5
CHL402	Chemical Engineering Lab III (SFMO)	-	3	-	-	1.5	-	1.5
CHL403	MED Lab	-	2	-	-	1	-	1
	Total	21	8	2	21	4	3	28

Course					Exa	mination Sch	eme			
code	Course Name			Theo	ory		Term	Pract		m / N
		Interr	Internal Assessment End Exam					/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC401	Applied Mathematics-IV	20	20	20	80	3	25	-	-	125
CHC402	Engineering Chemistry II	20	20	20	80	3	-	•	-	100
CHC403	Chemical Engineering Thermodynamics II	20	20	20	80	3	25	-	-	125
CHC404	Solid Fluid Mechanical Operations (SFMO)	20	20	20	80	3	-	-	-	100
CHC405	Mechanical Equipment Design (MED)	20	20	20	80	3	-	-	-	100
CHC406	Chemical Engineering Economics	20	20	20	80	3	25	-	-	125
CHL401	Engineering Chemistry-II Lab	-	-	-	-	3	-	25	-	25
CHL402	Chemical Engineering Lab III (SFMO)	-	-	-	-	3	25	25	-	50
CHL403	MED Lab	-	-	-	-	-	25	-	25	50
	Total			120	480	-	125	50	25	800

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) T.E. Semester V (w.e.f 2018-2019)

Course code	Course Name		eaching Sche Contact Hou		(
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC501	Computer programming and Numerical Methods	4	-	-	4	-	-	4
CHC502	Mass transfer Operations-I (MTO- I)	4	-	-	4	-	-	4
CHC503	Heat transfer Operations (HTO)	4	-	-	4	-	-	4
CHC504	Chemical Reaction Engineering-I (CRE I)	4	-	-	4	-	-	4
CHC505	Business Communication & Ethics	2	-	2	-	-	2	2
CHDE501X	Department Elective I	4	-	-	4	-	-	4
CHL501	Computer programming and Numerical Methods lab	-	2	-	-	1	-	1
CHL502	Chemical Engineering Lab IV (MTO-I)	-	3	-	-	1.5	-	1.5
CHL503	Chemical Engineering Lab V (HTO)	-	3	-	-	1.5	-	1.5
CHL504	Chemical Engineering Lab VI (CRE-I)	-	2	-	-	1	-	1
	Total	20	14	-	20	5	2	27

Course code					Exa	mination Scho	eme			
	Course Name			Theo	ory					
		Internal Assessment End H		Exam	Term Work	Pract /Oral	Oral	Total		
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	WOLK	/Orai		
CHC501	Computer programming and Numerical Methods	20	20	20	80	3	-	-	-	100
CHC502	Mass transfer Operations-I (MTO- I)	20	20	20	80	3		-	-	100
CHC503	Heat transfer Operations (HTO)	20	20	20	80	3		-	-	100
CHC504	Chemical Reaction Engineering-I (CRE I)	20	20	20	80	3		-	-	100
CHC505	Business Communication & Ethics	-	-	-	-	-	50	-	-	50
CHDE501X	Department Elective I	20	20	20	80	3		-	-	100
CHL501	Computer programming and Numerical Methods Lab	-	-	-	-	2	25	25	-	50
CHL502	Chemical Engineering Lab IV (MTO-I)	-	-	-	-	3	25	25	-	50
CHL503	Chemical Engineering Lab V (HTO)	-	-	-	-	3	25	25	-	50
CHL504	Chemical Engineering Lab VI (CRE-I)	-	-	-	-	2	25	25	-	50
	Total			100	400	-	150	100	-	750

Department Elective I (Sem V)										
Engineering Stream (Elective Code)	Advanced Sciences Stream (Elective code)	Technology Stream (Elective Code)								
1. Piping Engineering (CHDE5011) 2. Instrumentation (CHDE5014)	1. Colloids and Interfaces (CHDE5012)	1. Advanced Material Sciences (CHDE5013)								

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) T.E. Semester VI (w.e.f 2018-2019)

Course code	Course Name		eaching Sche Contact Hou		0			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC601	Environmental Engineering (EE)	4	-	-	4	-	-	4
CHC602	Mass transfer Operations –II (MTO-II)	4	-	-	4	-	-	4
CHC603	Transport Phenomenon	3	-	1	3	-	1	4
CHC604	Chemical Reaction Engineering -II (CRE- II)	4	-	-	4	-	-	4
CHC605	Plant Engineering & Industrial Safety	3	-	1	3	-	1	4
CHDE602X	Department Elective II	4	-	-	4	-	-	4
CHL601	Chemical Engineering Lab VII (EE)	-	3	-	-	1.5	-	1.5
CHL602	Chemical Engineering Lab VIII (MTO-II)	-	3	-	-	1.5	-	1.5
CHL603	Chemical Engineering LabIX CRE-II)	-	2	-	-	1	-	1
	Total	22	8	2	22	4	2	28

					Exa	mination Scho	eme			
Course code	Course Name			ory	Term	Pract				
		Internal Assessment		ment	End		Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC601	Environmental Engineering (EE)	20	20	20	80	3	-	-	-	100
CHC602	Mass transfer Operations –II (MTO-II)	20	20	20	80	3	-	-	-	100
CHC603	Transport Phenomenon	20	20	20	80	3	25	-	-	125
CHC604	Chemical Reaction Engineering -II (CRE- II)	20	20	20	80	3	-	-	-	100
CHC605	Plant Engineering & Industrial Safety	20	20	20	80	3	25	-	-	125
CHDE602X	Department Elective II	20	20	20	80	3	-	-	-	100
CHL601	Chemical Engineering Lab VII (EE)	-	-	-	-	3	25	25		50
CHL602	Chemical Engineering Lab VIII (MTO-II)	-	-	-	-	3	25	25	-	50
CHL603	Chemical Engineering Lab IX CRE-II)	-	-	-	-	2	25	25	-	50
	Total			120	480	-	125	75		800

	Department Elective II (Sem VI)										
Engineering Stream (Elective Code) Management Stream (Elective Code) Technology Stream (Elective Code)											
1.	Computational (CHDE6021)	Fluid	Dynamics	1. Operation Research (CHDE6022)	1. Biotechnology (CHDE6023)						

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) B.E. Semester VII (w.e.f 2019-2020)

Common and a	Course Name		eaching Sche Contact Hour		C			
Course code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC701	Process Equipment Design. (PED)	4	-	-	4	-	-	4
CHC702	Process Engineering	3	-	1	3	-	1	4
СНС703	Process Dynamics and Control (PDC)	4	-	-	4	-	-	4
CHDE703X	Department Elective III	4	-	-	4	-	-	4
ILO701X	Institute Elective I	3	-	-	3	-	-	3
CHP701	Project A	-	-	8	-	-	3	3
CHS701	Seminar	-	-	3	-	-	3	3
CHL701	PED Lab	-	3	-	-	1.5	-	1.5
CHL702	Chemical Engineering Lab X (PDC)	-	3	-	-	1.5	-	1.5
	Total	18	6	12	18	3	7	28

]	Examination	Scheme			
	Course Name			The	eory					
Course code	Course Name		lnterna ssessme		End Exam	Term Work	Pract /Oral	Oral	Total	
CHC701		Test 1	Te st 2	Avg	Sem Exam	Duration (in hrs)				
CHC701	Process Equipment Design. (PED)	20	20	20	80	3	-	-	-	100
CHC702	Process Engineering	20	20	20	80	3	25	-	-	125
СНС703	Process Dynamics and Control (PDC)	20	20	20	80	3	-	-	-	100
CHDE703X	Department Elective III	20	20	20	80	3	-	-	-	100
ILO701X	Institute Elective I	20	20	20	80	3	-	-	-	100
CHP701	Project A	-	-	-	-	-	100		25	125
CHS701	Seminar	-	-	-	-	-	50	-	-	50
CHL701	PED Lab	-	-	-	-	-	25	-	25	50
CHL702	Chemical Engineering Lab X (PDC)	-	-	-	-	3	25	25	-	50
	Total			100	400	-	225	25	50	800

Department Elective III (Sem VII)						
Engineering Stream (Elective Code)	Management Stream (Elective Code)	Technology Stream (Elective Code)				
1. Corrosion Engineering (CHDE7031)	2. Industrial organization and Management. (CHDE7032)	1.Petroleum Refining Technology(CHDE7033) 3. Food Technology (CHDE7034)				
	Institute Level Optional Subject I (Se	m VII)				
I. Product Lifecycle Management(ILO7	011) 4. Design of Experiments(ILO7014)	7. Disaster Management and Mitigation Measures(ILO7017)				
2. Reliability Engineering (ILO7012)	5. Operation Research (ILO7015)	8. Energy Audit and Management (ILO7018)				
3. Management Information System (ILO7013)	6. Cyber Security and Laws (ILO7016)	9. Development Engineering (ILO7019)				

Rev 2016

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) B.E. Semester VIII (w.e.f 2019-2020)

Course code	Course Name	Teaching Scheme (Contact Hours)			0			
Course coue		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC801	Modeling, Simulation & Optimization (MSO)	4	-	-	4	-	-	4
CHC802	Project Engineering & Entrepreneurship Management	3	-	1	3	-	1	4
CHC803	Energy System Design	3	-	1	3	-	1	4
CHDE804X	Department Elective IV	4	-	-	4	-	-	4
ILO802X	Institute Elective II	3	-	-	3	-	-	3
CHP801	Project B	-	-	8	-	-	6	6
CHL801	Chemical Engineering Lab XI (MSO)	-	2	-	-	1	-	1
	Total	17	2	10	17	1	8	26

		Examination Scheme								
Course code	Course Name			ry	Term	Pract		Total		
		Interr	al Assess	ment	End	Exam	Work	/Oral	Oral	10141
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC801	Modeling, Simulation & Optimization (MSO)	20	20	20	80	3	-	-	-	100
CHC802	Project Engineering & Entrepreneurship Management	20	20	20	80	3	25	-	-	125
CHC803	Energy System Design	20	20	20	80	3	25	-	-	125
CHDE804X	Department Elective IV	20	20	20	80	3		-	-	100
ILO802X	Institute Elective II	20	20	20	80	3		-	-	100
CHP801	Project B	-	-	-	-	-	100	-	50	150
CHL801	Chemical Engineering Lab XI (MSO)	-	-	-	-	2	25	25	-	50
	Total			100	400	-	175	25	50	750

Department Elective IV (Sem VIII)								
Engineering Stream (Course Code)	Management Stream (Course Code)	Technology Stream (Course Code)						
1. Advanced Process Control (CHDE8041)	1. Total Quality Management (CHDE8042)	1. Advanced Separation Technology (CHDE8043) 2. Polymer Technology(CHDE8044) 1000000000000000000000000000000000000						

Institute Level Optional Subject II (Sem VIII)								
1. Project Management (ILO8021)	4. Human Resource Management (ILO8024)	7. IPR and Patenting (ILO8027)						
2. Finance Management (ILO8022)	5. Professional Ethics and CSR (ILO8025)	8. Digital Business Management (ILO8028)						
3. Entrepreneurship Development and Management (ILO8023)	6. Research Methodology(ILO8026)	9. Environmental Management (ILO8029)						

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) S.E. Semester III (w.e.f 2017-2018)

Course	Course Course Name		Teaching Scheme (Contact Hours)			Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
CHC301	Applied Mathematics-III	3	-	1	3	-	1	4	
CHC302	Engineering Chemistry I	4	-	-	4	-	-	4	
CHC303	Fluid Flow Operations (FFO)	4	-	-	4	-	-	4	
CHC304	Chemical Engineering Thermodynamics I	3	-	1	3	-	1	4	
CHC305	Process Calculations	3	-	1	3	-	1	4	
CHC306	Chemical Technology	4	-	-	4	-	-	4	
CHL301	Engineering Chemistry-I Lab	-	3	-	-	1.5	-	1.5	
CHL302	Chemical Engineering Lab I (FFO)	-	3	-	-	1.5	-	1.5	
CHL303	Chemical Engineering Lab II (Synthesis)	-	2	-	-	1	-	1	
	Total	21	8	3	21	4	3	28	

		Examination Scheme								
Course code	Course Name	Theory					Term	Pract		
coue		Interr	al Assess	ment	End	Exam	Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC301	Applied Mathematics-III	20	20	20	80	3	25	-	-	125
CHC302	Engineering Chemistry I	20	20	20	80	3	-	-	-	100
CHC303	Fluid Flow (FF)	20	20	20	80	3	-	-	-	100
CHC304	Chemical Engineering Thermodynamics I	20	20	20	80	3	25	-	-	125
CHC305	Process Calculations	20	20	20	80	3	25	-	-	125
CHC306	Chemical Technology	20	20	20	80	3	-	-	-	100
CHL301	Engineering Chemistry-I Lab	-	-	-	-	3	-	25	-	25
CHL302	Chemical Engineering Lab I (FFO)	-	-	-	-	3	25	25	-	50
CHL303	Chemical Engineering Lab II (Synthesis)	-	-	-	-	-	25	-	25	50
	Total			120	480	-	125	50	25	800

Course Code	Course/Subject Name	Credits
CHC301	Applied Mathematics III	4

• Basics of Complex numbers, Modulus, Argument, Equation of circle, Roots of unity, Euler's formula, Hyperbolic functions, Matrices, Symmetric, Orthogonal and Unitary matrices, Rank, Normal form, Solution of system of linear equations, L. I. & L. D. vectors, Basics of Probability.

Course Objectives:

- To enable students to solve initial value ODE problems using L-transforms.
- To strengthen the knowledge of students in Linear Algebra.
- To study the basics of statistics and Probability.
- To study the basics of Complex Variable.

Course outcomes:

- The student will be able to apply Laplace Transform techniques for solving initial value problems.
- Identify the Analytic function and Harmonic function and to apply Bilinear Transformation.
- Understanding and apply the concept of Probability distribution and Sampling theory to engineering problems.

Module	Topics	Contact
		hours
1	Laplace transform:	10
	1.1 Introduction, Definition of Laplace transform, Laplace	
	transform of constant, trigonometrical, exponential functions.	
	1.2 Important properties of Laplace transform: First shifting	
	theorem, Laplace transform of L{ $f(at)$ }, L{ $t^n f(t)$ }, L{	
	$\frac{f(t)}{t}$ }, L{ $\frac{d^n f(t)}{dt^n}$ }, L{ $\int_0^t f(u) du$ }, without proof.	
	1.3 Unit step function, Heavi side function, Second shifting	
	theorem, Dirac-delta function, Periodic function and their	
	Laplace transforms without proof.	
	1.4 Inverse Laplace transform with Partial fraction and	
	Convolution theorem. (without proof)	
	1.5 Application to solve initial and boundary value problem involving ordinary differential equations with one dependent	
	variable and constant coefficients.	
2	Matrices:	08
	2.1 Eigen values and eigen spaces of 2x2 and 3x3 matrices;	
	existence of a basis and finding the dimension of the eigen space	
	(no proofs); diagonalisable matrices.	
	2.2 Cayley - Hamilton theorem. (without proof)	

	2.3 Quadratic forms; orthogonal and congruent reduction of a	
	quadratic form in 2 or 3 variables; rank, index, signature;	
	definite and indefinite forms.	
3	Probability:	07
	3.1 Random Variables:- discrete & continuous random variables,	
	expectation, Variance, Probability Density Function &	
	Cumulative Density Function.	
	3.2 Moments, Moment Generating Function.	
	3.3 Probability distribution: binomial distribution, Poisson &	
	normal distribution.	
4	Sampling Theory:	07
	4.1 Test of Hypothesis, Level of significance, Critical region,	
	One Tailed and two Tailed test, Test of significant for Large	
	Samples:-Means of the samples and test of significant of means	
	of two large samples.	
	4.2 Test of significant of small samples:- Students t- distribution	
	for dependent and independent samples.	
	4.3 Chi square test:- Test of goodness of fit and independence of	
	attributes, Contingency table.	
	Correlation:	
	4.4 Karl Pearson's coefficient of correlation, covariance,	
	Spearman's Rank correlation.	
	4.5 Regression Lines.	
5	Complex Variable:	07
-	5.1 Functions of a complex variable, Analytic functions,	• •
	Cauchy-Riemann equations in Cartesian co-ordinates, Polar co-	
	ordinates. (without proof)	
	5.2 Harmonic functions, Analytic method and Milne Thomson	
	methods to find $f(z)$, Orthogonal trajectories. (without proof)	
	Mapping	
	5.3 Conformal Mapping, Linear, Bilinear transformations, Cross	
	ratio, fixed points and standard transformation such as rotation	
	and magnification, invertion, translation.	

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:	20 marks
Attendance:	05 marks
Total:	25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

Reference Books

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal 42th edition, Khanna Publication.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 3. A Text Book of Applied Mathematics Vol. II by P.N.Wartilar & J.N.Wartikar, Pune, Vidyarthi Griha Prakashan., Pune.
- 4. Advanced Engg. Mathematics by C. Ray Wylie & Louis Barrett.TMH International Edition.
- 5. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 6. Laplace Transforms by Murry R. Spieget, Schaun'sout line series-McGraw Hill Publication.
- 7. Theory And Problems of Statistics by Murry R. Spieget, Schaun'sout line series-McGraw Hill Publication.
- 8. Fundamentals Of Mathematical Statistics by S. C. Gupta, V. K. Kapoor, Sultan Chand & Sons -2003

Course Code	Course/Subject Name	Credits
CHC302	Engineering Chemistry– I	4

- Knowledge of Vander-Waal's forces, various bonds, Octet rule, Resonance theory, Hybridization.
- Knowledge of variable valency, ligands.
- Knowledge of properties of transition metals.
- Knowledge of intermediate steps involved in conversion of reactants to products.
- Basic concept of quantum chemistry & wave theory approach.

Course Objectives:

- To understand chemical bonding.
- To study chelation and its advantages.
- To understand structures of different bio-molecules and their chemistry.
- To study importance of iron compounds for life.
- To understand different concepts of organic reactions.
- To study the effect of temperature and time on chemical reactions.
- To become aware of industrially important reactions.
- To understand mechanism of aromatic substitution and elimination reactions.

Course Outcomes:

- Students will understand different theories of chemical bonding, organometallic chemistry, mechanism and application of Photochemical processes.
- Students will also be capable of defining Stability of Coordination compounds, Kinetics and energy profile diagrams of reactions.
- Students will have knowledge of metal carbonyls and their properties.
- Students will able to express role of metalloproteins in biological processes.
- Students will be able to carry out organic estimations, gravimetric analysis and handle different instruments in the laboratory.

Module	Content	
		Hours
	Basic Concepts of Chemistry and Molecular Structures-	
1	Hydrogen bonding, Valence bond theory (application for H ₂	
	molecule). Molecular orbital theory, Bonding, Non-bonding and	08
	anti-bonding orbitals, LCAO method, VSEPR theory .Structure	
	of BrF ₃ ,SF ₄ , XeF ₄ , and IF ₇ . Molecular orbital diagrams of	
	homonuclear and heteronuclear molecules H ₂ , Be ₂ , B ₂ , C ₂ , N ₂ ,	
	O ₂ , F ₂ ,HF CO,NO and NO ⁺ typesetc, metallic bond.	

	Co-ordination chemistry	
	Definitions- Co-ordination number or ligancy, Ligand, Complex	
	ion, Co-ordination or dative bond. Nomenclature and isomerism	
2	(Only Geometrical and Structural) in co-ordination compounds	08
	with respect o co-ordination number 4 and 6. Theories of	
	coordination compounds- Werner's Co-ordination theory,	
	Valence bond theory, Crystal field theory (CFT), Ligand field	
	theory. Effective Atomic Number (EAN), Application of CFT to	
	tetrahedral and octahedral complexes, drawbacks of CFT.	
	Measurement of CFSE (10Dq), and Numericals based on EAN	
	and 10Dq measurement.	
	Organometallic compounds and Bio-inorganic chemistry	
	Chemistry of Fe-Carbonyls –Fe(CO) ₅ ,Fe ₂ (CO) ₉ w.r.t preparation,	06
3	properties, structure and bonding. Biochemistry of proteins	
	containing Fe and Zn. O ₂ atom transfer reactions of bio molecules	
	containing Fe.	
	Reaction Mechanism & Reactive Intermediates	
	Transition state (T.S.), Intermediate, Difference between T.S. &	
	intermediate. Equilibrium (Thermodynamically) controlled & rate	07
4	(Kinetically) controlled reactions.	
	Explain w.r.t. Nitration of chlorobenzene, methylation of toluene	
	by Friedel-Craft's reaction, sulphonation of naphthalene.	
	Reactive intermediates	
_	Definition, carbocation, carbanion, carbon free radicals and	
5	carbenes – their formation, structure & stability.	08
	Reactive intermediate formation with mechanism and	
	applications-	
	Carbocation – Pinacol - Pinacolone reaction.	
	Carbanion – Michael reaction.	
	Free radical - Wohl-Ziegler bromaination reaction.	
	Carbene - Reimer-Tiemann reaction.	00
6	PhotochemistryIntroduction,differencebetweenPhotochemicaland	08
U	thermochemical reaction, laws of Photochemistry i) Grothus	
	Draper Law ii) Stark Einstein Law. Fluorescence and	
	phosphorescence. Jablonskii diagram, Quantum yield, reasons	
	for high quantum yield.	
	Photochemical reactions of carbonyl compounds-(i) Norrish	
	type- I cleavage (ii) Norrish type-II cleavage with mechanism.	
	rype- i cleavage (ii) Norrish rype-ii cleavage with mechanism.	

Assessment

Internal:

Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

• Question paper will comprise of 6 questions, each carrying 20 marks.

- Total 4 questions need to be solved.
- Question No.1 should be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module

References

- 1. Principles of Inorganic Chemistry- Puri, Sharma, Kalia Milestone/Vishal Publishers
- 2. Advanced Inorganic Chemistry J. D. Lee
- 3. Organic Chemistry I L Finar volume I and II.
- 4. Advanced Organic Chemistry Jerry March, John Wiley & Sons (Wiley India)
- 5. Organic Chemistry J. Clayden, Greeves, Warren, Wothers. Oxford
- 6. Organic reaction Mechanisms- V.K. Ahluwalia , Rakesh Parashar, Narosa Publication
- 7. A textbook of Physical Chemistry Glasston Samuel, Macmillan India Ltd. (1991)
- 8. Inorganic Chemistry: Huheey.
- 9. Principles of Physical Chemistry- B. R. Puri, L. R. Sharma, M.S. Pathania.
- 10. Photochemistry and Pericyclic Reactions- Jagdamba Singh, Jaya Singh
- 11. Organic reaction mechanism Peter sykes
- 12. Vogel's Textbook of Practical organic chemistry.

Course Code	Course/Subject Name	Credits
CHC303	Fluid Flow Operation	4

• Students are assumed to have adequate background in physics, units and dimensions and thermodynamics.

Course Objectives:

- Students should be able to understand the scope of the subject in chemical industry.
- They should be comfortable with measurement of pressure or pressure drop.
- They should be able to calculate pressure drop and flow rates in conduits for incompressible as well as compressible fluids.
- They should be able to determine viscosity using different methods such as Stokes Law, Capillary viscometer.
- They should be able to calculate power requirement in agitation and to be able to select and calculate power requirement for pumps.
- They should be able to select proper valves.

Course Outcomes:

- After studying this subject, students would be able to measure pressure drop, flow rates etc.
- Students will able to understand basic concepts and pressure measurement.
- Students will able to understand kinetics and rheological behavior of fluid flow.
- Students will able to understand flow equations for compressible and incompressible flow.
- Students will able to select pumps and valves and would be able to calculate power requirement for pumping as well as agitation operations.

Module	Contents	Contact Hours
1	 Introduction and Basic Concepts: Scope and Applications of fluid flow, Properties of fluids such as Density, viscosity, surface tension, capillarity effect, vapour pressure. Pressure and Fluid Statics: Fluid Pressure at a Point, Pascal's Law, Pressure Variation in a fluid at rest. Hydrostatic Equilibrium. Measurement of Pressure, Manometers – Peizometers, U- Tube, Single Column manometer, U – Tube differential manometer, Inverted Differential U – tube manometer, inclined manometer. 	7
2	Fluid Kinematics:	2

	• Types of fluid flow namely steady and unsteady, Uniform and non- uniform, laminar and turbulent, compressible and	
	incompressible internal and external, one, two dimensional	
	flow.	
	• Newton's Law of Viscosity, Rheological behavior of fluid,	
	capillary viscometer.	
3	Basic Equations of Fluid Flow:	10
	• Bernoulli's equation Euler's Equation, Modified	
	Bernoulli's equation.	
	• Major and Minor losses, Equivalent length, flow through	
	pipe in series, parallel, pipe network.	
	Prestical Application of Pornoulli's Equation.	
	 Practical Application of Bernoulli's Equation: Venturimeter: Horizontal and inclined, Orificemeter, Pitot 	
	tube	
	• Notches and Weirs: Introduction, classification, Derivation	
	for V – notch, Rectangular notch.	
4	Flow through Pipes:	12
	A] Incompressible flow:	
	Shear stress distribution and velocity distribution. Relationship	
	between Skin friction and wall shear, friction factor, Darcy-	
	Weisbach equation. Reynolds experiment and Reynolds no.,	
	Formation of Boundary.	
	Laminar Flow: Shear stress, velocity distribution, Derivation of local velocity,	
	maximum velocity, average velocity, Kinetic Energy Correction	
	factor, Hagen – Poiseullie equation.	
	Turbulent Flow: Velocity distribution equations, Average	
	velocity, local velocity, maximum velocity, kinetic energy	
	correction factor (No Numericals on universal velocity). Von	
	Carman equation and friction factors, Moody diagram.	
	Equivalent diameter for circular and non-circular ducts. Pipes in	
	series and parallel. Frictional Losses in different pipe fittings. B] Compressible Fluids:	
	Introduction, Mach no, Sonic, supersonic and subsonic flow,	
	continuity equation and Bernoulli's equation, stagnation	
	properties, Acoustic velocity. Adiabatic Flow. Isothermal Flow.	
	Isentropic Flow.	
5	Flow past immersed bodies:	2
	Drag forces, Coefficient of drag, Terminal settling velocity,	
	Stoke's law.	10
6	Pumps, Valves and Agitators: Classification and types, Centrifugal pumps – Construction and	12
	working, Power required, Definitions of heads and efficiency,	
	NPSH, Priming, Cavitations, characteristic curves. Specific	
	speed, minimum speed.	
	speed, minimum speed.	

Reciprocating Pump: Classifications and working.	
Power Consumption in Agitation: Power curves, Power No.,	
types of impellers.	
Introduction to Compressors, Fans and Blowers.	
Types of Valves: Globe valves, Gate valves, butterfly valves	
and non – Return valves.	

Assessment

Internal:

Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

References

- 1. Warren L. Mccabe, Julian C. Smith, Peter Harriott, Unit Operations of Chemical Engineering, McGraw Hill International Edition.
- 2. Okiishi, Huebsch, Rothmayer Munson, Fluid Mechanics SI Version, Wiley, 7th edition, 2015.
- 3. Coulson J. M., Richardson J. F., Backhurst J. R. and J. H. Harker, Chemical Engineering, Vol. 1 and 2.
- 4. Suresh Ukarande, Fluid Mechanics and Hydraulics, Ane Books, 2012.
- 5. Robbert W. Fox, Philip J. Pritchard, Alan T. McDonald, Introduction to Fluid Mechanics, 7th edition, WILEY, India Edition.
- 6. Yunus A. Cengel, John M. Cimbala, Adapted by S. Bhattacharya, Fluid Mechanics Fundamentals and Applications, The McGraw Hill Companies.
- 7. Dr. R. K. Bansal, Fluid Mechanics and Hydraulic Machines, Laxmi Publications Pvt. Ltd.
- 8. Fluid Mechanics for Chemical Engineers by Noel de Nevers, McGraw Hill Education

Course Code	Course/Subject Name	Credits
CHC304	Chemical Engineering Thermodynamics I	04

- Basic thermodynamic properties, laws and equations.
- Engineering Mathematics: Differential Equations, Linear Algebraic Equations.

Course Objectives:

- To make students understand the Laws of Thermodynamics and Basics of Chemical Engineering Thermodynamics
- To make students learn to apply the concepts of Chemical Engineering Thermodynamics to various Chemical Engineering Processes

Course Outcomes:

• The students will be able to apply thermodynamic laws and equations to various Chemical Engineering processes.

Module	Contents	Contact Hours
01	 First Law of Thermodynamics for flow and non-flow processes Calculation of heat and work for various types of processes 	08
02	 Second Law of Thermodynamics Concepts of heat engine, heat pump and refrigerator Carnot Cycle and Carnot Principle Clausius Inequality Concept of Entropy and estimation of Entropy change of various processes Third Law of Thermodynamics 	08
03	Concept of Exergy, Exergy BalanceSteady flow Exergy equation and its application	06
04	• Equations of State for non-ideal gases: Virial equation of state, van der Waals equation of state, Redlich-Kwong, Redlich-Kwong-Soave and Peng-Robinson equation of state	06
05	 Maxwell Equation, Joule Thomson effect Enthalpy and Entropy departure functions (vander Waals and RedlichKwong EOS) Thermodynamic Charts, Diagrams and their applications Fugacity and fugacity coefficient(vander Waals and RedlichKwong EOS) 	08

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials: 20 marks

Attendance:	05 marks
Total:	25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

Reference

- 1. Introduction to Chemical Engineering Thermodynamic by J.M. Smith, H.C. Van Ness, M.M. Abbott, Latest Edition, McGraw Hill Publishing Company Limited
- 2. A textbook of Chemical Engineering Thermodynamics by K.V. Narayanan, Latest Edition, Prentice Hall of India Private Limited
- 3. Chemical Engineering Thermodynamics by Y.V.C. Rao, Latest Edition, University Press
- 4. Fundamentals of Engineering Thermodynamics by Micheal J Moran , Howard N Shaprio, Latest Edition, Wiley publication.
- 5. Introduction to Chemical Engineering Thermodynamics by Gopinath Halder, PHI learning Pvt. Ltd

Course Code	Course/Subject Name	Credits
CHC305	Process Calculations	4

- Linear algebra.
- Differential equations

Course Objectives:

- Students will learn to write mass balances on various process equipments with and without recycle.
- Students will learn to write energy balances on various process equipments with and without recycle.
- Students will learn to write mass and energy balances for chemical reactions with and without recycle.
- Students will learn to flow sheeting calculations.

Course Outcomes:

- Students will learn to calculate mass and energy flow rates into and out of various process equipments.
- Students will learn to calculate conversion, selectivity etc for various reactions with and without recycle.
- Students will learn to carry out degrees of freedom analysis for various units.

Module	Contents	Contact Hours
1	Introduction. Basic Chemical Calculations .Units And Dimensions Various systems of units, conversion of units. Density, specific volume, specific gravity, Concentration & composition of mixtures and solutions. Ideal Gas law, Dalton's law, Amagat, s law, Raoult's law, Henry's law	06
2	Material Balance without chemical reactions. General material balance equation, degree of freedom analysis for individual units, solving material balance problems for various unit operations using steady state equation, Material Balance for Unsteady Processes. Recycle, Bypass and Purge Calculations.	07
3	Material Balance with chemical reactions. Concept of limiting and excess reactants, conversion and yield, selectivity and degree of completion of reaction, material balance problems related to chemical reactions including recycle, bypass and purge Calculations.	07
4	Energy Balance. Heat capacity, sensible heat, latent heat, calculation of enthalpy changes. General energy balance equation. Energy balances for process involving chemical reaction including adiabatic reactions & combustion processes (Orsat Analysis & Net, Gross Calorific Value determination).	10

5	Combined Material and Energy balance. Material and Energy	08
	balance for binary distillation, combustion and evaporation.	

Tutorials

- 1. Basic chemical calculations.
- 2. Material balance without chemical reaction.
- 3. Material balance without chemical reaction for unsteady. Bypass, recycle and purge operations
- 4. Material balance without chemical reaction for unsteady. Bypass, recycle and purge operations.
- 5. Energy balance based on heat capacity, enthalpy change.
- 6. Energy balance based on Hess's law, temperature of reaction.
- 7. Energy balance based on orsat analysis, NCV and GCV.
- 8. Combined material and energy balance.

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:20 marksAttendance:05 marksTotal:25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

Text Books

- 1. Narayan, K. V. and Lakshmikutty, B. "Stioichiometry and Process Calculations", 1st edition, Prentice Hall of India Pvt. Ltd., New Delhi (2006)
- 2. Bhatt, B. I. and Thakore, S. B., "Stoichimetry, 5th edition Tata McGraw Hill Education Private Limited, New Delhi
- 3. Ch. Durga Prasad Rao and D. V. S. Murthy, "Process Calculations for Chemical Engineers", McMilan India Ltd. (2010)
- 4. O. A. Hougen, K. M. Watson, and R. A. Ragatz., "Chemical process principlespart 1, Material and Energy Balances". Second Edition. John Wiley & Sons, Inc., New York (1954). 525 pages.

Reference books

- 1. Himmelblau, D. M. and Riggs, J. B., "Basic Principles and Calculations in Chemical Engineering, 7th edition, Prentice Hall of India Pvt. Ltd., New Delhi (2009)
- 2. Stoichiometry and Process calculations by K.V. Narayanan and B. Lakshmikutty, PHI learning Pvt. Ltd

Course Code	Course/Subject Name	Credits
CHC306	Chemical Technology	4

• Knowledge of Inorganic, Organic and Physical Chemistry, Physics and Mathematics.

Course Objectives

- To give students an insight of different chemical processes.
- To understand the development of a process from its chemistry.
- To understand different engineering problems in process industries.

Course Outcomes

At the end of the course the student will be able to:

- Describe various manufacturing processes used in the chemical process industries.
- Explain industrial processing and overall performance of any chemical process including the major engineering problems encountered in the process.
- Determine the overall process aspects including yield, formation of by-products and generation of waste, etc.
- Draw and illustrate the process flow diagram for a given process.

Module	Contents	Contact Hours
1	Introduction :	05
	Concept and brief description of the Unit Operations and Unit	
	Processes used in Chemical Industries.	
	Overview of Industrially Important Products in the Chemical	
	Process Industries:	
	Soaps and Detergents	
	Dyes and Intermediates	
	Agrochemicals	
2	Manufacture of Acids :	12
	Sulphuric Acid (DCDA Process), Nitric Acid, Phosphoric Acid	
	(Wet Process) and Acetic Acid (by reaction of carbon monoxide	
	with methanol).	
	Manufacture of Fertilizers :	
	Ammonia, Urea and Superphosphate (SSP and TSP).	
3	Natural Product Industries :	12
	Hydrogenation of Vegetable Oils	
	Manufacture of Sugar from Sugarcane, By-products obtained in	
	manufacture of sugar, Inversion of sugar	
	Manufacture of ethanol by fermentation of molasses	
	Introduction to Biodiesel Processing : Biodiesel production by	
	base- catalysed transesterification process	
	Chloro-Alkali Industries :	
		1

	Manufacture of Caustic Soda	
	Manufacture of Hydrochloric Acid by combustion of chlorine and	
	hydrogen	
	Manufacture of Soda Ash (Solvay and Dual Processes)	
4	Synthesis of Important Heavy Organic Chemicals and	05
	Intermediates :	
	Manufacture of Styrene by dehydrogenation of ethylbenzene	
	Manufacture of Cumene from benzene and propylene	
	Manufacture of Phenol from cumene by peroxidation-hydrolysis	
	process	
	Manufacture of Purified Terephthalic Acid (PTA) by oxidation of	
	p-xylene	
5	Synthesis of Polymers :	03
	Manufacture of Polyethylene : LDPE and HDPE	
	Manufacture of Nylon 66	
6	Basic Building Blocks of Petrochemical Industry :	08
	Introduction to Petroleum Refining	
	Catalytic Cracking by Fluidized Catalytic Cracking Unit (FCCU)	
	Naphtha Cracking for manufacture of ethylene and propylene	
	Naphtha Reforming	
	Separation of BTX (Benzene-Toluene-Xylene)	
	Isomerization of Xylenes	
	Separation of Xylene isomers	

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

Reference

- 1. Austin G.T., Shreve's Chemical Process Industries, 5th Edition, McGraw Hill International Edition.
- 2. Pandey, G.N., A Textbook of Chemical Technology, Vol.I and II, Vikas Publications, 1984.
- 3. Rao, G.N. and Sittig M., Dryden's Outlines of Chemical Technology for 21st Century, East West Press, 3rd Edition.
- 4. B.K. Bhaskara Rao, Modern Petroleum Refining Processes.
- 5. B.K. Bhaskara Rao, A Textbook of Petrochemicals.

- 6. Heaton, C.A., An Introduction to Industrial Chemistry, Leonard Hill, 1984.
- 7. Thomson, R., Modern Inorganic Chemical Industries, Royal Society of Chemistry, 2nd. Edition, 1994.
- 8. Kirk-Othmer's Encyclopedia of Chemical Technology, John Wiley and Sons, Inc., 4th Edition, 1990.
- 9. Ullmann's Encyclopedia of Industrial Chemistry, VCH, 1985.
- 10. McKetta's Encyclopedia of Chemical Processing and Design, Marcel Dekker, 1999.
- 11. Pletcher D. and Walsh, F.C., Industrial Electrochemistry, Chapman and Hall, 1990.
- 12. Alok Adholeya and Pradeepkumar Dadhich, Production and Technology of Biodiesel: Seeding a Change, TERI Publication, New Delhi, 2008.
- 13. NIIR Board of Consultants and Engineers, The complete book on Jatropha (Biodiesel) with Ashwagandha, Stevia, Brahmi and Jatamansi Herbs (Cultivation, Processing and Uses), Asia Pacific Business Press Inc.

Course Code	Course/Subject Name	
CHL301	Engineering Chemistry Lab– I	1.5

List of Experiments Suggested:

Volumetric analysis-[Any 2]

Preparation of standard solutions and to find normality and deviation factor.

Titrimetric analysis- [Any 3]

- Analysis of talcum powder for Mg content by EDTA method
- Analysis of Aspirin as per I.P. or USP
- Determination of Strength of KMnO₄
- Determination of fluoride content in the toothpaste spectrophotometrically
- Estimation of CaO in cement
- Estimation of Vitamin C using Ceric ammonium sulphate
- Estimation of Glycine by non aqueous titration using perchloricacid

Organic estimations - [Any 2]

- Estimation of aniline
- Estimation of phenol
- Estimation of Acetamide

Gravimetric estimation - [Any 2]

- Barium as BaCl2
- Tin as SnCl2
- Nickel as Ni D.M.G.
- Zinc as ZnSO4

Preparation.

• Preparation of Methyl Salicylate

Students have to perform any 10 practicals from the above during the semester.

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Page 30

Course Code	Course/Subject Name	
CHL302	Chemical Engineering Lab (FFO)	1.5

List of Experiments Suggested

Minimum Ten experiments must be performed

- Viscosity by Efflux time
- Reynolds Apparatus
- Bernoulli's apparatus
- Venturimeter
- Orificemeter
- Pitot tube
- V Notch/ Rectangular notch
- Friction through Circular pipe
- Flow through Annulus.
- Flow through Helical coil
- Pipe Fitting (Minor Losses)
- Pumps
- Power Consumption in agitated vessel
- Viscosity by Stoke's Law

Term work

Term work shall be evaluated based on performance in practical.

Practical Journal: 20 marks Attendance: 05 marks

Total: 25 marks

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Course Code	Course/Subject Name	
CHL303	Chemical Engineering Lab II (Synthesis)	1

s.n	Preparation	Chemicals required	Apparatus/ glassware required
1	Soap	Sodium hydroxide (20% solution), ethanol saturated solution of sodium chloride ,calcium chloride (5% solution), magnesium chloride (5% solution), ferric chloride (5% solution), cooking oil, phenolphthalein indicator solution.	250-mL beaker, 100- mL beaker; wire gauze; laboratory burner; glass stirring rod; test tubes; filter flask and Buchner funnel; filter paper; graduated cylinder
2	Alum from Aluminum	Aluminum can or aluminum metal, Crushed ice, 9M H2SO4, 1.5M KOH solution, Methanol, NaHCO3 (sodium bicarbonate)	Glass filter funnel, Buchner filter funnel, filter paper, steel wool, two 150 mL and two 150 ml beakers, 500 ml beaker, thermometer, ruler, stirring rod
3	Asprin	2 gm salicylic acid, 5.0 ml of acetic anhydride, ve drops of 85% phosphoric acid, distilled water	burette clamp, burner, stand with iron ring, wire gauze, ice bath,50 ml ask beaker, Buchner funnel aspirator
4	Methyl orange	0.29 g of anhydrous sodium carbonate, 1.0 g of sulfanilic acid monohydrate, 0.375 g of sodium nitrite, 0.7 ml of dimethylaniline and 0.5 mL of glacial acetic acid, 10% aqueous sodium hydroxide, 1.25 ml of concentrated hydrochloric acid	50 ml Erlenmeyer ask, lter,100 ml beaker, test tube
5	Thiokol rubber	Sodium hydroxide solution, 1M Sulfur 1,2-dichloroethane distilled or deionized water	
6	RUBBER BALL FROM RUBBER LATEX	15 ml rubber latex, 15 ml vinegar, 15 ml wate	Two paper cups (5 ounce), stir- ring rod (popsicle stick or equiv-

			alent), small bucket or large beaker (1000 ml or larger)
7	p-BROMO- NITROBENEZENE FROM BRO- MOBENEZENE	Conc. H2SO4, conc. HNO3, bromobenzene, ethyl alcohol, conical ask, funnel, lter paper, water Bath	Conical flask, funnel, filter paper, water bath.
8	DETERGENT	Dodecanol (dodecyl alcohol), sulphuric acid, concentrated sodium hydroxide, 6M phenolphthalein solution, 1% sodium chloride	beakers, 400 ml, 150 ml, 100 ml graduated cylinders,

Term work

Term work shall be evaluated based on performance in practical.

Practical Journal:	20 marks
Attendance:	05 marks
Total:	25 marks

University of Mumbai Program Structure for B.E. Chemical Engineering (Revised 2016) S.E. Semester IV (w.e.f 2017-2018)

Course code	Course Name	Course Name Teaching Scheme (Contact Hours)		Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
CHC401	Applied Mathematics-IV	3	-	1	3	-	1	4
CHC402	Engineering Chemistry II	4	-		4	-	-	4
CHC403	Chemical Engineering Thermodynamics II	3	-	1	3	-	1	4
CHC404	Solid Fluid Mechanical Operations (SFMO)	4	-	-	4	-	-	4
CHC405	Mechanical Equipment Design (MED)	4	-	-	4	-	-	4
CHC406	Chemical Engineering Economics	3	-	1	3	-	1	4
CHL401	Engineering Chemistry-II Lab	-	3	-	-	1.5	-	1.5
CHL402	Chemical Engineering Lab III (SFMO)	-	3	-	-	1.5	-	1.5
CHL403	MED Lab	-	2	-	-	1	-	1
	Total	21	8	2	21	4	3	28

Course code		Examination Scheme								
coue	Course Name	Theory					Term	Pract		
		Interr	nal Assess	ment	End	Exam	Work	/Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
CHC401	Applied Mathematics-IV	20	20	20	80	3	25	-	-	125
CHC402	Engineering Chemistry II	20	20	20	80	3	-	-	-	100
CHC403	Chemical Engineering Thermodynamics II	20	20	20	80	3	25	-	-	125
CHC404	Solid Fluid Mechanical Operations (SFMO)	20	20	20	80	3	-	-	-	100
CHC405	Mechanical Equipment Design (MED)	20	20	20	80	3	-	-	-	100
CHC406	Chemical Engineering Economics	20	20	20	80	3	25	-	-	125
CHL401	Engineering Chemistry-II Lab	-	-	-	-	3	-	25	-	25
CHL402	Chemical Engineering Lab III (SFMO)	-	-	-	-	3	25	25	-	50
CHL403	MED Lab	-	-	-	-	-	25	-	25	50
	Total			120	480	-	125	50	25	800

Course Code	Course/Subject Name			
CHC401	Applied Mathematics- IV	4		

- The concepts of basic Mathematics as well as a few concepts of higher mathematics.
- The concepts of basic chemistry, basic civil engineering, basic mechanical engineering, etc. in order to understand the concepts like, corrosion, corrosion allowance, construction costs, equipment costs, etc.

Course Objectives:

- The Fourier Series, Fourier Transform and Partial Differential Equation
- Module does the Ground work for the techniques required to solve and find the answer for various physiochemical problems.
- To study the basics of Finite Differences.
- To study the basics of Complex Integration.
- To introduce the basics of NLPP.

Course outcomes:

- Demonstrate the ability of using Fourier Series and Fourier Transform in solving PDE.
- Enable the students to solve boundary value Problem using Finite Differences Approximations.
- Identify the applicability of theorems and evaluate the Contour Integral.
- The students will be ready for any further course on Optimization.

Module	Topics	Contact Hours
01	Fourier Series:	10
	1.1 Orthogonal and Ortho-normal functions	
	1.2 Dirichlet's conditions, Fourier series of periodic functions	
	with period 2π and 2L. Parsevel's identities (without proof).	
	1.3 Fourier series for even and odd functions.	
	1.4 Half range sine and cosine Fourier series,	
	1.5 Complex form of Fourier series.	
	1.6 Fourier Integral Representation, sine & cosine Integrals	
	1.7 Fourier Transform sine & cosine transforms, complex	
	transforms.	
	NO PROOFS REQUIRED.	
02	Partial Differential Equations:	08
	2.1 Solutions of linear partial differential Equation by method of	
	separation of variables	
	2.2 Partial differential equations governing transverse vibrations	
	of elastic string its solution using Fourier series.	
	2.3 Heat equation, steady-state configuration for heat flow.	
	2.4 Two dimensional Laplace equations.	

ONLY NUMERICAL DRODLEMS NO DROOFS	
·	
	07
1	07
-	
E, relation between E and D where $D = \frac{d}{dx}$.	
3.2Missing terms (equal Intervals), Factorial Notation	
3.3 Assumption of interpolation, Gregory Newton's Forward	
Interpolation formula for equal Intervals, Gregory Newton's	
Backward Interpolation formula for equal Intervals	
3.4 Interpolation with arguments at unequal Intervals-Divided	
Difference table Newton's Divided Difference Formula,	
3.5 Lagrange's Interpolation Formula.	
Complex Integration	07
4.1 Line Integral, Cauchy's Integral theorem for simply	
connected regions, Cauchy's Integral formula(without proof)	
4.2 Taylor's and Laurent's series (without proof)	
4.3 Zeros, poles of f(z), Residues, Cauchy's Residue theorem	
4.4 Applications of Residue theorem to evaluate Integrals of the	
type $\int_0^{2\pi} f(\sin\theta, \cos\theta) d\theta$, $\int_{-\infty}^{\infty} f(x) dx$,	
Optimization (No theory)	07
5.1Non-linear programming: Lagrange multiplier method for	
one and two equality constraints for 2 and 3 variables,	
conditions on the Hessian matrix (no proof);	
5.2 Non-linear programming: Kuhn-Tucker conditions with at	
most 2 constraints with two variables.	
	Interpolation formula for equal Intervals, Gregory Newton's Backward Interpolation formula for equal Intervals 3.4 Interpolation with arguments at unequal Intervals-Divided Difference table Newton's Divided Difference Formula, 3.5 Lagrange's Interpolation Formula. Complex Integration 4.1 Line Integral, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula(without proof) 4.2 Taylor's and Laurent's series (without proof) 4.3 Zeros, poles of f(z), Residues, Cauchy's Residue theorem 4.4 Applications of Residue theorem to evaluate Integrals of the type $\int_0^{2\pi} f(sin\theta, cos\theta) d\theta$, $\int_{-\infty}^{\infty} f(x) dx$, Optimization (No theory) 5.1Non-linear programming: Lagrange multiplier method for one and two equality constraints for 2 and 3 variables, conditions on the Hessian matrix (no proof); 5.2 Non-linear programming: Kuhn-Tucker conditions with at

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:	20 marks
Attendance:	05 marks
Total:	25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.

• Weightage of marks should be proportional to number of hours assigned to each Module.

Reference Books

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal 42th edition, Khanna Publication 2005.
- 2. Advanced Engineering Mathematics by Kreyszig E. 9th edition, John Wiley.
- 3. A Text Book of Applied Mathematics Vol. II by P.N.Wartilar & J.N.Wartikar, Pune, Vidyarthi Griha Prakashan., Pune.
- 4. Advanced Engg. Mathematics by C. Ray Wylie & Louis Barrett.TMH International Edition.
- 5. Mathematical Methods of Science and Engineering by Kanti B. Datta, Cengage Learning.
- 6. Lapplace Treansforms by Murry R. Spieget, Schaun'sout line series-McGraw Hill Publication.
- 7. Operation Research by S. D. Sharma.
- 8. Operation Research by ER.Prem Kumar Gupta & Dr. D. S. Hira.

Course Code	Course/Subject Name	Credits
CHC402	Engineering Chemistry– II	4

- Knowledge of electronic structure of atom and electrolytic properties and their laws.
- Basic concept of quantum chemistry & wave theory approach.
- Knowledge of intermediate steps involved in conversion of reactants to products.
- Knowledge of properties of solutions.

Course Objectives:

- To understand applications of EMF measurement.
- To understand the principles of different instrumental and chromatographic techniques.
- To state and understand Nernst distribution law in extraction.
- To be able to solve numerical on solvent extraction and ion exchange.
- To understand colloidal phenomenon and its applications.
- To be able to predict the significance of active methylene group.
- To state and understand the Huckel's rule of aromaticity and its application to aromatic hydrocarbons and heterocyclic compounds.

Course Outcomes:

- They should be able to understand the role of different conductivity cells and different tirimetric methods and solvent extractions.
- Students will be able to detect the organic and inorganic biological compound by the use of spectrophotometer.
- Students will know the colloidal phenomenon applied in food industry and pesticides.
- Students will be to identify the significance of rearrangement reactions, active methylene group.
- Students will be able to predict and synthesize different products by learning reaction mechanism.
- Students will have deep knowledge of Qualitative (Analysis) and Quantitative (estimations) methods.

Module	Content	Contact Hours
1	Electrochemistry Conductance, specific conductance, equivalent conductance, molar conductance. Effect of dilution and temperature on conductance. Transport number (Numerical on moving boundary method). Debye Huckel theory of strong electrolytes. Hydrogen ion concentration by glass electrode/Quinhydrone electrode. Concentration cells with and without transference w.r.t. cations. Weston Standard cells. Application of emf measurement for	08

	determination of solubility product (Ksp) of sparingly soluble	
	salt.	
	Instrumental methods of Analysis	
	Conductometry -Principle and types of titrations - Acid-base and	
2	precipitation.	10
2	Potentiometry- Principle and types of titrations –precipitation	10
	only.	
	Chromatography Adsorption and partition Study of Papar Chromatography	
	Adsorption and partition. Study of Paper Chromatography, ThinLayer Chromatography, High Performance Liquid	
	Chromatography (HPLC), Gas (Liquid and solid)	
	Chromatography –Principle and their applications.	
	Optical Methods	
	(Principle, Instrumentation and applications) UV, IR, NMR	
	spectroscopy, flame photometry.	
	Ion exchange and solvent extraction techniques	
	Ion exchange resins, cation and anion exchangers. Desalination	06
3	by ion exchange and separation of lanthanides.	
_	Solvent extraction. Nernst distribution law. Distribution ratio.	
	Batch, continuous and counter current extraction. Numericals	
	based on solvent extraction.	
	Colloids and surfactants	
	Origin of charge on colloidal particles. Concept of electrical	
	double layer-Helmholtz and stern model. Electro-kinetic	10
4	Phenomenon- Electrophoresis, electro-osmosis, streaming	
	potential and Dorn effect (Sedimentation potential).	
	Colloidal electrolytes, Donnam Membrane equilibrium and its	
	significance.	
	Catalysis- Definition. Criteria of catalysis. Types	
	(Homogeneous and Heterogeneous).Catalytic promoters, poisons.	
	Negative catalysis and inhibition. Autocatalysis and Induced	
	catalysis. Activation energy. Intermediate compound formation theory. Adsorption theory. Acid Base catalysis and mechanism.	
	Enzyme catalysis- Characteristics and mechanism.	
	Industrially important esters and Aromaticity	
5	Synthesis and properties of malonic ester and acetate acetic ester.	
C	Huckel's rule of aromaticity, Aromatic character and reactions of	06
	Benzene,Naphthalene,Pyrrole, Furan, Thiophene, Pyridine.	00
	Name reactions.	05
6	Definition, meachanism and application of -Beckman	
	rearangement, Fishcher-Indole synthesis, Favorskii reaction,	
	Reformatsky reaction, Paal-Knorr synthesis of pyrrole, Benzil-	
	Benzilic acid rearrangement.	

Assessment Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

References

- 1. Principles of Physical Chemistry- B. R. Puri, L. R. Sharma, M.S. Pathania.
- 2. A textbook of Physical Chemistry Glasston Samuel, Macmillan India Ltd. (1991).
- 3. Physical chemistry Castellan G.W.Addison Hesly-Haroda Student Edition (1994).
- 4. Instrumental methods of Analysis Willard, Merritt, CBS publishers and Distributor.
- 5. Instrumental Methods of Chemical Analysis S.M.Khopkar
- 6. Principle of instrumental analysis Douglas A. Skoog
- 7. Organic Chemistry I L Finar volume I and II.
- 8. Advanced Organic Chemistry Jerry March, John Wiley& Sons(Wiley India)
- 9. Organic Chemistry J. Clayden, Greeves, Warren, Wothers. Oxford
- 10. Organic reaction Mechanisms- V.K. Ahluwalia , Rakesh Parashar, Narosa Publication
- 11. Spectroscopy P.S. Kalsi
- 12. Introduction to Spectroscopy Pavia, lampman, Kritz.
- 13. Engineering Chemistry- Jain & Jain Dhanapat Rai publication.
- 14. Vogels Textbook of Practical organic chemistry.

Course Code	Course/Subject Name	Credits
CHC403	Chemical Engineering Thermodynamics II	04

• Engineering Mathematics, Chemical Engineering Thermodynamics-I

Course Objectives:

- To make students understand the concepts of equilibrium in phases and in chemical reactions
- To make students learn to calculate conditions and compositions of ideal and nonideal vapor liquid equilibrium systems and of various chemical reactions at equilibria.
- To make students understand the concept of refrigerator and learn to calculate COP, power required etc. for a given duty of refrigeration

Course Outcomes

- Students learn the application of First law and second law to the problem of phase equilibrium and reaction equilibrium.
- Students learn to calculate the refrigerant flow rate for a given duty of refrigeration.
- Students learn to calculate the compressor sizes and loads for refrigeration.
- The calculation of phase equilibria and the understanding of it is a fundamental concept to design of mass transfer

Module	Contents	Contact hrs
01	Properties of ideal mixtures and solutions	04
	• Non idealities of solutions and mixtures	
	Chemical potential	
	• Activity and activity coefficients	
	Gibbs Duhem equations	
02	Partial molar properties	06
	Properties changes of mixing	
	Excess properties	
03	Concept of equilibrium between phases	10
	• Review of Raoult's law and Henry's law	
	• Phase diagrams for binary solutions	
	• Vapor liquid equilibria in ideal and non-ideal solutions	
	• Estimation of activity coefficients using van Laar	
	equation, Margules equation, Wilson equation	
04	Representation of reaction stoichiometry	10
	• Concept of reaction equilibrium in single and multiple	
	reactions	
	• Estimation of standard enthalpy change of a reaction	
	• Heat of reaction in a batch and continuous reactor	

	 Estimation of standard Gibbs free change and equilibrium constantof a reaction Estimation of degree of conversion and composition of reactor effluents Degree of freedom for single and multiple reactions 	
05	 Theory of Refrigeration Vapor compression refrigeration system Vapor absorption refrigeration system Refrigeration cycle diagrams (P-V, T-S, H-S, H-X) Estimation of COP, power of compression, refrigerant flow rate etc. 	06

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:20 marksAttendance:05 marksTotal:25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

- 1. Introduction to Chemical Engineering Thermodynamic by J.M. Smith, H.C. Van Ness, M.M. Abbott, Latest Edition, McGraw Hill Publishing Company Limited
- 2. A textbook of Chemical Engineering Thermodynamics by K.V. Narayanan, Latest Edition, Prentice Hall of India Private Limited
- 3. Chemical Engineering Thermodynamics by Y.V.C. Rao, Latest Edition, University Press
- 4. Elementary Principle of Chemical Processes by Felder and Rousseau Latest Edition.
- 5. Introduction to Chemical Engineering Thermodynamics by GopinathHalder, PHI learning Pvt. Ltd

Course Code	Course/Subject Name	Credits
CHC404	Solid Fluid Mechanical Operations	4

Prerequisites:

- Fluid Flow Operations
- Engineering Mechanics
- Differential Equations

Course Objectives:

- understanding basic concept of particle size analysis and size reduction
- Understanding concept of flow through packed bed fluidization and filtration
- Understanding concept of sedimentation & gas solid separation
- Understanding concept of size enlargement, solid mixing and solid storage &conveying.

Course outcomes:

- The students would understand the concept of particle size analysis and size reduction.
- The students would understand the concept of flow through packed bed, fluidization and filtration
- The students would understand the concept of sedimentation and gas- solid separation.
- The students would understand the concept of solid mixing, solid storage & conveying, size enlargement.

Module	Contents	Contact
		Hours
1	Introduction- scope & application of solid fluid operation	12
	• Particle size analysis, particle size measurement and distribution	
	Sieve analysis	
	Capacity and effectiveness of screen	
	• Screening Equipment: Vibrating screens; Grizzlier; Trommels	
	Size reduction of solids	
	• Mechanism of size reduction and method of operation	
	• Energy of size reduction	
	• Size reduction Equipments: Jaw Crusher; Hammer Mill; Ball	
	Mill; Roll Crusher	
2	Flow through packed bed	12
	• Types of packing	
	• Flow of a single fluid through a packed bed, Ergun's	
	equipment	
	• Fluidization: Conditions for fluidization; Minimum	

	 fluidization velocity; Types of fluidization; Application of Fluidization; Numerical on Fluidization Filtration: Mechanism of Filtration; Types of Filtration – constant rate & constant pressure; Filtration; Filter aids, washing of filter cake; Flow of filtrate through the cloth & cake combine; Numerical onconstant pressure & constant cloth rate & combine cake. Filters: Rotary drum vacuum filter, Plate & frame filter 	
	press	10
3	 Economics of production and Growth Sedimentation: Batch sedimentation; Kynch Theory of sedimentation; Area and Depth of thickener Derticle separation by Electric and Electricitien 	10
	 Particle separation by Flotation and Elutriation Gas solid separation Equipments: Cyclone separator- theory and derivation for minimum particle separated in cyclone separator. Fabric filter, Electrostatic precipitator 	
4	 Size enlargement of particles: Agglomeration & granulation Growth mechanism; Size enlargement processes Storage of solids: Properties of particulate masses; Pressures in Bins &Silos Jansen's equation Conveying of solids: Belt conveyor, bucket conveyer, screw conveyer, pneumatic conveyer Solid mixing: Introduction to solid mixing, degree of mixing, mixing Index & rate of mixing; Mixing Equipments:1) Mixers for cohesive solids: Muller Mixer; Kneaders . 2) Mixers for free flowing solids: Ribben Blender; Internal Screw mixer 	10

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

- 1. Unit operations of Chemical engineering, WC McCabe & J C Smith, McGraw Hill
- 2. Chemical Engineering, Vol II J M Coulson & J F Richardson, pergamon Press
- 3. Unit operations by foust
- 4. Perry's Handbook for chemical Engineers, Robert H. Perry & Don W. Green, 8th edition, McGraw Hill

Course Code	Course/Subject Name	Credits
CHC405	Mechanical Equipment Design (MED)	4

Prerequisites:

- Fundamentals of units
- Elementary theory of engineering mechanics
- Engineering drawing

Course Objectives:

- To understand the basics for design as per the codes & standards for the mechanical design of equipments used in the process industry.
- Selection of material of construction and stress analysis by determining values of stresses arising out of different loading conditions.

Course Outcomes:

• Students will demonstrate ability to design various components of process equipment as heads, shell, flanges and supports and complete design of chemical equipment

- Students will demonstrate understanding of design of storage vessel
- Students will demonstrate general understanding of fabrication techniques and equipment testing as a designer.

Module	Contents	Contact Hours
1	Introduction to Chemical process equipment design. Nature of process equipment, General design procedure. Basic consideration in process equipment design, Standards, codes & their significance, equipment classification & selection. Fundamentals of various stresses due to compression, tension, bending, torsion& thermal stresses. Fundamental of bending moment and shear stress. Concept of moment of inertia. Calculating moment of inertia for I, T, circle and solid bar. Calculation of bending moment of cantilever and simply supported beam and uniform distributed load. Principal stress and theories of failure. Concept of hook's law, material behavior and poison's ratio, material of construction for chemical process equipment, Design pressure, Design temperature, design stress & design loads, Significance of factor of safety and economic considerations.	6
2	Design of Unfired Pressure Vessels Type of pressure vessels, code & standard for pressure vessels (IS: 2825:1969). Material of Construction, Selection of corrosion Allowance & weld joint efficiency. Thin cylinder theory for internal pressure. PART A: Pressure Vessel Subjected to Internal Pressure. Complete design of cylindrical pressure vessel as per IS: 2825: 1969. Study, selection & design of various heads such	10

	Les flet hereiententent tentent ' 1 11' t' 1 0 ' 1	
	as flat, hemispherical, torispherical, elliptical & conical openings/nozzles & manholes etc. Flanged joints. Gasket: Types,	
	selection & design. Bolt design & selection. Flange dimensions &	
	optimization for bolt spacing. PART B: Pressure Vessel	
	Subjected to External Pressure. Design of shell, heads nozzles,	
	flanged joints & stiffening rings as per IS 2825: 1969 equation.	
	Appendix F by use of charts. Analytical approach by elastic	
	bucking & plastic deformation.	
3	Study of Various types of storage vessels and application.	5
5	Atmospheric vessels, vessels for storing volatile & non-volatile	5
	liquids. Storage of gases, Losses in storage vessel. Various types	
	of roofs used for storage vessels. Manholes, Nozzles and	
	mounting. Design of cylindrical storage vessels as per IS: 803	
	should include base plates, shell plates ,roof plate and wind	
	girders.	
4	Study of various types of agitators & their application. Baffling.	6
-	Power requirement of agitators & their applications, system	U
	which includes design of shaft based on equivalent bending	
	moment and critical speed. Design of blades & Blade assembly,	
	key & key ways. Study of seals. Design of stuffing box and	
	gland.	
5	Introduction, Classification of reaction vessels, Material of	4
_	Construction, Heating system. Material of Construction, Heating	
	system. Design of vessel. Study & design of various types of	
	jackets like plain and half coil.	
6	Introduction & classification of support. Design of skirt Support	5
	considering stresses due to dead weight, wind load, Seismic load	
	& period of vibration. Design of base plates, skirt bearing plate,	
	anchor bolt and bolting chair. Introduction to bracket support.	
	Design of saddle supports.	
7	Fundamentals of pipeline design. Optimum diameter of pipelines.	4
	Supporting structure for pipelines. Pipeline design for liquids and	
	gases, steam and thermic fluids. Material of construction for	
	pipelines.	
8	Equipment fabrication and inspection	4
	Metal forming techniques (bending, Rolling, Forming). Metal	
	Joining techniques – welding (Gas of Arc & Electric) for various	
1	types such as Butt, Lap, fillet, corner. Inspection of vessel by	
	radiography.	

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

• Question paper will comprise of 6 questions, each carrying 20 marks.

- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

Text Books

- 1. Process Equipment Design, 4thEdition,V.V.Mahajani, Umarji, Macmillan Publishers
- 2. Process Design of Equipments, 4th Edition, S.D. Dawande, Central Techno publications
- 3. Introduction to Chemical Equipment Design, B.C.Bhattacharya, CBS publications
- 4. Design of machine elements, V.B. Bhandari, McGraw Hill publications
- 5. Machine Drawing, N.D. Bhatt and V.M. Panchal, Charotar publication
- 6. Process Equipment Design and Drawing by Kiran Ghadyalji, Nandu publication. Kiran Ghadyalji, Nandu publication

Reference books

- 1. RC's Chemical Engineering, Fourth edition, R. K. Sinnott, Pergamon Press publications
- 2. Chemical Engineering Design, Fifth edition, Ray Sinnott and Cavin Towler, Elseveir, Butterworth-Heinemann publications
- 3. Equipment design handbook for refineries and chemical plants, volume 1 & 2,Evans F.L, Gulf publications
- 4. Process equipment design-vessel design, Brownell L.E., Edwin Young, John Wiley publications

Course Code	Course/Subject Name	Credits
CHC406	Chemical Engineering Economics	4

Prerequisites:

- The concepts of basic Mathematics as well as a few concepts of higher mathematics.
- The concepts of basic chemistry, basic civil engineering, basic mechanical engineering, etc. in order to understand the concepts like, corrosion, corrosion allowance, construction costs, equipment costs, etc.

Course Objectives:

- To understand various economical terms and economics related activities which can be helpful to them during economical evaluation of any chemical engineering related problem.
- To learn about various basic economic aspects like need, demand, supply, price, cost and market.
- To make familiar to calculate the interest amount on investments as well as loans by different methods
- To understand the concepts of present and future worth of property.
- To understand existing rules and regulations as well as types related to taxes and insurance.
- To understand the methodology of cost estimation including fixed and variable costs by considering the concept of cost indices.
- To have the knowledge about evaluation of depreciation cost as well as salvage value, scrap value, book value of property
- To understand the concept of profitability evaluation of project and select best process alternative based on its economic evaluation.
- To understand the concept of balance sheet, profit and loss accounting and income statement

Course Outcomes:

- Students should will be expose to market And demand driven economics in chemical industry.
- Get an idea on the growth and development of futuristic planning.
- Students will be able to calculate the profitability, rate of return on investments and cost estimation.
- After acquiring the knowledge in this subject, students become familiar with various aspects related to economics and can apply them for economic evaluation of chemical process and decide its economical feasibility.
- The knowledge in this subject will make the students well aware about economic evaluation of dissertation work that they will undertake in final year of their curriculum.
- Students will learn to prepare realistic cost estimation to prepare plan and offer.

Module	Contents	Contact hours
1	Introduction to Basic Principles of Economics:	02
	Economics-various definitions	
	• Concept of Need – hierarchy	
	• Market - Concept of Price determination under particular	
	market conditions – perfect competition market & monopoly	
	market, causes	
	Price Discrimination-concept, types	
	• Concept of Cost-total cost, fixed and variable cost, direct	
	and indirect cost	
	• Cost index – definition, types	
2	Demand and Supply analysis:	02
	• Law of demand-assumptions and exceptions	-
	• Demand schedule and demand curve	
	 Determinants of demand 	
	 Changes and variations in demand 	
	• Demand elasticity-definition, types, methods of	
	measurement of elasticity, Income elasticity of demand, types.	
	 Law of Supply-assumptions and exceptions 	
	 Supply schedule and supply curve 	
	 Determinants of supply, changes and variations in supply 	
	 Supply elasticity-definition, types, determinants 	
	 Methods of measurement of supply 	
3	Economics of production and Growth:	02
e	 Production function-types of production economies 	02
	 Diseconomies of scale 	
	Features of growth	
	 Growth v/s Development 	
	 Determinants of growth (economic and non-economic) 	
	 Stages of growth & futuristic planning 	
	 Growth strategy- steady state and big – push growth 	
	strategy; balanced and unbalanced growth	
4	Cost Accounting:	03
-	Outline of Accounting Procedure	00
	 Basic Relationship in Accounting 	
	 Balance Sheet- types of Asset; Current and Cash Ratio 	
	 Balance Sheet- types of Asset; Current and Cash Ratio Income Statement; Debits and Credits; General format of 	
	Journal and Ledger Methods of cost accounting 03	
	 Methods of cost accounting 03 Accumulation inventory and cost of color account 	
	 Accumulation, inventory and cost-of-sales account Material aget Different Matheday auront average fife life 	
F	• Material cost – Different Methods: current average, fifo, lifo	07
5	• Interests and Investment Costs:	06
	• Importance of time value of money- Interest and Interest	

	rate;	
	• Types of Interest – Simple interest (ordinary and exact),	
	• Types of interest – Simple interest (ordinary and exact), Compound interest, Nominal and Effective interest rates,	
	Continuous interest	
	 Present worth and Discount 	
	Annuities, Perpetuities and Capitalized costs	
(Cash Flow in Chemical Project	0.2
6	• Taxes and Insurance:	03
	• Concept of taxes and insurance	
	• Types of Taxes - property tax, excise tax, income tax Capital	
	gain tax, surtax, normal tax	
	Insurance types, Legal responsibilities, Self insurance	
	• Effect of taxes and depreciation on annual income	
	• Depreciation , types of depreciation, Methods of	
	depreciation &Numericals	
7	Cost Estimation:	10
	• Cash flow to Industrial operation – Tree diagram;	
	Cumulative Cash position	
	• Factors affecting cost estimation;	
	• Total, fixed, working capital investment	
	• Breakdown of Fixed capital investment- Direct costs;	
	Indirect costs;	
	Types of Capital Cost Estimates	
	• Grass Root plant; Battery limit;	
	• Estimation of equipment cost by scaling; Components of	
	costs in FCI;	
	Methods of Cost Estimation	
	Estimation of Total Product Cost;	
	Break even Analysis	
	Cost estimation to prepare offer.	
8	Profitability, Alternative Investments & Replacements:	11
	Introduction; Profitability Standards;	
	• Mathematical methods for profitability evaluation- Rate of	
	Return on investment method, Discounted cash flow method,	
	Net present worth method, Capitalized Cost method, Pay out	
	period method; Advantages & Disadvantages of Different	
	Profitability Analysis Methods and their comparison	
	• Alternative investments	
	Replacement analysis	
	• Practical factors affecting investment and replacement	
	decisions	
L		

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:20 marksAttendance:05 marksTotal:25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

- 1. Peters, M. S. and Timmerhaus, K. D., "Plant design and economics for chemical engineers", latest edition, Mcgraw Hill, New York
- 2. Pravin Kumar "Fundamentals of Engineering Economics" Wiley India.
- 3. Kharbanda, O. P. and Stallworthy, E. A. "Capital cost estimating for process industries", Butterworths, Londen
- 4. K. K Dewett and Adarshchand, "Modern Economic Theory", latest edition, S Chand and Company
- 5. O. P Khanna, "Industrial Engineering and Management" DhanpatRai Publications (P) Ltd.
- 6. AtulSathe, ShubhadaKanchan, "Chemical Engineering Economics", VipulPrakashan, Mumbai
- Indrajit N. Yadav, "Chemical Engineering Economics" Sai- publication, Pune 2nd edition, 2017

Course Code	Course/Subject Name	Credits
CHL401	Engineering Chemistry Lab– II	1.5

List of Experiments Suggested:

- Organic spotting- Identification of organic compounds [at least 05].
- Potentiometric Titrations
- Titration of strong acid and strong base potentiometrically.
- Determination of solubility and solubility product of AgCl.
- pH-metry.
- Determination of dissociation constant of dibasic organic acids such as malonic acid, succinic acid.
- Conductometric Titrations.
- Titration of strong acid with strong base.
- Weak acid against strong base.
- Titration of mixture of weak acid and strong acid against strong base.
- Flame photometry.
- Determination of Na / K / Ca present in the given sample.
- Chromatography.
- Estimation of Sodium by Ion Exchange chromatography.
- Paper Chromatography and TLC [Demonstration of techniques].
- Organic Estimations.
- Estimation of Glucose Iodometrically.
- Estimation of Ester by Hydrolysis.
- Volume strength and amount of H₂O₂.
- Organic preperations
- Nitration of benzene
- Nitration of Salicylic Acid
- Sulphonation of Benzene

Students have to perform any 10 practicals from the above during the semester.

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Course Code	Course/Subject Name	Credits
CHL402	Chemical Engineering Lab III (SFMO)	1.5

List of Experiments Suggested

Minimum Ten Experiments must be performed

- 1. Sieve Analysis
- 2. Effectiveness Of Screen
- 3. Size reduction by Jaw Crusher
- 4. Size reduction by Hammer Mill
- 5. Size reduction by Ball Mill
- 6. Batch Sedimentation
- 7. Flow through Packed Bed
- 8. Flow through Fluidized Bed
- 9. Filtration
- 10. Mixing
- 11. Cyclone Separator
- 12. Roll Crusher
- 13. Elutriation
- 14. Froth Floatation

Term work

Term work shall be evaluated based on performance in practical.

Practical Journal:	20 marks
Attendance:	05 marks
Total:	25 marks

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Course Code	Course/Subject Name	Credits
CHL403	MED Lab	1

Drawing sheets based on (Minimum of 8 sheets):

- 1. Design of Unfired Pressure Vessel with internal pressure.
- 2. Design of Unfired Pressure Vessel with external pressure.
- 3. Storage Vessel.
- 4. Agitator.
- 5. Reaction Vessel.
- 6. Vessel Supports.

Term work

Term work shall be evaluated based on performance in Lab.

Drawing Sheets:	20 marks
Attendance:	05 marks
Total:	25 marks

AC 07/06/2014 Item no. 4.38

UNIVERSITY OF MUMBAI

Revised Syllabus Program - **Bachelor of Engineering** Course - **Chemical Engineering** (Third year - Sem V and VI)

under Faculty of Technology (As per Credit Based Semester and Grading System from 2014-15)

From Deans Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEOs) and give freedom to affiliated Institutes to add few (PEOs) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teacher centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3 - 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble to the Revision of Syllabus in Chemical Engineering

The Chemical Process Industry has undergone dramatic changes in the last few years both nationally and internationally. In fact these very boundaries are merging into one global market with international competence. Today Chemical Engineering is considered as Molecular Engineering which operates at various scales to bring about transformations in a wide variety of materials. Chemical Engineering is becoming inclusive of Biotechnology, Nanotechnology and Material Science like never before. The professional arena of a Chemical Engineer has expanded greatly to cater to sectors as wide as Pharmaceutical and Electronics in addition to the more traditional Oil & Gas and Petrochemical Industries.

Parallel to these developments, the growth and expansion of the World Wide Web offers new opportunities as well as new challenges. Today the latest research trends have become accessible from drawing rooms across the globe. This acts as a positive feedback mechanism in increasing the pace of research in all fields including Chemical Engineering and Biotechnology. There is also an incredible amount of content, in a variety of formats, available on the net. The availability of free software such as Scilab and COCO vastly expands our boundaries of learning.

Hence, an Under-graduate Curriculum in Chemical Engineering must provide the necessary foundation for a Chemical Engineer to be able to specialize in any area as and when the need and opportunity arise.

The Curriculum must integrate knowledge of the basic sciences with problem solving abilities and communication skills. It must cultivate a willingness to face open-ended problems with inadequate data. The Curriculum must be broad enough to cover all areas from design to operation of Process plants. It should be deep enough to enable the graduates to carry out research and develop products to meet rapidly changing needs and demands.

With this scenario as the backdrop, a full day conference was organized at D. J. Sanghvi College of Engineering on the 30th of January 2013. It was attended by the various heads of departments of chemical engineering as well as experts from industry. The program objectives and outcomes were thoroughly discussed in this meeting and the core structure of the syllabus was formulated. A second meeting was held in TSEC on 5th of March 2013 to decide the subject experts for the subjects of III and IV semesters.

Finally, a meeting of the Board of Studies in Chemical Engineering (Ad Hoc.) was conducted at the Fort Campus of the University of Mumbai, on the 30th of April 2014, where the final draft of the Core Structure and the detailed syllabus for semesters V and VI were approved.

Dr. Ramesh Vulavala Chairman, Board of Studies in Chemical Engineering (Ad Hoc.) University of Mumbai.

General Guidelines

Tutorials

- The number of tutorial batches can be decided based on facilities available in the institution.
- Tutorials can be creative assignments in the form of models, charts, projects, etc.

Term Work

- Term work will be an evaluation of the tutorial work done over the entire semester.
- It is suggested that each tutorial be graded immediately and an average be taken at the end.
- A minimum of ten (unless specified in course syllabus) tutorials will form the basis for final evaluation.

Theory Examination

- In general all theory examinations will be of 3 hours duration.
- Question paper will comprise of total six questions, each of 20 Marks.
- Only four questions need to be solved.
- Question one will be compulsory and based on maximum part of the syllabus.

Note: In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus as far as possible.

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments(unless specified minimum requirement in syllabus).

University of Mumbai

Scheme for TE: Semester-V

Course	Course Name	Teaching Scheme		eme		Credit A	Assigned	
Code	Course Name	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
CHC501	Chemical Engineering Thermodynamics - II	03	_	01	3.0	_	1.0	4.0
CHC502	Mass Transfer Operations - I (MTO-I)	03	_	01	3.0	_	1.0	4.0
CHC503	Heat Transfer Operations – I (HTO-I)	03	_	01	3.0	_	1.0	4.0
CHC504	Chemical Reaction Engineering - I (CRE-I)	03	_	01	3.0	—	1.0	4.0
CHC505	Chemical Technology	03	_	—	3.0	_	_	3.0
CHC506	Business Communication & Ethics	_	$02^{*} + 02$	_	_	_	_	2.0
CHL507	Chemical Engg Lab (MTO-I)	_	03	_	_	1.5	_	1.5
CHL508	Chemical Engg Lab (CRE-I)	-	03	—	-	1.5	-	1.5
CHL509	Chemical Engg Lab (HTO-I)	-	03	—	-	1.5	—	1.5
CHL510	Chemical Engg Lab (Synthesis)	—	03	—	_	1.5	_	1.5
	Total	15	16	04	15.0	6.0	6.0	27.0

*Theory for entire class.

Examination Scheme

		Examination Sch					ne		
Course	e Course Name		Course Name		Tamma				
Code	Course Maine			End	Term Work	Pract.	Oral	Total	
		Test 1	Test 2	Avg. of Test 1 and Test 2	Sem. Exam	WOIK			
CHC501	Chemical Engineering Thermodynamics - II	20	20	20	80	25	_	_	125
CHC502	Mass Transfer Operations - I (MTO-I)	20	20	20	80	25	_	—	125
CHC503	Heat Transfer Operations – I (HTO-I)	20	20	20	80	25	_		125
CHC504	Chemical Reaction Engineering - I (CRE-I)	20	20	20	80	25	_	_	125
CHC505	Chemical Technology	20	20	20	80	—	—	—	100
CHC506	Business Communication & Ethics	_	_	-	_	50	—	_	50
CHL507	Chemical Engg Lab (MTO-I)	—	—	—	_	—	25	_	25
CHL508	Chemical Engg Lab (CRE-I)	—	—	_	_	—	25	—	25
CHL509	Chemical Engg Lab (HTO-I)	—	_	—	_	—	25	_	25
CHL510	Chemical Engg Lab (Synthesis)	—	_	_	—	—	—	25	25
			Total	100	400	100	75	75	750

Course Code	Course Name	Credits
CHC501	Chemical Engineering Thermodynamics - II	4.0

Prerequisites

Chemical Engineering Thermodynamics – I, Engineering Mathematics.

Course Objectives

The course objectives are

- The student should be able to relate thermodynamics to the Chemical Engineering Problems.
- The students should be able to use thermodynamics rules to find the equilibrium in phases.
- The students should be able to calculate and trace the equilibrium concentration and conversions of a reversible reaction.
- The students should be able to calculate the actual power required for given duty of refrigeration.

Course Outcomes

The student learn the application of First law and second law to the problem of phase equilibrium and reaction equilibrium . The students also learn to calculate the refrigerant flow rate for a given duty of refrigeration. This helps in estimating the compressor sizes and loads for refrigeration. The calculation of phase equilibria and the understanding of it is a fundamental concept to design of mass transfer equipment.

Module	Contents	No. of hrs
1	Reaction Thermodynamics: Calculation of heat of reaction for batch reactors, Calculation of heat of reaction for continuous reactors.	05
2	Fundamentals of Phase Equilibria: Concept of equilibrium in phases, The theory of ideal and non ideal solutions, Thermodynamic equations of Vapor Liquid Equilibrium for ideal and non ideal solutions, Liquid Liquid and Solid Liquid equilibria.	12
3	Reaction Equilibria: Representation of reaction stoichiometry, Concept of reaction equi- libria, single and multiple reactions, Degrees of freedom for single and multiple reactions.	10
4	Refrigeration: Theory of refrigeration, Vapor Absorption Refrigeration, Vapor Absorption Refrigeration, Estimation of refrigerant flow rate and power of compression.	07
5	Methods for estimation of Thermodynamics properties: Estimation methods for critical parameters, Estimation method for Mixture Enthalpy and Entropy.	05

Detail syllabus

References

- 1. Stanley I. Sandler, Chemical, Biochemical, and Engineering Thermodynamics, 4 ed., Wiley Student Edition
- 2. M.J. Moran, H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 6 ed., Wiley Student Edition
- 3. Peter Atkins, Physical Chemistry, 9 ed., Oxford University Press.

Note for the teacher/instructors: The teachers should encourage the student to use computer for solving problems. It would be worth mentioning that Microsoft Excel suffices for solving most of the problems in the syllabus. A total of twelve assignments and tutorials together should be given to the students at regular intervals. Students should be encouraged to submit assignment using word processor and as far as possible they should be allowed to submit it online in some form. As far as possible it should be multiple choice questions for problem based in mid term tests.

Course Code	Course Name	Credits
CHC502	Mass Transfer Operations - I (MTO-I)	4.0

Prerequisites

Knowledge of chemistry, physics, physical chemistry, mathematics, process calculations and unit operations.

Course Objectives

To give insight of mass transfer basic principle and mass transfer mechanisms.

Course Outcomes

At the end of the course students will be able to \ldots

- demonstrate the knowledge of mass transfer by applying principles of diffusion, mass transfer coefficients, and interphase mass transfer.
- understand the concept and operation of various types of gas-liquid contacts equipments.
- determine NTU, HTU, HETP and height of packed bed used for Absorption and Humidification operations.
- find time required for drying.

Detail syllabus

Module	Contents	No. of hrs
1	 Molecular Diffusion in Gases and Liquid: Basics of Molecular Diffusion, Fick's First Law of Molecular Diffusion, Various fluxes and relations between them, Molecular Diffusion in binary gas mixtures – Steady state diffusion of one component in non-diffusing second component, Equimolal counter diffusion of two components. Molecular Diffusion in binary liquid solutions – Steady state diffusion of one component in non-diffusing second component, Steady State Equimolal counter diffusion of two components. Diffusivity of gases. Theoretical and experimental determination of diffusivities, Diffusivities of liquids – Theoretical Determination. Diffusion in Solids: Ficks law of diffusion in solids, Types of Solid Diffusion, Diffusion through Polymers, Diffusion through Crystalline Solids, Diffusion in Porous Solids 	08
2	 Mass Transfer Coefficients: Definition of Mass Transfer Coefficient, F-Type and K-Type Mass Transfer Coefficients and relations between them, Mass Transfer Coefficients in Laminar and Turbulent Flow. Heat, Mass and Mo- mentum Transfer Analogies and dimensionless numbers, Interphase Mass Transfer – Individual and Overall Mass Transfer Coefficients and relation between them. Methods of contacting two insoluble phases – Continuous Contact, Stage-wise Contact. 	08

continued \dots

8

 \ldots continued

Module	Contents	No. of hrs
3	 Equipments for Gas-Liquid Contacting: Classification of equipments for gas-liquid contacting Gas dispersed and liquid continuous phase – Sparged Vessels (Bubble Columns), Mechanically Agitated Vessels, Tray Towers. Liquid dispersed phase and gas continuous phase – Venturi Scrubbers, Wetted Wall Towers, Spray Towers and Spray Chambers, Packed Towers. Comparison of Packed Towers with Tray Towers. 	06
4	Gas Absorption: Solubility of gases in liquids, Effect of temperature and pressure on solubility, Ideal and Non-ideal solutions, Choice of solvent for gas absorption, Single component gas absorption – Cross Current, Co-current, Countercurrent, Multistage Counter current Operation. Absorption with Chemical Reactions.	06
5	Drying: Introduction to drying, Equilibrium, Different types of moisture con- tents, Rate of Drying and drying curve, Batch Drying and calculation of time of drying, Continuous	06
6	Humidification and Dehumidification: Introduction, Vapour Pressure Curve, Properties of Vapour-Gas mix- tures [Understanding various terms], Theory of wet bulb temperature, Adiabatic Saturation Curves, Humidity Charts, Adiabatic operation : (Air water systems) water coolers, cooling towers	06

- 1. Treybal R.E., Mass transfer operation, 3 Ed., McGraw Hill New York, 1980.
- 2. McCabe W.L. and Smith J.C., Unit operation in chemical engineering, 5 Ed., McGraw Hill New York 1993.
- 3. Geankoplis C.J., Transport processed and unit operations, Prentice Hall , New Delhi 1997.
- 4. Coulson J.M. Richardson J.F., Backhurst J.R. and Harker J.H., Coulson and Richardson chemical engineering, vol 1 & 2, Butterworth Heinman, New Delhi, 2000.
- 5. R.K.Sinnot (Ed) Coulson and Richardson chemical engineering, vol 6, Butterworth Heinman, New Delhi, 2000.

Course Code	Course Name	Credits
CHC503	Heat Transfer Operations – I (HTO-I)	4.0

Prerequisites

Laws of thermodynamics, Units and dimensions, Fluid flow principles, Solution techniques of ordinary and partial differential equations.

Course Objectives

- Students should be able to calculate rate of heat transfer by all three modes of heat transfer.
- Understand the basic principles involved in mechanism and calculation of heat transfer rates.
- Able to deal with most common types of unsteady state operations of heat transfer.
- Should become familiar with equipments, used for heat transfer in industry.

Course Outcomes

Upon completion of this course the learners will be acquainted to process design concept of heat transfer equipments and prepared for heat transfer equipment design study.

Detail syllabus	
-----------------	--

Module	Contents	No. of hrs
1	Introduction: Fundamentals of heat transfer, basic modes of heat transfer. Concept of driving force and heat transfer coefficients, rate expressions for three modes i. e. conduction, convection, radiation	02
2	Steady state conduction: Fourier's Law, thermal conductivity, conduction through a flat slab, composite slab, conduction through a cylinder, composite cylinder, conduction through sphere, composite sphere. Critical radius of insulation. Concept of thermal resistance, fouling factors, Wilson plot, calculation of overall heat transfer coefficients.	05
3	Unsteady state conduction: Lumped Parameter Analysis -systems with negligible internal resis- tance. Biot number, Fourier number, Heating a body under con- ditions of negligible surface resistance, heating a body with finite surface and internal resistance, heat transfer to a semi-infinite wall.	04
4	Heat transfer by convection: Fundamental considerations in convective heat transfer, significant parameters in convective heat transfer such as momentum diffusivity, thermal diffusivity, Prandtl number, Nusselt number, dimensional analysis of convective heat transfer-Natural and Forced convection, convective heat transfer correlations for internal and external flows, equivalent diameter for heat transfer, estimation of wall temperature, correlations for heat transfer by natural convection from hot surfaces of different geometries and inclination.	07

continued \dots

	1
	continued

Module	Contents	No. of hrs
5	Heat transfer in condensation and boiling: Introduction, types of condensation, Nusselt's theory of condensa- tion, correlations for vertical and horizontal tube, plate, for stack of tubes etc. Heat transfer to boiling liquids, regimes of pool boiling of saturated liquid, correlations for estimating the boiling heat transfer coefficients.	05
6	Steam: Properties of steam. Steam generation by utilizing process waste heat, efficient use of steam in plant.	04
7	Heat transfer through extended surfaces: longitudinal, transverse and radial fins, calculations with different boundary conditions, efficiency and effectiveness of fin, calculation of rate of heat transfer.	03
8	Heat Exchangers: Classification and types of heat exchangers, Double pipe heat ex- changer, calculation of LMTD, effectiveness NTU method. Introduc- tion to Shell and Tube Heat Exchanger. heat transfer in agitated vessel	05
9	Radiation heat transfer: Emissivity, absorptivity, black body, grey body, opaque body, Stephan Boltzmann law, Kirchoff's law. Equations for rate of heat transfer by radiation for various cases. Basic unsteady state radiation heat transfer.	04

- 1. D. Q. Kern, Process Heat Transfer, McGraw Hill, 1997.
- Incropera Frank P., Dewitt David P., Bergman T. L., Lavine A. S., Seetharamu K. N., Seetharam T. R., Fundamentals of Heat and Mass Transfer, Wiley, 2014.
- 3. Holman, J. P., Heat Transfer, 9 ed., McGraw Hill, 2008.
- 4. R. K. Sinnott, Coulson & Richordsons Chemical Engineering Design, Vol. 6, Elsevier Butterworth-Heinemann.
- 5. J. M. Coulson and J. F. Richardson with J. R. Backhurst and J. H. Harker, Coulson & Richordsons Chemical Engineering Design, Vol. 1 & 2, Elsevier Butterworth-Heinemann, 1996.
- 6. W. D. Seider, J. D. Seader, D. R. Lewin, Product & Process Design Principles Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc.
- 7. Robert W. Serth, Process Heat Transfer: Principles and Applications, Elsevier Science & Technology Books.
- 8. John H. Lienhard IV, John H. Lienhard V, A Heat Transfer Textbook, Phlogiston Press.
- 9. McCabe W.L., Smith J.C., Harriot P., Unit Oerations of Chemical Engineering, 5th ed., McGraw Hill, 1993

Course Code	Course Name	Credits
CHC504	Chemical Reaction Engineering - I (CRE-I)	4.0

Prerequisites

Students should know basic Chemistry pertaining to Chemical Reactions, Chemical formula etc. They are required to be aware of Chemical processes and unit operations used for the manufacturing of chemical products. Simple to complex numerical methods of solving one and two dimensional Mathematical equations.

Course Objectives

- Development of Kinetic model for homogeneous reactions giving emphasis on various types of reactions like reversible, irreversible, 1st order, 2nd order reactions, series parallel reactions, homogeneous catalytic reactions, autocatalytic reactions, reactions in adiabatic or non isothermal conditions.
- Development of design strategy for homogeneous reactions considering different types of reactors for example batch reactors, flow reactors, semi batch reactors, recycle reactors etc.Reactor design for reactions operating under adiabatic or non-isothermal conditions.

Course Outcomes

Students will be able to apply the knowledge they have gained to find the model equation and use this model to design the reactors used for homogeneous reactions taking place in isothermal or non isothermal conditions.

Module	Contents	No. of hrs
1	Introduction and reaction kinetics of homogeneous systems: Various types of reactions: Reversible Vs irreversible reactions. Ho- mogeneous Vs heterogeneous reactions. Catalytic Vs non-catalytic reactions. Single vs multiple reactions. Auto catalytic reactions, Rate of reaction, Rate constants, Order/ molecularity. Formulation and solution of rate equations for batch reactors for simple and com- plex reactions. Effect of thermodynamic equilibrium. Temperature dependency-Various Theories. Reaction mechanism and it influence on kinetics, search for plausible mechanism via reaction kinetics	09
2	Methods of analysis of experimental data: For Constant volume & variable volume batch reactor – Integral method of analysis of experimental data, Differential method of anal- ysis. Concept of half-life /fractional life. Over all order of irreversible reactions (initial rate method). Empirical rate equation for n th order reactions. Analysis of complete rate of reactions. Partial analysis of rate of reaction. Reversible and irreversible reactions in parallel Reversible and irreversible reaction in series. Homogeneous catalysed reactions. Auto Catalytic reactions. Shifting order reactions	09

Detail syllabus

continued \dots

	continued

Module	Contents	No. of hrs
3	 Design of reactor: Ideal batch reactor and concept of batch time. Flow reactor and concept of space time / space velocity and holding time / residence time. Ideal mixed flow reactor (MFR) and plug flow reactor (PFR). Design for single reactions: Single reactor performance of reversible and irreversible first order, pseudo first order, second order reactions for MFR, PFR. Graphical and analytical techniques. Combination of reactors PFR in series / parallel, unequal size MFR in series, performance of the above for the first order and second order reactions. Recycle reactor and auto catalytic reactor. Semi batch reactor and recycle reactor. Design for complex reactions: Irreversible and Reversible reactions in series and parallel with same or different order in various combinations. 	12
4	Heat and pressure effects: Heat of reaction and its variation with temperature. Variation of equilibrium constant and equilibrium conversion with temperature. Effect of temperature on reactor performance for adiabatic and non adiabatic operations. Case of exothermic reactions in mixed reac- tor. Optimum temperature progression. Multiple reactions- effect on product distribution. Temperature and scale effect on productivity of reactor. Various problems based on design of non-isothermal reactor are to be solved by using various numerical methods.	09

- 1. Levenspiel, O., Chemical Reaction Engineering, 3 ed., John Wiley & Co.
- 2. Smith J.M., Chemical Engineering Kinetics, McGraw Hill.
- 3. Laidler, K.J., Chemical Kinetics, Tata McGraw Hill, 1997.
- 4. Hill C.G., Chemical Reaction Engineering.
- 5. Walas, Reaction Kinetics for Chemical Engineers, McGraw Hill.
- 6. Sharma M.M & L.K Doraiswamy, Heterogeneous Reactions, Vol1
- 7. Fogler, H.S., Elements of Chemical Reaction Engineering, 4 ed., PHI, 2008.

Course Code	Course Name	Credits
CHC505	Chemical Technology	3.0

Prerequisites

Knowledge of chemistry, physics, physical chemistry and mathematics. Knowledge of Unit Operations and Unit Processes. Knowledge of material balance and energy balance

Course Objectives

- To give students insight of different chemical processes.
- To understand development of process from its chemistry.
- To understand different engineering problems in process industry.

Course Outcomes

At the end of the course student will be able to :

- demonstrate various manufacturing processes,
- explain industrial processing and overall performance of any chemical process,
- find out the overall process aspects including yield, waste etc.,
- draw and illustrate the process flow diagram.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Unit Operations and Processes Concept Used in Chem- ical Industries. General principles applied in studying an indus- try, phases of development of chemical industries in India. An overview on industries such as: vegetable oils & animal fats, nat- ural waxes / resins, essential oils & Flavour ingredients Industry, Food & Agro-Products An overview of other industrially important products: Paints, Varnishes & lacquers, Soaps & Detergents, Dyes & Intermediates, Agrochemicals, Pharmaceuticals: Penicillin.	07
2	Manufacturing of Acids: Sulphuric Acid (DCDA Process), Nitric Acid, Acetic Acid & Phosphoric Acid (WET Process), Manufactur- ing of Fertilizers: Ammonia, Urea, Superphosphate (SSP, TSP) & Ammonium Sulphate	08
3	Sugar, starch & alcohol industries. Introduction to biodiesel pro- cessing. Chloro-Alkali Industries: Manufacturing of Caustic Soda, Hydrochloric Acid and Hydrogen, Soda Ash (Solvay and Dual Pro- cess).	07
4	Synthesis of Important Heavy Organic Chemicals and Intermediates : Styrene , Phenol, Purified Terephthalic acid.	07
5	Synthesis of Polymers: Polyethylene: LDPE, LLDPE and HDPE; Polyster Fibre, Nylon and PVC.	06

continued \ldots

 $\ldots continued$

Module	Contents	No. of hrs
6	Basic Building Blocks of Petrochemical Industry: Treatment of Crude oils and the products there from; refining vs. cracking; manufacture of Acetylene, Ethylene, Benzene Toluene, Xylene.	05

- 1. Austin, G. T., Shreve's Chemical Process Industries, 5 Ed., McGraw Hill International Edition.
- 2. Pandey, G. N., A text book of Chemical Technology, Vol. I and II., Vikas Publications, 1984
- 3. Rao, G. N. and Sittig, M. Drydens outlines of Chemical Technology for 21st Century, East West Press, 3rd edition
- 4. Heaton, C. A., An introduction to industrial chemistry, Leonard Hill, 1984
- 5. Thomson, R., Moden inorganic chemicals industries, Royal Society of chemistry, 2nd ed., 1994
- 6. Kirk-Other's, Encyclopedia of chemical technology, John Wiley and sons Inc., 4th ed. 1990
- 7. Ullmanns Encyclopedia of Industrial Chemistry, VCH, 1985
- 8. McKettas Encyclopedia of chemical processing and design, Marcel Dekker, 1999
- 9. Pletcher, D. and Walsh, F. C., Industrial Electro-chemistry, Chapman & Hall, 1990
- 10. Alok Adholeya and Pradeepkumar Dadhich, Production and Technology of Biodiesel: seeding a change, TERI Publication, New Delhi, 2008
- 11. NIIR Board of consultants and Engineers, The complete book on Jatropha (Biodiesel) with ashwagandha, stevia, brahmi and Jatamansi Herbs (cultivation, processing and uses), Asia Pacific Business Press Inc.

Course Code	Course Name	Credits
CHC506	Business Communication & Ethics	2.0

Course Objectives

- To inculcate in students professional and ethical attitude, effective communication skills, teamwork, skills, multidisciplinary approach and an ability to understand engineers social responsibilities.
- To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
- To inculcate professional ethics and codes of professional practice.
- To prepare students for successful careers that meets the global Industrial and Corporate requirement provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.

Course Outcomes

A learner will be able to

- Communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities,
- participate and succeed in Campus placements and competitive examinations like GATE, CET,
- possess entrepreneurial approach and ability for life-long learning,
- have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.

Detail syllabus

Module	Contents	No. of hrs
1	Report Writing: Objectives of report writing Language and Style in a report Types of reports Formats of reports: Memo, letter, project and survey based	7
2	Technical Proposals Objective of technical proposals Parts of proposal	2
3	Introduction to Interpersonal Skills Emotional Intelligence Leader- ship Team Buliding Assertiveness Conflict Resolution Negotiation Skills Motivation Time Management	7
4	Meetings and Documentation Strategies for conducting effective meetings Notice Agenda Minutes of the meeting	2
5	Introduction to Corporate Ethics and etiquettes Business Meeting etiquettes, Interview etiquettes, Professional and work etiquettes, So- cial skills Greetings and Art of Conversation Dressing and Grooming Dinning etiquette Ethical codes of conduct in business and corpo- rate activities (Personal ethics, conflicting values, choosing a moral response, the process of making ethical decisions)	2
6	Employment Skills Cover letter Resume Group Discussion Presenta- tion Skills Interview Skills	6

- 1. Fred Luthans, Organizational Behavior , Mc Graw Hill, edition
- 2. Lesiker and Petit, Report Writing for Business , Mc Graw Hill, edition
- 3. Huckin and Olsen, Technical Writing and Professional Communication, McGraw Hill
- 4. Wallace and Masters, Personal Development for Life and Work , Thomson Learning, 12th edition
- 5. Heta Murphy, Effective Business Communication , Mc Graw Hill, edition
- 6. R.C Sharma and Krishna Mohan, Business Correspondence and Report Writing,
- 7. B N Ghosh, Managing Soft Skills for Personality Development, Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, BCOM, Cengage Learning, 2nd edition
- 9. Bell . Smith, Management Communication Wiley India Edition, 3rd edition.
- 10. Dr. K. Alex ,Soft Skills, S Chand and Company
- 11. Dr.KAlex,SoftSkills,S Chand and Company
- 12. R.Subramaniam, Professional Ethics Oxford University Press 2013.

Course Code Course Name		Credits	
CHL507	Chemical Engg Lab (MTO-I)	1.5	

The laboratory work shall consist of a record of minimum eight experiments performed during the term. The design of experiments should cover all concepts (such as Mass transfer coefficient, Gas liquid contacts, Absorption, Drying, Humidification etc.) mentioned in the syllabus. Each and every experiment should conclusively demonstrate / verify the theory. The students should be able to explain variations (if any) between observed and expected results based on technical knowledge. Each experimental report should contain a discussion of the results obtained.

Course Code	Course Name	Credits	
CHL508	Chemical Engg Lab (CRE-I)	1.5	

Minimum 8 experiments need to be performed by the students on following concepts.

- Effect of concentration and temperature on reaction rate.
- Batch reactor.
- Arrhenius constants.
- Differential and integral analysis.
- Acidic hydrolysis.
- Condensation polymerisation kinetics.
- Constant flow stirred tank reactor (CSTR).
- Plug flow reactor (PFR).
- CSTRs connected in series.
- PFR-CSTR combination in series.

Course Code	Course Code Course Name	
CHL509	Chemical Engg Lab (HTO-I)	1.5

Minimum seven practical including experiments on conduction, unsteady state conduction, forced and natural convection, condensation, heat exchangers should be done. These can include any additional experiment based on the syllabus.

Course Code Course Name		Credits	
CHL510	Chemical Engg Lab (Synthesis)	1.5	

Concept for experiments to be designed by instructor is students should developed an approach towards engineering a chemical process. Some of the suggested processes are Preparation of a soap, detergent, paper, polymer products, pharmaceutical products, membrane, nano-particles, dye, rubber, biochemical, biodiesel, food product, oil.

examples of few lab prepared chemicals along with raw materials can be

Sr. No.	PREPARETION	Chemicals required	Apparatus/ glassware required
1	SOAP	Sodium hydroxide (20% solu- tion), ethanol saturated solu- tion of sodium chloride ,cal- cium chloride (5% solution), magnesium chloride (5% solu- tion), ferric chloride (5% solu- tion), cooking oil, phenolph- thalein indicator solution.	250-mL beaker, 100- mL beaker; wire gauze; laboratory burner; glass stirring rod; test tubes; fil- ter flask and Büchner funnel; fil- ter paper ;graduated cylinder
2	ALUM FROM ALUMINUM	Aluminum can or aluminum metal, Crushed ice, 9M H_2SO_4 , 1.5M KOH solution, Methanol, NaHCO ₃ (sodium bicarbonate)	Glass filter funnel, Büchner filter funnel, filter paper, Steel wool, two 150 mL and two 150 ml beakers, 500 ml beaker, ther- mometer, ruler, stirring rod.
3	ASPRIN	2 gm salicylic acid, 5.0 ml of acetic anhydride, five drops of 85% phosphoric acid, distilled water	burette clamp, burner, stand with iron ring, wire gauze, ice bath,50 ml flask beaker, Büchner funnel aspirator
4	METHYL ORANGE	0.29 g of anhydrous sodium carbonate, 1.0 g of sulfanilic acid monohydrate, 0.375 g of sodium nitrite, 0.7 ml of dimethylaniline and 0.5 mL of glacial acetic acid, 10% aque- ous sodium hydroxide, 1.25 ml of concentrated hydrochlo- ric acid	50 ml Erlenmeyer flask, filter,100 ml beaker, test tube
5	THIOKOL RUBBER	Sodium hydroxide solution, 1M Sulfur 1,2-dichloroethane distilled or deionized water	Copper wire, approximately 6 inches long (15 cm); two 10 ml vials with teflon cap lin- ers, two 400 ml beakers ,10 ml graduated cylinder ,glass pipette (dropper), hot plate, chemical re- sistant gloves
6	RUBBER BALL FROM RUBBER LATEX	15 ml rubber latex, 15 ml vinegar, 15 ml water	Two paper cups (5 ounce), stir- ring rod (popsicle stick or equiv- alent), small bucket or large beaker (1000 ml or larger)

continued \ldots

$\ldots continued$

Sr. No.	PREPARETION	Chemicals required	Apparatus/ glassware required				
7	p-BROMO- NITROBENEZENE FROM BRO- MOBENEZENE	Conc. H ₂ SO ₄ , conc. HNO ₃ , bromobenzene, ethyl alcohol, conical flask, funnel, filter pa- per, water Bath.	Conical flask,funnel, filter paper, water bath.				
8	DETERGENT	Dodecanol (dodecyl alcohol), sulphuric acid, concentrated sodium hydroxide, 6M phe- nolphthalein solution, 1% sodium chloride	Erlenmeyer flask, 125 ml beakers, 400 ml, 150 ml, 100 ml graduated cylinders, 10 ml, 25 ml, 125 ml funnel, spatula, stirring rod, Cheese cloth, watch glass, scissors				

University of Mumbai

Subject	Subject Subject Name		Teaching Scheme			Credit Assigned				
Code	Subject Name	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
CHC601	Instrumentation	03	—	01	3.0	_	1.0	4.0		
CHC602	Mass Transfer Operations – II (MTO-II)	03	_	01	3.0	_	1.0	4.0		
CHC603	Heat Transfer Operations – II (HTO-II)	03	_	01	3.0	_	1.0	4.0		
CHC604	Chemical Reaction Engineering – II (CRE-II)	03	_	01	3.0	_	1.0	4.0		
CHC605	Plant Engineering	04	—	_	4.0	_	_	4.0		
CHE606	Elective – I	04	_	_	4.0	_	—	4.0		
CHL607	Chemical Engg Lab (MTO-II)	—	03	_	—	1.5	_	1.5		
CHL608	Chemical Engg Lab (CRE-II)	_	03	_	_	1.5	_	1.5		
CHL609	Chemical Engg Lab (HTO-II)	-	02	_	-	1.0	-	1.0		
	Total	20	08	04	20.0	4.0	4.0	28.0		

Scheme for TE: Semester-VI

Examination Scheme

		Examination Scheme											
Subject	Subject Name	Theory marks				m							
Code	Subject Ivanie	Internal Assessment		End	Term Work	Pract.	Oral	Total					
		Test 1	Test 2	Avg. of	Sem. Exam	n.							
				Test 1									
				and									
				Test 2									
CHC601	Instrumentation	20	20	20	80	25	—	—	125				
CHC602	Mass Transfer Operations – II (MTO-II)	20	20	20	80	25	—	—	125				
CHC603	Heat Transfer Operations – II (HTO-II)	20	20	20	80	25	_	—	125				
CHC604	Chemical Reaction Engineering – II (CRE-II)	20	20	20	80	25	_	_	125				
CHC605	Plant Engineering	20	20	20	80	—	—	—	100				
CHE606	Elective – I	20	20	20	80	—	—	_	100				
CHL607	Chemical Engg Lab (MTO-II)	-	-	—	_	—	25	25	50				
CHL608	Chemical Engg Lab (CRE-II)	-	_	_	_	_	25	_	25				
CHL609	Chemical Engg Lab (HTO-II)	-	-	—	_	—	25	_	25				
			Total	120	480	100	75	25	800				

Elective Streams(CHE606)

Sem.	Management Stream	Technology Stream	Process System Engineering Stream			
VI	Operations Research	Advanced Material	Computational Fluid Dynamics			

Course Code	Course Name	Credits
CHC601	Instrumentation	4.0

Process Calculations.

Course Objectives

- To understand the primary mechanisms of sensors
- To understand how measured quantities are processed for transmission and control
- To understand how alarms and interlocks are incorporated into over-all instrumentation and control
- To understand basic control configurations of typical process units

Course Outcomes

- The student will be able to calculate the output of various measuring schemes
- The student will be able to select a DAQ card for any given application
- The student will be able to select the appropriate type of instrument for any application
- The student will be able to prepare a basic control scheme for process units
- The student will be able to write programs for a PLC

Detail syllabus

Module	Contents	No. of hrs
1	Fundamentals of Measuring Instruments: Introduction Standards and Calibration, Elements of Measuring Systems, Classification of Instruments, Performance Characteristics, Errors in Measurement.	04
2	Primary Sensing Mechanisms: Introduction, Resistive Sensing Elements, Capacitive Sensing Ele- ments, Inductive Sensing Elements, Thermo-electric Sensing Ele- ments, Piezo-electric Sensing Elements, Elastic Sensing Elements, Pneumatic Sensing Elements, Differential Pressure Sensing Elements, Expansion Sensing Elements.	04
3	Signal Conversion: Signal Conditioning , Wheatstone Bridge, Potentiometer Measure- ment System, Signal Processing, Mechanical Amplifier, Electronic Amplifier, A/D and D/A conversion, Signal Transmission, Selection of DAQ cards.	04
4	Measuring Instruments: Flow Measurement, Temperature Measurement, Level Measurement, Pressure Measurement.	10
5	Valves and Drives: Introduction, Control Valve Characteristics, Sizing and Selection of Valves, Variable Drives.	04

\ldots continued

Module	Contents	No. of hrs
6	Programmable Logic Controllers: Introduction, Ladder Logic, Applications of PLCs to typical processes.	04
7	Introduction to Safety Relief Systems: Introduction, Types of Relieving Devices, Relief Valves, Rupture Discs, Over-pressurization, Emergency De-pressurization, Introduc- tion to SIL Classification, LOPA Methods, Basic Process Control Schemes.	10

- 1. K. Krishnaswamy and S. Vijayachitra, Industrial Instrumentation, second Edition, New Age International.
- 2. B. E. Noltingk, Jones Instrument Technology, Vol. 4 and 5, Fourth Edition, Butterworth-Heinemann.
- 3. W. Bolton, Instrumentation and Control Systems, First Edition, Newnes, Elsevier, 2004.
- 4. Stephanopoulos, Chemical Process Control, Prentice Hall of India.
- 5. John P. Bentley, Principles of Measurement Systems, Third edition, Addison Wesley Longman Ltd., UK, 2000.
- 6. Doebelin E.O, Measurement Systems Application and Design, Fourth edition, McGraw-Hill International Edition, New York, 1992.
- 7. Noltingk B.E., Instrumentation Reference Book, 2nd Edition, Butterworth Heinemann, 1995.

Course Code	Course Name	Credits
CHC602	Mass Transfer Operations – II (MTO-II)	4.0

- Knowledge of chemistry, physics, physical chemistry and mathematics.
- Knowledge of process calculations.
- Knowledge of diffusion, mass transfer coefficients, modes of contact of two immiscible phases.

Course Objectives

- To understand design methods for distillation columns.
- To understand design of extractor and leaching equipments.
- To understand membrane separation.

Course Outcomes

At the end of the course student will be able to :

- understand equilibrium in all separation process
- describe the mass transfer equipments
- design distillation column
- choose choose the separation operation which will be economical for the process
- optimize the process parameters
- understand membrane separation processes principle and working

Detail syllabus

Module	Contents	No. of hrs
1	Distillation: Introduction to Distillation, Vapor-liquid Equilibria – At constant Pressure and At constant temperature, Minimum and maximum boil- ing Azeotropes. Methods of distillation [binary mixtures] – Flash Distillation, Differential distillation, Rectification. Calculations of number of ideal stages in multistage countercurrent rectification. Mc- Cabe Thiele Method. Ponchon-Savarit Method, Lewis-Sorel Method, Concepts of [Brief Discussion], Steam Distillation, Azeotropic Distil- lation, Extractive Distillation, Reactive Distillation, Molecular Dis- tillation, Introduction to Multicomponent Distillation	12
2	Liquid-Liquid Extraction: Introduction to Liquid-Liquid Extraction, Choice of Solvent for Liquid-Liquid Extraction, Triangular coordinate system, Ternary Equilibria [Binodal Solubility Curve with effect of temperature and pressure on it], Single Stage Operation, Multistage Cross Current Operation, Multistage Counter Current Operation[with and without reflux], Equipments for liquid-liquid extraction.	06

continued ...

 \ldots continued

Module	Contents	No. of hrs
3	Leaching: Representation of Equilibria, Single stage leaching, Multistage Cross Current Leaching, Multistage Counter Current Leaching, Equip- ments for Leaching.	06
4	Adsorption and Ion Exchange: Introduction to Adsorption, Types of Adsorption, Adsorption Isotherms, Single Stage Adsorption, Multistage Cross Current Ad- sorption, Multistage Counter Current Adsorption, Equipments for Adsorption, Ion Exchange Equilibria, Ion Exchange Equipments	06
5	Crystallization: Solubility curve, Super saturation, Method of obtaining super saturation, Effect of heat of size and growth of crystal, Rate of Crystal growth and Ls law of crystal growth, Material and energy balance for crystallizers, Crystallization equipment-description.	04
6	Membrane separation Technique: Need of membrane separation and its advantages, classification of membrane separation process, Various membrane configurations. Various membrane and their applications, Ultra filtration, Nano fil- tration. Reverse osmosis, Pervaporation. Membrane distillation.	06

Note:

Minimum one assignment on each module should be given at regular intervals. The term work assessment will be based on quality of assignments, attendance in the theory class / tutorials, performance, punctuality and orals at the time of submission.

- 1. Treybal R.E., Mass transfer operation, 3rd ed., McGraw Hill New York, 1980.
- 2. McCabe W.L. and Smith J.C., Unit operation in chemical engineering, 5th ed., McGraw Hill New York 1993.
- 3. Geankoplis C.J., Transport processed and unit operations, Prentice Hall, New Delhi 1997.
- 4. Coulson J.M., Richardson J.F., Backhurst J.R. and Harker J.H. , Coulson and Richardson chemical engineering, vol 1, Butterworth Heinman, New Delhi, 2000.
- 5. Coulson J.M. Richardson J.F. Backhurst J.R.and Harker J.H. Coulson and Richardosn chemical engineering, vol 2, Asian book pvt ltd, New Delhi, 2000.
- 6. R.K.Sinnot (Ed) Coulson and Richardson chemical engineering, vol 6, Butterworth Heinman, New Delhi, 2000.

Course Code	Course Name	Credits
CHC603	Heat Transfer Operations – II (HTO-II)	4.0

Mathematics, Heat Transfer Operations – I.

Course Objectives

Student should able to design shell and tube heat exchangers - condenser, reboilers, evaporators, etc. Student should able to design furnace. Students should know how heat exchanger design software work.

Course Outcomes

Detail syllabus

Module	Contents	No. of hrs
1	Shell and Tube Heat Exchanger Design for Liquids: TEMA standards, Stream Analysis Method, Bell-Delaware method. Effect of fouling, and over-design.	12
2	Plate type heat exchangers(PHE): Design methods, gasket selection, limitations and advantages PHE	06
3	Condensers: Shell and tube condensers – horizontal, vertical. Barometric con- densers. Effect of non-condensible. Engineering problems and trou- bleshooting.	06
4	Reboiler: Design – Kettle type reboiler, horizontal thermosyphon reboiler, vertical thermosyphon reboiler. Engineering problems and trouble shooting.	06
5	Furnace Design: Radiant section, convection section. Box type furnace. Methods of Lobo and Evans. Method of Wilson, Lobo and Hottel.	08
6	Introduction to Heat exchanger design using softwares e.g. HET-RAN, HTRI, TEAMS, etc	02

Note:

It is suggested to arrange tutorials along with practicals of subject code CHL609 to facilitate design and simulations of different exchangers. Students need to take one mini project which should include full scale design of Shell and tube heat exchanger for different process conditions. Minimum six tutorials should be considered for term work.

- 1. Serth, Robert W., Process Heat Transfer Principles and Applications, Elsevier Science & Technology Books, 2007.
- 2. Kern, D. Q., Process Heat Transfer, McGraw Hill, 1965.

- 3. Holman, J.P., Heat Transfer, McGraw Hill, 6th Ed., 1986.
- 4. Standards of Tubular Exchanger Manufacturers Association (TEMA), 8th Ed., New York, 1999.
- 5. R.K.Sinnot (Ed) Coulson and Richardson chemical engineering, vol 6, Butterworth Heinman, New Delhi, 2000.
- 6. Bell, K. J., Muller, A.C., Wolverine Engineering Data Book -II, Wolverine Tube Inc., 2001.
- 7. Rajiv Mukherjee, Effectively Design Shell-and-Tube Heat Exchangers, Chemical Engineering Progress, February 1998.
- 8. James O. Maloney (Ed), Perry's Chemical Engineers Handbook, Section 11, 8th Ed., McGraw Hill, 2008.
- 9. Gas Processors Suppliers Association, Engineering Data Book, Section 8 & 9, 12th Ed., Oklahoma, s 2004.

Course Code	Course Name	Credits
CHC604	Chemical Reaction Engineering – II (CRE-II)	4.0

Students should know basic Chemistry pertaining to Chemical Reactions, Chemical formula etc. They are required to be aware of Chemical processes and unit operations used for the manufacturing of chemical products. Simple to complex numerical methods of solving one and two dimensional Mathematical equations.

Course Objectives

- Development of Kinetic model for Heterogeneous reactions giving emphasis on various types of reactions like non catalytic, catalytic, liquid liquid reaction, liquid gas reactions in isothermal, adiabatic or non isothermal conditions.
- Development of design strategy for Heterogeneous reactions considering different types of reactors for example fixed bed tubular reactor, fluidized bed reactor, packed bed reactors etc.Reactor design for reactions operating under isothermal, adiabatic or non-isothermal conditions.
- Studying the real reactors considering residence time distribution in various reactors and obtaining actual design parameters.

Course Outcomes

Students will be able to apply the knowledge they have gained to find the model equation and use this model to design the reactors used for heterogeneous reactions taking place in isothermal or non isothermal conditions.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Kinetics and mechanism of various Heterogeneous reactions and design consideration of reactors used during different operating conditions.	09
	Catalytic heterogeneous reactions: Properties of solid catalysts, Physical adsorption and Chemisorption, Surface area and pore size distribution, Langmuir-Hinshelwood model, General mechanism of solid catalysed fluid phase reactions. Special cases when (a) Film resistance controls. (b) Surface phenomenon controls. (c) Surface reaction controls (d) Pore diffusion controls.	
	Intrinsic kinetics and various cases of adsorption and reaction stage controls. Concept of effectiveness factor of catalyst and its depen- dence on catalyst properties and kinetic parameters.	

			continued
•	٠	٠	commuea

Module	Contents	No. of hrs
2	Design of solid catalysed fluid phase reactors: Phenomenon observed in operation of packed, fluid bed, slurry and such reactors. Product distribution in multiple and complex reac- tion. Thermal Effects, phenomena of stability, instability and run away and its analysis. Strategies for stable operation of reactors. Design consideration of fluid-solid catalytic reactors, including Fluid bed reactors.	03
3	 Non-Catalytic heterogeneous reactions: General mechanism of reaction., Various models. Specific cases with respect:(a) Film diffusion controlling. (b) Ash diffusion controlling. (c) Chemical reaction controlling. Design of reactors for non-catalytic reactors: Experimental reactors for heterogeneous Reactions, Non-Catalytic Fluid Solid Re- actions in Flow Reactors, Application to design of continues solid flow reactors; various design considerations, Application of fluid bed reactors and their design consideration, heat transfer effects. 	12
4	 Kinetics of fluid-fluid reactions: Reaction with mass transfer, The rate equation pertaining to fast to very slow reactions. Applications to design: Design of gas-liquid, liquid-liquid and gas-liquid-solid reactors – Heterogeneous reactors, Bubble heterogeneous reactors, co-current and counter-current flow packed bed reactors. 	09
5	 Non-ideal flow reactors: Concept of residence time distribution(RTD), Measurement and characteristics of RTD, RTD in Ideal batch reactors, Plug flow reactor and CSTR. Zero Parameter Model – Segregation and Maximum mixedness model. One parameter model – Tank in series model and Dispersion Model, Recycle Model. Multi parameter models, Effect of dispersion on conversion for general irreversible reaction case, Diagnostic methods of analysis of flow patterns in reactors, Role of micro and macro mixing and segregation in ideal (MFR, PFR) and non ideal reaction cases. 	06

- 1. Smith J. M., Chemical Reaction Engineering, 3 ed., Tata McGraw Hill, 1980.
- 2. Levenspiel O., Chemical Reaction Engineering, John Wiley & Sons, 3 ed., 1999.
- 3. Laidler, K.J., Chemical Kinetics, Tata McGraw Hill, 1997.
- 4. Hill C.G., Chemical Reaction Engineering.
- 5. Walas, Reaction Kinetics for Chemical Engineers, Mcgraw Hill, 1959.
- 6. Fogler, H.S. Elements of Chemical Reaction Engineering, 4 ed., PHI, 2008.

- 7. Doraiswamy & Sharma, Heterogeneous Reaction, Vol. 1 & 2, John Wiley, 1984.
- 8. Walas, Chemical Reaction Engineering Hand Book of Solved problems, Gordon & Breach, 1995

Course Code	Course Name	Credits
CHC605	Plant Engineering	4.0

Knowledge of Process Calculations, Thermodynamics and Fluid flow.

Course Objectives

- At the end of the course the students should understand the knowledge of industrial safety, plant utilities and statistical analysis of results.
- They should able to understand industrial accidents and hygiene, hazards and risk analysis.
- They should able to understand various types of steam generators, its performance.
- They should be able to understand various properties of compressed air, air drying methods, study different types of compressors and humidification and dehumidification operations.
- They should be able to understand the Principles of refrigeration, study different refrigeration systems and refrigerants and their importance.
- They should understand how to select vacuum system and to carry out various operations under vacuum, and knowledge of various types of vents and flares.
- They should learn about statistical analysis of experimental results.

Course Outcomes

- Students will demonstrate the knowledge of industrial safety, utilities and statistical analysis.
- Students will know different types industrial accident, industrial hygiene and risk analysis.
- Students will know how to make efficient use of steam and boilers in chemical industries.
- Students will have deep knowledge of working various compressors and humidification and dehumidification operations.
- Students will be able to find refrigeration effect for different refrigeration systems.
- Students will have knowledge of vacuum systems and vacuum operations, venting and flaring.
- Students will be able carry out statistical analysis of experimental results.

Detail syllabus

Module	Contents	No. of hrs
1	 Introduction to safety: Introduction, safety programs. Accidents: Nature of accidents, process of accidents. Industrial hygiene: Phases of industrial hygiene projects. Material safety data sheet. Fire: Fire triangle, Flammability characteristics of liquids and gases, Minimum oxygen concentration, Ignition energy, Autoignition, Autoxidation, Adiabatic compression, Ignition sources, Sprays and 	06
	mists, Prevention methods. Explosion: Detoriation, Deflagration, Confined explosion, VCE, BLEVE, Blast damage, Missile damage, Prevention methods.	

			continued
•	٠	٠	commuea

Module	Contents	No. of hrs
2	 Relief systems, Hazards and risk assessment: Relief: Concept, Location of relief, Types, Relief systems. Deflagration venting for dust and vapour explosion. Venting for fires. Hazards identification: Hazards Check-list, Hazards Surveys, HAZOP, HAZON. Risk assessment: Event trees, Fault trees. Accident investigation: Accident investigation process, AIDS for diagnosis, recommendations. 	06
3	Steam generators: Steam generators, classification of boilers, boiler mountings and accessories. Performance of steam generators. Distribution of steam in plant. Efficient use of steam.	09
4	Air: Compressed air from blower, compressor. Air drying system for in- strument air and plant air. Humidification and dehumidification of air.	08
5	Refrigeration: Principles of refrigeration. Refrigeration system like compression re- frigeration, absorption refrigeration, chilled water system, air condi- tioning. Types of refrigerants and their importance.	08
6	Vacuum systems, Venting and flaring: Different types of vacuum systems. Types of vents and flares.	08
7	Statistical analysis of results: Data tabulation and graphical representation. Standard deviation and standard error. Degree of freedom. Analysis of variance (ANOVA).Linear regression analysis.	07

- 1. Crowl, D. A. and Louvar, J. P.; Chemical Process Safety: Fundamentals with Applications; Prentice Hall, Englewood
- 2. Khurmi, R. S. and Gupta, J. K. A textbook of thermal Engineering, S. Chand.
- 3. Rajput, R.K.A textbook of Power Plant Engineering. Laxmi Publications (P) Ltd., Navi Mumbai.
- 4. Ashoutosh Panday; Plant Utilities; Vipul Prakashan, Mumbai
- 5. Kothari, C. R. and Garg, Gaurav (2014). Research Methodology: Methods and Techniques, Third edition, New age international publishers, New Dehli.

Course Code	Course Name	Credits
CHE606	Elective – I : Operations Research	4.0

Linear Algebra, Computer Programming

Course Objectives

- To understand Linear Programming and its applications to OR models.
- To understand and solve network models in OR.
- To understand Game theory and its applications.
- To study and design Queuing systems.

Course Outcomes

- The student will be able to solve typical OR models using linear integer and dynamic programming techniques.
- The student will be able to model and solve network flow problems in OR.
- The student will be able to make decisions under various scenarios.
- The student will be able to design Queuing Systems.

Detail syllabus

Module	Contents	No. of hrs
1	Linear Programming: Introduction, Graphical Method of Solution, Simplex, Two-Phase Method, Duality, Dual Simplex, Revised Simplex, Sensitivity Analy- sis	10
2	Transportation Models: Examples of Transportation Models, The Transportation Algorithm, The Assignment Model, The Transshipment Model	06
3	Network Models: Scope and Definition of Network Models, Minimal Spanning Tree Algorithm, Shortest Route Problem, Maximal Flow Model, CPM and PERT, Minimum-Cost Capacitated Flow Problem	10
4	Integer and Dynamic Programming: Branch and Bound Method, Travelling Salesman Problem, Introduc- tion to Dynamic Programming, Forward and Backward Recursion, Selected Applications,	06
5	Deterministic Inventory Models: Classic EOQ Model, EOQ with Price Breaks, Multi-item EOQ with Storage Limitation, Dynamic EOQ Models, No-Setup Model, Setup Model	06

 $\ldots {\rm continued}$

Module	Contents	No. of hrs
6	Decision Analysis and Game Theory: Decision Making under Certainty, Decision Making under Risk Decision Under Uncertainty, Game Theory	06
7	Queuing Systems: Elements of a Queuing Model, Role of Exponential Distribution, Pure Birth and Death Models, Generalized Poisson Queuing Model, Mea- sures of Performance	06

- 1. Hamdy A. Taha, Operations Research, 8 Ed., Prentice Hall India.
- 2. Thomas Edgar, Optimization of Chemical Processes, David M.Himmelbleau, 2 Ed., John Wiley.

Course Code	Course/Subject Name	Credits
CHE606	Elective – I: Advanced Material	4.0

Mechanical, Electrical, Magnetic and Optical behaviour of material Iron- Carbon system and alloy, deformation and failure in metals Polymer alloys, ceramics, FRP composites polymer and their Properties Corrosion and choice of materials

Course Objectives

To understand various advanced material such as conducting polymer, high temperature polymer, stainless steel material, composites, ceramics etc. To understand properties and engineering applications of above material. To understand fabrication methods of above materials.

Course Outcomes

Student will identify various types of advance material in polymer, ceramics, & composites. Understand the properties of various polymeric, ceramic and metallic materials and their application in various fields. Student will have knowledge of different types of composite material, their properties and application Understand the fabrication of various composite material. Student will have knowledge of types of nanotube and nanosensor their application. Understand the thin film coating methods and their application in various fields.

Module	Contents	No. of hrs
1	Advanced Metallic Material: Stainless steels: Types, properties of stainless steel, corrosion resis- tance and selection of stainless steel, failure of stainless steel. High Temperature Alloys: Properties and types. Titanium Alloys and Cobalt - Chromium Alloys: composition, properties and applications, Nitinol as Shape memory alloy and its application	07
2	Advanced Polymeric Material: Structure, preparation and application of various conducting poly- mers, high temperature polymers and liquid crystal polymers, Biomedical application of polymers such as hydrogels, polyethylene, polyurethanes, polyamides and silicone rubber.	05
3	Ceramic Material: Properties of ceramic material, classification of ceramic material, ceramic crystal structures. Behaviour of ceramic material: dielectric, semiconductor, ferroelectric, magnetic, mechanical behaviour, Preparation and application of ceramic material: Alumina, partially stabilized zirconia, Sialon, Silicon Nitride, Silica Carbide Processing of ceramics.	06

Detail syllabus

 \ldots continued

Module	Contents	No. of hrs
4	Composite Materials: Necessity of composite material, classification of composite material, types of matrix and reinforcement, Reinforcement mechanism, choos- ing material for matrix and reinforcement Fiber Reinforcement Plastic Processing: Open moulding and closed moulding, Carbon Composites: fabrica- tion and properties	07
5	Metal Composites: Advantages of metal composite over metal, types of reinforcement and matrix fabrication types, various fabrication process, mechanical behavior and properties Ceramic Composites: matrices and reinforcement, mechanical properties, fabrication meth- ods.	08
6	 Carbon Nanotube:Synthesis, properties and applications. Nanoshells: Types properties and applications. Nanosensors: Assembly methods, nanosensors based on optical, quantum size, electrochemical and physical properties. Thin film coatings: Physical and chemical vapour deposition coatings, hardfacing, thermal spraying, diffusion process, useful material for appearance, corrosion and wear. 	06

- 1. B. K. Agrawal, Introduction to Engineering Material, Tata McGraw Hill Education Pvt. Ltd, 2012.
- 2. A. K Bhargava, Engineering Material: Polymer, Ceramic and Composites, PHI learning Pvt. Ltd, 2010.
- 3. Dr. H K Shivanand, B.V. Babu Kiran, Composite Material, Asian Books Private Limited, 2010.
- 4. T. Pradeep, Nano: The Essential, Tata McGraw Hill Education Pvt. Ltd, 2010.
- 5. William Smith, Structure and Properties of Engineering Alloy, 2nd Edition, McGraw Hill International Book.
- 6. William Smith, Javad Hasemi, Ravi Prakash, Material Science and Engineering, Tata McGraw Hill Education company Ltd ,2006
- 7. Kenneth G. Budinski , Michael K. Budinski, Engineering Materials Properties and Selection, 8th Edition, Prentice Hall.
- 8. Bowden M.J & Tumber S.R., Polymer of high Technology, Electronic and Photonics, ACS symposium series, ACS , 1987
- 9. Dyson R.W., Engineering. Polymers, Chapman and Hall, First Edition, 1990
- 10. Chawala K.K., Composites materials, science and Engineering, 3rd Edition
- 11. Sujata V. Bhat, Biomaterial, Narosa Publication Pvt. Ltd.

Course Code	Course/Subject Name	Credits
CHE606	Elective – I: Computational Fluid Dynamics	4.0

Linear Algerbra, Partial Differential Equations, Scilab

Course Objectives

- To understand the formulation of CFD problems
- To discretize the problems
- To solve the set of equations in simple cases using Scilab routines.
- To understand and use software in CFD.

Course Outcomes

- The student will be able to obtain flow profiles for some simple applications using Scilab.
- The student will be able to use appropriate software for solving realistic problems.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Advantages of Computational Fluid Dynamics, Typical Practical Applications, Equation Structure, Overview of CFD	02
2	Preliminary Computational Techniques: Discretisation, Approximation to Derivatives, Accuracy of the Discretisation Process, Wave Representation, Finite Difference Method	04
3	Theoretical Background: Convergence, Consistency, Stability, Solution Accuracy, Computa- tional Efficiency	06
4	Weighted Residual Methods: General Formulation, Finite Volume Method, Finite Element Method and Interpolation, Finite Element Method and the Sturm-Liouville Equation	08
5	Steady Problems: Nonlinear Steady Problems, Newtons Method, Direct Linear Method, Thomas Algorithm	06
6	One-dimensional Diffusion Equation: Explicit Methods, Implicit Methods, Boundary and Initial Condi- tions, Method of Lines	08
7	Multidimensional Diffusion Equation: Two-Dimensional Diffusion Equation, Multidimensional Splitting Schemes, Splitting Schemes and the Finite Element Method, Neu- mann Boundary Conditions	08

 \ldots continued

Module	Contents	No. of hrs
8	Linear Convection-Dominated Problems: One-Dimensional Linear Convection Equation, Numerical Dissipa- tion and Dispersion, Steady Convection-Diffusion Equation, One- Dimensional Transport Equation, Two-Dimensional Transport Equa- tion	10

- 1. C.A.J. Fletcher, Computational Techniques for Fluid Dynamics 1, Springer-Verlag Berlin Heidelberg GmbH.
- 2. John D. Anderson, Computational Fluid Dynamics, McGraw Hill Education Private Limited.

Course Code	Course Name	Credits
CHL607	Chemical Engg Lab (MTO-II)	1.5

Concept for experiments

The laboratory work shall consist of a record of minimum eight experiments performed during the term. The design of experiments should cover all concepts (such as Distillation, liquid-liquid extraction, Adsorption, leaching, Crysatllisation & Membarne separation etc) mentioned in the syllabus. Each and every experiment should conclusively demostrate / verify the theory.

The students should be able to explain variations (if any) between observed and expected results based on technical knowledge. Each experimental report should contain a discussion of the results obtained.

Course Code	Course Name	Credits
CHL608	Chemical Engg Lab (CRE-II)	1.5

Concept for experiments

Minimum 8 experiments need to be performed by the students on following concepts.

- Void Volume, Porosity & Solid density of catalyst particle.
- Solid fluid Heterogeneous non-catalytic reaction.
- RTD study in CSTR.
- RTD study in packed column.
- RTD study in PFR.
- Semi-batch reactor
- Adiabatic batch reactor.
- Heterogeneous catalytic esterification reaction between alcohol and acetic acid using acid catalyst.

Course Code Course Name		Credits
CHL609	Chemical Engg Lab (HTO-II)	1.0

Concept for experiments

Experiments should be based on Design and simulation of Shell and Tube heat exchangers like liquidliquid and gas-liquid heat exchange without phase change, condensers, reboilers, etc. Minimum six simulations need to be performed using simulators like HETRAN/HTRI/TEAMS, etc.

AC 26/02/2015 Item no. 4.62

UNIVERSITY OF MUMBAI

Revised Syllabus Program – **Bachelor of Engineering** Course – **Chemical Engineering** (Final Year – Sem VII and VIII)

under **Faculty of Technology** (As per Credit Based Semester and Grading System from 2015-16)

General Guidelines

Tutorials

- The number of tutorial batches can be decided based on facilities available in the institution.
- Tutorials can be creative assignments in the form of models, charts, projects, etc.

Term Work

- Term work will be an evaluation of the tutorial work done over the entire semester.
- It is suggested that each tutorial be graded immediately and an average be taken at the end.
- A minimum of ten, or as specified in syllabus, tutorials will form the basis for final evaluation.
- The total marks for term work(except project and seminar) will be awarded as follows:

Assignments etc. 20 Attendance 05

Further, while calculating marks for attendance, the following guidelines shall be adhered to:

$75 \ \% - 80\%.$	03
81%-90%	04
91% onwards	05

Theory Examination

- In general all theory examinations will be of 3 hours duration.
- Question paper will comprise of total six questions, each of 20 Marks.
- Only four questions need to be solved.
- Question one will be compulsory and based on as much of the syllabus as possible.

Note: In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus as far as possible.

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Project & Seminar Guidelines

- Project Groups: Students can form groups with not more than 3(Three) per group.
- The load for projects may be calculated as below,
 - Sem VII: $\frac{1}{2}$ hr for teacher per group.
 - Sem VIII: 1 hr for teacher per group.

- Maximum of four groups can be allotted to a faculty.
- Seminar topics will be the consensus of the project guide and the students. Each student will work on a unique topic.
- The load for seminar will be calculated as one hour per week irrespective of the number of students.
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, eight hours each were allotted in Project A,B and three hours for Seminar to the students.

University of Mumbai

Subject Subject Name		Teaching Scheme			Credit Assigned			
Code	Subject Mame	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
CHC701	Process Equipment Design (PED)	03	_	01	3.0	_	1.0	4.0
CHC702	Process Engineering	03	—	01	3.0	_	1.0	4.0
CHC703	Process Dynamics & Control (PDC)	03	_	01	3.0	_	1.0	4.0
CHE704	$\operatorname{Elective} - \operatorname{II}$	04	_	_	4.0	_	—	4.0
CHP705	$\operatorname{Project} - \mathrm{A}$	—	_	08	_	_	3.0	3.0
CHS706	Seminar	—	—	03	_	_	3.0	3.0
CHL707	Chemical Engg Lab (PED)	—	03	_	_	1.5	_	1.5
CHL708	Chemical Engg Lab (PDC)	—	03	_	—	1.5	_	1.5
Total		13	06	14	13.0	3.0	9.0	25.0

Scheme for BE: Semester-VII

Examination Scheme

		Examination Scheme							
Subject	Subject Name		Theor	y marks		T	- Pract		
Code	Subject Ivalle	Interr	nal Asse	essment	End	Term Work		Oral	Total
		Test	Test	Avg.of	Sem.	WOIN			
		1	2	(A)	Exam				
		(A)	(B)	& (B)					
CHC701	Process Equipment Design (PED)	20	20	20	80	25	_	—	125
CHC702	Process Engineering	20	20	20	80	25	_	_	125
CHC703	Process Dynamics & Control (PDC)	20	20	20	80	25	_	_	125
CHE704	Elective – II	20	20	20	80	_	_	_	100
CHP705	Project – A	_	_	_	_	100	_	50	150
CHS706	Seminar	_	_	_	_	50	_	_	50
CHL707	Chemical Engg Lab (PED)	_	_	—	_	_	_	25	25
CHL708	Chemical Engg Lab (PDC)	_	—	—	—	_	25	25	50
			Total	80	320	225	25	100	750

Elective Streams(CHE704)

Sem.	Management Stream	Technology Stream	Process System Engineering Stream
VII	High Performance Leadership	Polymer TechnologyPetroleum Refining Technology	• Advanced Process Simulation

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHC701	Process Equipment Design	3.0	1.0	4.0

Fundamentals of units. Elementary theory of engineering mechanics. Engineering drawing. Knowledge of Heat Transfer, Mass Transfer, Mechanical Operations and Mechanical Equipment Design.

Course Objectives

- To understand the basics for design as per the codes & standards for the mechanical design of equipments used in the process industry.
- Selection of material of construction and stress analysis by determining values of stresses arising out of different loading conditions.

Course Outcomes

- Student will demonstrate ability to carry out complete chemical engineering project.
- Students will demonstrate ability to design process equipments as heat exchanger, distillation column, high pressure vessels etc.

Module	Contents	No. of hrs
1	Introduction: The organisation of a chemical engineering project. Flow sheet presentation i) Block diagram ii) Pictorial representation iii) Presentation of stream flowrates. iv) Information to be in- cluded. v) Plant layout. The P & I diagram i) Symbols and layout. ii) Basic symbols. Computer Aided Design Softwares. Material safety data sheet.	03
2	Heat Exchangers: Introduction. Codes and Standards for heat exchangers. Ma- terial of construction. Design of shell and tube heat exchanger (U-tube and fixed tube) as per IS: 4503 & TEMA standards i.e. shell, tube, tube sheets, channel and channel cover, flanged joints. Complete fabrication drawing for designed heat ex- changer to a recommended scale. Design of standard vertical evaporator with design of calendria and tube, flange, evapora- tor drum & heads.	12
3	Design of Tall Columns: Stresses in column shell. Shell thickness determination at various heights. Elastic stability under compression stresses. Complete fabrication drawing for designed column to a recom- mended scale.	08

continued ...

\dots continued

Module	Contents	No. of hrs		
4	High Pressure Vessels: Stress analysis for thick walled cylinders. Theories of elas- tic failure. Prestressing of thick walled vessels. Design of monoblock high pressure vessels. Multilayer high pressure ves- sel design and construction. Materials of construction for high pressure vessels.			
5	Introduction to Design of Crystallizers, Filters and Dryers: Design considerations for Crystallizers, filters, absorption col- umn, extractor and dryers (No numerical problems).	03		
6	Piping Design and Layout: Pipe sizing for gases and liquids. Piping for high temperature. Piping layout and its factors under consideration. Design of buried and overhead pipeline.	02		

TUTORIALS:

- Design procedure or example based on heat exchanger.
- Design procedure or example based on short tube vertical evaporator.
- Design procedure or example based on distillation column.
- Design procedure or example based on monoblock high pressure vessel.
- Design procedure or example based on multilayer high pressure vessel.

- 1. Process Equipment Design- Vessel Design by E. Brownell and Edwin, H. Young, John Wiley, New York 1963.
- 2. Chemical Engineering Vol 6-Design by J.M. Coulson, J.F.Richardson and P.K Sinnot, Pregamon press, International edition 1989.
- 3. Introduction to Chemical Equipment Design- Mechanical Aspects by B.C Bhattacharya, CBS Publications.
- 4. Process Equipment Design by M.V. Joshi, Macmillan India.

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHC702	Process Engineering	3.0	1.0	4.0

- The students should have knowledge of Heat transfer and Mass Transfer to carry out Mass and Energy balance around process.
- They should be aware about basic principles of economics to evaluate cost and profit of process.
- They should be familiar with process and mechanical design of Process equipments.
- They should be familiar with various types of plant utilities.

Course Objectives

- To provide training to solve problems relevant to the general practice of chemical engineering and design
- To provide students experience in conducting and in planning experiments in the modern engineering laboratory including interfacing experiments with computers as well as interpreting the significance of resulting data and properly reporting results in well written technical reports.
- To provide experience in the process of original chemical engineering design in the areas of equipment design, process design and plant design through the process of formulating a design solution to a perceived need and then executing the design and evaluating its performance including economic considerations and societal impacts if any, along with other related constraints, and culminating in both written and oral presentation of results.
- To provide students familiarity with professional issues in chemical engineering including ethics, issues related to the global economy and to emerging technologies ,and fostering of important job related skills such as improved oral and written communications and experience in working in teams at a number of levels.

Course Outcomes

- The graduates are expected to have ability to apply knowledge of mathematics, science and engineering.
- The graduates are expected to have ability to design a system, a component, or a process to meet the desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, manufacturability and sustainability.
- The graduates are expected to possess ability to function on multi disciplinary teams.
- The graduates are expected to possess ability to identify, formulate and solve engineering problems.
- The graduates are expected to have an understanding of professional and ethical responsibility.
- The graduates are expected to engage themselves in lifelong learning.
- The graduates are expected to posses ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Detail syllabus

Module	Contents	No. of hrs
1	 An Overview of Process Engineering: Process engineering and Chemical Engineering, Basic functions of Process Engineering: understanding and transferring licensor's know-how, development of P&ID, equipment selection and specifications, input to other engineering disciplines. Activities of Process engineering: Material and Energy balance, gathering data, establishing design basis, P&I diagram, control strategy, equipment specifications, deciding requirements of interlock shut down arrangement, piping requirement, civil and electrical requirements, acquiring knowledge of codes and standards, statutory requirements, safety study, preparing operating manuals, commissioning, interaction with other engineering disciplines, interaction with external agencies 	01
2	 Preliminary Process Selection: Economic evaluation of process: fixed and variable costs. Analysis of environmental concerns of process: rules & regulations of pollution control board, handling hazardous materials, etc. Safety analysis of process, Analysis of control structure of process, Flexibility analysis of process 	01
3	 Selection of Process Steps: Various types of diagrams to represent the process: block diagram, process flow diagram(PFD), process and instrumentation diagram (P&ID), utilities line diagram. Basic steps in PFD synthesis: gathering information, representing alternatives, criteria for assessing preliminary design. PFD: objective, way of presentation, essential constituents (equipment symbols, numbers, names, process stream flow lines, utility designation, operating conditions, etc), optional constituents (energy exchange rates, physical properties of streams, etc) Way of presenting major equipments in PFD: vessels, heat 	02
	exchangers, pumps, compressors, distillation columns, process lines, instruments, Common characteristics of PFD	

\dots continued

Module	Contents	No. of hrs
4	 Flowsheet Synthesis Based on Design Heuristics: Input information to the process for flow sheet synthesis: reactions, side reactions, maximum yield, catalyst deactivation rate, production rate, product purity, raw material, process constraints, plant & site data, cost data, physical properties. Level 1 decision in flow sheet synthesis: batch v/s continuous process (production rates, market forces, operational problems, single unit for multiple operations). Level 2 decision in flow sheet synthesis: input output structure of flow sheet (feed purification, recover or recycle reversible by-products, gas recycle & purge stream, reactants not to recover or recycle, number of output streams). Level 3 decision in flow sheet synthesis: Recycle structure of flow sheet (number of reactor systems, recycle streams, excess reactants, heat effects & equilibrium limitations, reversible by-products, reactor heat effects). Level 4 decision in flow sheet synthesis: separation system for process (phase of reactor effluent and separation system, vapor recovery system (VRS), liquid recovery system (LRS), types of VRS and LRS. 	06
	Level 5 decision in flow sheet synthesis: heat integration in flow sheet. Reactor trains: options & selection criteria, CSTR, PFR, reac- tors similar to CSTR, application of different reactor geometries and associated heuristics.	
5	Mass & Energy Balances around Major Equipments in Flow Sheet: Physico-chemical specification of each process stream in flow sheet. Detailed mass and energy balance around major equipments in	07
	flow sheet using thumb rules: reactors, mixers, splitters, flash columns, distillation columns, absorption column, stripping col- umn, evaporator, dryer	

 \dots continued

Module	Contents	No. of hrs
6	 Sizing and Costing of Major Equipments in Flow Sheet: Sizing of equipments using short cut designing methods and design heuristics: reactors, heat exchangers, distillation columns, pumps, compressors, evaporators. Costing of equipments: evaluation of updated bare module cost of above process equipments using Guthries costing modules 	08
7	 Utility Selection for Process: Plant utilities: concept, Major types of plant utilities: heating utilities, cooling utilities, compressed air, nitrogen, vacuum, water, electricity. Heating utilities and their operating T & P ranges: steam, pressurized hot water, thermal fluids dowtherm A, E, inorganic salt mixtures, mineral oils, silicon compounds. Cooling utilities and their operating T & P ranges: cooling tower water, chilled water, chilled brine system. Utility Hook-ups. Evaluating minimum utility requirement for process using pinch analysis 	05
8	Control Strategy for Process: To suggest control strategies for various process parameters to be controlled. Degree of Freedom analysis for suggested con- trolled strategy. Alternate control strategies for various process parameters	03
9	 Safety and Hazard Analysis for Process: Major types of accidents in chemical industries: fire, explosion, toxic release. Fire: probability of occurrence, potential for fatalities and economic losses, fuel-oxidants-ignition source for fire to occur, fire triangle, types of fire. Explosion: probability of occurrence, potential for fatalities and economic losses, types of explosion Toxic release: probability of occurrence, potential for fatalities and economic losses, types of explosion Toxic release: probability of occurrence, potential for fatalities and economic losses, types of explosion Toxic release: probability of occurrence, potential for fatalities and economic losses, entry route-entry organ-method of control, various models to analyse toxic release. Multiple Redundancy System: Risk assessment and its different methods – event tree analysis, fault tree analysis, quantitative risk analysis, layer of protection analysis, HAZOP 	03

... continued

Module	Contents	No. of hrs
10	Basic Chemical Processes: Common Features and Preliminary Process System (PPS) for Basic Chemical Processes: Nitration, Chlorination, Oxidation, Sulfonation, Liquid Phase Catalytic Reduction	04

- 1. Systematic Methods Of Chemical Process Design, Loren T Biegler, Grossman E.I., Westberg, A.W. Prentice Hall Intl ed., 1997
- 2. Conceptual Design of Chemical Processes, J.M.Douglas, McGraw Hill International Editions, 1988
- 3. Chemical Process Equipment: selection & design, Walas, S.M., Butterworth, London, 1980
- 4. Strategy of Process Engineering, John D.F.Rudd & C.C. Watson, Wiley & Sons International, 1968
- 5. Process Design Principles: synthesis analysis & evaluation, Sieder, W.D., Seader J.D. & Lewin D.R., John Wiley & Sons, 1998.
- 6. Analysis, Synthesis, and Design of Chemical Processes, Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz, PHI Learning Private Limited, New Delhi, 2011
- 7. Introduction to Process Engineering and Design, S B Thakore, B I Bhatt, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2011

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHC703	Process Dynamics & Control	3.0	1.0	4.0

Linear Algebra, Differential Equations, Laplace Transforms.

Course Objectives

- To understand dynamic behaviour of process systems and equipments.
- To understand frequency response of dynamic systems.
- To understand and analyse stability charecteristics of dynamic systems.
- To design controllers.

Course Outcomes

- The student will be able to model dynamical systems and study their responses in Time ,Laplace and Frequency domains.
- The student will be able to design stable controllers, for important chemical processes

Detail syllabus

Module	Contents	No. of hrs
1	Introduction To Process Control: Typical Control Problems, A Blending Process Example, Con- trol Strategies, Hierarchy of Control Activities, An Overview of Control System Design.	04
2	Dynamic Models of Processes: The Rationale for Dynamic Process Models, General Mod- elling Principles, Degrees of Freedom Analysis, Typical Dy- namic Models.	06
3	Transfer Function Models: Transfer Functions of Typical Systems, First and Second Order Systems, Properties of Transfer Functions, Transfer Functions of Systems in Series, Time Delay Processes, Linearisation of Non-linear Systems, State Space and Transfer Function Matrix Models.	03
4	Dynamic Behaviour of Processes: Standard Process inputs, Response of First Order Processes, Response of Second Order Processes, REsponse of Integrating Processes.	06

\ldots continued

Module	Contents	No. of hrs
5	Development of Empirical Models From Process Data: Fitting First and Second Order Models Using Step Tests, Devel- opment of Discrete Time Dynamic Models, Identifying Discrete Time Models From Experimental Data.	04
6	Feedback and Feedforward Control: Basic Control Modes, Features of PID and On-off Control, Con- ntrol Valve Characteristics, Response of Feedback Control Sys- tems, Digital Verions of PID Controllers.	02
7	Closed-Loop Response and Stability: Closed-Loop Transfer Functions, Closed-Loop Response, Stability, Root Locus.	04
8	Controller Design and Tuning: Performance Criteria, Model-Based Design Methods, Con- troller Tuning, Controllers with Two Degrees of Freedom, On- Line Tuning.	04
9	Control Strategies: Degrees of Freedom Analysis, Selection of Variables, Typical Applications.	02
10	Frequency Response: Frequency Response of Typical Systems, Bode Stability Criterion, Nyquist Stability Criterion, Gain and Phase Margins.	05

- 1. Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, Francis J. Doyle III, Process Dynamics and Control, 3 Ed., John Wiley & Sons (Asia) Pvt. Ltd., New Delhi.
- 2. William L. Luyben, Process Modeling Simulation and Control For Chemical Engineers,2nd Ed., Mc-Graw Hill Publishing Co.
- 3. Stephanopoulos, Chemical Process Control, PHI Learning Pvt. Ltd.

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHE704	Elective – II : High Performance Leadership	4.0	_	4.0

This course is designed to enhance your leadership to improve your ability to lead with purpose, to communicate effectively, and to work well with others. The course will be a combination of learning about leadership through the review of literature. Students will further develop and apply various skills and techniques deemed to be essential for successful leadership in organizations. The course also explores leadership challenges and opportunities in relation to individual and team performance.

Course Objectives

- To become aware of strengths and weaknesses in one's leadership behaviour.
- Analyse the numerous approaches of leadership development and critically evaluate how they may be applied in practice.
- To understand how the most successful leaders are able to influence followers through effective communication of well-reasoned ideas, proposals and values.
- To systematically train and improve one's leadership effectiveness.

Course Outcomes

- Improve one's self leadership skills through effective emotion regulation and emotional intelligence.
- Apply concepts of leadership and effective communication to individuals, groups, and organizations

Detail syllabus

Module	Contents	No. of hrs
1	Leadership: Theories of Leadership, Leadership Styles and Leadership, Leadership Skills, Objectives for personal development.	05
2	Leadership Skills: Leadership Skills and Leadership, Developing competencies, The Business Related Inventory of Personality (strengths and weaknesses), Changing behaviour in critical situations.	07
3	Team work & Positive thinking: Team work & Team building, Positive thinking Martin Selig- mans theory of Learned, Helplessness, Learned Optimism Lessons through Literature Positive thinking, Attitudes, Be- liefs, Lateral Thinking.	07

... continued

Module	Contents	No. of hrs
4	Interpersonal skills: Interpersonal skills Conversation, Feedback, Feed forward, Transformational Leadership: analysis and consequences from the 360° feedback Interpersonal skills, Delegation, Humour, Trust, Expectations, Values, Status, Compatibility.	06
5	Effective Leadership Communication: Principles of effective communication: authenticity, clarity, credibility, and empathy. Persuasion including body language, posture, facial expressions, gestures, creating a personal relationship (message-audience-speaker), Impact speech: effective and convincing lines of argument.	08
6	Conflict Management: Types of conflicts, Coping strategies and Conflict Management Styles. Creative problem Solving Techniques.	06

- 1. Jeff Grimshaw & Gregg Baron, Leadership Without Excuses : How to Create Accountability and High-Performance, Tata McGraw - Hill Education, 1st Ed., 2010.
- 2. Harrison Owen, Wave Rider: Leadership for High Performance in a Self-organizing World, Berrett-koehler Publishers, 2008.
- 3. Daniel Goleman, Richard E. Boyatzis, Annie McKee, Primal Leadership: Realizing the Power of Emotional Intelligence, Harvard Business Review Press, 2002.
- 4. John Baldoni, Great Communication Secrets of Great Leaders, Primento Digital Publication, 2012.
- 5. Paul Glen, Leading Geeks: How To Manage And Lead The People Who Deliver Technology, Wiley Publication, 2002.
- 6. Shel Holtz, Corporate Conversations : A Guide To Crafting Effective And Appropriate Internal Communications, Phi Learning Pvt Ltd, 1st Ed., 2007.
- 7. Garber, J. and Seligman, M.E.P., Human Helplessness: Theory and Applications, New York Academic Press., 1980.
- 8. Bass, Bernard. M., The Bass Handbook of Leadership, Theory, Research & Managerial Applications, 4th edition, New York, 2008

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHE704	Elective – II: Polymer Technology	4.0	—	4.0

Chemistry, physics, Chemical reaction engineering.

Course Objectives

- To understand thermodynamics of polymer structure.
- To select polymerization reactor for a polymer product.
- To characterize polymers and state polymer additives, blends and composites.

Course Outcomes

At the end of the course students will be able to

- Understand thermodynamics of polymer structure.
- Select polymerization reactor for a polymer product.
- Characterize polymers and state polymer additives, blends and composites.

Detail syllabus

Module	Contents	No. of hrs
1	 Introduction: Introduction and Classification of Polymers. Thermosets, Factors influencing the polymer properties, Glass Transition Temperature Monomers used for polymer synthesis, Thermoplastics, Linear Branch, Cross Linked Polymers. Addition and Condensation Polymerisation: Mechanism, kinetics, synthesis and reactions. 	06
2	 Natural Polymers: Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cel- lulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins etc. Polymerization Techniques: Bulk polymerization, Solution polymerization, Emulsion poly- merization and Suspension polymerization, Interfacial Poly- merization with their merits Comparison of the various pro- cesses Advantages and disadvantages. 	12

\ldots continued

Module	Contents	No. of hrs
3	 Molecular Weight and Molecular Weight Distribution: Molecular Weights, Polydispersity Index, Different Methods of determination of Molecular weight, Effect of Molecular weight on Engineering Properties of Polymers. Co-Polymerization: Basic concept, Technical significance, steady state assumptions in free radical copolymerization, The copolymer equation, In- stantaneous molar composition of copolymer formed; Monomer reactivity ratios; Significance and method of determination, Types of copolymers. 	08
4	Polymerization Reactor: Polymerization reactors types and mode of operation, Polymer- ization reactor design, control of polymerization, Post polymer- ization unit operations and unit processes Polymer Degrada- tion.	06
5	Polymer Processing: High Performance and Specialty Polymers, Polymer additives, compounding. Fillers plastisizers lubricants colourants UV stabilizers, fire retardants, antioxidants, Different moulding methods of polymers. Injection moulding , blow moulding, thermoforming, film blowing etc.	08
6	Manufacturing Processes: Manufacturing of typical polymers with flow-sheet diagrams properties & application: PE, PP, PS, Polyesters, Nylons, ABS, PC. Manufacturing of thermoset polymers such as Phenolic resins.	12

- 1. Fried J R, Polymer Science and Technology, Prentice Hall of India Pvt. Ltd., New Delhi, Eastern Economy Edition, 2000.
- 2. Premamoy Ghosh, Polymer Science and Technology, 3rd Edition, Tata Mc. Graw-Hill Publishing Company, New Delhi, 2010.
- 3. R. Sinha, Outlines of Polymer Technology: Manufacture of Polymers, Prentice Hall of India Pvt. Ltd., New Delhi, 2002.
- 4. Gowarikar V.R. et.al., Polymer Science Wiley Eastern 1984.
- 5. Ghosh P, Polymer Science & Technology of Plastics & Rubbers Tata McGraw Hill, 1990.
- 6. Encyclopedia of Polymer Science & Engineering., Wiley 1988.
- 7. Rosen S.L. Fundamental Principles of Polymeric materials, 2nd e.d., John Wiley & Sons Inc, 1993.

- 8. McCrum N.G et.al. , Principles of Polymer Engineering , 2nd ed., Oxford Sciences, 1997.
- 9. Bhatnagar M.S., a Textbook of Polymers Vol.I & Vol.II, S.Chand & Co. Ltd.,New Delhi, 2004.

Course Code	Course/ Subject Name	Credits			
		Theory	Tut.	Total	
CHE704	Elective – II: Petroleum Refining Technology	4.0	—	4.0	

Knowledge about Formation and origin of petroleum, composition and testing methods,Basic treatment Techniques.

Course Objectives

- To understand petroleum refinery products, its evaluation techniques, and treatment techniques.
- To understand various cracking processes, and its applications in chemical industries.

Course Outcomes

Students will be able to understand petroleum refinery products, its evaluation techniques, and treatment techniques, various cracking processes, and its applications in chemical industries.

Detail syllabus

Module	Contents	No. of hrs
1	Origin formation and composition of petroleum: Origin theory, Reserves and deposits of world. Types of crude and Indian crude types. Exploration Reserves.	06
2	 Refinery products and feedstock: Overall refinery flow.Low boiling products. Gasoline Specifications. Fuels: Jet fuels, automotive diesel fuels. Oils:-Heating Oils, Residual fuel Oils, Crude Oil properties, Composition of petroleum, Crude suitable for asphalt manufacture. Crude distillation curves. Distillation characteristics. Petrochemical Feedstock. 	10
3	Fractionation of Petroleum: Dehydration and desalting of crude, Heating of Crude Pipe still Heaters. Multi-component Fractionation of Petroleum including pump- around and side-stripping.Blending of gasoline. Over lead cor- rosion in distillation unit.	12
4	Treatment Techniques and product specifications: Fraction impurities treatment of gasoline, Treatment of kerosene, Treatment of Lubes. Wax and purification.	08

\ldots continued

Module	Contents	No. of hrs
5	Catalytic Cracking and thermal process: Fluidised bed catalytic cracking, Catalytic reforming, Cok- ing, Hydrogen Process Hydro cracking, Hydrodesulphurization, Hydro-Treatment. Alkalyation process, Isomerisation Process, Polymer gasoline.	10
6	Asphalt Technology: Source of Asphalt. Air Blowing of Bitumen up-gradation of heavy crude.Brief review about bio-refinery	06

- 1. B.K Bhaskara Rao, Modern Petroleum Refining Process .
- 2. W.L Nelson, Petroleum Refinery Engineering 4th ed, McGraw Hill.
- 3. Petroleum Chemistry and Refining Edited by James G. Speight, Taylor and Francies .
- 4. Chemical Process Industries, Austin, G.T Shreves.
- 5. Encyclopedia of chemical processing and design by john J. McKhetta; Marcel Deckker, Inc.
- 6. Chemial Weakly for supply and demand figures and current prices and price trends.

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
CHE704	Elective – II: Advanced Process Simulation	4.0	_	4.0

Process Calculations, Computer Programming.

Course Objectives

To understand the tools of process integration.

Course Outcomes

The student will be able to design integrated processes.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Introduction to Process Integration, Alternative Processes, Process Synthesis, Process Analysis, Process Integration.	02
2	Overall Mass Targeting: Targeting for Minimum Discharge of Waste, Targeting for Min- imum Fresh Material Utilities, Mass-Integration Strategies for Attaining Targets.	04
3	Graphical Techniques for Direct-Recycle Strategies: Introduction, Source-Sink Mapping Diagram and Lever-Arm Rule, Selection of Sources, Sinks, and Recycle Routes, Direct REcycle Targets Through Material Recycle Pinch Diagram, Multi-component Source-Sink Mapping Diagram.	08
4	Synthesis of Mass Exchange Networks (A Graphical Approach): Design of Individual Mass Exchangers, Cost Optimization of Mass Exchangers, Synthesis of Mass Exchange Networks, Mass Exchange Pinch Diagram, Screening of Multiple Exter- nal MSAs.	08
5	Mass Integration Strategies: Low/No Cost Strategies, Most Changes in Operating Condi- tions and Process Variables, medium-Cost Strategies and Main Technology Changes.	06
6	Algebraic Approach to Targeting Direct Recycle: Algebraic Targeting Approach, Algebraic Targeting Procedure, The Composition Interval Diagram, Table of Exchangeable Loads, Mass Exchange Cascade Diagram, Example of Clean- ing of Aqueous Waste.	06

\dots continued

Module	Contents	No. of hrs
7	Recycle Strategies Using Property Integration Contents: Property Based Material Recycle Pinch Diagram, Process Modification, Clustering Techniques for Multiple Properties, Cluster Based Source Sink Mapping, Design Rules, Multiplicity, Clusters and Mass Fractions, Examples.	10
8	Mathematical Approach: Problem Statement and Representation, Formulation of Opti- mization Models, Interaction between Direct Recycle and the Process, Synthesis of MENs.	08

References

1. Mahmoud M. El-Halwagi, Process Integration, Academic Press

Course Code Course/ Subject Name		Credits
CHP705	$\mathrm{Project}-\mathrm{A}$	3.0

Details

- Project Groups: Students can form groups with not more than 3(Three).
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, eight hours each were allotted in Project A,B to the students.
- Students are advised to take up industrial/ experimental oriented/ simulation and/or optimization based topics for their projects.

Course Code Course/ Subject Name		Credits
CHS706	Seminar	3.0

Details

- Seminar topics will be the consensus of the project guide and the students. Each student will work on a unique topic.
- The load for seminar will be calculated as one hour per week irrespective of the number of students.

Course Code Course/ Subject Name		Credits
CHL707	Chemical Engg Lab (PED)	1.5

Concepts for experiments:

Includes drawing sheets based on

- Process flow diagram and piping and instrument diagram.
- Fabrication drawing of problem based on heat exchanger.
- Fabrication drawing of problem based on short tube vertical evaporator.
- Fabrication drawing of problem based on distillation column.
- Fabrication drawing of problem based on monoblock high pressure vessel.
- Fabrication drawing of problem based on multilayer high pressure vessel.

Course Code Course/ Subject Name		Credits
CHL708	Chemical Engg Lab (PDC)	1.5

Concepts for experiments:

Objective for experiments

- To correlate the theoretical understanding of the dynamics of systems with actual observations.
- To calculate system parameters from observed data.
- To validate system models.
- To study closed-loop behaviour of control systems

At least eight experiments should be carried out in this lab course based on the following concepts:

- Dynamic behaviour of typical first and second-order systems.
- Dynamic behaviour of systems in series.
- Response of closed loop systems with different control configurations.
- Tuning of Controllers.

University of Mumbai

Subject	Subject Name	Teac	ching Sch	neme	Credit Assigned			
Code	Subject Name	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
CHC801	Modelling, Simulation &	03	_	01	3.0	_	1.0	4.0
	Optimization (MSO)							
CHC802	Project Engineering &	03	—	01	3.0	_	1.0	4.0
	Entrepreneurship Management							
CHC803	Environmental Engineering	04	—	—	4.0	_	—	4.0
	(EE)							
CHC804	Energy System Design	03	—	01	3.0	_	1.0	4.0
CHE805	Elective – III	04	_	—	4.0	_	—	4.0
CHP806	Project - B	_	_	08	_	_	6.0	6.0
CHL807	Chemical Engineering Lab	_	02	_	_	1.0	_	1.0
	(EE)							
CHL808	Chemical Engg Lab (MSO)	_	02	_	_	1.0	_	1.0
Total		17	04	11	17.0	2.0	9.0	28.0

Scheme for BE: Semester-VIII

Examination Scheme

				Exar	ninatio	n Schen	ne		
Subject	Subject Name	Theory marks				Term			
Code	Subject Mame	Interr	al Asse	essment	End	Work	Pract.	Oral	Total
		Test	Test	Avg.of	Sem.	WOIK			
		1	2	(A)	Exam				
		(A)	(B)	& (B)					
CHC801	Modelling, Simulation &	20	20	20	80	25	-	—	125
	Optimization (MSO)								
CHC802	Project Engineering &	20	20	20	80	25	-	—	125
	Entrepreneurship Management								
CHC803	Environmental Engineering	20	20	20	80	_	-	-	100
	(EE)								
CHC804	Energy System Design	20	20	20	80	25	—	—	125
CHE805	Elective – III	20	20	20	80	_	—	_	100
CHP806	Project - B	—	—	_	—	100	—	50	150
CHL807	Chemical Engineering Lab	_	_	_	_	_	25	25	50
	(EE)								
CHL808	Chemical Engg Lab (MSO)	_	_	—	_	_	25	_	25
			Total	100	400	175	50	75	800

Elective Streams(CHE805)

Sem.	Management	Technology Stream	Process System Engineering
	Stream		Stream
VIII	Total Quality	• Advanced Separation Technology	• Advanced Process Control
	Management	• Biotechnology	• Advanced Transport
		• Nanotechnology	Phenomenon

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHC801	Modelling, Simulation & Optimization (MSO)	3.0	1.0	4.0

Linear Algebra, Process Calculations, Computer Programming.

Course Objectives

- To understand writing and solving linear balance equations for single units as well as complete flowsheets.
- To understand writing and solving systems of non-linear equations for single and multiple units.
- To understand simulation of complete flowsheets.
- To understand optimization of single and multiple units.

Course Outcomes

- The student will be able to write and solve linear and non-linear mass and energy balance equations for individual as well as multiple units.
- The student will be able to carry out sequential and equation oriented simulation of complete flowsheets.
- The student will be able to optimize typical chemical processes.

Detail syllabus

Module	Contents	No. of hrs
1	Mass and Energy Balances: Introduction, Developing Unit Models for Linear Mass Balances, Linear Mass Balances, Setting Temperature or Pressure Levels from Mass Balances, Energy Balances.	10
2	Unit Equation Models: Introduction, Thermodynamic Options for Process Simulation, Flash Calculation, Distillation Calculations, Other Unit Operations.	10
3	Simulation: Introduction, Process Simulation Modes, Methods for Solving Systems of NLE, Recycle Partitioning and Tearing, Simulation Examples.	10
4	Process Flowsheet Optimization: Introduction, Constrained Non-Linear Programming, SQP, EO based Process Optimization.	10

- 1. Lorenz T. Beigler, Ignacio E.Grossman, Arthur W. Westburg, Systematic Methods of Chemical Process Design, Prentice Hall
- 2. Thomas Edgar, David M. Himmelbleau, Optimization of Chemical Processes, 2nd Ed., John Wiley.
- 3. A. W. Westerberg, H. P. Hutchison, R. L. Motard, P. Winter, Process Flowsheeting, Cambridge University Press; 1 edition (June 9, 2011).

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHC802	Project Engineering & Entrepreneurship Management	3.0	1.0	4.0

• Employment and Corporate Skills.

Course Objectives

- Project management demands the judicious mix of science, arts and technology, so the objective is to project the scientific aspects of project management.
- To amidst real life constraints for the benefit of the individual, project and society.
- To learn entrepreneurship for the improvement of technology, product and the society for the economical growth.

Course Outcomes

- To prepare students for an exciting, challenging and rewarding managerial career.
- To insight students in identifying opportunities, creating and starting a venture, financing and managing the venture.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Definition of project, project management, project life cycle, project types, Project over runs, Role, responsibilities demands on project manager.	04
2	Project initiation: Feasibility reports of various types project selection criteria, project licensing, Basic and detailed engineering, Guarantees, Liabilities, Risk insurance, types of estimates.	06
3	 Project clearances: Various laws & regulations, List of various clearances, Intellectual property rights, Patents, need for clearances and influences on project, management, LOI. Project organization: Various forms of pure project, matrix and mixed type. Project team, responsibilities of various members. 	08
cont.	Project planning: WBS, responsibility charts, contracts, types, role of contractor, sub-contractor consultant, selection criteria and appointment procedure	

 \dots continued

Module	Contents	No. of hrs
4	Project Scheduling and execution: CPM and PERT, GANTT charts, LOB, Resource allocation, ABC and VED Analysis, Economic Order Quantity (EOQ), CAT vs RAT. (Numericals included)	08
5	 Project monitoring and control: Time and cost control tools and techniques, fund flow control, Project quality control, Importance of environmental and safety aspects. Project termination: Commissioning, start up, stabilization, close out. 	06
6	Entrepreneurship: Definition of entrepreneurship, Concept of entrepreneur and entrepreneurship, Characteristics, aspects of entrepreneurship, factors affecting entrepreneurship. Classification and types of entrepreneurship based on business, technology, motivation, growth and stages of development.	06

- 1. Choudhary, S., Project Management.
- 2. Joy, P. K., Total Project Management.
- 3. Jack Meredith and Samuel, Project management a Managerial approach.
- 4. Vasant Desai, Dynamics of entrepreneurial development and management.

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHC803	Environmental Engineering (EE)	4.0	_	4.0

Basic concepts of Fluid Flow Operations, Solid Fluid Mechanical Operations, Mass Transfer Operations and Chemical Reaction Engineering.

Course Objectives

- Students should be able to understand the scope of subjects in Chemical Industry.
- Students should learn to apply the Environmental Engineering concepts to control and management of various types of pollutants.

Course Outcomes

Students should be able to apply the Environmental Engineering concepts to control and management of various types of pollutants.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Environmental pollution, Importance of environmental pollu- tion control, Concept of ecological balance, Role of environ- mental engineer, Hydrological & nutrient cycles, Environmen- tal Legislation & Regulations, Industrial pollution emissions & Indian standards, Water (prevention & control of pollution) act, Air (prevention & control of pollution) act.	06
2	 Water Pollution: Classification, sources and effect of water pollutant on human being and ecology, Sampling, measurement and standards of water quality, Determination of organic matters: DO, BOD, COD, TOC. Determination of inorganic substances: nitrogen, phosphorus, trace elements, alkalinity. Physical characteristics: suspended solids, dissolved solids, colour and odour, Bacteriological measurements. 	08
3	 Waste Water Treatment: Primary treatment: pretreatment, settling tanks and their sizing. Secondary treatment: micro-organisms growth kinetics, aerobic biological treatment, activated sludge process, evaluation of bio-kinetic parameters, trickling filters, sludge treatment and disposal. 	12

continued ...

... continued

Module	Contents	No. of hrs
cont.	Tertiary treatment: advanced methods for removal of nutri- ents, suspended and dissolved solids, Advanced biological sys- tems, Chemical oxidation, Recovery of materials from process effluents.	
4	Air Pollution: Air pollutants, sources and effect on man and environment, acid rain, smog, greenhouse effect, Ozone depletion, global warming, Temperature lapse rate and stability, Plume behaviour, Dis- persion of air pollutants, Gaussian plume model, Estimation of plume rise, Air pollution sampling and measurement, Analysis of air pollutants.	08
5	 Air Pollution Control Methods and Equipment: Source correction methods for air pollution control, Cleaning of gaseous effluents, Particulate emission control, Equipment, system and processes for Particulate pollutants: gravity settler, cyclones, fil- ters, ESP, scrubbers etc. Gaseous pollutants: scrubbing, absorption, adsorp- tion, catalytic conversion. 	12
6	Solid Waste Management: Solid waste including plastic, nuclear and hazardous waste management.	03
7	Noise Pollution: Noise pollution: measurement and control, effect on man and environment.	03

- 1. Rao, C.S., Environmental Pollution Control Engineering, New Age International (P) Limited.
- 2. Peavy, H. S., Rowe, D.R., Tchobanoglous, G., Environmental Engineering, McGraw-Hill Book Company Limited
- 3. Metcalf et al., Waste Water Treatment, Disposal & Reuse, Tata McGraw Hill Publishing Company Limited.
- 4. Mahajan, S.P., Pollution Control in Process Industries, Tata McGraw Hill Publishing Company Limited.

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHC804	Energy System Design	3.0	1.0	4.0

- The students should have knowledge of Heat transfer to carry out Energy balance and Heat Exchanger Networking.
- They should be aware about basic principles of economics to evaluate cost and profit of energy efficient operations/modifications/techniques.
- They should be familiar with various types of plant utilities.
- They should be familiar with basic Industrial systems/operations like, HVAC, Lighting, Steam, Refrigeration, etc.

Course Objectives

- To provide training to solve problems relevant to the energy conservation.
- To provide students the knowledge in planning conducting energy audit, energy survey, and evaluate energy conservation opportunities.
- To provide knowledge to design and evaluate energy efficient technologies such as heat exchanger networks, multiple effect evaporators, co-generation, etc.

Course Outcomes

- The graduates are expected to have ability to design a energy system to meet the desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, manufacturability and sustainability.
- The graduates are expected to possess ability to function on multi disciplinary teams, identify, formulate and solve engineering problems.
- The graduates are expected to have an understanding of professional and ethical responsibility.
- The graduates are expected to posses ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Detail syllabus

Module	Contents	No. of hrs
1	Global Energy Scenario: Broad classification of energy sources: primary, secondary, commercial, non-commercial, renewable, non-renewable. Global primary energy reserves and energy consumption, Ratio of energy demand to GDP: significance. Indian energy scenario: w.r.t above points.	02

 \dots continued

Module	Contents	No. of hrs
cont.	Energy policies, regulations, consumption and production, in- stalled capacity, energy intensive sectors in India. Energy man- agement:aim, key principles, steps to be taken to improve en- ergy efficiency of systems. Energy conservation act (India). Energy and environment, Causes of high energy intensity and energy demand in developing countries: technological, manage- rial, economic, structural causes	
2	 Energy Audit: Definition, need and steps of energy audit. Energy audit methodology: interview with key facility personal, facility tour, document review, facility inspection, staff interviews, utility analysis, identifying energy conservation opportunities/measures, economic analysis, preparing audit report, review and recommendations. Types of energy audit: preliminary (walk-through) audit, general (mini) audit, investment grade (maxi/detailed) audit. Energy profiles: energy profile by use, cost, function. Energy sub-audits: envelope, functional, process, transportation and utility audit. Instrumentation part of energy audit: equipments for measuring light intensity, electrical performance, temperature, pressure, humidity, performance of combustion system and HVAC system during energy audit; energy auditors tool box and its contents. Preparing for energy audit visit: to study the facility in view of energy use data, energy rate structure, physical and operational data. Safety considerations during energy audit: related to electrical, respiratory, hearing, etc. Post audit analysis: identifying ECOs, evaluate feasibility of ECOs with help of simple pay back period analysis, preparing summarized energy audit report 	04
3	Energy Efficient Technologies: Basic energy consuming systems in chemical industries and energy efficient modifications in those systems: lighting system; motors, belt and drives system; fans and pumps system; compressed air system; steam system; refrigeration system; material handling system; hydraulic system; drying system. Examples of energy efficient technologies: pressure swing adsorption purification; ethylene by thermal cracking.	03

 \ldots continued

Module	Contents	No. of hrs
4	Energy Integration in The Process Industries: Energy integration in process: concept. Pinch analysis: evalu- ation of minimum utility requirement by temperature inter- val method and composite curve method. Design of Heat Exchanger Network (HEN) for process system: minimum ap- proach temperature difference (ΔT_{min}) ; Linnhoff rules for HEN design; pinch decomposition diagram; concept of minimum number of heat exchangers $(NH_{x,min})$; design of HEN with $NH_{x,min}$ using breaking loop method and stream splitting method. Concept of Threshold approach temperature differ- ence (ΔT_{thresh}) and Optimum approach temperature difference (ΔT_{opt}) during HEN. Determining annualized cost of HEN	10
5	 Heat Integration in Process Units: Multiple effect evaporators (MEE): types forward feed, backward feed, parallel feed; advantage of MEE over single effect evaporator in terms of energy saving. Effect of process variables on evaporator operation: feed temperature, operating pressure, steam pressure, Boiling point rise. Heat integration of Multiple effect evaporators (MEE) with background process. Heat integration MEE with and without vapour re-compression: mechanical vapour re-compression, thermal vapour re-compression. Distillation column: heat integration in distillation column – multiple effect distillation, heat pumping, vapour recompression, Reboiler flashing. Different arrangements of heat integration of columns with background process. 	12
6	Co-generation: Introduction and basic concepts related to co-generation: advantages of co-generation over conventional power plants; basic terms related to co-generation like, process heat, process returns, net heat to process, heat to power ratio, prime mover, etc. Basic thermodynamic cycles supporting working of co-generation plant: Brayton cycle, Rankine cycle. Basic types of co-generation systems: topping cycle, bottoming cycle, combined cycle. Different types of co-generation power plants: steam turbine system, gas turbine system, combined gas steam turbine system, diesel engine system. Distributed generation (DG) co-generation technologies: reciprocating engine system, micro turbines, fuel cells, photovoltaic cells, Co-generation design procedure, Applications of co-generation	06

continued ...

... continued

Module	Contents	No. of hrs
7	Waste Heat Recovery (WHR): Classification and appli- cations of WHR: waste heat sources, quality of waste heat and its application; high temperature WHR, medium tem- perature WHR, low temperature WHR . Benefits of WHR: direct and indirect benefits. Different techniques used for WHR / Commercial devices used for WHR: recuperators, radi- ation/convective hybrid recuperator, ceramic recuperator, re- generator, heat wheel, heat pipe, waste heat boiler, economizer, heat pumps	03

- 1. Seider W. D., and Seader J. D. and Lewin D. R., Process Design Principles, John Wiley and Sons Inc., 1988.
- 2. Douglas J. M. .Conceptual Design of Chemical Process., McGraw Hill Book Co., 1988.
- 3. G. D. Rai, Non-Conventional Energy Sources, Khanna Publishers.
- 4. Larmine James, .Fuel Cells Explained., John Wiley and Sons, 2000.
- 5. Kreith F., .Principles of Solar Energy., McGraw Hill Book Co., 1978.
- 6. Freris L. L., Wind Energy Conversion System., Prentice Hall, 1990.
- 7. Wayne C. Turner, Steve Doty (Ed.), Energy Management Hand Book., John Wiley and Sons, 2000
- 8. Biegler L. T., Grossman E. I. and Westerberg A. W., .Systematic Methods of Chemical Process Design., Prentice Hall International Ltd., 1997.
- 9. P K Nag, Power Plant Engineering, The McGraw-Hill Publishing Company Limited.
- 10. H.M.Robert, J.H.Collins, Handbook of Energy Conservation-Volume 1, CBS Publishers & Distributors.
- 11. Robin Smith, Chemical Process Design and Integration, Wiley India, 2005.
- 12. Serth, Robert W., Process Heat Transfer Principles and Applications, Elsevier Science & Technology Books, 2007.

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
CHE805	Elective – III: Total Quality Management	4.0	_	4.0

Course Objectives

- To acquaint with the significance and features of TQM philosophy
- To familiarize with various quality tools and their uses in problem solving.
- To appraise on the modern productivity improvement approaches and their interface with TQM
- To familiarize with various quality standards, quality auditing and certification methodologies.
- To give and an insight into the ongoing global trends in quality approach and practices with specific forms to the customer relationship.

Course Outcomes

Learner will be able to:

- Appreciate the importance of quality and its dimensions in striving for excellence.
- Understand the conscious compromise between cost and quality.
- Develop competency in the selection and use of appropriate quality tools in various manufacturing and service functions.
- Integrate quality approaches for productivity improvement.
- Acquire knowledge base and develop skills for conducting quality audits.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Definition of Quality, principles and dimensions of TQM. Qual- ity in manufacturing and service segments. Approach in imple- mentation of TQM, barriers in implementation. Cost of quality – prevention, appraisal and failure costs, hidden costs, trade-off between quality and cost.	06
2	 Planning for quality and Quality improvement: Planning for quality: Need for quality policies and objectives. Significance of top management commitment, strategic planning for quality. Quality improvement: Management of controllable defects, operator controllable defects, sporadic and chronic problems of quality, Pareto's principle. Bench marking: Definition and significance, data collection for bench marking and its use. 	08

\ldots continued

Module	Contents	No. of hrs
3	 Customer relations: Customers, user and consumers, product awareness, types of customers, customer perception and expectations. Quality feedback and redressal. Basic principles of reliability: quality and reliability, product life cycle, trade-off between maintainability. 	05
4	Vendor relations: Vendor as a partner, vendor selection, vendor evaluation. Push- Pull view of supply chain and cycle view of chain management.	05
5	SQC Tool:Histograms, Pie charts, Scatter diagrams, Cause and effect diagram.Statistical Process Control:Process variability: Variables and process variation, measures of accuracy and centring, precision or spread, normal distribution.Process Control: Control charts for variables (\bar{X} -chart, R-chart, σ -chart) and attributes (np-charts, p-chart, c-charts, U-charts).Process capability: OC curve, acceptance sampling, single and double sampling – producer's and consumer's risk.	14
6	 Quality System: Quality standards: ISO 9001:2000 Quality management system. ISO 14001:2004 Environmental management system. ISO 27001:2005 Information security management system. Quality assurance: Nature of assurance, reports on quality, measuring performance, internal audit, surveillance audit, quality certification methodology and implications. Productivity improvement Tools/ Approaches/ Techniques: Principles of Six-Sigma, approaches like JIT, Lean manufacturing zero defect concept, KANBAN, QFD, FMEA, Basics of DOE and Shainin concepts of quality. Productivity improvement techniques like 5S, POKAYOKE, SMED, KAIZEN and Concurrent Engineering.	14

Note: Seminar/Case study presentation with report by individual or in groups comprising of not more than **three** students should be considered for tutorials. **References**

- 1. Juran, J. M., Gryana, F. M., Quality planning and analysis, TMH.
- 2. Bester Fidd, D. H., et.al., Total quality management, Prentice Hall.
- 3. Erossbly, Pillip b., Quality is free, Mentor/New Americal Library.

- 4. Ishikawa, K., What is total quality control? The Japanese way, Prentice Hall.
- 5. Fergenbaum, Armand V., Total quality control.
- 6. Logothetis, N., Managing for total quality, Prentice Hall.
- 7. Aurora, K. C., Total Quality Management, S. K. Kataria and Sons.
- 8. Haldar, U. K., Total Quality Management, Dhanpatrai and Co.

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHE805	Elective – III: Advanced Separation	4.0	_	4.0
	Technology			

Basic knowledge regarding fundamental separation processes and its applications in chemical industries.

Course Objectives

The students completing this course are expected to understand

- the various separation principles like Adsorption process, the types and designs,
- foam fractionation process with equipments and application in waste water treatment,
- liquid chromatography types and separation and of enzymes using it,
- Types of membranes, membrane characterization, membrane material, membrane molecules, membrane applications in biotechnology.

Course Outcomes

- The graduates are expected to have ability to apply knowledge of mathematics, science and engineering
- The graduates are expected to have ability to design a system, a component, or a process to meet the desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, manufacturability and sustainability
- The graduates are expected to possess ability to identify, formulate and solve engineering problems
- The graduates are expected to posses ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Detail syllabus

Module	Contents	No. of hrs
1	Adsorption Process: Modern absorbent such as Activated carbon, molecular sieves of various types, Activated Alumina. Their characteristics and applications. Regeneration & Activa- tion of absorbents. Thermal & pressure swing process. Fixed bed, Moving bed, stimulated moving bed and other process- ing schemes. Design of adsorption process for separation and purification. Industrial Examples	13

\ldots continued

Module	Contents	No. of hrs
2	Foam Fractionation Process: Foam Formation, coalescence, collapse and drainage phenomena Adsorption properties of foams. Modes of operation of foam fraction equipment. Principal of froth flotation, properties of foam relevant to the flotation equipment. Application of froth flotation to mineral processing, protein and enzyme separation, waste water treatment.	13
3	Liquid Chromatographic Process: Basic concept of chro- matography, phenomena and characterization. Various chro- matography options. Typical Chromatographic separation sys- tems for preparative chromatography. Equipment characteris- tics of solids, their selection for various applications. Column design and filling. Applications of chromatography in separa- tion of enzymes and proteins. Industrial Examples	13
4	Membrane process: Introduction to the membrane pro- cess, definition of membrane, importance, process. Characterization of membranes: Characterization of porous membranes, characterization of ionic membranes, char- acterization of non-ionic membranes.Preparation of synthetic membranes. Preparation of phase inversion membranes. Preparation techniques for immersion precipitation, prepara- tion techniques for composite membranes, influence of vari- ous parameters on membrane morphology, preparation of in- organic membranes.Transport process in membrane driving force, transport through porous membranes, transport through non- porous membranes and transport in ion-exchange mem- branes.Polarization phenomenon and fouling concentration po- larization, characteristic flux behaviour in pressure driven membrane preparation, various models, temperature polariza- tion, membrane fouling, methods to reduce fouling. Modules and process design plate, and frame, spiral wound, tubular, capillary, hollow fibre modules and their comparison, system design.	13

- 1. Ruthven, D.M., Principal Adsorption & Adsorption Process, Wiley, 1984.
- 2. Lemlich, R., Adsorptive Bubble Separation Techniques, Academic Press, 1972.
- 3. Coulson, Richardson, Chemical Engineering, Vol.3, Pergamon.
- 4. Terybal, R.E, Mass Transfer Operations, McGraw Hill.
- 5. Ruthven, Faruqh, Knalbal, Pressure Swing Adsorption, VCH, 1994.
- 6. Snyder, Kirl, Introduction To Liquid Chromatography, 2 ed., 1979.

- 7. Scott RTW, Liquid Chromatography Column Theory, Wiley, 1992.
- 8. Marcel Mulder, Basic Concepts Of Membrane Technology, Kluwer Academic Publishers (1997).
- 9. E.J. Hoffman, Membrane Separation Technology, Gulf Professional Publishing.
- 10. Nath, Membrane Separation Process, Prentice Hall of India.
- 11. Membrane Handbook Editors W.S. Winston Ho, K.K. Sirkar, Van Nostrand Reinhold Publication.

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
CHE805	Elective – III: Biotechnology	4.0	_	4.0

Knowledge of biology, chemistry, chemical engineering

Course Objectives

- At the end of the course the students should understand the basic concept of biotechnology. They should be able to classify micro-organisms, understand cell structure and basic metabolism.
- They should be able to understand basic knowledge about biological polymers.
- They should be able to understand basic knowledge about enzyme technology.
- They should understand role of biotechnology in medical field and industrial genetics.
- They should know importance of biotechnology in agricultural, food and beverage industries, environment, energy and chemical industries.
- They should understand to how to recover biological products.

Course Outcomes

- Students will demonstrate the knowledge of biotechnology in various fields.
- Students will know cell and metabolism.
- Students will have deep knowledge of biological polymers.
- Students will have deep knowledge of enzymes.
- Students will able to know about other uses of biotechnology in medical field and industrial genetics.
- Students will be able to understand how biotechnology helps in agricultural, food and beverage industry, chemical industries, environment and energy sectors.
- Students will be able to understand how biological products are recovered.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Traditional and modern applications of biotechnology. Classi- fication of micro-organisms. Structure of cells, types of cells. Basic metabolism of cells. Growth media. Microbial growth kinetics.	10
2	Biological polymers: Lipids, Proteins, Amino acids, Nucleic acids, Carbohydrates, Macronutrients and micronutrients.	06

\ldots continued

Module	Contents	No. of hrs
3	Enzyme Technology: Nomenclature and classification of enzymes. Enzyme kinetics. Immobilization of enzymes. Industrial applications of enzymes.	10
4	Biotechnology in health care and genetics: Pharmaceuticals and bio-pharmaceuticals, antibiotics, vaccines and monoclonal antibodies, gene therapy. Industrial genetics, protoplast and cell fusion technologies, genetic engineering, In- troduction to Bio-informatics. Potential lab biohazards of ge- netic engineering. Bioethics.	06
5	Applications of biotechnology: Biotechnology in agriculture, food and beverage industries, chemical industries, environment and energy sectors.	10
6	Product recovery operations: Dialysis, Reverse osmosis, ultrafiltration, microfiltration, chro- matography, electrophoresis, electrodialysis, crystallization and drying.	10

- 1. Shuller M.L. and F. Kargi. 1992. Bioprocess Engineering, Prentice-Hall, Englewood Cliffs, NJ.
- 2. Bailey. J.E. and Ollis D.F. 1986, Biochemical Engineering Fundamentals, 2 nd Edition, McGraw-Hill, NewYork.
- 3. Kumar H.D., Modern Concepts of Biotechnology, Vikas Publishing House Pvt. Ltd.
- 4. Gupta P.K., Elements of Biotechnology, Rastogi Publications
- 5. Inamdar , Biochemical Engineering, Prentice Hall of India.

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHE805	Elective – III: Nanotechnology	4.0	_	4.0

Basic concept of electron, atom, ions, molecules & molecular rearrangements, Basic knowledge of fluid flow, thermodynamics and heat transfer, Various types of material and metals, Basic knowledge of particle size measurement, Students are expected to have an understanding of basic chemical and physical concepts.

Course Objectives

- Understand the basic scientific concepts nanoscience and nanotechnology.
- Understand the properties of materials and biomaterials at the atomic/molecular level and the scaling laws governing these properties.
- To facilitate skills transfer from another relevant area of engineering or science and technology to the study of nanotechnology.
- Understand what nanotechnology is about and how to use it.

Course Outcomes

- Understand the essential concepts used in nanotechnology.
- Appreciate the development of modern nanotechnology.
- Understand the application of nanotechnology in major scientific fields.
- Understand the challenges nanotechnology poses to our environment.
- Gain knowledge of structure, properties, manufacturing and applications of silicon and carbon materials.
- Gain knowledge of fabrication methods in nanotechnology and characterization methods in nanotechnology.

Detail syllabus

Module	Contents	No. of hrs
1	Fundamentals of Science behind Nanotechnology: Electron , Atom and Ions, Molecules, Metals, Biosystems, Molecular Recognisation, Electrical Conduction and Ohms Law ,Quantum Mechanics and Quantum Ideas,Optics	06
2	Fullerenes: Combustion Flame Synthesis, Crystal Formation, Sintering, Organic Synthesis Method Super Critical Oligomerization, So- lar Process, Electric Arc Process.	07

... continued

Module	Contents	No. of hrs
3	Carbon NanoTubes (CNT): Synthesis of CNT, Electric Arc Discharge Process, Laser Abla- tion Process, CVD, HIPCO Process, Surface Mediated growth of Vertically Aligned Tubes, Physical Properties of CNTs, Mor- phology of CNT.	08
4	 Nanostructuring Methods: Vacuum Synthesis, Gas Evaporation Tech, Condensed Phase Synthesis, Sol Gel Processing, Polymer Thin Film, Atomic Lithography, Electro deposition, Plasma Compaction. Characterization of Nanostructures: Transmission Electron Microscope, Scanning Electron Microscope, Microwave Spectroscopy, Raman Microscopy, X ray Diffraction. 	12
5	Calculations in Nanotechnology: Particle Size Distribution, Particle Size & Measurement Meth- ods, Fluid Particle Dynamics, Particle Collection Mechanisms, Particle Collection Efficiency.	12
6	NanoBiology: Interaction between Biomolecules & Nanoparticle Surface, In- fluence of Electrostatic Interactions in the binding of Pro- teins with Nanoparticles, The Electronic effects of bimolecule - Nanoparticle Interaction, Different Types of Inorganic ma- terials used for the synthesis of Hybrid Nano-bio assemblies, Application.	07

Note: A minimum of 08 Tutorials involving a report based on literature survey and an oral presentation to the class on topic from any one Tutorial during tutorial session is envisaged. In addition numerical problems on various topics as included above. The performance of the students should be evaluated based on report and presentations.

- 1. Nano-structuring Operations in Nanoscale Science and Engineering- Kal Ranganathan Sharma, McGraw-Hill Companies
- 2. Nanotechnology: Basic Calculations for Engineers and Scientists Louis Theodore, A John Willy & Sons
- 3. Nanotechnology: A Gentle Introduction to the Next Big Idea-By Mark Ratner, Daniel Ratner
- 4. Nano-The Essentials, Understanding Nanoscience and Nanotechnology, T. Pradeep
- 5. Introduction to Nanotechnology- Charles P. Poole, Jr. and Frank J. Owens, John Wiley & Sons, 2003

- 6. Nanotechnology: Basic and Emerging technologies, Michael Wilson, Chapman & Hall
- 7. Principal of Nanotechnology-Molecular Based Study of Condensed Matter in Small Systems, G .Ali Mansoori
- 8. Nanotechnology Assessment and Prospective Schmid et al., Springer

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHE805	Elective – III: Advanced Process Control	4.0	_	4.0

Linear Algebra, Differential Equations, Difference Equations, Laplace Transforms.

Course Objectives

- To understand dynamics of MIMO processes.
- To understand Batch Process Control.
- To understand Model Predictive Control.
- To design digital controllers.

Course Outcomes

- The student will be able to analyse multi-loop and multi-variable control systems.
- The student will be able to design batch controllers.
- The student will be able to design MIMO controllers.
- The student will be able to design Model Predictive Controllers.

Detail syllabus

Module	Contents	No. of hrs
1	Advanced SISO Control Strategies: Cascade Control, Time Delay Compensation, Inferential Con- trol, Selective Control/Override Systems, Nonlinear Control Systems, Adaptive control Systems	06
2	Digital Sampling Filtering and Control: Sampling and Signal Reconstruction, Signal Processing and Data Filtering, z-Transform Analysis for Digital Control, Tun- ing of Digital PID Controllers, Direct Synthesis for Design of Digital Controllers, Minimum Variance Control	08
3	Multiloop and Multivariable Control: Process and Control Loop Interactions, Pairing of Control and Manipulated Variables, Singular Value Analysis, Tuning of Multi-loop PID Control Systems, Decoupling and Multivariable Strategies, Strategies for Reducing Control Loop Interactions	06
4	Model Predictive Control: Overview of Model Predictive Control, Predictions for SISO Models, Predictions for MIMO Models, Model Predictive Con- trol Calculations, Set Point Calculations, Selection of Design and Tuning Parameters, Implementation of MPC	08

 \dots continued

Module	Contents	No. of hrs
5	Batch Process Control: Batch Control Systems, Sequential and Logic Control, Control During The Batch, Run-to-Run Control	06
6	Introduction To Plantwide Control: Plantwide Control Issues, Hypothetical Plant for Plantwide Control Studies, Internal Feedback of Material and Energy, In- teraction of Plant and Control System Design	06
7	 Plantwide Control System Design: Procedures for the Design of Plantwide Control Systems. A Systematic Procedure for Plantwide Control System Design. Case Study: The Reactor/Flash Unit Plant, Effect of Control Structure on Closed Loop Performance 	06
8	Optimal Control: Introduction to Optimal Control, Batch Process Optimisation	06

- 1. Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, Francis J. Doyle III, Process Dynamics and Control, 3 Ed., John Wiley & Sons (Asia) Pvt. Ltd., New Delhi.
- 2. William L. Luyben, Process Modeling Simulation and Control For Chemical Engineers,2 Ed., McGraw Hill Publishing Co.
- 3. Stephanopoulos, Chemical Process Control, PHI Learning Pvt. Ltd.

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
CHE805	Elective – III: Advanced Transport Phenomenon	4.0	_	4.0

Continuity equation, equation motion covered in Fluid Mechanics, Diffusion and absorption from Mass Transfer and Conduction, convection and radiation from Heat Transfer. Knowledge of numerical methods to solve ODE and PDE.

Course Objectives

- Students will get in depth knowledge of momentum, heat and mass transport.
- Applications of fundamental subjects learned, towards chemical engineering problems.
- Students will learn the modelling of engineering operations and structured approach towards engineering problems.

Course Outcomes

- Students will get useful base from which to start for analysing given chemical engineering problem.
- Students will able to apply conservation principles, along with the flux expressions from mass and heat transfer to frame a model for any chemical engineering problem.
- By applying boundary conditions students can approach to structured solution to a given chemical engineering problem.

Detail syllabus

Module	Contents	No. of hrs
1	Differential equations of heat transfer (Conduction), mass transfer (molecular diffusion) with application like CVD reactors.	06
2	2 Shell balance : velocity distribution in laminar flow, temperature distribution in solids and laminar flow, concentration distributions in solids and in laminar flow.	
3	Convective momentum transport in boundary layer. Convec- tive heat transport in boundary layer. Convective Mass trans- port in boundary layer. Formulation of differential equations for wetted wall column, thin film evaporator (only model for- mulation, solution not expected).	10
4	Simplification of continuity equation and equation of motion in Cartesian, cylindrical and spherical coordinates for different steady state engineering problems e.g. flow through trough, pipes and ducts, conical sections, etc for Newtonian and Power law fluids.	10

continued ...

... continued

Module	Contents	No. of hrs
5	Simplification of equation of energy with and without viscous dissipation for steady state chemical engineering problems. Ap- plications should be limited to Newtonian and Power law fluids. Simplification of continuity equation for multicomponent sys- tem with applications to chemical engineering problems like absorption, absorption with reaction, adsorption, diffusion, ex- traction, etc.	10
6	Unsteady state microscopic balances with and without gener- ation: laminar flow in a tube, conduction with/without heat generation, gas absorption in liquid droplets with/without reaction.	08
	Solution to partial differential equations developed in earlier modules using various numerical methods like finite element method, Crank-Nicholson method, Laplace equation. Empha- sis should be given to write the computer programs and analy- sis of simulated values using SciLab/MATLAB for home/class assignments.	

- 1. Bird, R.B., W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 2nd ed., 2002.
- 2. Welty, James R., Wicks, C. E., Wilson, R. E., Rorrer, Gregory L., Fundamental of Momentum, Heat, and Mass Transfer, Wiley India (P.) Ltd., 5th ed., 2008.
- 3. Ismail Tosun, Modelling in Transport Phenomena A Conceptual Approach, ELSEVIER SCIENCE B.V, Amsterdam, 2002.
- 4. Slattery, J.C., Advanced Transport Phenomena, Cambridge University Press, Cambridge, 1999.
- 5. Brodkey, R.S. and H.C. Hershey, 1988, Transport Phenomena: A Unified Approach, McGraw-Hill, New York.
- 6. Fahien, R.W., 1983, Fundamentals of Transport Phenomena, McGraw-Hill, New York.
- 7. Santosh K. Gupta, Numerical Methods for Engineers, New Age Publishers, 2nd ed., 2010.
- 8. L. Gary Leal, Advanced Transport Phenomena, Cambridge University Press, Cambridge, 2007.
- 9. Yang, Cao, Chung, and Morris, Applied Numerical Methods Using MATLAB, John Wiley & Sons, Inc., New York, 2005.
- 10. G. R. Liu, S. S. Quek, The Finite Element Method: A Practical Course, Butterworth-Heinemann, Oxford, 2003.

Course Code	Course/ Subject Name	Credits
CHP806	$\mathrm{Project} - \mathrm{B}$	6.0

Details

- Project Groups: Students can form groups with not more than 3(Three).
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, eight hours each were allotted in Project A,B to the students.
- Students are advised to take up industrial/ experimental oriented/ simulation and/or optimization based topics for their projects.

ſ	Course Code	Course/Subject Name	Credits
	CHL807	Chemical Engineering Lab (EE)	1.0

Concepts for experiments:

Students should be able to apply the Environmental Engineering concepts to control and management of various types of pollutants. A minimum of eight experiments must be performed on following concepts,

- Physical characterization (TDS /turbidity measurement) of waste water.
- Chemical characterization (chloride ion, sulphate ion etc.) of waste water.
- Determination of organic matters (dissolved oxygen) in waste water.
- Sampling measurement and standard of water quality (determination of BOD).
- Sampling measurement and standard of water quality (determination of COD).
- Determination of toxic matters (phenol, chromium etc.) in waste water.
- Determination of inorganic matters (heavy metal) in waste water.
- Measurement of particulate matter in air.
- Measurement of gaseous pollutant (any one) in air.
- Measurement of various types of residues or solids in the given sample.
- Measurement of sound level.

Course Code	Course/Subject Name	Credits
CHL808	Chemical Engg Lab (MSO)	1.5

Concepts for experiments:

The following are suggestions for experiments using using any available computing software:

- Simulation of multi-component flash calculations in ideal and non-ideal systems.
- Simulation of Pipe and pump network flows.
- Simulation of operation of batch, semi-batch and continuous reactors.
- Simulation of unit operations.
- Simulation of flowsheet calculations.
- Optimization of chemical processes.

THADOMAL SHAHANI ENGINEERING COLLEGE

Biomedical Engineering

THADOMAL SHAHANI

Sr. No.	Subject Code	Subject Name	Count
1	BML301	Human Anatomy and Physiology for Engineers (HAPE)	1
2	BML302	Medical Sensors Lab	1
3	BML303	Electronic Circuits Analysis and Design Lab	1
4	BML304	Electronics Lab (SBL)	1
5	BMM301	Mini Project – 1 A	1
6	BML401	Integrated Circuit Design Lab	1
7	BML402	Principles of Control Systems Lab	1
8	BML403	Medical Imaging – I Lab	1
9	BML404	Computing Lab (SBL)	1
10	BMM401	Mini Project – 1 B	1
11	BMC501	Biomedical Instrumentation-I	1
12	BMC502	Microprocessors	1
13	BMC503	Analog and Digital Circuits Design	1
14	BMC504	Biomedical Digital Signal Processing	1
15	BMC505	Principles of Communication Engineering	1
16	BML506	Business Communication and Ethics	1
17	BMC601	Biomedical Instrumentation –II	1
18	BMC603	Biological Modeling and Simulation	1
19	BMC604	Microcontrollers and Embedded Systems	1
20	BMC605	Medical Imaging –I	1
21	BMC606	Digital Image Processing	1
22	BMC701	Biomedical Instrumentation-III	1
23	BMC702	Medical Imaging – II	1
24	BMC703	Biomechanics Prosthesis and Orthosis	1
25	BMC704	Very Large Scale Integrated Circuits	1
26	BMC705	Networking and Information System in Medicine	1
27	BMP706	Project Stage – I	1
28	BMC802	Biomedical Microsystems	1
29	BME804	Elective	1
30	BMP805	Project Stage – II	1
		Total	30

AC 11/05/2017 Item No. 4.179

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016-17

Under

FACULTY OF TECHNOLOGY

Biomedical Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

From Co-ordinator's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. Choice Based Credit and Grading System were implemented for First Year Bachelor of Engineering from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year Bachelor of Engineering in the academic year 2017-2018.

Dr. Suresh K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Preamble:

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Electrical Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for the graduate program in Biomedical Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs were finalized for graduate program in Biomedical Engineering are listed below:

Program Educational Objectives (PEOs)

- 1. To provide sound knowledge of basic sciences, human anatomy, human physiology, electrical and electronic systems, building a strong foundation for career advancement.
- 2. To develop a logical approach, analytical thinking and problem solving capabilities in order to make the learner competent to face and address the global challenges in their chosen field.
- 3. To impart technical knowledge and competency skills to perform in various areas like sales & marketing, product engineering, research-development, hospital administration, regulatory affairs and also to venture into entrepreneurship.
- 4. To develop proficiency in various soft skills and bring awareness about social obligations and professional ethics to pursue professional career in a healthcare industry.
- 5. Motivate to pursue research and specialization in a plethora of domains in the field of Biomedical Engineering covering disciplines such as, Medical Instrumentation, Neuroscience, Computational Engineering, Robotics Engineering, Medical Signal and Image processing, Rehabilitation Engineering, VLSI, Nanotechnology and Biosensors, etc.

Program Outcomes (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

763

- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. S. R. Deore, Chairman, Board of Studies in Electrical Engineering, Member - Academic Council University of Mumbai

Program Structure for B.E. Biomedical Engineering University of Mumbai (With effect from academic year 2017 - 18)

Scheme for Semester III

Course Code	Course Name		Teaching Scher (Contact Hour		Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
BMC301	301 Applied Mathematics III			01	04		01	05		
BMC302	Basics of Human Physiology	04			04			04		
BMC303	Electrical Network Analysis and Synthesis	04			04			04		
BMC304	Electronic Circuit Analysis and Design	04			04			04		
BMC305	Biomaterials Prosthetics and				04			04		
BML301	Object Oriented Programing		04#			02		02		
BML302	Basics of Human Physiology		02			01		01		
BML303	Electrical Network Analysis and Synthesis		02			01		01		
BML304	Electronic Circuit Analysis and		02			01		01		
BML305 Biomaterials, Prosthetics and Orthotics			02			01		01		
	Total	20	12	01	20	06	01	27		

Out of four hours, 2 hours theory shall be taught to the entire class and 2 hours practical in batches.

Examination Scheme for Semester III

							Examina	tion Sche	me					
Course Code	Course Name	Exte (U	ernal		ernal (A)	Term	Term work		Practical		oral	Pract./Oral		Total Marks
		Max Marks	Min Marks											
BMC301	Applied Mathematics III	80	32	20	8	25	10							125
BMC302	Basics of Human Physiology	80	32	20	8									100
BMC303	Electrical Network Analysis and Synthesis	80	32	20	8									100
BMC304	Electronic Circuit Analysis and Design	80	32	20	8									100
BMC305	Biomaterials, Prosthetics and Orthotics	80	32	20	8									100
BML301	Object Oriented Programing					50	20					50	20	100
BML302	Basics of Human Physiology					25	10			25	10			50
BML303	Electrical Network Analysis and Synthesis					25	10			25	10			50
BML304	Electronic Circuit Analysis and Design					25	10					25	10	50
BML305	Biomaterials, Prosthetics and Orthotics					25	10			25	10			50
	Total	400	160	100	40	175	70			75	30	75	30	825

University of Mumbai, Biomedical Engineering, Rev. 2016-17

Scheme for Semester IV

Course Code	Course Name		Teaching Scher (Contact Hour		Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
BMC401	Applied Mathematics IV	04		01	04		01	05		
BMC402	Biomedical Transducers and Measuring Instruments	04			04			04		
BMC403	Linear Integrated Circuits	04			04			04		
BMC404	BMC404 Digital Electronics				04			04		
BMC405	Signals and Control Systems	04			04			04		
BML401	Introduction to Simulations Tools		02			01		01		
BML402	Biomedical Transducers and Measuring Instruments		02			01		01		
BML403	Linear Integrated Circuits		02			01		01		
BML404 Digital Electronics			02			01		01		
BML405 Signals and Control Systems			02			01		01		
	Total	20	10	01	20	05	01	26		

Examination Scheme for Semester IV

]	Examinati	on Schem	e					
Course Code	Course Name		The ernal JA)		Internal (CA)		Term work		etical	O	ral	Pract	./Oral	Total Marks
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	
BMC401	Applied Mathematics - IV	80	32	20	8	25	10							125
BMC402	Biomedical Transducers and Measuring Instruments	80	32	20	8									100
BMC403	Linear Integrated Circuits	80	32	20	8									100
BMC404	Digital Electronics	80	32	20	8									100
BMC405	Signals and Control Systems	80	32	20	8									100
BML401	Introduction to Simulations Tools					25	10	25	10					50
BML402	Biomedical Transducers and Measuring Instruments					25	10			25	10			50
BML403	Linear Integrated Circuits					25	10					25	10	50
BML404	Digital Electronics					25	10					25	10	50
BML405	Signals and Control Systems					25	10			25	10			50
	Total	400	160	100	40	150	60	25	10	50	20	50	20	775

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
	Applied	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC301	Mathematics III (Abbreviated as AM – III)	04		01	04		01	05	

			Examination Scheme										
Course	Course		Theory							_			
Code	Name	Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral			
BMC301	Applied Mathem- atics III (AM – III)	20	20	20	80	03	25				125		

Course Code	Course Name	Credits				
BMC301	Applied Mathematics III	05				
Course Objectives	 To build the strong foundation in Mathematics of Biomedical Engineering. To provide learner with mathematics fundamental and analyses complex engineering problems. To prepare student to apply reasoning informed b engineering practice. To prepare learner to work as part of teams on mu 	ls necessary to formulate, solve y the contextual knowledge to				
Course Outcomes	 Learner will demonstrate basic knowledge of Laplace Transform. Fourier series Bessel Functions, Vector Algebra and Complex Variable. Learner will demonstrate an ability to identify and Model the problems of the of Biomedical Engineering and solve it. Learner will be able to apply the application of Mathematics in Biomedical Engineering. 					

Module No	Unit No.	Торіс	Hours
1		Laplace Transform	
	1.1	Laplace Transform (LT) of Standard Functions: Definition of	7
		Laplace transform, Condition of Existence of Laplace transform,	
		Laplace transform of e^{at} , $Sin(at)$, $cos(at)$, $sinh(at)$, $cosh(at)$, t^n	
		Heaviside unit step function, Dirac-delta function, Laplace transform of	
		Periodic function	

	1.2	Properties of Laplace Transform: Linearity, first shifting theorem,	
		second shifting theorem, multiplication by t^n , Division by t , Laplace	
		Transform of derivatives and integrals, change of scale, convolution	
		theorem, Evaluation of integrals using Laplace transform.	
2			
Z		Inverse Laplace Transform & its Applications	
	2.1	Partial fraction method, Method of convolution, Laplace inverse by derivative	6
	2.2	Applications of Laplace Transform: Solution of ordinary differential	
		equations, Solving RLC circuit differential equation of first order and	
		second order with boundary condition using Laplace transform (framing	
		of differential equation is not included)	
3		Fourier Series	
	3.1	Introduction: Orthogonal and orthonormal set	11
		of functions, Introduction of Dirichlet's conditions, Euler's formulae	
	3.2	Fourier Series of Functions: Exponential, trigonometric functions of any	
		period =2L, even and odd functions, half range sine and cosine series	
	3.3	Complex form of Fourier series, Fourier integral representation, Fourier	
		Transform and Inverse Fourier transform of constant and exponential	
		function.	
4		Vector Algebra & Vector Differentiation	
	4.1	Review of Scalar and Vector Product: Scalar and vector product of three	7
		and four vectors,	
		Vector differentiation, Gradient of scalar point function, Divergence and	
		Curl of vector point function	
	4.2	Properties: Solenoidal and irrotational vector fields, conservative vector	
		field	
5		Vector Integral	
	5.1	Line integral	6
	5.2	Green's theorem in a plane, Gauss' divergence theorem and Stokes'	
		theorem	
6		Complex Variable & Bessel Functions	
	6.1	Analytic Function: Necessary and sufficient conditions (No Proof),	11
		Cauchy Reiman equation Cartesian form (No Proof) Cauchy Reiman	-
		Equation in polar form (with Proof), Milne Thomson Method and it	
		application, Harmonic function, orthogonal trajectories	
	6.2	Mapping: Conformal mapping, Bilinear transformations, cross ratio, fixed	
		points	
	6.3	Bessel Functions: Bessel's differential equation, Properties of Bessel	
		function of order $+1/2$ and $-1/2$, Generating function, expression of	

$\cos(x\sin\theta)$, $\sin(x\sin\theta)$ in term of Bessel functions	
---	--

Text Books:

1. H.K. Das, "Advanced engineering mathematics", S. Chand, 2008

2. A. Datta, "Mathematical Methods in Science and Engineering", 2012

3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

Reference Books:

1. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication

2. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition

3. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc

4. Murry R. Spieget, "Vector Analysis", Schaum's outline series, Mc-Graw Hill Publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Term work:

Term work shall consist of minimum eight tutorials and assignments (minimum 2).

The distribution of marks for term work shall be as follows:Tutorials:15 marksAssignments:05 marksAttendance (Theory and Tutorial):05 marks

The final certification and acceptance of term work ensures minimum passing in the term work.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total four questions need to be solved.

3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Теа	iching schei	ne	Credit assigned				
	Basics of Human	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC302	Physiology (Abbreviated as BHP)	04			04			04	

		Examination Scheme									
Course	Course		Т								
Code	Name	Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral	
BMC302	Basics of Human Physiology (BHP)	20	20	20	80	03					100

Course Code	Course Name	Credits
BMC302	Basics of Human Physiology	04
Course Objectives	 To understand the human anatomy and functions of various body struc To understand different physiological processes taking place inside human 	
Course Outcomes	 Learners will be able to: Understand the structure and function of cell, the action potential physiology. Distinguish the different anatomical parts of cardiovascular and system. Understand the physiology of heart, and other organs of ca system, concept of Blood pressure and use of ECG. Understand the gases taking place in body and use of spirometer. To know the composition of blood, blood cells with their functions, b counting, blood grouping and coagulation of blood. Distinguish different organs of digestive and urinary system. Understand the anatomy of nervous system, working of different pa parasympathetic and sympathetic nervous system, reflex arc and red Distinguish different parts of eyes and ear, their structure an Understand the hearing mechanism and image formation on the retina the use of ophthalmoscope and design of hearing aid Understand the different parts of male and female reproductive system working, action of sex hormones. To know all the endocrine glands w secretion and function, and control action. 	and muscle respiratory rdiovascular exchange in asics of cell derstand the process of rts of brain, eflex action. d function. , understand with their

Module	Contents	Hours
1	Organization of Human Body: Cell, Tissue, Organ, Organ system, Structure and functions of cell, Polarization and Depolarization of Cell, Types of tissues, Homeostasis, Positive and Negative Feedback Mechanism	
2	Muscle Physiology: Muscle physiology and aspects of Skin Resistance	12
2	Cardiovascular System : Anatomy of Cardiovascular System, Heart, Conductive Tissues of Heart, Cardiac Cycle, Heart Valves, Systemic	12
	and Pulmonary Circulation, Transmission of Cardiac Impulse,	
	Blood Pressure, ECG, Einthoven's Triangle, Twelve Lead System and ECG Waveforms	
	Respiratory System: Anatomy of Respiratory System, Ventilation, Exchange in gases in the alveoli, Spirometer (Forced Expiratory Volumes)	
3	Blood: Composition of Blood – Blood cells and their functions, Haemoglobin, Blood Grouping, Coagulation, Wound Healing.	05
4	Alimentary System: All organs of the Digestive System, other secretions and main Functions, Deglutition and Defecation.	08
	Urinary System: Structure of Nephron, Function of Kidney, Urinary Bladder, Urethra, Internal/External Sphincters, Formation of Urine, Micturition	
5	Nervous System: Different parts, their functions. Reflex actions and reflex are,Function ofSympathetic and Parasympathetic nervous system. Nerve conductionand action potentials.Special Senses:	
	Eyes -Structure, Refractive Medias of the Eye, Formation of Image on the Retina. Ear – Structure of Cochlea, Hearing mechanism	
6	 Reproductive System: (Male and Female) Different Organs and their functions. Main actions of Androgens, Oestrogens and Progesterone. Endocrine System: All glands, their Secretions and functions. Control of secretions. 	08

Text books:

- 1. Anatomy and Physiology in Health and Illness: Ross and Wilson. (ELBS Pub)
- 2. Essentials of Anatomy and Physiology: Elaine N Marieb. (Pearson Education)

Reference Books:

- 1. Physiology of Human Body. : Guyton. (Prism Book)
- 2. Review of Medical Physiology: William Ganong. (Prentice Hall Int)
- 3. Principles of Anatomy and Physiology: Tortora and Grabowski. (Harper collin Pub)
- 4. Anatomy and Physiology: Elaine N Marieb. (Pearson Education)

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

3. Question paper will comprise of 6 questions, each carrying 20 marks.

4. Total four questions need to be solved.

3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Теа	iching schei	ne	Credit assigned				
	Electrical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC303	Network Analysis and Synthesis (Abbreviated as ENAS)	04			04			04	

	Course		Examination Scheme									
Course			J	Theory								
Code	Name	Internal Assessment			End	Dura	Term	Pract.	Oral	Pract.	Total	
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral		
ВМС303	Electrical Network Analysis and Synthesis (ENAS)	20	20	20	80	03					100	

Course Code	Course Name	Credits								
BMC303	Electrical Network Analysis and Synthesis	04								
Course Objectives	 analysis, mesh analysis, source transformation and several methor networks. To apply concept of network theorems to the electrical circuits. To understand the concept of graphical solution to electrical network To understand frequency response in electrical circuits. 	 To apply concept of network theorems to the electrical circuits. To understand the concept of graphical solution to electrical network. To understand frequency response in electrical circuits. To make the learner learn how to synthesize an electrical network from a given 								
Course Outcomes	 Learner will be able to Apply number of powerful engineering circuit analysis technique analysis, mesh analysis, source transformation and several methor networks. Apply the concept of circuit analysis to understand network theorems Apply the concept of graphical solution to electrical network. Distinguish between different one port and two port network paramete Analyse time and frequency response of the electrical circuits. To make the learner learn how to synthesize an electrical network impedance/admittance function. 	ods of simplifying s ters								

Module	Contents	Hours								
1	Introduction:	07								
	Review of D.C. & A.C. circuits,									
	DC Circuits: Current & Voltage Source Transformation, Source Shifting									
	Mesh & Node Analysis:									
	Mesh & Node Analysis of D.C. & A.C. circuits with independent & dependent sources.									
	(Introduction to coupled circuits).									
2	Network Theorems (D.C. & A.C. circuits):	06								
	Superposition, Thevenin's & Norton's Theorem (with independent and dependent									
	sources), Maximum power transfer theorem.									
3	Circuit Analysis:	06								
	Introduction to Graph Theory. Tree, link currents, branch voltages, cut set & tie set,									
	Mesh & Node Analysis, Duality.									
4	Time and Frequency Response of Circuits:	09								
	First & second order Differential equations, initial conditions. Evaluation & Analysis of									
	Transient Steady state responses using Classical Technique as well as by Laplace									
	Transform (for simple circuits only). Transfer function, Concept of poles and zeros.									
5	Two-Port Networks:	10								
	Concept of two-port network. Driving point and Transfer Functions, Open Circuit									
	impedance (Z) parameters, Short Circuit admittance (Y) parameters, Transmission									
	(ABCD) parameters. Inverse Transmission (A'B'C'D') parameters. Hybrid (h)									
	parameters. Inter Relationship of different parameters. Interconnections of two-port									
	networks. Terminated two-port networks.									
6	Fundamentals of Network Synthesis:	10								
	Positive real functions, Driving Point functions, Properties of positive real functions.									
	Testing Positive real functions. Testing driving point functions, Maximum modulus									
	theorem, Properties of Hurwitz polynomials, Residue computations, Even & odd									
	functions, Driving Point Synthesis with L-C, R-C, R-L and R-L-C networks.									

Text Books:

- 1. Sudhakar & S.P. Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000.
- 2. William H. Hayt, Jack e. Kemmerly & Steven M. Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2202.
- 3. Raymond A. DeCarlo & Pen-Min Lin, Linear Circuit Analysis, Oxford University Press, second edition, 2001.
- 4. M. E. Van Valkenburg, Introduction to Modern Network Synthesis, Wiley Eastern Ltd.

Reference Books:

1. Artice M. Davis, Linear Circuit Analysis, Thomson Asia Pte. Ltd, Singapore, first edition, 2001.

- 2. M.E. Van Valkenburg, Network Analysis, Prentice Hall of India, third edition
- 3. C.L.Wadhwa, Network Analysis and Synthesis, New Age International Publisher, Third Edition.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total four questions need to be solved.

3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Теа	iching schei	me	Credit assigned				
BMC304	Electronic circuit	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	analysis and design (Abbreviated as ECAD)	04			04			04	

		Examination Scheme										
Course	Course Name	Theory										
Code		Internal Assessment			End Dura		Term	Pract.	Oral	Pract.	Total	
		Test 1	Test 2	Avg.	sem	tion (hrs)	work			/ Oral		
BMC304	Electronic Circuit Analysis and Design (ECAD)	20	20	20	80	03					100	

Course Code	Course Name	Credits
BMC304	Electronic Circuit Analysis and Design	04
Course Objectives	 To understand basic characteristics of semiconductor device To design small signal amplifiers using BJT and FET 	ces.
Course Outcomes	 Learner will be able to: Understand the basic semiconductor components like P zener diodes and their various applications. Understand BJT working and its various configurations conditions Understanding AC operating conditions and Design of signal CE amplifiers Design of single stage small signal CS amplifiers Understand the working of MOSFETs, its characterist applications Understanding the concept of multistage amplifiers 	s and DC operating single stage small

Module	Contents	Hours
1.	Diodes Circuits: Basics of PN junction diode - Equation, characteristics. Clipper and Clamper Circuits using diodes, Zener Diode – Characteristics and Working, Study Zener as a voltage regulator	05
2.	Bipolar Junction Transistor : Working of PNP and NPN Transistor. Configurations (CB, CC, CE), comparison, Q-Point, DC load line. BJT Biasing - DC analysis, Stability. (Fixed, Self, Voltage divider, Collector to base, Collector to base self). BJT as a switch.	10
3.	A.C. Equivalent Model – r_e model, h-parameter model (Exact and Approximate), Hybrid- π model A.C. Analysis-(Using any one model): A.C. load line, A.C. analysis of CE, CB, CC amplifier configurations, Effects of R _s and R _L , Comparison between various amplifiers. Low frequency and High frequency analysis, Frequency response of Single stage amplifier. Design of single stage amplifier using BJT.	10
4.	 Junction Field Effect Transistor: Working and basic terminology related to JFET. Configurations (CS, CG, CD), comparison, Q-Point, DC load line. JFET Biasing – Fixed, Self, Voltage divider, Concept of stability against device parameters and temperature, zero temperature drift. A.C. Equivalent model of JFET. A.C. Analysis of amplifiers using CS, CG and CD amplifier configurations, Effects of R_s and R_L, Comparison between various amplifiers. Low frequency and High frequency analysis, Frequency response of Single stage amplifier. Design of single stage amplifier using JFET. 	12
5.	MOSFET: Working of Depletion and Enhancement type MOSFET Construction, Characteristics and equations, Basic MOSFET Applications	04
6.	Multistage Amplifiers: Cascade: BJT-BJT, FET-BJT. Cascode – DC and AC analysis, characteristics Darlington amplifier- DC and AC analysis, characteristics	07

Text Books:

- 1. Neamen Donald A., *Electronics Ckt. Analyzer & Design*, 2nd ed., Tata McGraw Hill.
- 2. Boylestad Robert L., Nashelsky Louis, *Electronics Devices & Circuits*, Pearson Education.
- 3. Semiconductor Data Manual, BPB Publications.

Reference Books:

- 1.Malvino—Electronic Principles, 6/e, TMH
- 2. Millman & Halkias: Basic Electronic Principles; TMH.
- 3..Martin Roden, Gordon carpenter, William Wieseman, Electronic design, Fourth editon, Sroff publishers.
- 4. Donald Schilling & Charles Belove, Electronic Circuits Discrete and Integrated, Third edition, Mcgraw Hill.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.

3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned			
BMC305	Biomaterials,	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Prosthetics and Orthotics (Abbreviated as BPO)	04			04			04

		Examination Scheme									
G			Theory								
Course	Course Name	Internal Assessment				Dur	Term			Pract.	T ()
Code		Test 1	Test 2	Av g.	End sem	a tion (hrs)	work	Pract	Oral	/ Oral	Total
BMC305	Biomaterials Prosthetics and Orthotics (BPO)	20	20	20	80	03					100

Course Code	Course Name Credits					
BMC305	Biomaterials, Prosthetics and Orthotics	04				
Course Objectives	To understand the fundamentals of materials used for manufacturing implants that has wide application in healthcare industry. To understand design principles of prostheses and orthoses.					
Course Outcomes	 Understand the definition, classification and gener biomaterials. Study the surface characterization technique Understand properties and applications of polymeric composite biomaterials. Understand properties and applications of metals and certs Selection of materials on the basis of testing of the biologically, mechanically, physio-chemically and implantation in the human body. Study anatomical levers, gait cycle and gait parameters Understand the definition of prostheses and orthos principles. 	es. ic, degradable and amic biomaterials. biomaterials done thermally before				

Module	Contents	Hours
1	Introduction: Introduction of Biomaterials, Classification	08
	of Biomaterials, General Applications.	
	Techniques for characterization of Surface properties of Biomaterials: Electron	
	Spectroscopy for Chemical Analysis (ESCA), Secondary Ion Mass Spectrometry(SIMS),	
	Infrared Spectroscopy, Contact Angle Method.	
2	Properties and Applications of Polymeric and degradable Biomaterials:	09
	Classification, polyurethanes, PTFE, Polyethylene, Polypropylene, Polyacrylates, PMMA,	
	PHEMA, Hydrogel, Silicone rubber, Biopolymer in fabrication of biodevices	
	and implants, Thermoplastic and thermosetting plastics.	
	Degradable biomaterials (PGA and PLA), applications in	
	drug delivery systems.	
	Composite Biomaterials: Properties, classification and Applications of Composite Biomaterials in fabrication	
	of biodevices and implants.	
	Applications of biomaterials in Drug delivery systems,	
	Applications of biomaterials in Drug derivery systems,	
3	Properties and Applications of Metallic Biomaterials and its Biocompatibility:	08
	Stainless steel, Titanium, Titanium based alloys, Cobalt – Chromium alloys in fabrication	
	of bio-devices and implants.	
	Properties and Applications of Ceramic Biomaterials: Classification, Alumina,	
	Zirconia and types, Bioglass, Calcium Phosphate, Tricalcium phosphate in fabrication of	
	biodevices and implants.	
4	Biological Testing of Biomaterials: Physiochemical Test, Mechanical Test, Invitro and	08
	Invivo types, Different forms of corrosion, Wear, Electrochemical Corrosion Testing.	
5	Movement biomechanics	05
	Overview of joints and movments, anatomical levers, gait cycle (stance and swing phase	
	with stick diagram), gait parameters	
6	Prosthetics and Orthotics	10
	Principles of three point pressure,	
	Lower limb prostheses, partial weight bearing-PTB socket, total contact- quadrilateral	
	socket.	
	Upper limb prosthesis (terminal devices)	
	Spinal orthoses.	

Text Books:

- 1. Biomaterial Science and Engineering: J.V. Park (Plenum Press- New York)
- 2. Fundaments of Biomedical Engineering: G S. Sawhney (New Age International Publication)
- 3. Biomaterial Science: An Introduction to Materials in Medicine, Ratner & Hoffmann
- 4. American Atlas of Orthopedics: Prosthetics, C. V. Mosby.
- 5. American Atlas of Orthopedics: Orthotics, C. V. Mosby
- 6. Basics of Biomechanics by Ajay Bahl, Jaypee publications.

Reference Books:

- 1. Encyclopedia of Medical Devices and Instrumentation: John G. Webster. Vol. I, II, III, IV (Marcel Dekkar Pub).
- 2. Encyclopedia Handbook of Biomaterials and Bioengineering: Part-A: Materials Vol I, II (Marcel Dekkar Pub) Part B: Applications Vol. I, II.
- 3. Design Engineering on Biomaterials for medical devices: David Hill, John Willey Publication
- 4. Biological Performance of Materials, 2nd Edition Jonathan Black, Marcel Dekker Inc. New York. Basel. Hong Kong

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Teaching scheme			Credit assigned			
	Object Oriented	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BML301	Programming (Abbreviated as OOPM)		04#			02		02

Out of four hours, 2 hours theory shall be taught to the entire class and 2 hours practical in batches.

					Exami	nation S	Scheme			
Course	Course Name		The	ory		Term			Pract.	
Code	Course Maine	Internal Assessment			End	work	Pract.	Oral	/ Oral	Total
		Test 1	Test 2	Avg.	sem	WUIK			/ 01 ai	
	Object Oriented									
BML301	Programming					50			50	100
	(OOPM)									

Course Code	Course Name Credit						
BML301	Object Oriented Programming 02						
Course Objective	 To learn the object oriented programming concepts To study various java programming constructs like multithreading, exception handling, packages etc. To explain components of GUI based programming. 						
Course Outcome	 To apply fundamental programming constructs. To illustrate the concept of packages, classes and objects. To elaborate the concept of strings, arrays and vectors. To implement the concept of inheritance and interfaces. To implement the notion of exception handling and multiplement. To develop GUI based application. 						

Prerequisite: Structured Programming Approach

Sr. No.	Module	Detailed Content	Hours	

1	Introduction to	1.100 Concepts: Object, Class, Encapsulation, Abstraction,	02
	Object	Inheritance, Polymorphism.	
	Oriented	1.2Features of Java, JVM	
	Programming	1.3 Basic Constructs/Notions: Constants, variables and data	
		types, Operators and Expressions, Revision of Branching	
		and looping	
2	Classes, Object	2.1Class,Object, Method.	05
	and Packages	2.2 Constructor, Static members and methods	
		2.3 Passing and returning Objects	
		2.4Method Overloading	
		2.5 Packages in java, creating user defined packages, access	
		specifiers.	
3	Array, String	3.1 Arrays, Strings, StringBuffer	04
	and Vector	3.2 Wrapper classes, Vector	
4	Inheritance	4.1 Types of Inheritance, super keyword, Method Overriding,	03
	and Interface	abstract class and abstract method, final keyword,	
		4.2 Implementing interfaces, extending interfaces	
5	Exception	5.1 Error vs Exception, try, catch, finally, throw, throws,	04
	Handling and	creating own exception	
	Multithreadin	5.2 Thread lifecycle, Thread class methods, creatingthreads,	
	g	Synchronization	
6	GUI	6.1 Applet: Applet life cycle, Creating applets, Graphics class	06
	programming	methods, Font and Color class, parameter passing.	
	in JAVA	6.2 Event Handling: Event classes and event listener	
		6.3 Introduction to AWT: Working with windows, Using	
		AWT controls- push Buttons, Label, Text Fields, Text	
		Area, Check Box, and Radio Buttons.	

Note: #Out of four hours of practical two hours to be conducted as theory

List of Laboratory Experiments: (Any Fifteen experiments and three assignments)

- 1. Program on various ways to accept data through keyboard and unsigned right shift operator.
- 2. Program on branching, looping, labelled break and labelled continue.
- 3. Program to create class with members and methods, accept and display details for single object.
- 4. Program on constructor and constructor overloading
- 5. Program on method overloading
- 6. Program on passing object as argument and returning object
- 7. Program on creating user defined package
- 8. Program on 1D array

- 9. Program on 2D array
- 10. Program on String
- 11. Program on StringBuffer
- 12. Program on Vector
- 13. Program on single and multilevel inheritance (Use super keyword)
- 14. Program on abstract class
- 15. Program on interface demonstrating concept of multiple inheritance
- 16. Program on dynamic method dispatch using base class and interface reference.
- 17. Program to demonstrate try, catch, throw, throws and finally.
- 18. Program to demonstrate user defined exception
- 19. Program on multithreading
- 20. Program on concept of synchronization
- 21. Program on Applet to demonstrate Graphics, Font and Color class.
- 22. Program on passing parameters to applets
- 23. Program to create GUI application without event handling using AWT controls
- 24. Program to create GUI application with event handling using AWT controls

Text books:

1. Herbert Schildt, 'JAVA: The Complete Reference', Ninth Edition, Oracle Press.

2. Sachin Malhotra and Saurabh Chaudhary, "Programming in Java", Oxford University *Reference Books:*

1. Ivor Horton, 'Beginning JAVA', Wiley India.

- 2. DietalandDietal, 'Java: How to Program', 8/e,PHI
- 3. 'JAVA Programming', Black Book, Dreamtech Press.

Assessment:

Term Work:

Term work shall consist of minimum 15 experiments and 3 Assignments

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments): 20 Marks

Laboratory work (journal)	: 10 Marks
Assignments	: 15 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical and oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	aching schei	ne	Credit assigned				
	Basics of Human	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML302	Physiology (BHP)		02			01		01	

Course Code	Course Name	Examination Scheme										
		Theory				Term			Pract.			
		Internal Assessment			End	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WOIK			/ 01ai			
BML302	Basics of Human Physiology (BHP)					25		25		50		

Course Code	Course Name	Credits
BML302	Basics of Human Physiology	01
Course Objective	 To understand the human anatomy and functions of variou structures. To understand different physiological processes taking pla human body 	·
Course Outcome	 To measure blood pressure using occlusive cuff method To apply blood cell counting principle for measuring blood To analyse electrical activity of heart. To apply the knowledge of instruments used for supporting vascular system 	

Syllabus: Same as that of BMC302 Basics of Human Physiology.

List of Laboratory Experiments: (Any Seven)

- 1. To measure Blood Pressure using sphygmomanometer using occlusive cuff method.
- 2. To determine hemoglobin count in the blood by Sahli's method.
- 3. In-vitro recognition of A, B, O blood groups by slide test.
- 4. To find the total Red Blood Cell count using Neubauer's haemocytometer.
- 5. To find the total White Blood Cell count using Neubauer's haemocytometer.
- 6. To study ECG Machine

- 7. To study electrical activity of heart
- 8. To measure heart-beats using PQRST Waveform of ECG.
- 9. To study Cardiac Pacemaker.
- 10.To study Defibrillator.
- 11. Visit to the hospital anatomy department to view specimen.
- 12.Presentations on the given topic.

Any other experiment based on syllabus which will help learner to understand topic/concept

Books Recommended:

Text books:

- 1. Anatomy and Physiology in Health and Illness: Ross and Wilson. (ELBS Pub)
- 2. Essentials of Anatomy and Physiology: Elaine N Marieb. (Pearson Education)

Reference Books:

- 1. Physiology of Human Body. : Guyton. (Prism Book)
- 2. Review of Medical Physiology: William Ganong. (Prentice Hall Int)
- 3. Principles of Anatomy and Physiology: Tortora and Grabowski. (Harper collin Pub)
- 4. Anatomy and Physiology: Elaine N Marieb. (Pearson Education)

Assessment:

Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks

Laboratory work (programs / journal) : 10 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	iching schei	ne	Credit assigned				
	Electrical Network	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML303	3 Analysis and Synthesis (ENAS)		02			01		01	

	Course Name	Examination Scheme										
Course Code		Theory				Torm			Due of			
		Internal Assessment			End	Term work	Pract.	Oral	Pract. / Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK						
	Electrical					25		25				
	Network									50		
BML303	Analysis and											
	Synthesis											
	(ENAS)											

Course Code	Course Name	Credits						
BML303	Electrical Network Analysis and Synthesis	01						
Course Objective	 To implement several methods of simplifying networks. To verify network theorems for analyzing electrical circuits. To understand the concept of graphical solution to electrical network To study frequency response in electrical circuits. To make the learner learn how to synthesize an electrical network from a given impedance/admittance function. 							
Course	Learner will be able to							
 Apply number of powerful engineering circuit analysis techniques such a analysis, mesh analysis, source transformation and several methods of sim networks. Implement network theorems to analyze the circuit 								
	• Apply the concept of graphical solution to electrical network.							
	 Discriminate between different one port and two port network parameters Analyze time and frequency response of the electrical circuits Synthesize an electrical network from a given impedance/admittance function 							

Syllabus: Same as that of BMC303 Electrical Network Analysis and Synthesis.

List of Laboratory Experiments: (Any five)

- 1. To study superposition theorem
- 2. To study Norton theorem
- 3. To study Thevenin's theorem
- 4. To study and verify Maximum power theorem
- 5. To study transfer functions
- 6. a) To study Y parameters of a two-port network.b) To study Z parameters of a two-port network.
- 7. Interconnection of two-port network
- 8. To study Time Response of first order system
- 9. To study the second order frequency response of an RLC circuit

Suggested Tutorials: (Any six)

- 1. Mesh & amp; Node Analysis with Independent Sources
- 2. Mesh & amp; Node Analysis with Dependent Sources
- 3. Network Theorems
- 4. Circuit Analysis
- 5. Time and Frequency Response of Circuits (Transient Analysis)
- 6. Time and Frequency Response of Circuits (Laplace Transform Analysis)
- 7. Two-Port Networks (Two-Port Parameters)
- 8. Two-Port Networks (Inter Relationship of different parameters. Interconnections of two-port networks)
- 9. Fundamentals of Network Synthesis (Hurwitz polynomials and Positive real functions)

10. Fundamentals of Network Synthesis (Driving Point Synthesis with L-C, R-C, R-L and R-L-C networks)

Any other experiment based on syllabus which will help learner to understand topic/concept

Books Recommended:

Text Books:

- 1. Sudhakar & S.P. Shyammohan, Circuits and Networks, Tata McGraw Hill, thirteenth reprint, 2000.
- 2. William H. Hayt, Jack e. Kemmerly & Steven M. Durbin, Engineering Circuit Analysis, McGraw Hill International, sixth edition, 2202.
- 3. Raymond A. DeCarlo & Pen-Min Lin, Linear Circuit Analysis, Oxford University Press, second edition, 2001.
- 4. M. E. Van Valkenburg, Introduction to Modern Network Synthesis, Wiley Eastern Ltd.

Reference Books:

- 1. Artice M. Davis, Linear Circuit Analysis, Thomson Asia Pte. Ltd, Singapore, first edition, 2001.
- 2. M.E. Van Valkenburg, Network Analysis, Prentice Hall of India, third edition
- 3. C.L.Wadhwa, Network Analysis and Synthesis, New Age International Publisher, Third Edition.

Assessment:

Term Work:

Term work shall consist of minimum 5 experiments and 6 tutorials

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks

Laboratory work (Tutorials) : 10 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	iching schei	ne	Credit assigned			
BML304	Electronic Circuit	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	AnalysisandDesign(ECAD)		02			01		01

Course Code	Course Name	Examination Scheme									
		Theory				Term			Dreat		
		Internal Assessment			End	work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	WUIK			/ 01ai		
BML304	Electronic Circuit Analysis and Design (ECAD)					25			25	50	

Course Code	Course Name	Credits						
BML304	Electronic Circuit Analysis and Design	01						
Course Objective	 To apply the theoretical knowledge of semiconductor devices to practical circuits. To design and implement Clippers, Clampers, Zener regulator and small signal amplifiers 							
Course Outcome	 Learner will be able to: Verify the outputs of various electronic circuits such as one etc. Verify the transfer characteristics of basic semiconductor de Design amplifier circuits and verify their results practically. Study frequency response of small signal amplifiers. 	evices.						

Syllabus: Same as that of BMC304 Electronic Circuit Analysis and Design.

List of Laboratory Experiments: (Any seven)

- 1. To study Clipper circuit
- 2. To study Clampers circuit
- 3. Study of zener as a regulator
- 4. Study of BJT characteristics
- 5. Study of BJT as switch
- 6. Implementation of biasing circuit of BJT

- 7. Study of frequency response of CE amplifier
- 8. Study of FET characteristics
- 9. Implementation of biasing circuit of FET
- 10. Study of Frequency response of CE amplifier

Any other experiment based on syllabus which will help learner to understand topic/concept

Books Recommended:

Text Books:

- 1. Neamen Donald A., *Electronics Ckt. Analyzer & Design*, 2nd ed., Tata McGraw Hill.
- 2. Boylestad Robert L., Nashelsky Louis, *Electronics Devices & Circuits*, Pearson Education.
- 3. Semiconductor Data Manual, BPB Publications.

Reference Books:

- 1.Malvino-Electronic Principles, 6/e, TMH
- 2. Millman & Halkias: Basic Electronic Principles; TMH.
- 3..Martin Roden, Gordon carpenter, William Wieseman, Electronic design, Fourth editon, Sroff publishers.
- 4. Donald Schilling & Charles Belove, Electronic Circuits Discrete and Integrated, Third edition, Mcgraw Hill.

Assessment:

Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
-------------------------------	------------

Laboratory work (Journal) : 10 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical and oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Теа	iching schei	ne	Credit assigned				
BML305	Biomaterials,	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Prosthetics and Orthotics (BPO)		02			01		01	

		Examination Scheme									
Course	Course Name	Theory				Term			Drug of		
Code		Internal Assessment			End	work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	WULK			/ 01 al		
BML305	Biomaterials, Prosthetics and Orthotics (BPO)					25		25		50	

Course Code	Course Name	Credits				
BML305	Biomaterials, Prosthetics and Orthotics 01					
Course Objective	 To understand the fundamentals of materials used for manusimplants that has wide application in healthcare industry. To understand design principles of prostheses and orthoses 	facturing				
Course Outcome	 Learners will be able to: Understand the definition, classification and general biomaterials. Study the surface characterization technique Understand properties and applications of polymeric, composite biomaterials. Understand properties and applications of metals and ceram Selection of materials on the basis of testing of the biologically, mechanically, physio-chemically and the implantation in the human body. Study anatomical levers, gait cycle and gait parameters Understand the definition of prostheses and orthoses principles. 	degradable and ic biomaterials. iomaterials done rmally before				

Syllabus: Same as that of BMC305 Biomaterials, Prosthetics and Orthotics

List of Laboratory Experiments: (Any seven)

- 1) Introduction of Biomaterials.
- 2) Techniques for characterization of Surface properties of Biomaterials.
- 3) Biological Testing of Biomaterials.
- 4) Mechanical and Physiochemical Testing of Biomaterials
- 5) Properties and Applications of Metallic Biomaterials and its Biocompatibility.

- 6) Properties and Applications of Polymeric Biomaterials.
- 7) Properties and Applications of Ceramic Biomaterials.
- 8) Properties and Applications of Composite Biomaterials.
- 9) Corrosion of biomaterials
- 10) Biomaterials for Soft Tissue Replacements.

Any other experiment based on syllabus which will help learner to understand topic/concept

Books Recommended:

Text Books:

- 1. Biomaterial Science and Engineering: J.V. Park (Plenum Press- New York)
- 2. Fundaments of Biomedical Engineering: G S. Sawhney (New Age International Publication)
- 3. Biomaterial Science: An Introduction to Materials in Medicine, Ratner & Hoffmann
- 4. American Atlas of Orthopedics: Prosthetics, C. V. Mosby.
- 5. American Atlas of Orthopedics: Orthotics, C. V. Mosby
- 6. Basics of Biomechanics by Ajay Bahl, Jaypee publications.

Reference Books:

- 1. Encyclopedia of Medical Devices and Instrumentation: John G. Webster. Vol. I, II, III, IV (Marcel Dekkar Pub).
- 2. Encyclopedia Handbook of Biomaterials and Bioengineering: Part-A: Materials Vol I, II (Marcel Dekkar Pub) Part B: Applications Vol. I, II.
- 3. Design Engineering on Biomaterials for medical devices: David Hill, John Willey Publication
- 4. Biological Performance of Materials, 2nd Edition Jonathan Black, Marcel Dekker Inc. New York. Basel. Hong Kong

Assessment:

Term Work:

Term work shall consist of minimum 7 experiments / tutorials

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments / Tutorials): 20 Marks

Attendance

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Oral examination will be based on suggested practical list and entire syllabus.

: 5 Marks

Course Code	Course Name	Теа	iching schei	ne	Credit assigned				
	Applied	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC401	Mathematics IV (Abbreviated as AM - IV)	04		01	04		01	05	

Course Code			Examination Scheme										
	G	Theory											
	Course Name	Internal Assessment				Dur	Term		<u> </u>	Pract.	.		
		Test 1	Test 2	Av g.	End sem	a tion (hrs)	work	Pract	Oral	/ Oral	Total		
BMC401	Applied Mathematics IV (AM - IV)	20	20	20	80	03	25				125		

Course Code	Course Name	Credits
BMC401	Applied Mathematics IV	05
Course Objectives	 To develop analytical insight of the student to prepare them studies in Biomedical Engineering To enhance their ability to solve and analyse Biomedical problem. To provide learner with a strong mathematical foundation to professional competence knowledge and skills. 	0 0
Course Outcomes	 It is expected that learner will develop the proactive approach selection of methods to a solution of Biomedical Engineering prob Learner will be able identify different probability distribut sampling technique, compute Eigen values and Eigen vectors complex integrals and use their application in Biomedical problems. Learner will be able to know new subjects that are required industry. 	olems. ntion , learn and evaluate Engineering

1		Calculus of Variation:	06
	1.1	Euler's Langrange equation, solution of Euler's Langrange equation (only results for different cases for Function) independent of a variable, independent of another variable, independent of differentiation of a variable and independent of both variables	
	1.2	Isoperimetric problems, several dependent variables	
	1.3	Functions involving higher order derivatives: Rayleigh-Ritz method	
		Linear Algebra: Vector Spaces	06
2	2.1	Vectors in n-dimensional vector space: properties, dot product, cross product, norm and distance properties in n-dimensional vector space.	
	2.2	Vector spaces over real field, properties of vector spaces over real field, subspaces.	
	2.3	The Cauchy-Schwarz inequality, Orthogonal Subspaces, Gram- Schmidt process.	
3		Linear Algebra: Matrix Theory	10
	3.1	Characteristic equation, Eigen values and Eigen vectors, properties of Eigen values and Eigen vectors	
	3.2	Cayley-Hamilton theorem (without proof), examples based on verification of Cayley- Hamilton theorem.	
	3.3	Similarity of matrices, Diagonalisation of matrices.	
	3.4	Functions of square matrix, derogatory and non-derogatory matrices.	
4		Probability	10
	4.1	Baye's Theorem (without proof)	
	4.2	Random variable: Probability distribution for discrete and continuous random variables, Density function and distribution function, expectation, variance.	
	4.3	Moments, Moment Generating Function.	
	4.4	Probability distribution: Binomial distribution, Poisson & normal distribution (For detailed study)	
5		Correlation	04
	5.1	Karl Pearson's coefficient of correlation, Covariance, Spearman's Rank correlation,	
	5.2	Lines of Regression.	
6		Complex integration	12
	6.1	Complex Integration: Line Integral, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula.	
	6.2	Taylor's and Laurent's Series	
	6.3	Zeros, singularities, poles of $f(z)$, residues, Cauchy's Residue theorem.	
	6.4	Applications of Residue theorem to evaluate real Integrals of different types.	

Text books:

- 1. H.K. Das, "Advanced engineering mathematics", S . Chand, 2008
- 2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
- 3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

4. P.N.Wartilar & J.N.Wartikar, "A Text Book of Applied Mathematics" Vol. I & II, Vidyarthi Griha Prakashan., Pune.

Reference Books:

- 1. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
- 2. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
- 3. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 4. Seymour Lipschutz "Beginning Linear Algebra" Schaum's outline series, Mc-Graw Hill Publication

5.Seymour Lipschutz "Probability" Schaum's outline series, Mc-Graw Hill Publication

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Term Work:

Term work shall consist of minimum 8 tutorials

The distribution of marks for term work shall be as follows:

Tutorials : 20 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total four questions need to be solved.

3 Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked

4: Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	ching schei	me	Credit assigned			
	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BMC402	Transducers and Measuring Instruments (Abbreviated as BTMI)	04			04			04

		Examination Scheme									
G		Theory									
Course	Course	Internal Assessment				Dur	Term			Pract.	
Code	Name	T4 1	T (2	Av	End	a tion (hrs)	work	Pract	Oral	/ Oral	Total
		Test 1 Tes	Test 2	g.	sem						
BMC402	Biomedical Transducers and Measuring Instruments (BTMI)	20	20	20	80	03					100

Course Code	Course Name	Credits
BMC402	Biomedical Transducers and Measuring Instruments	04
Course Objectives	 To provide the knowledge of basic concepts such as measuring instruments an instrumentation system, general properties of input transducers, static a characteristics of transducers and sensors. To provide a thorough understanding of principle and working of transducers and for displacement, motion, pressure and temperature measurement, bio-potenti chemical sensors, biosensors, fiber optic sensors, and radiation sensors. To study the biomedical applications of the above transducers and sensors. To perform experiments based on some of the above transducers and sensors. 	and dynamic sensors used
Course Outcomes	 To clearly understand generalized medical instrumentation system, general transducers, static and dynamic characteristics of transducers and sensors. Understand the fundamental principles and applications of various types of sense motion, displacement and pressure sensors. Present different transduction methods for measuring temperature. To understand principle of various biopotential electrodes Understand principle and working of chemical sensor To understand principle of various biosensors, and differentiate various amper potentiometric sensors. 	ors including

Module	Contents	Hours
1	Introduction: Generalized Instrumentation System, General Properties	04
	Of Input Transducer. Static Characteristics: Accuracy, Precision,	
	Resolution, Reproducibility, Sensitivity, Drift, Hysteresis, Linearity,	
	Input Impedance and Output Impedance.	
	Dynamic Characteristics: First Order and Second Order Characteristics, Time Delay,	
	Error Free Instrument, Transfer Functions. Design Criteria, Generalized Instrument	
	Specifications.	
2	Medical Instruments:	14
	Electronic and Digital Voltmeter	
	Types: FET Voltmeter, Peak and Average Responding voltmeter,	
	True RMS responding voltmeter.	
	Digital to Analog Converter: Binary weighted and R-2R ladder.	
	Analog to digital converter: Ramp type, Dual Slope type,	
	Successive Approximation type ADC,	
	DVM: Ramp type, Dual Slope type, Successive Approximation type,	
	Flash type DVM. Resolution & Sensitivity.	
	Multimeter: Working, Specifications. Oscilloscopes:	
	Block Diagram of C.R.O (in details). Requirements of Time base,	
	Delayed Time Base, Post deflection acceleration, triggering. Description of Panel Layout	
	and working of controls. Specifications of CRO. Applications: Measurement of voltage,	
	current. Types: Dual trace, Dual beam, Digital Storage – Block diagram, working,	
	application, comparison.	
3		10
3	Displacement, motion and Pressure Measurement : (with applications) Resistive: Potentiometers, Strain Gauges and Bridge Circuits.	10
	Inductive: Variable Inductance and LVDT	
	Capacitive type, Piezoelectric Transducers.	
	Types of Diaphragms, Bellows, Bourdon Tubes.	
4	Temperature Measurement: Thermistor, Thermocouple,	06
_	Resistive Temperature Detector, IC based Temperature Measurement	
	Radiation Sensors	
5	Bio potential Electrodes: Electrodes Electrolyte Interface, Half-Cell Potential,	06
	Polarization, Polarizable and Non Polarizable, Electrodes, Calomel Electrode, Electrode	
	Circuit Model, Electrode Skin-Interface and Motion Artifact. Body Surface Electrodes.	
	Internal Electrodes: Needle and Wire Electrodes (Different Types). Microelectrodes:	
	Metal, Supported Metal Micropipette (Metal Filled Glass And Glass Micropipette	
	Electrodes)	
6	Chemical Sensors: Blood gas and Acid- Base Physiology, Potentiometric Sensors	08
	(pH, pCO ₂ Electrodes, Amperometric Sensors (pO ₂), ISFETS, Transcutaneous Arterial	
	O_2 and CO_2 Tension Monitoring.	
	Fiber Optic Sensors: Principle of Fiber Optics, Fiber Optic Sensors - Temperature,	
	Chemical, Pressure.	
	Biosensor: Classifications and types with examples.	

Text Books:

- 1. Kalasi H.S.- Electronic Instrumentation
- 2. A.K. Sawhney- Electrical & Electronic Measurement & Instrumentation.
- 3. Medical Instrumentation-Application and Design by John G. Webster.
- 4. Instrument Transducer An Intro to their performance and design, Hermann K P. Neubert.
- 5. Biomedical sensors fundamentals and application by Harry N, Norton.
- 6. Biomedical Transducers and Instruments, Tatsuo Togawa, Toshiyo Tamma and P. Ake Öberg.
- 7. Electronics in Medicine and Biomedical Instrumentation by Nandini K. Jog PHI Second Edition 2013.

Reference Books:

- 1. Principles of applied Biomedical Instrumentation by La Geddes and L.E. Baker.
- 2. Biomedical Instrumentation and Measurement by Leslie Cromwell, Fred. J. Weibell and Pfeiffer.
- 3. Principles of Biomedical Instrumentation and Measurement, Richard Aston, Merril Publishing Co., Columbus, 1990.
- 4. Measurement Systems, Application and Design, Ernest O. Doeblin, McGraw-Hill, 1985.
- 5. Handbook of Modern Sensors Physics, Design and Application, Jacob Fraden, AIP press.
- 6. Transducers for Biomedical Measurements: Principles and Applications, Richard S.C. Cobbold, John Wiley & Sons, 1974.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules

Course Code	Course Name	Теа	iching schei	me	Credit assigned				
	Linear Integrated	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC403	Circuits (Abbreviated as LIC)	04			04			04	

		Examination Scheme									
G	G	Theory									
Course Code	Course Name	Internal Assessment				Dur	Term	Deres	01	Pract.	Total
		Test 1	Test 2	Av g.	End sem	a tion (hrs)	work	Pract	Oral	/ Oral	Total
BMC403	Linear Integrated Circuits (LIC)	20	20	20	80	03					100

Course Code	Course Name	Credits						
BMC403	Linear Integrated Circuits	04						
Course Objectives	 To provide concepts of differential, operational and power amplifiers with their applications and design methodology To cover analysis of circuits with negative feedback 							
Course Outcomes	 Learner will be able to: Analyse different types of differential amplifiers Demonstrate basics of operational amplifiers Analyse and design operational amplifier to perform mathematic operations Analyse and design operational amplifier as oscillators Illustrate basics of negative feedback and perform analysis on di types of circuits with negative feedback Exhibit working of power amplifiers, its types and DC and AC a and designing 	fferent						

1.	Differential Amplifiers:	0.5					
	Desis Consent	05					
	Basic Concept						
	• Types: Dual Input Balanced Output, Dual Input Unbalanced Output, Single						
	Input Balanced Output And Single Input Unbalanced Output.						
	 Common mode and Differential mode analysis - DC and AC analysis. Differential amplifiers with Swamping Resistor 						
	 Differential amplifiers with Swamping Resistor Constant current source, current mirror circuits 						
2.	Introduction to operational Amplifier :	05					
	• Introduction to an Ideal Operational Amplifier, Block Diagram, DC and AC	05					
	Characteristics, Equivalent circuit of Op-amp						
	• Op-amp IC 741 characteristics, frequency response and concept of virtual						
	ground.						
3.	Applications of operational Amplifier :	15					
	• Adder, Subtractor /differential Amplifier, Voltage follower, Integrator						
	(practical and Ideal), Differentiator (practical and Ideal), Instrumentation						
	amplifier						
	• Voltage to Current and Current to Voltage converters, Active Half wave rectifiers, Active Full wave rectifier, Clipper, Clampers, Log and Antilog						
	amplifiers, Sample & hold circuits, Peak detector, Multipliers and Dividers,						
	 Schmitt Trigger (Regenerative comparator), Voltage comparators, zero 						
	crossing detector.						
4.	Oscillators using Operational Amplifier:						
	• Concepts of Oscillation. Barkhausen's criteria for an oscillator.						
	• Types of oscillators: RC Phase shift Oscillator, Wien Bridge oscillator,						
	Colpitt's Oscillator, Hartley Oscillator, Crystal Oscillator, Clapp Oscillator,						
	(Phase shift, Frequency of oscillation, condition of sustained oscillation,						
5.	circuit operation and Amplitude stability in the above oscillators). Negative Feedback:	10					
5.	Introduction to Feedback	10					
	 Negative feedback characteristics: Gain Sensitivity, Bandwidth Extension, 						
	Noise Sensitivity, Reduction of Non-Linear Distortion.						
	• Feedback Topologies, Series-Shunt, Shunt-Series, Series-Series, Shunt-Shunt						
	Configurations						
	• Negative feedback amplifiers: Voltage Amplifiers, Current Amplifiers, Trans-						
	Conductance Amplifiers, Trans-Resistance Amplifiers (DC and AC analysis.						
6.	Power Amplifiers :	05					
	• Classes of Power amplifiers, Class-A, Class-B, Class AB, Class C	50					
	• Analysis: Class-A Power Amplifiers (Direct coupled and Transformer						
	coupled), Class-B Power Amplifiers, Class-AB Push Pull and						
	Complementary Symmetry Power amplifier						
	• Power amplifier design, Heat Sinks and its design						
	r r , , , , , , , , , , , , , , , , , ,						

Text Books:

- 1.. Electronic Circuit Analysis and Design- Donald A Neamen,
- 2. Electronic Devices and circuits R Bolystead.
- 3. Op-Amps and linear integrated circuits R. Gayakwad
- 4. Linear Integrated Circuits: Roy Chaudhary

Reference Books:

- 1. Integrated Electronics Millman & Halkias
- 2. Opamps and linear integrated circuits, Theory and Applications- James Fiore

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Теа	iching schei	me	Credit assigned				
	Digital	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC404	Electronics (Abbreviated as DE)	04			04			04	

		Examination Scheme									
G	G	Theory									
Course Code	Course Name	Internal Assessment				Dur	Term	Deres	01	Pract.	Total
		Test 1	Test 2	Av g.	End sem	a tion (hrs)	work	Pract	Fract	Oral	/ Oral
BMC404	Digital Electronics (DE)	20	20	20	80	03					100

Course Code	Course Name	Credits							
BMC404	Digital Electronics	04							
Course Objectives	 To make learner aware of basics of Digital circuits, logic design, various Logic Families and Flip-flops. Learner should be able to design of various counters, registers and their applications. 								
Course Outcomes	 Learner will be able to: Understand various number systems and its arithmetic (BCD, Binar Hexadecimal etc.) Solve sums on K-maps, Boolean algebra and SOP-POS implementa Design code converter circuits, parity generator-checker circuits and magnitude comparator circuits. Design circuits using multiplexers, demultiplexers, and decoders. Design synchronous and asynchronous counters and registers using Device the synchronous and asynchronous counters and registers using the synchronous counters and t	ations. d							
	Design various gates using various logic families.								

Module	Contents	Hours
1.	 Introduction: Number system, Binary, Octal, Hexadecimal and other. Conversion from One system to another, Binary, BCD and Hexadecimal. Binary Arithmetic (addition, subtraction, multiplication, division) Hexadecimal and octal arithmetic, first and second complement methods. Binary Codes: Weighted Reflective, Sequential, Gray, Error detecting codes, Odd, Even parity, Hamming Codes, Alphanumeric, Morse, Teletypewriter ASCII, EBCDIC codes, Converting Binary to Gray & Gray to Binary, Conversion from BCD to XS3. Application of gray code, shaft position encoding. Boolean Algebra Logic Gates: AND, OR, NOT, XOR, XNOR, operation NAND, NOR used of the universal gate for Performing different operation. Laws of Boolean algebra. De- Morgan's theorems. Relating a Truth Table to a Boolean Expression. Multi level circuits. 	05
2.	Combinational Circuits: K-MAPS and their use in specifying Boolenan Expressions, Minterm, Maxterm SOP and POS Implementation. Implementation a logic function using universal gates. Variable entered maps For five and six variable functions Quine Mc Clusky tabular techniques.	05
3.	 Combinational Logic Circuit Design: Designing code converter circuits e.g. Binary to Gray, BCD to Seven Segments, Parity Generator. Binary Arithmetic circuits:-Adders, Subtractors (Half and full) BCD adder- Subtractor, carry Lookaheard adder, Serial adder, Multiplier Magnitude Comparators, 7485 comparator, Arithmetic Logic units. Use of Multiplexers in Logic Design: Multiplexer (ULM) Shannon's theorem. ULM trees. De- Multiplexers, Line decoders, Designing using ROMs and ULMs. Hazards in combinational circuits. 	15
4.	Sequential Logic Circuits: Comparison of Combinational & Sequential Circuits, Multi-vibrators (Astable, Monostable And Bistable) Flip-Flops, SR, T, D, JK, Master Slave JK, Converting one Flip-Flop to another, State transition diagrams, Use of Denounce switch. Counter Modulus of a counter, Ripple counter, Up/Down Counter, Designing sequential counters using gate IC and counter IC by drawing state transition Diagram & state transition table. Ring counter Johnson counter, twisted ring counter, Pseudo Random number generator, Unused states and locked conditions.	08
5.	Registers: Serial input serial output, serial input parallel output, Left Right shift register, Use of register ICs for sequence generator and counter. Bidirectional shift register, Universal shift register	10
6.	Logic Families: RTL, DTL, TTL, schotkey clamped TTL, Tristate gate ECL, IIL, MOS device CMOS Comparison of logic families, interfacing different families. TTL with CMOS, NMOS, TTL, ECL, & TTL, IIL, & TTL.	05

Text Books:

- 1. R.P.Jain, "Modern Digital Electronics," Tata McGraw Hill, 1984
- 2. M Morris Mono, "Digital Design," Prentice Hall International-1984.
- 3. Malvino & Leach, "Digital Principal and Applications", Tata McGraw Hill, 1991.
- 4. Malvino, "Digital Electronics", Tata McGraw Hill, 1997.

Reference Books:

- James Bignell & Robert Donovan, "Digital Electronics", Delmar, Thomas Learning,
 Jog N.K, "Logic Circuits", 2nd edition, Nandu Publisher & Printer Pvt .Ltd. 1998.
- 3. Alan b. Marcovitz, "Introduction to Logic Design", McGraw Hill International 2002.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules

Course Code	Course Name	Tea	ching schei	me	Credit assigned				
	Signals and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BMC405	Control System (Abbreviated as SCS)	04			04			04	

		Examination Scheme										
G	~	Theory										
Course Code	Course Name	Internal Assessment			Dur	Term			Pract.			
		Test 1	Test 2	Av g.	End sem	a tion (hrs)	work	Pract	Oral	/ Oral	Total	
BMC405	Signals and Control System (Abbreviate d as SCS)	20	20	20	80	03					100	

Course Code	Course Name	Credits
BMC405	Signals and Control Systems	04
Course Objectives	 To introduce the concepts and techniques associated with the signals and systems such as the basic parameters, properties a signals and system. To familiarize with techniques suitable for analysing and system and systems in continuous domain. 	and interaction of
Course Outcomes	 Represent signals and system mathematically Represent integral of LTI systems, properties of system in ter response Determine Fourier series representation of CT, properties of I Derive and determine Laplace transform, region of converger Laplace transform, Inverse Laplace transform. Analyse given systems and suggest modifications. 	Fourier series

Module	Contents	Hours
1	Introduction to Signals: Basic of continuous time signals like unit step, ramp, exponential, operation on signals like flipping, shifting, scaling, and multiplication. Classification of signals: Periodic /Aperiodic, Power and Energy, Even and Odd.	
2	Introduction to Systems: System representation in the continuous and discrete time domain. Classification of systems on the basis of Causal/non-Causal, Time variance/Time invariance, Linear/Non-Linear, Stable/Unstable. Continuous convolution	

3	Fourier Analysis of Continuous time Signals Orthogonal functions, Representation of signals in terms of weighted orthogonal basis functions, Coefficient calculation on the basis of minimum square error. Fourier series: Representation of Fourier series in terms of sine, cosine, exponential functions. The complex Fourier spectrum, Properties of Fourier series, convergence of Fourier series, Gibbs phenomenon. Fourier transform and its properties. Fourier transform of singular functions. Energy density spectrum	07
4	Laplace Transform: Double sided Laplace transforms, Region of Convergence, properties, Unilateral Laplace Transform, properties, applications of Laplace transform to the solution of differential equations. Inverse Laplace Transform.	08
5	Introduction to Control Systems : Basic concepts of control systems, open loop and closed loop systems, difference between open loop and closed loop systems, signal flow graph.	07
6	Time domain and Frequency domain behaviour of SystemsTime domain analysis of first order and second order systems. Condition of BIBOstability in time domain. Frequency response of linear systems. Stability and Routharray, Bode plots, Root Locus	12

Text Books:

- 1. Oppenheim A. V. & Alan S.Wllisky, Signals and Systems, Pearson Education
- 2. Simon Haykin & Barry Van Veen, Signals and Systems, Wiley-India
- 3. Modern Control Engineering : D.Roy Choudhury, PHI
- 4. Modem Control Engineering : K. Ogata, PHI
- 5. Control Systems Engineering: L.J. Nagrath, M. Gopal, Third Edition, New Age International Publishers.

Reference Books:

- 1. ProakisJ. G. & Manolakis D. G., Digital Signal Processing, Principles, algorithms & applications, Pearson Education
- 2. Ramesh Babu P., Signals and Systems, Scitech Publications (India) Pvt. Ltd.
- 3. Charles L. Phillips, John M. Parr & Eve A Riskin, Signals, Systems and Transforms, Pearson Education
- 4. Control System, Theory & Applications : Samarjit Ghosh, Pearson Education
- 5. System Dynamic and Control : Eroni Umez Erani., PWS Publishing, International Thompson Publishing Company

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be randomly selected from all the modules.

Course Code	Course Name	Tea	iching schei	ne	Credit assigned				
	Introduction to	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML401	Simulations Tools (IST)		02			01		01	

		Examination Scheme									
Course	Course Name	Theory				Term			Drug of		
Code	Course Maine	Internal Assessment			End	work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	WUIK					
BML401	Introduction to Simulations Tools (IST)					25	25			50	

Course Code	Course Name	Credits					
BML401	1 Introduction to Simulations Tools						
Course objective	To study Simulation softwareStudy Proteus						
Course Outcome	 Learner will be able to: Understand various tools of simulation software Write Programme in Programming Software Simulate Digital and analog circuits Understand use of Proteus software Simulate differential equations 						

List of Laboratory Experiments: (Any seven)

- 1. Study of Various simulation software Commands
- 2. Plotting variable using software
- 3. Study of various Proteus commands.
- 4. Simulating Inverting and Non inverting Amplifier in Proteus
- 5. Implementing logic gates using Proteus
- 6. Decade Counter using flip-flop in Proteus
- 7. Simulating differential Equations
- 8. Simulate basic electrical circuit using pspice

Any other experiment using these simulation tools which will help learner to understand the application of these tools during their B.E project work

Assessment:

Term Work:

Term work shall consist of minimum 7 experiments.The distribution of marks for term work shall be as follows:Laboratory work (Experiments): 10 MarksLaboratory work (Journal): 10 MarksAttendance: 5 MarksThe final certification and acceptance of term work ensures

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical examination will be based on suggested practical list.

Course Code	Course Name	Теа	iching schei	me	Credit assigned			
	Biomedical	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BML402	Transducers and Measuring Instruments (BTMI)		02			01		01

	Course Name	Examination Scheme									
Course		Theory				Term			Durat		
Code	Course Maine	Internal Assessment			End	work	Pract.	Oral	Pract. / Oral	Total	
		Test 1	Test 2	Avg.	sem	WULK					
BML402	Biomedical Transducers and Measuring Instruments (BTMI)					25		25		50	

Course Code	Course Name	Credits
BML402	Biomedical Transducers and Measuring Instruments	01
Course objective	 To display and record signals using CRO. To implement digital to analog converter. To analyse step response of a thermometer and measure using various temperature transducers. To measure displacement using various displacement transdormer transducer. To measure pressure using a pressure transducer. To measure pH of a solution using pH electrodes. 	•
Course Outcome	 Learner will be able to: Record and display signals using CRO. Convert analog data into digital form. Analyse step response of a thermometer and measure using various temperature transducers. Measure displacement using various displacement transduce. Measure pressure using a pressure transducer. Measure pH of a solution using pH electrodes. 	•

Syllabus: Same as that of BMC402 Biomedical Transducers and Measuring Instruments List of Laboratory Experiments: (Any seven)

- 1. Study of Front panel of CRO
- 2. A to D converter
- 3. To study the dynamic behaviour of thermometer system.
- 4. To study the characteristics of a thermistor.
- 5. To study thermistor linearization.
- 6. To study the characteristics of a light dependent resister.

- 7. To study the principle and working of a thermocouple.
- 8. To study principle and working of LVDT.
- 9. To study principle and working of a capacitive Transducer.
- 10. To study principle and working of a strain gage sensor.
- 11. To study principle and working of a pressure sensor.
- 12. To study pH electrode.

Any other experiment based on syllabus which will help learner to understand topic/concept

Books Recommended:

Text Books:

- 1. Kalasi H.S.- Electronic Instrumentation
- 2. A.K. Sawhney- Electrical & Electronic Measurement & Instrumentation.
- 3. Medical Instrumentation-Application and Design by John G. Webster.
- 4. Instrument Transducer An Intro to their performance and design, Hermann K P. Neubert.
- 5. Biomedical sensors fundamentals and application by Harry N, Norton.
- 6. Biomedical Transducers and Instruments, Tatsuo Togawa, Toshiyo Tamma and P. Ake Öberg.
- 7. Electronics in Medicine and Biomedical Instrumentation by Nandini K. Jog PHI Second Edition 2013.

Reference Books:

- 1. Principles of applied Biomedical Instrumentation by La Geddes and L.E. Baker.
- 2. Biomedical Instrumentation and Measurement by Leslie Cromwell, Fred. J. Weibell and Pfeiffer.
- 3. Principles of Biomedical Instrumentation and Measurement, Richard Aston, Merril Publishing Co., Columbus, 1990.
- 4. Measurement Systems, Application and Design, Ernest O. Doeblin, McGraw-Hill, 1985.
- 5. Handbook of Modern Sensors Physics, Design and Application, Jacob Fraden, AIP press.
- 6. Transducers for Biomedical Measurements: Principles and Applications, Richard S.C. Cobbold, John Wiley & Sons, 1974.

Assessment:

Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (Journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Tea	aching schei	ne	Credit assigned				
	Linear Integrated	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML403			02			01		01	

	Course Name	Examination Scheme										
Course Code			The	ory		Term		Oral	Pract.			
		Interr	nal Asses	sment	End	work	Pract.		/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK						
BML403	Linear Integrated Circuits (LIC)					25			25	50		

Course Code	Course Name	Credits
BML403	Linear Integrated Circuits	01
Course Objective	• To provide designing methodology and implementation te differential, operational and power amplifiers.	chnique for
Course Outcome	 To design and implement various mathematical operational amplifier To implement waveform generation using operational am To implement circuits of differential amplifiers, power and negative feedback. 	plifier

Syllabus: Same as that of BMC403 Linear Integrated Circuits

List of Laboratory Experiments: (Any seven)

- 1. Differential amplifier
- 2. Inverting amplifier
- 3. Non-inverting amplifier
- 4. Designing circuit using operational amplifier for given mathematical equation
- 5. Integrator
- 6. Differentiator
- 7. Half wave rectifier
- 8. RC-phase shift oscillator
- 9. Wein bridge oscillator
- 10. Instrumentation amplifier
- 11. Negative feedback

- 12. Schmitt trigger
- 13. Comparator
- 14. Zero crossing detector
- 15. Class B push pull power amplifier

Any other experiment based on syllabus which will help learner to understand topic/concept

Books Recommended:

Text Books:

- 1.. Electronic Circuit Analysis and Design- Donald A Neamen,
- 2. Electronic Devices and circuits R Bolystead.
- 3. Op-Amps and linear integrated circuits R. Gayakwad
- 4. Linear Integrated Circuits: Roy Chaudhary

Reference Books:

- 1. Integrated Electronics –Millman & Halkias
- 2. Opamps and linear integrated circuits, Theory and Applications- James Fiore

Assessment:

Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks

Laboratory work (Journal) : 10 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical and oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Теа	ching scher	ne	Credit assigned				
	Digital Electronica	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML404	Digital Electronics		02			01		01	

Course Code	Course Name	Examination Scheme										
			The	ory		Term	Pract.	Oral	Pract.			
		Interr	nal Asses	sment	End	work			/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WUIK			/ 01 al			
BML404	Digital Electronics					25			25	50		

Course Code	Course Name	Credits							
BML404	Digital Electronics 01								
Course Objective	 To make learner aware of basics of digital circuits, learner should be able to design of various counters, and their applications. 	0 0							
Course Outcome	 Learners will be able to: Understand various ICs used for basic gates,EX-OR argates Design code converter circuits. Design parity generator-checker circuits, adder-subtractor and magnitude comparator circuits Design circuits using multiplexers, demultiplexers, and of S. Design synchronous and asynchronous counters using flip Design various registers using flip flops. 	or circuits lecoders.							

Syllabus: Same as that of BMC404 Digital Electronics

List of Laboratory Experiments: (Any seven)

- 1. To study the various Logic gates.
- 2. To design various gates using Universal gates.
- 3. To design binary to gray code converter and gray to binary converter.
- 4. To design BCD to Excess3 converter.
- 5. To design parity generator and parity checker circuits.
- 6. To design adder and subtractor circuits.

- 7. To design various circuits using multiplexers.
- 8. To design various circuits using de-multiplexer.
- 9. To study S-R, J-K, T and D Flip flops.
- 10. To design Asynchronous counter.
- 11. To design decade counter
- 12. To design Synchronous counter.

Any other experiment based on syllabus which will help learner to understand topic/concept

Books Recommended:

Text Books:

- 1. R.P.Jain, "Modern Digital Electronics," Tata McGraw Hill, 1984
- 2. M Morris Mono, "Digital Design," Prentice Hall International-1984.
- 3. Malvino & Leach, "Digital Principal and Applications", Tata McGraw Hill, 1991.
- 4. Malvino, "Digital Electronics", Tata McGraw Hill, 1997.

Reference Books:

- 1. James Bignell & Robert Donovan, "Digital Electronics", Delmar, Thomas Learning,
- 2. Jog N.K, "Logic Circuits", 2nd edition, Nandu Publisher & Printer Pvt .Ltd. 1998.
- 3. Alan b. Marcovitz, "Introduction to Logic Design ", McGraw Hill International 2002.

Assessment:

Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
I also anota my sevenily (Iaroma al)	. 10 Maulta

Laboratory work (Journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Practical and oral examination will be based on suggested practical list and entire syllabus.

Course Code	Course Name	Теа	iching schei	ne	Credit assigned				
	Signals and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
BML405	Control Systems (SCS)		02			01		01	

Course Code	Course Name	Examination Scheme										
		Theory				Term			Pract.			
		Interr	nal Asses	sment	End	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg.	sem	WULK						
BML405	Signals and Control Systems (SCS)					25		25		50		

Course Code	Course Name	Credits
BML405	Signals and Control Systems	01
Course objective	 To introduce the concepts and techniques associated with t of signals and systems such as the basic parameters, interaction of signals and system. To familiarize with techniques suitable for analyzing and sy signals and systems in continuous domain. 	, properties and
Course Outcome	 Represent signals and system mathematically Represent integral of LTI systems, properties of system in response Determine Fourier series representation of CT, properties of Derive and determine Laplace transform, region of converg of Laplace transform, Inverse Laplace transform. Analyze given systems and suggest modifications. 	f Fourier series

Syllabus: Same as that of BMC405 Signals and Control Systems

List of Laboratory Experiments: (Any Five)

- 1. Introduction to signals and plotting of signals
- 2. Operations on Signal
- 3. Classification of Signals
- 4. Open Loop and Closed loop
- 5. Stability
- 6. Bode Plot
- 7. Root Locus
- 8. Convolution
- 9. Pole Zero plot

List of suggested Tutorials: (Any Six)

- 1. Introduction to signals and systems
- 2. Fourier Series
- 3. Laplace Transform
- 4. Inverse Laplace Transform
- 5. Application of Laplace Transform
- 6. Open Loop and Closed loop
- 7. Signal Flow graph
- 8. Stability
- 9. Bode Plot
- 10. Root Locus
- 11. Time domain analysis

Any other practical and tutorial based on syllabus which will help learner to understand topic/concept

Assessment:

Term Work:

Term work shall consist of minimum 7 experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) : 10 Marks

Laboratory work (Tutorial): 10 MarksAttendance: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Oral examination will be based on suggested practical list and entire syllabus.

Program Structure for TE Biomedical Engineering University of Mumbai (With effect from academic year 2018 - 19)

Scheme for Semester V

Course Code	Course Name		Teaching Scher (Contact Hour		Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
BMC501	Diagnostic & Therapeutic Instruments	04			04			04	
BMC502	Analog and Digital Circuit Design	04			04			04	
BMC503	Principles of Communication Engineering	04			04			04	
BMC504	Biomedical Digital Image Processing	04			04			04	
BMDLO501X	Department Level Optional Course – I	04			04			04	
BML501	Business Communication and Ethics		02*+02			02		02	
BML502	Diagnostic and Therapeutic Instruments		02			01		01	
BML503	Integrated and Communication Circuit Design		02			01		01	
BML504	Biomedical Digital Image Processing		02			01		01	
BMDLL501X	Department Level Optional Course Laboratory – I		02			01		01	
	Total	20	12		20	06		26	

*2 hrs. theory shall be taught to the entire class.

Examination Scheme for Semester V

]	Examinati	on Scheme	e					
Course Code	Course Name		The ernal (A)		ernal Term (A)		n work Practic		etical	O	ral	Pract./Oral		Total Marks
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	
BMC501	Diagnostic & Therapeutic Instruments	80	32	20	8									100
BMC502	Analog and Digital Circuit Design	80	32	20	8									100
BMC503	Principles of Communication Engineering	80	32	20	8									100
BMC504	Biomedical Digital Image Processing	80	32	20	8									100
BMDLO 501X	Department Level Optional Course – I	80	32	20	8									100
BML501	Business Communication and Ethics					50	20							50
BML502	Diagnostic and Therapeutic Instruments					25	10			25	10			50
BML503	Integrated and Communication Circuit Design					25	10	25	10					50
BML504	Biomedical Digital Image Processing					25	10					25	10	50
BMDLL 501X	Department Level Optional Course Laboratory – I					25	10			25	10			50
	Total	400	160	100	40	150	60	25	10	50	20	25	10	750

Scheme for Semester VI

Course Code	Course Name		Teaching Scher (Contact Hour		Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
BMC601	Biomedical Monitoring Equipment	04			04			04	
BMC602	Microprocessors and Microcontrollers	04			04			04	
BMC603	Digital Image Processing	04			04			04	
BMC604	Medical Imaging-I	04			04			04	
BMDLO602X	Department Level Optional Course – II	04			04			04	
BML601	Biomedical Monitoring Equipment		02			01		01	
BML602	Microprocessors and Microcontrollers		02			01		01	
BML603	Digital Image Processing		02			01		01	
BML604	Medical Imaging-I		02			01		01	
BMDLL602X	Department Level Optional Course Laboratory – II		02			01		01	
	Total	20	10		20	05		25	

Examination Scheme for Semester VI

]	Examinati	on Schem	e					
Course	C N	Exte	The	eory Inte	rnal	Term	work	Prac	ctical	O	ral	Pract	act./Oral	Total
Code	Course Name	(U	(A)	(C	A)									Marks
		Max Marks	Min Marks											
BMC601	Biomedical Monitoring Equipment	80	32	20	8									100
BMC602	Microprocessors and Microcontrollers	80	32	20	8									100
BMC603	Digital Image Processing	80	32	20	8									100
BMC604	Medical Imaging-I	80	32	20	8									100
BMDLO 602X	Department Level Optional Course – II	80	32	20	8									100
BML601	Biomedical Monitoring Equipment					25	10					25	10	50
BML602	Microprocessors and Microcontrollers					25	10					25	10	50
BML603	Digital Image Processing					25	10					25	10	50
BML604	Medical Imaging-I					25	10			25	10			50
BMDLL 602X	Department Level Optional Course Laboratory – II					25	10			25	10			50
	Total		160	100	40	125	50			50	20	75	30	750

Program Structure for BE Biomedical Engineering University of Mumbai (With effect from academic year 2019 - 20)

Scheme for Semester VII

Course Code	Course Name		Teaching Scher (Contact Hour		Credits Assigned						
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
BMC701	Life Saving and Surgical Equipment	04			04			04			
BMC702	Very Large Scale Integrated System	04			04			04			
BMC703	Medical Imaging-II	04			04			04			
BMDLO703X	Department Level Optional Course – III	04			04			04			
ILO701X	Institute Level Optional Course – I	03			03			03			
BML701	Life Saving and Surgical Equipment		02			01		01			
BML702	Very Large Scale Integrated System		02			01		01			
BML703	Medical Imaging-II		02			01		01			
BMDLL703X	Department Level Optional Course Laboratory – III		02			01		01			
BML704	Project Stage I		06			03		03			
	Total	19	14		19	07		26			

Examination Scheme for Semester VII

		Examination Scheme												
Course Code	Course Name		The ernal (A)		rnal A)	Term	work	Prac	etical	O	ral	Pract	./Oral	Total Marks
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	
BMC701	Life Saving and Surgical Equipment	80	32	20	8									100
BMC702	Very Large Scale Integrated System	80	32	20	8									100
BMC703	Medical Imaging-II	80	32	20	8									100
BMDLO 703X	Department Level Optional Course - III	80	32	20	8									100
ILO701 X	Institute Level Optional Course – I	80	32	20	8									100
BML701	Life Saving and Surgical Equipment					25	10			25	10			50
BML702	Very Large Scale Integrated System					25	10			25	10			50
BML703	Medical Imaging-II					25	10			25	10			50
BMDLL 703X	Department Level Optional Course Laboratory – III					25	10			25	10			50
BML704	Project Stage I					25	10			25	10			50
	Total		160	100	40	125	50			125	50			750

Scheme for Semester VIII

Course Code	Course Name		Teaching Scher (Contact Hour		Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
BMC801	Biomedical Microsystems	04			04			04		
BMC802	Hospital Management	04			04			04		
BMDLO804X	Department Level Optional Course – IV	04			04			04		
ILO802X	Institute Level Optional Course – II	03			03			03		
BML801	Biomedical Microsystems		02			01		01		
BML802	Hospital Management		02			01		01		
BMDLL804X	Department Level Optional Course Laboratory – IV		02			01		01		
BML803	Project Stage II		12			06		06		
	Total	15	18		15	09		24		

Examination Scheme for Semester VIII

		Examination Scheme												
Course Code	Course Name		The ernal A)		ernal (A)	Term	work	Prac	ctical	0	Oral Pra		./Oral	Total Marks
		Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	Max Marks	Min Marks	
BMC801	Biomedical Microsystems	80	32	20	8									100
BMC802	Hospital Management	80	32	20	8									100
BMDLO 804X	Department Level Optional Course - IV	80	32	20	8									100
ILO802X	Institute Level Optional Course –II	80	32	20	8									100
BML801	Biomedical Microsystems					25	10			25	10			50
BML802	Hospital Management					25	10			25	10			50
BMDLL 801X	Department Level Optional Course Laboratory – IV					25	10			25	10			50
BML803	Project Stage II					50	20					100	40	150
	Total	320	128	80	32	125	50			75	30	100	40	700

Department Level Optional Courses

Course Code	Department level Optional Course - I
BMDLO5011	Healthcare Database Management
BMDLO5012	Biostatistics
BMDLO5013	Rehabilitation Engineering

Course Code	Department level Optional Course - II
BMDLO6021	Healthcare Software
BMDLO6022	Lasers and Fibre Optics
BMDLO6023	Biological Modelling and Simulation


Course Code	Department level Optional Course - III
BMDL07031	Networking and Information in Medical
	System
BMDL07032	Advanced Image Processing
BMDL07033	Embedded Systems

Course Code	Department level Optional Course - IV
BMDL08041	Health Care Informatics
BMDLO8042	Robotics in Medicine
BMDLO8043	Nuclear Medicine

Institute Level Optional Courses

Course Code	Institute level Optional Course - I
ILO7011	Product Lifecycle Management
ILO7012	Reliability Engineering
ILO7013	Management Information System
ILO7014	Design of Experiments
ILO7015	Operation Research
ILO7016	Cyber Security and Laws
ILO7017	Disaster Management and Mitigation Measures
ILO7018	Energy Audit and Management
ILO7019	Development Engineering

Course Code	Institute level Optional Course - II
ILO8021	Project Management
ILO8022	Finance Management
ILO8023	Entrepreneurship Development and Management
ILO8024	Human Resource Management
ILO8025	Professional Ethics and Corporate Social Responsibility
	(CSR)
ILO8026	Research Methodology
ILO8027	IPR and Patenting
ILO8028	Digital Business Management
ILO8029	Environmental Management

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and Course objectives and Course outcomes to be clearly defined for each Course, so that all faculty members in affiliated institutes understand the depth and approach of Course to be taught, which will enhance Learners's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teachercentric to Learners-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade Learners's performance. Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and also to achieve recognition of the institution or program meeting certain specified standards. The main focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a Learner will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Electrical Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Electrical Engineering, more than twenty senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs were finalized for undergraduate program in Electrical Engineering are listed below;

- To provide the overall strong technical foundation to formulate, solve and analyse engineering problems during undergraduate program.
- To prepare Learners to demonstrate an ability to identify, formulate and solve electrical based issues.
- To prepare Learners to demonstrate an ability in the area of design, control, analyse and interpret the electrical and electronics systems.
- To prepare Learners for successful career in industry, research and development.
- To develop the ability among Learners for supervisory control and data acquisition for power system application.
- To provide opportunity for Learners to handle the multidisciplinary projects.
- To create the awareness of the life-long learning and to introduce them to professional ethics and codes of professional practice.

The affiliated institutes may include their own PEOs in addition to the above list

To support the philosophy of outcome based education, in addition to stated PEOs, objectives and expected outcomes are also included in the curriculum. I know, this is a small step taken to enhance and provide the quality education to the stake holders.

Dr. M. V. Bhatkar Chairman, Board of Studies in Electrical Engineering, University of Mumbai

Course	Course Name	Tea	ching Scho	eme	Credits Assigned				
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BMC501	Biomedical Instrumentation-I	4	2	-	4	1	-	5	
BMC502	Microprocessors	4	2	-	4	1	-	5	
BMC503	Analog and Digital Circuits Design	4	2	-	4	1	-	5	
BMC504	Biomedical Digital Signal Processing	4	2	-	4	1	-	5	
BMC505	Principles of Communication Engineering	4	2	-	4	1	-	5	
BML506	Business Communication and Ethics	-	2*+2	-	-	2	-	2	
	TOTAL	20	14	-	20	7	-	27	

Syllabus Scheme for T.E. Semester V Biomedical Engineering

* Theory for entire class to be conducted

		Examination scheme								
Course			Theory	v Marks						
Code	Course Name	Inter	nal Asse	ssment	End	Term work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem exam	WULK		Oral 25 - 25 - 25 - 50		
BMC501	Biomedical Instrumentation-I	20	20	20	80	25	-	25	150	
BMC502	Microprocessors	20	20	20	80	25	-	-	125	
BMC503	Analog and Digital Circuits Design	20	20	20	80	25	25	-	150	
BMC504	Biomedical Digital Signal Processing	20	20	20	80	25	-	25	150	
BMC505	Principles of Communication Engineering	20	20	20	80	25	-	-	125	
BML506	Business Communication and Ethics	-	-	-	-	50	-	-	50	
	TOTAL			100	400	175	25	50	750	

Course	Course Name	Teac	ching Sch	eme	Credits Assigned				
Code	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut - 1 -	Total	
BMC601	Biomedical Instrumentation –II	4	2	-	4	1	-	5	
BMC602	Biostatistics	4	-	1	4	-	1	5	
BMC603	Biological Modeling and Simulation	3	2	-	3	1	-	4	
BMC604	Microcontrollers and Embedded Systems	4	2	-	4	1	-	5	
BMC605	Medical Imaging –I	3	2	-	3	1	-	4	
BMC606	Digital Image Processing	4	2	-	4	1	-	5	
	TOTAL	22	10	1	22	5	1	28	

Syllabus Scheme for T.E. Semester VI Biomedical Engineering

		Examination scheme							
Course	C N		Theory 3	Marks					
Code	Course Name	Intern	al Assess	sment	End	Term work	Pract.	Oral	Total
		Test 1	Test 2	Avg.	Sem exam	WUIK			
BMC601	Biomedical Instrumentation –II	20	20	20	80	25	25	-	150
BMC602	Biostatistics	20	20	20	80	25	-	-	125
BMC603	Biological Modeling and Simulation	20	20	20	80	25	-	-	125
BMC604	Microcontrollers and Embedded Systems	20	20	20	80	25	-	25	150
BMC605	Medical Imaging –I	20	20	20	80	25	-	25	150
BMC606	Digital Image Processing	20	20	20	80	25	25	-	150
	TOTAL				480	150	50	50	850

Course	Course Name	Tea	ching Scho	eme	Credits Assigned				
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BMC501	Biomedical Instrumentation-I	4	2	-	4	1	-	5	
BMC502	Microprocessors	4	2	-	4	1	-	5	
BMC503	Analog and Digital Circuits Design	4	2	-	4	1	-	5	
BMC504	Biomedical Digital Signal Processing	4	2	-	4	1	-	5	
BMC505	Principles of Communication Engineering	4	2	-	4	1	-	5	
BML506	Business Communication and Ethics	-	2*+2	-	-	2	-	2	
	TOTAL	20	14	-	20	7	-	27	

Syllabus Scheme for T.E. Semester V Biomedical Engineering

* Theory for entire class to be conducted

		Examination scheme								
Course			Theory	^v Marks						
Code	Course Name	Inter	nal Asse	ssment	End	Term work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem exam	WUIK		Oral 25 - 25 - 25 - 50		
BMC501	Biomedical Instrumentation-I	20	20	20	80	25	-	25	150	
BMC502	Microprocessors	20	20	20	80	25	-	-	125	
BMC503	Analog and Digital Circuits Design	20	20	20	80	25	25	-	150	
BMC504	Biomedical Digital Signal Processing	20	20	20	80	25	-	25	150	
BMC505	Principles of Communication Engineering	20	20	20	80	25	-	-	125	
BML506	Business Communication and Ethics	-	-	-	-	50	-	-	50	
	TOTAL			100	400	175	25	50	750	

Course	Course Name	Tea	ching Schei	Credits Assigned				
Code	Course Manie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC501	Biomedical Instrumentation-I (abbreviated as BMI-I	4	2	-	4	1	-	5

Course Code		Examination scheme								
	Course Nome	Internal Assessment Ellu			Pract.	Oral				
	Course Name			Term work			Total			
		Test 1	Test 2	Avg.	Sem exam					
BMC501	Biomedical Instrumentation-I	20	20	20	80	25	-	25	150	

~	
Course Objectives	1. To understand the basic principle, working and design of various automated diagnostic equipments.
	2. To develop skills enabling Biomedical Engineers to serve Hospitals, National and
	International Industries and Government Agencies.
	3. To develop core competency in the field of Biomedical Engineering to gain
	technical expertise in biology and medicine for effective contribution in the
	development and improvement of health care solutions.
	4. To study various medical instrumentation systems, drug delivery systems and
	health management systems.
Course Outcomes	Learner will be able to
	1. Demonstrate the principles of electronics used in designing various diagnostic equipment.
	2. Have in-depth knowledge about different streams in Biomedical Engineering with greater emphasis on health care equipments and the advanced technologies such as Telemedicine, Telemetry, Medical Imaging, etc.
	3. Exhibit competency in suggesting, designing and offering the apt, reliable and optimum solution after understanding customer's requirement completely.
	4. Demonstrate ability of correlating theoretical concepts with their practical implementation while performing laboratory exercises and project work.
	5. Provide a better technical support with exposure to the hospitals and health care industry.
	6. Use modern methodologies, multi-disciplinary skill set and knowledge while working on real time projects that demand convergence of engineering, science and technology.

Module	Contents	Time				
1.	Basic principle, technical specification, working and applications of Laboratory					
	Instruments.					
	1. Spectrophotometer					

	2. Colorimeter	
	3. Electrolyte Analyser	
	4. Blood cell counter	
	5. Auto-analyser	
	6. Blood gas analyser	
2.	Basic principle, technical specification, working and applications of Laboratory	10
	Instruments.	
	Electrophoresis and types	
	Chromatography	
	ELISA concepts (direct and indirect), reader & washer	
	Microscopes and its types: optical compound, electron microscope, fluorescence	
	microscope.	
3.	Blood Flow Measurement:	08
	Electromagnetic, Ultrasonic, NMR and Laser Doppler flowmetry, cardiac output	
	measurement, impedance plethysmography.	
4.	Pulmonary Function Analyser and Ventilator:	12
	Respiration measurement technique: Lung volume and capacities. Spirometry,	
	Pulmonary function measurement and analyser, Oximetry, Ventilators and	
	Anesthesia Equipment	
5.	Heart Lung machine and types of artificial oxygenator	03
6.	Audiometers:	05
	Basic audiometer, Pure tone and Speech audiometer, evoked response Audiometry.	

Text books:

- 1. Handbook of Biomedical Enginerring By R.S. Khandpur (TMH Pub).
- 2. Handbook of Analytical Instruments By R.S. Khandpur (TMH Pub).
- 3. Medical Instrumentation, Application and Design By J.G. Webster.
- 4. Medical Electronics A.G. Patil ,R K Jha, R Hariharan(Excel Books, New Delhi)

Reference Books:

- 1. Encyclopedia of medical devices and instrumentation J.G. Webster Vol I, II, III, IV (John Willey).
- 2. Introduction to Biomedical Equipment Technology By Carr.-Brown (Pearson Education Pub)
- 3. Introduction to Biomedical Engineering Joseph Bronzino (CRC Press)
- 4. Various Instruments Manuals
- 5. Various internet resources

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	ching Scher	Credits Assigned					
Code	Course Maine	Theory	Pract.	Tut	Theory	Theory Pract. Tut			
BMC502	Microprocessors (abbreviated as MP)	4	2	-	4	1	-	5	

Course Code		Examination scheme											
	Course Name		Theory	v Marks					Total				
	Course Maine	Interi	nal Asses	sment	End	Term work	Pract.	Oral	Total				
		Test 1	Test 2	Avg.	Sem exam								
BMC502	Microprocessors	20	20	20	80	25	-	-	125				

Course Objectives	1. To develop background knowledge and core expertise in microprocessor.
	2. To study the concepts and basic architecture of 8086 Pentium processor and
	Co-processor 8087.
	3. To know the importance of different peripheral devices and their interfacing to
	8086.
	4. To know the design aspects of basic microprocessor based system.
	5. To write assembly language programs in microprocessor for various
	applications.
Course Outcomes	A Learner will be able to
	1. Understand the architecture and software aspects of microprocessor 8086
	2. Design assembly language program in 8086 for various applications.
	3. Understand co-processor configurations.
	4. Interface techniques with 8086 for various applications.
	5. Use basic concepts of 8087 Co-processor.

Module	Contents	Time
1.	Introduction to Microprocessor	04
	Introduction to Microprocessor and Microcontroller, Microcomputer based system	
	elements ,Generalized block diagram of Microprocessor, RISC & CISC CPU	
	Architectures, Harvard & Von-Neumann CPU architecture, Microprocessor	
	Programming languages, Microcomputer System software, Evolution of	
	Microprocessor	
2.	Architecture of Intel 8086 Microprocessor	08
	8086 Architecture and organization, Pin configuration, Pin Functions, Memory	
	segmentation concept, Minimum and Maximum modes of 8086, 8288 Bus Controller, Read and Write bus cycle of 8086, 8086 Memory organization	
3.	Instruction set and Programming of 8086	10
	8086 Addressing modes, 8086 Instruction encoding formats and instruction set,	
	Assembler directives, 8086 programming and debugging of assembly language	
	program	

4.	Memory Interfacing with 8086: Introduction, Address Decoding, Interfacing 8086 with RAM and ROM, Comparison between Memory Mapped I/O and I/O Mapped I/O	04
5.	Peripherals interfacing with 80868086Interrupt structure, Programmable interrupt controller 8259,8259 interfacingwith 8086,Programmable Peripheral Interface 8255, , 8086 interfacing with ADC,keyboard and seven segment display using 8255, DMA controller 8237,8086interfacing with 8237	10
6.	8087 Math coprocessorIntroduction, 8087 Architecture, Interfacing of 8086 with 8087, 8087 Instruction set,Assembly language Programming based on 8086-8087 system	12

List of Experiments:

- 1. 16 bit Arithmetic operations Addition, Subtraction, Multiplication, Division using 8086
- 2. Logical operations AND, OR, NOT using 8086
- 3. Searching Largest and smallest number using 8086
- 4. Sorting –the numbers in Ascending and Descending order using 8086
- 5. Code Conversion using 8086 (BCD to Hex, BCD to binary, Hex-BCD etc.)
- 6. String Manipulation using 8086
- 7. Interfacing ADC with 8086
- 8. Interfacing DAC with 8086
- 9. Parallel Communication between two microprocessor kits using Mode 1 and Mode 2 of 8255.
- 10. Interfacing 8259 using 8086
- 11. Computation of area of circle using 8087.
- 12. Computation of Hypotenuse using 8087.
- 13. Computation of Roots of Quadratic equation using 8087.

Text books:

- 1. "8086/8088 family: "Design, Programming an Interfacing", John Uffenbeck: Prentice Hall, 2nd Edition
- 2. Microcomputer systems 8086/8088 family, Architecture, Programming and Design -Yu-Cheng Liu & Glenn A Gibson, 2nd Edition-July 2003, Prentice Hall of India.
- 3. "Advanced Microprocessor and Peripherals Architecture, Programming and Interfacing", A.K.Ray & K.M Bhurchandi, Tata Mc Graw Hill , 2006.

Reference Books:

- 1. "Microprocessors and Interfacing : Programming and Hardware", Douglas V.Hall, second edition, Tata Mc Graw Hill, 2006.
- 2. "IBM PC Assembly language and programming"Peter Abel, , fifth edition
- 3. "Pentium Processor System Architecture", Don Anderson, Tom Shanley: MindShare Inc., 2nd Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks

of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	Teaching Scheme			Credits Assigned				
Code	Course Ivanie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total		
BMC503	Analog and Digital Circuits Design (abbreviated as ADCD)	4	2	-	4	1	-	5		

Course		Examination scheme								
		Theory Marks								
Code	Course Name	TUONZ	Pract.	Oral	Total					
		Test 1	Test 2	Avg.	Sem exam					
BMC503	Analog and Digital Circuits Design	20	20	20	80	25	25	-	150	

P	
Course Objectives	1. To understand and provide knowledge of various Analog And Digital Circuits
	Such as Timer IC 555, PLL IC, VCO, 723 voltage regulator.
	2. To understand different types of filters and design them for the given
	specifications.
	3. To understand, learn and analyze fundamentals of Electronics and Digital circuits.
	4. To develop analytical aptitude and to understand basic electronic concepts related
	to engineering profession.
	5. To develop competency in terms of logical thinking, programming and application skills.
	6. To design and develop various circuits for biomedical applications and to develop
	logical thinking of students.
Course Outcomes	Learner will be able to
course outcomes	1. Acquire the ability to design practical circuits by selecting proper IC chips needed
	for a particular application
	2. Demonstrate knowledge of important concepts from basic sciences and
	mathematics thus building upon the base obtained in higher school.
	3. Demonstrate capability of designing, executing, debugging electronics circuits
	thus developing an analytical aptitude.
	4. Exhibit competency in suggesting, designing and offering the apt, reliable and optimum solution after understanding customer's requirement completely.
	5. Demonstrate ability of correlating theoretical concepts with their practical implementation while performing laboratory exercises and project work.
	6. Use modern methodologies, multi-disciplinary skill set and knowledge while
	working on real time projects that demand convergence of engineering, science
	and technology.
	and commonog.

Module	Contents	Time
1.	Waveform Generation IC's:	12
	IC 555 Functional Block diagram, Circuit diagram.	
	• IC 555 in Astable Multivibrator(AMV) functional diagram, circuit diagram	
	with application	
	• IC 555 in Monostable Multivibrator (MMV) functional diagram, circuit	
	diagram with application	
	• PLL (IC 565 or equivalent) circuit diagram, and its applications	
	• VCO(IC 566) Circuit diagram and its applications.	
	Function Generator (IC 8038 or equivalent) Circuit diagram and its applications	
2.	Special Function IC's:	06
	• F-V convertors and V-F convertors: Circuit diagram and its applications	
	• Instrumentation Amplifier (AD 624 /AD 620) Circuit diagram and its	
	applications,	
	Monolithic Isolation Amplifier module	
	Opto-couplers and Opto-isolators	
	PWM (SG 3525 or equivalent) Circuit diagram and its applications	
3.	Active Filters:	12
	• Frequency response, design of first order (LP, HP, BP) filter and applications.	
	• Frequency response, design of 2 nd order (Chebyshev, Butterworth, Elliptical	
	filters) LP, HP, BP, All pass, Notch, band reject	
	• KRC filter.	
	Capacitor filter, switched capacitor filter.	
	Generalized Impedance Convertor (GIC)	
4.	Power Devices and Circuits:	06
	• SCR's: Basic structure, characteristics, Two transistor and Operations. series	
	and parallel connections of SCRs.	
	• DIAC and TRIAC: Basic Structure and characteristics, applications	
	 UJT: Operation, characteristics, parameters and UJT as a relaxation oscillator 	
	Power MOSFET : Device structure, equivalent circuit and characteristics	
5.	Voltage Controllers and Regulators :	06
0.	 Analog switches, Relays : Basic Types 	00
	 Functional block diagram of Voltage Regulators 	
	 Types of voltage regulators: Fixed voltage regulators (78XX and 79XX), 	
	• Types of voltage regulators. Fixed voltage regulators (78XX and 79XX), Adjustable voltage regulators, linear voltage regulator IC 723, Design of low	
	voltage regulator and high voltage regulator using 723.	
	Switching Mode Power Supply (SMPS)	
6.	Motors And Drivers :	06
0.	Stepper, Servo, DC/AC Motors drivers and geared motors (Basic operation and	00
	application)	
L ist of	Experiments:	

List of Experiments:

- 1. Design AMV for Duty cycle $\geq 50\%$
- 2. Design MMV given duty cycle
- 3. Application of AMV square wave generator /

- 4. Application of MMV as a missing pulse detector / frequency divider
- 5. PLL
- 6. VCO
- 7. Function Generator IC
- 8. Design for Band pass Filter /Band reject
- 9. Design of Notch filer / Twin T filter
- 10. Design of Low Pass Filter/ High pas Filter
- 11. Instrumentation Amplifier
- 12. IC 723 Voltage regulator

Text books:

- 1. Op-Amps and linear integrated circuits R. Gayakwad
- 2. Linear Integrated Circuits: Roy Chaudhary
- 3. Design with operational amplifiers and analog integrated circuits. Sergio Franco,
- 4. Integrated Circuits K.R.Botkar.
- 5. Power Electronics, Ned Mohan.
- 6. Power Electronics, M.H.Rashid.
- 7. Power Electronics, M.D.Singh and K.B.Khanchandani,

Reference Books:

- **1.**Integrated Electronics –Millman & Halkias
- 2. Opamps and linear integrated circuits, Theory and Applications- James Fiore.
- 3. Power Electronics, P.C.Sen.
- 4. Power Electronics, Dr.P.S.Bimbhra,

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Practical and Oral Examination:

Practical and oral examination will be based on experiments performed during the term and the Course - project.

Term Work:

Term work consists of minimum six experiments and a Course – project based on the syllabus. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:10 marks
Course project	:10 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Теа	Teaching Scheme			Credits Assigned				
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total		
BMC504	Biomedical Digital Signal Processing (abbreviated as BDSP)	4	2	-	4	1	-	5		

Course		Examination scheme									
	Course Name		Theory	v Marks							
Code		Interi	nal Asses	sment	End Sem	Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	exam			Oral			
BMC504	Biomedical Digital Signal Processing	20	20	20	80	25	-	25	150		

Course Objectives	1. To build a strong base for developing algorithms for signal processing systems							
	and Imaging systems.							
	2. To develop competency in terms of logical thinking, programming and							
	application skills.							
	11							
	3. To train and motivate students for pursuing higher education and research for							
	developing cutting edge technologies.							
Course Outcomes	A learner will be able to							
	1. Understand the fundamental techniques and applications of digital signal							
	processing with emphasis on biomedical signals.							
	2. Implement algorithms based on discrete time signals.							
	3. Understand Circular and linear convolution and their implementation using DFT							
	analyse signals using discrete Fourier transform.							
	4. Understand efficient computation techniques such as DIT and DIF FFT							
	algorithms							
	5. Design FIR filters using window method, digital IIR filters by designing							
	prototype analog filters and then applying analog to digital conversion.							

Module	Contents	Time
1.	Basic Elements of DSP concepts of frequency in analog and digital signals -sampling	08
	theorems –Discrete time signals and systems- Properties –Z-transform- linear &	
	circular convolution- Correlation –DTFT	
2.	Introduction to DFT-Properties of DFT,	06
3.	Introduction DIT and DIF FFT algorithms. Use of FFT in linear filtering, Discrete	06
	Cosine transforms	
4.	Review of Design of analog Butterworth and Chebyshev Filters, Frequency	12
	transformation in analog domain, Design of IIR Digital Filters using Impulse	
	invariance method-Design of digital Filters using Bilinear transformation	
5.	Structure of FIR filters-Linear phase filters –Filter design using window technique-	10

	Frequency sampling techniques –Finite Word length effects in digital filters.	
	Realisation of FIR &IIR filters Direct, cascade and parallel forms	
6.	Introduction to Digital signal Processors–Architecture –Features-addressing formats	06
	-functional mode-introduction to commercial Processors. Application of DSP in	
	Biomedical Applications	

List of Experiments:

- 1. Basics of Programming
- 2. Simulations of standard signals
- 3. Concept of Aliasing
- 4. Linear convolution circular convolution
- 5. Discrete Fourier Transform(DFT)
- 6. Design and simulation of FIR filter
- 7. IIR filters using Butterworth approximation
- 8. IIR filter using Chebyshev approximation

Text books:

- 1. Digital signal processing Principles Algorithms and Application –Proakis &Manolakis Third edition PHI
- 2. Digital Signal Processing -Sanjit K. Mithra Tata Mc-graw Hill
- 3. Digital Signal Processing S. Salivahanan, C.Gnanapriya, 2/ed Tata McGraw Hill

Reference Books:

- 1. Digital signal processing A.V. Oppenheim and R.W.Schafer- PHI
- 2. Understanding Digital Signal Processing –Richard G. Lyons-3/ed Pearson Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal):20 marksAttendance (Practical and Theory):05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	ching Scher	Credits Assigned				
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC505	Principles of Communication Engineering (abbreviated as PCE)	4	2	-	4	1	-	5

Course		Examination scheme									
		Theory Marks									
Code	Course Name	Interi	nal Asses	sment	End	Term work	Pract. Oral	Oral	Total		
		Test 1	Test 2	Avg.	Sem exam			Oral			
BMC505	Principles of Communication Engineering	20	20	20	80	25	-	-	125		

Course Objectives	 Provides introduction to the basic principles and techniques used in analog and digital communications. To covers a range of digital modulation techniques which are frequently used in modern communication systems.
Course Outcomes	A Learner will be able to1. Use the concepts of communication in various biomedical application such as telemetry system, telemedicine.

Module	Contents	Time						
1.	Introduction to communication system :	04						
	Elements of communication system, types of communication system, Noise, Signal							
	to Noise ratio, Noise factor, Noise figure, Noise Temperature							
2.	Amplitude Modulation :	13						
	Mathematical analysis of Am wave, Different types of AM Spectrum, Bandwidth,							
	waveform, DSBFC(Grid Modulated, Plate Modulated, Collector							
	Modulated),DSBSC(FET Balanced Modulator, Ring Diode modulator),SSB(Phase							
	shift method, Filter method, Third method) and Introduction of ISB and VSB, Low							
	level and high level modulator transmitter							
	AM Receiver:							
	Receiver Parameters sensitivity, selectivity, fidelity, double spotting, Image							
	frequency and its rejection, dynamic range TRF receiver, superetrodyne receiver,							
	double conversion receiver							
	AM detectors –Simple and Practical Diode detector, Principles and types of tracking,							
	Principles and types of AGC, Demodulation of DSBSC and SSB waves							
3.	FM Modulation :	09						
	Principles of FM waveform, spectrum, Bandwidth, FM generation –							

06
11
05

List of Experiment:

- 1. DSB-SC, DSB-FC, SSB AM generation and detection
- 2. FM generation and detection
- 3. Pre-emphasis and De-emphasis
- 4. Sampling and reconstruction
- 5. PAM generation and detection
- 6. PWM generation and detection
- 7. PPM generation and detection
- 8. PCM generation and detection
- 9. DM generation and detection
- 10. Time division multiplexing
- 11. Frequency division multiplexing

Text books:

- 1. Electronic communication system Wayne Tomasi, Pearson Education
- 2. Electronic communication system Roy Blake, Thomson Learning
- 3. Electronic communication system Kennedy and Devis, TMH

Reference Books:

- 1. Digital and Analog communication system Leon W Couch, Pearson Education
- 2. Principles of communication system Taub and Schilling ,TMH

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course Code	Course Name	Теа	ching Schei	Credits Assigned				
		Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BML506	Business Communication and Ethics (abbreviated as BCE)	-	2*+2	-	-	2	-	2

* Theory for entire class to be conducted

Course Code		Examination scheme								
	Course Name		Theory	v Marks						
		Interi	nal Asses	sment	End	em work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem exam					
BML506	Business Communication and Ethics	-	-	-	-	50	-	-	50	

Course Objectives	1. To inculcate in students professional and ethical attitude, effective communication skills, teamwork, skills, multidisciplinary approach and an ability to understand engineer's social responsibilities.								
	2. To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.								
	3. To inculcate professional ethics and codes of professional practice								
	 4. To prepare students for successful careers that meets the global Industrial and Corporate requirement' provide an environment for students to work of Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc. 								
Course Outcomes	A learner will be able to								
	1. Communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities								
	2. Participate and succeed in Campus placements and competitive examinations like GATE, CET.								
	3. Possess entrepreneurial approach and ability for life-long learning.								
	4. Have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.								

Module	Contents	Time
1.	Report Writing	07
	Objectives of report writing	
	Language and Style in a report	
	Types of reports	

	Formats of reports: Memo, letter, project and survey based	
2.	Technical Proposals	02
	Objective of technical proposals	
	Parts of proposal	
3.	Introduction to Interpersonal Skills	07
	Emotional Intelligence	
	Leadership	
	Team Buliding	
	Assertiveness	
	Conflict Resolution	
	Negotiation Skills	
	Motivation	
	Time Management	
4.	Meetings and Documentation	02
	Strategies for conducting effective meetings	
	Notice	
	Agenda	
	Minutes of the meeting	
5.	Introduction to Corporate Ethics and etiquettes	02
	Business Meeting etiquettes, Interview etiquettes, Professional and work etiquettes, Social skills	
	Greetings and Art of Conversation	
	Dressing and Grooming	
	Dinning etiquette	
	Ethical codes of conduct in business and corporate activities (Personal ethics,	
	conflicting values, choosing a moral response, the process of making ethical	
	decisions)	
6.	Employment Skills	06
	Cover letter	
	Resume	
	Group Discussion	
	Presentation Skills	
	Interview Skills	
	Total	26

References

- 1. Fred Luthans, "Organizational Behavior", Mc Graw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", Mc Graw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. R.C Sharma and Krishna Mohan, "Business Correspondence and Report Writing",

- 7. B N Ghosh, "*Managing Soft Skills for Personality Development*", Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 9. Bell . Smith, "Management Communication" Wiley India Edition, 3rd edition.
- 10. Dr. K. Alex ,"Soft Skills", S Chand and Company
- 11. Dr.KAlex,"SoftSkills",S Chand and Company
- 12. R.Subramaniam, "Professional Ethics" Oxford University Press 2013.

List of Assignments

- 1. Report Writing (Synopsis or the first draft of the Report)
- 2. Technical Proposal (Group activity, document of the proposal)
- 3. Interpersonal Skills (Group activity and Role play)
- 4. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 5. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 6. Corporate ethics and etiquettes (Case study, Role play)
- 7. Cover Letter and Resume
- 8. Printout of the PowerPoint presentation

Term Work

Term work shall consist of all assignments from the list.

The distribution of marks for term work shall be as follows:

- Assignments : 20 marks
- Project Report Presentation: 15 marks
- Group Discussion: 10 marks
- Attendance : 05 marks

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

Course	Course Name	Teac	ching Sch	eme	Credits Assigned			
Code	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC601	Biomedical Instrumentation –II	4	2	-	4	1	-	5
BMC602	Biostatistics	4	-	1	4	-	1	5
BMC603	Biological Modeling and Simulation	3	2	-	3	1	-	4
BMC604	Microcontrollers and Embedded Systems	4	2	-	4	1	-	5
BMC605	Medical Imaging –I	3	2	-	3	1	-	4
BMC606	Digital Image Processing	4	2	-	4	1	-	5
	TOTAL	22	10	1	22	5	1	28

Syllabus Scheme for T.E. Semester VI Biomedical Engineering

		Examination scheme									
Course			Theory 3	Marks							
Code	Course Name	Intern	al Assess	sment	End	Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	Sem exam	WUIK					
BMC601	Biomedical Instrumentation –II	20	20	20	80	25	25	-	150		
BMC602	Biostatistics	20	20	20	80	25	-	-	125		
BMC603	Biological Modeling and Simulation	20	20	20	80	25	-	-	125		
BMC604	Microcontrollers and Embedded Systems	20	20	20	80	25	-	25	150		
BMC605	Medical Imaging –I	20	20	20	80	25	-	25	150		
BMC606	Digital Image Processing	20	20	20	80	25	25	-	175		
	TOTAL			120	480	150	50	50	850		

Course Code	Course Nome	Tea	ching Scher	Credits Assigned				
	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC601	Biomedical Instrumentation-II (abbreviated as BMI-II)	4	2	-	4	1	-	5

		Examination scheme								
Course		N DT		Theory	/ Marks					
Code	(Course Name	Inter	nal Assess	sment	End	Term work	Pract.	Oral	Total
			Test 1	Test 2	Avg.	Sem exam				
BMC601	Biomed Instrum	lical nentation-II	20	20	20	80	25	25	-	150
Course Obj	ectives			ic princi	ple, worl	king and	design	of vario	ous auto	omated
	Course Objectives1. To understand the basic principle, working and design of various automated diagnostic equipments.2. To develop skills enabling Biomedical Engineers to serve Hospitals, National and International Industries and Government Agencies.3. To develop core competency in the field of Biomedical Engineering to gain technical expertise in biology and medicine for effective contribution in th development and improvement of health care solutions.4. To study various medical instrumentation systems, drug delivery systems and health management systems.Course OutcomesLearner will be able to 1. Demonstrate the principles of electronics used in designing various diagnosti equipment.2. Have in-depth knowledge about different streams in Biomedical Engineering with							nal and o gain in the ns and gnostic ng with		
		 greater emphas Telemedicine, ' 3. Exhibit compe optimum soluti 4. Demonstrate a implementation 5. Provide a bette industry. 6. Use modern r working on rea and technology 	Telemetry tency in on after un ability of a while per technic nethodolo al time p	y, Medica suggestin inderstan f correla erforming cal suppo	al Imagin ng, desig ding cust tting the g laborato rt with ex ulti-discip	g, etc. ming and comer's re- oretical ory exercis xposure to plinary sl	offering quireme concepts ses and p o the ho kill set	g the app nt compl with t project w spitals a and kno	t, reliab etely. heir pr ork. nd heal wledge	le and cactical th care while

Module	Contents	Time
1.	Generation of Bioelectric Potentials:	05
	Basic cell physiology, Nerve, Muscle, Pacemaker and Cardiac muscle	

2.	Biophysical signal capture, processing and recording systems (with technical specifications):Typical medical recording system and general design consideration. Sources of noise in low level recording circuits and their removal techniques. ECG, EMG, EEG, Electrode placement and Measuring techniques for EOG, ERG and Phonocardiography. Measurement of skin resistance.Biophysical signal capture, processing and recording systems (with technical specifications):Typical medical recording system and general design consideration. Sources of noise in low level recording circuits and their removal techniques. ECG, EMG, EEG, Electrode placement and Measuring techniques for EOG, ERG and Phonocardiography. Measurement of skin resistance.	13
3.	Biofeedback Technique: EEG, EMG Patient Monitoring System:	10
5.	Measurement of Heart Rate, Pulse rate, Blood pressure, Temperature and Respiration rate, Apnea Detector. Electrical Safety in Biophysical Measurements.	10
	Heart rate variability measurement and applications.	
4.	Arrhythmia and Ambulatory Monitoring Instruments: Cardiac Arrhythmias, waveforms and interpretation from them. Stress test measurement.	08
	Ambulatory monitoring instruments-Holter monitor Point of care devices and their design considerations for homecare devices: glucometer (kidney function), disposable lung function test.	
5.	Foetal and Neonatal Monitoring System: Cardiotocograph, Methods of monitoring of Foetal Heart rate , Incubator and Infant warmer. Non stress test monitoring.	06
6.	Biotelemetry, Telemedicine concepts and its application	06

Text books:

- 1. Handbook of Biomedical Engineering by R.S. Khandpur, PHI
- 2. Medical Instrumentation, Application and Design by J.G. Webster, TMH.
- 3. Introduction to Biomedical Equipment Technology by Carr.-Brown (Pearson

Education Pub)

4. Introduction to Biomedical Engineering by J Bronzino

Reference Books:

- 1. Encyclopaedia of medical devices and instrumentation J.G. Webster Vol I, II, III, IV (John Willey).
- 2. Principles of applied Biomedical Instrumentation by Geddes and Becker, Wiley interscience publication.
- 3. Principles of Biomedical Instrumentation and Measurement by Richard Aston
- 4. Various Instruments Manuals.
- 5. Various internet resources.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	ching Schei	Credits Assigned				
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC602	Biostatistics (abbreviated as BST)	4	-	1	4	-	1	5

Course Code				Exa	amination	scheme			
	Course Norme		Theory Marks						
	Course Name	Internal Assessment			End Som Work		Pract.	Oral	Total
		Test 1	Test 2	Avg.	Sem exam				
BMC602	Biostatistics	20	20	20	80	25	-	-	125

Course Objectives	 To cover basic concepts and theory related to statistics. To focus on various statistical abilities such as analysis of variance, hypothesis
	testing, estimation, etc.
Course Outcomes	A learners will be able to
	1. Apply statistical methods to sample data and analyse it.
	2. Develop a strong foundation for designing algorithms for computation.

Module	Contents	Time
1.	Descriptive statistics and probability	04
	Frequency distribution, Measures of central tendency, Measures of dispersion	
	Basic probability and Bayes theorem.	
2.	Probability and Sampling Distributions	10
	Discrete probability distributions	
	Continuous probability distributions - Binomial, poisson and normal distributions	
	Sampling distributions – sample mean, difference between two sample means,	
	sample proportions, difference between two sample proportions	
3.	Estimation	07
	t- distribution	
	Confidence intervals for - population mean, difference between two population	
	means, population proportion, difference between two population proportions,	
	variance of normally distributed population, ratio of variances of two normally	
	distributed populations	
	Determination of sample size for estimating mean and proportions	
4.	Hypothesis testing	07
	Hypothesis testing for – Population mean, difference between two population means,	
	population proportions, difference between two population proportions, population	
	variance, ratio of two population variances	
	Type – I and II error and power of test	
5.	Analysis of variance	13
	Completely randomized design, Randomized complete block design, repeated	

	measures design, factorial experiment.	
	Regression and Correlation	
	Simple linear regression, correlation model, correlation coefficient, multiple	
	regression, multiple correlation	
6.	Chi square distribution and analysis of frequency	07
	Chi-square distribution – properties	
	Test of goodness of fit, independence and homogeneity	

List of Tutorials:

- 1. Descriptive statistics and probability
- 2. Discrete probability distributions
- 3. Continuous probability distributions
- 4. Sampling distributions
- 5. Estimation
- 6. Hypothesis testing
- 7. Analysis of variance
- 8. Regression and Correlation
- 9. Chi square distribution and analysis of frequency

Text books:

- 1. Biostatistics A foundation for analysis in health sciences by Wayne W. Daniel, Seventh edition, Wiley India
- 2. Fundamentals of mathematical statistics by S. C. Gupta and V. K. Kapoor, second edition, Sultan Chand Publisher
- 3. Probability and statistics for engineers by J. Ravichandran, Wiley /india
- 4. Biostatistics How it works by Steve selvin, Pearson education
- 5. An Introduction to Biostatistics by Sunder Rao and J. Richard, Third Edition, Prentice Hall of India
- 6. Probability and Statistics by Schaum's series

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

At least 08 tutorials covering entire syllabus must be given during the 'class wise tutorial'. The tutorials should be learners' centric and meaningful, interesting and innovative.

The distribution of the term work shall be as follows, Tutorials

:20 marks

Attendance (Tutorial and Theory):05 marksThe final certification and acceptance of term-work ensures the satisfactory performance in
tutorial. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Теа	ching Scher	ne	Credits Assigned				
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BMC603	Biological Modeling and Simulation (abbreviated as BMS)	3	2	-	3	1	-	4	

Course Code		Examination scheme								
	Course Norme	Theory Marks								
	Course Name	Internal Assessment			End	Term work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem exam					
BMC603	Biological Modeling and Simulation	20	20	20	80	25	-	-	125	

Course Objectives	1. To understand basic concepts of modeling for designing biological model.						
	. To simulate physiological processes for better understanding.						
	3. To develop competency in terms of logical thinking, programming and						
	application skills						
	4. To train and motivate students for pursuing higher education and research for						
	developing cutting edge technologies.						
Course Outcomes	A learner will be able to						
	1. Design hardware and develop software for various biomedical systems.						
	2. To use various simulation software for modeling biological systems.						

Module	Contents	Time				
1.	Physiological Modeling: Steps in Modeling, Purpose of Modeling, lumped	04				
	parameter models, distributed parameter models, compartmental modeling, modeling					
	of circulatory system, regulation of cardiac output and respiratory system.					
2.	Model of Neurons: Biophysics tools, Nernst Equation, Donnan Equilibrium, Active	11				
	Transport (Pump) GHK equation, Action Potential, Voltage Clamp, Channel					
	Characteristics, Hodgkin- Huxley Conductance Equations, Simulation of action					
	potential, Electrical Equivalent model of a biological membrane, impulse					
	propagation- core conductor model, cable equations.					
3.	Neuromuscular System: modeling of skeletal muscle, mono and polysynaptic	06				
	reflexes, stretch reflex, reciprocal innervations, two control mechanism, Golgi					
	tendon, experimental validation, Parkinson's syndrome.					
4.	Eye Movement Model: Four eye movements, quantitative eye movement models,	06				
	validity criteria.					
5.	Thermo regulatory systems: Thermoregulatory mechanisms, model of	03				
	thermoregulatory system, controller model, validation and application.					

6.	Modelling of other physiological systems.	06
	Modelling the Immune response: Behavior of the immune system, linearized model	
	of the immune response.	
	Modelling of Drug delivery systems.	
	Modelling of Insulin Glucose feedback system and Pulsatile Insulin secretion	

List of Experiments/Assignments:

Experiments can be carried out using any of these softwares.

- 1. Simulations using MATLAB
- 2. Simulations using HHSim
- 3. Simulations using Neurons in Action
- 4. Developing a model of neuron using NEURON

Text books:

- 1. Bioengineering, Biomedical, Medical and Clinical Engg.: A.Teri Bahil.
- 2. Signals and systems in Biomedical Engg.: Suresh R Devasahayam.
- 3. Bio-Electricity A quantitative approach by Barr and Ploncey

Reference Books:

1. Biomedical Engineering Handbook by Bronzino (CRC Press)

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum six experiments and two assignments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course Code	Course Name	Теа	ching Schei	Credits Assigned				
	Course Manie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC604	Microcontrollers and Embedded Systems (abbreviated as MES)	4	2	-	4	1	-	5

	Course Name	Examination scheme							
Course		Theory Marks							
Code					End	Term work	Pract.	Oral	Total
		Test 1	Test 2	Avg.	exam				
BMC604	Microcontrollers and Embedded Systems	20	20	20	80	25	-	25	150

Course Objectives	 To learn the basics of Microcontroller designing and interfacing. To understand and improve programming concepts.
Course Outcomes	A learner will be able to
	1. Develop understanding of hardware design and will be able to design controller based real time applications.
	2. Develop programming skills for designing and developing automated and user friendly systems.

Module	Contents	Time
1.	Embedded Systems	04
	Definition of embedded systems, overview of embedded systems and its	
	classification, design challenges, processor technology, IC technology, design	
	technology and tradeoffs, examples of embedded systems	
2.	MCS-51 Microcontroller	10
	8051 architecture ; its variants and comparision, comparision of microprocessor and	
	microcontrollers, CPU timing and machine cycle, memory organisation, SFR's,	
	integrated prepherials such as timers/counters, serial ports, parallel I/O ports,	
	interrupt structure, memory interfacing power saving and power down modes.	
3.	8051programming	12
	Assembly language programming process, programming tools, Instruction set in	
	detail and addressing modes, Programming practice using assembly and C compilers	
4.	Microcontroller design and interfacing case studies	12
	Interfacing with external memories, Interfacing with 8255, Interfacing with 7	
	segment display, Interfacing with keyboard, interfacing with LCD, Interfacing with	
	ADC, DAC and Sensors, Interfacing with stepper motor	
	Interfacing with PC using RS232	
5.	Serial Communication Protocols	05
	Operation of serial port, programming for asynchronous serial communication, Serial	
	Communication using the 'I2C', SPI, Introduction to USB & CAN bus.	

6.	Real time operating system	05
	Introduction to RTOS concept, RTOS scheduling models interrupt latency and	
	response times of the tasks as performance metric. Example of any small RTOS	
	system	

Text books:

- 1. The 8051 microcontrollers-Kenneth J Ayala
- 2.Embedded systems-architecture, programming and design, Rajkamal, Tata McGraw Hill

3.Embedded System Design: A unified Hardware/Software Introduction Frank Vahid, Toney Givargis- John Wiley publication

3.An Embedded Software Primer David E. Simon - Pearson Education

- 4. The 8051 Microcontroller and Embedded Systems Muhammad A Mazidi, , Pearson Education
- 5. Using MCS-51 Microcontroller Han-Way Huang,.
- 6. 8051 microcontroller hardware, software applications.V U dayashankara, M S Mallikarjunaswamy,

Reference Books:

1. Sriram Iyer and Pankaj Gupta, Embedded Realtime systems programming, Tata McGraw Hill

2. Embedded Microcomputer Systems- Real time Interfacing -Valvano

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Oral Examination:

Oral examination will be based entire syllabus and on the Course -project.

Term Work:

Term work consists of minimum five experiments and a Course - project based on the syllabus. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:10 marks
Course project	:10 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course Code	Course Name	Tea	ching Schei	Credits Assigned				
	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC605	Medical Imaging-I (abbreviated as MI-I)	3	2	-	3	1	-	4

Course				Exa	amination	scheme			
	Course Name		Theory						
Code	Course Maine	Interi	nal Asses	sment	End	Term work	Pract	Oral	Total
		Test 1	Test 2	Avg.	Sem ^{we} exam				
BMC605	Medical Imaging-I	20	20	20	80	25	-	25	150

Course Objectives	 To familiarize the learners with the various Imaging techniques in medicine operating principles and quality control aspects of various imaging modalities. To keep the learners abreast with the technological developments in the field of Medical Imaging
Course Outcomes	 A Learner will able to 1. Understand essential physics, concepts of Medical Imaging and how they are employed in diagnosis and therapy. 2. Get familiar with the current techniques of medical Imaging along with their clinical applications. 3. To apprehend the importance of radiation constructive utilization and safety.

Module	Contents	Time						
1.	Ultrasound in Medicine:	10						
	Introduction, Production and Characteristics of Ultrasound							
	Display System : A mode ,B mode and M mode display and applications.							
	Ultrasound transducers and Instrumentation.							
	Real time Ultrasound ,Continuous wave and Pulsed wave Doppler Ultrasound systems, color flow imaging,applications.							
2.	X- ray Imaging:	12						
	Properties of X rays, production of X rays, X ray interaction with matter .							
	Total radiographic System : X – ray tubes, Rating of X ray tubes.							
	X –ray generators, X ray Image and beam Limiting Deices, Controls, X ray Film Development Technique.							
3.	Flouroscopic Imaging and x ray Image Intensifier Digital subtraction	05						
	Angiography							
4.	Computed Radiography and Digital Radiography, Mammography	04						
5.	Medical Thermography: Physics of thermgraphy, Thermographic equipment,	03						
	applications.							

6. Endoscopy : Equipment , Imaging and its applications

Text books:

- 1. Christensen's Physics of Diagnostic Radiology
- 2. Medical Imaging Physics William .R.Hendee

Reference Books:

- 1. Biomedical Technology and Devices by James Moore .
- 2. Biomedical Engineering Handbook by Bronzino
- 3. Physics of Diagnostic images –Dowsett

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The Learners need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Page 37

02

Course	Course Name	Tea	ching Scher	Credits Assigned				
Code	Course maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC606	Digital Image Processing (abbreviated as DIP)	4	2	-	4	1	-	5

Course				Exa	amination	scheme			
	Course Name		Theory						
Code	Course maine	Interi	nal Asses	sment	End	Sem work	Pract.	Oral	Total
		Test 1	Test 2	Avg.	exam				
BMC606	Digital Image Processing	20	20	20	80	25	25	-	150

G 011 1									
Course Objectives	1. To introduce the learners the basic theory of digital image processing.								
	2. To expose learners to various available techniques and possibilities of this field.								
	3. To understand the basic image enhancement, transforms, segmentation,								
	compression, morphology, representation, description techniques & algorithms.								
	4. To prepare learners to formulate solutions to general image processing problems.								
	5. To develop hands-on experience in using computers to process images.								
	6. To familiarize with MATLAB / C/ Labview/ similar software for processing								
	digital images.								
Course Outcomes A learners will be able to									
	1. Acquire the fundamental concepts of a digital image processing system such as								
	image acquisition, enhancement, segmentation, transforms, compression,								
	morphology, representation and description.								
	2. Analyze images in the spatial domain.								
	3. Analyze images in the frequency domain through the Fourier transform.								
	4. Design and implement with MATLAB/C/Labview algorithms for digital image								
	processing operations such as point processing, histogram processing, spatial and								
	frequency domain filtering, denoising, transforms, compression, and								
	morphological processing.								
L	-								

Module	Contents	Time					
1.	Basics of Image Processing: Image acquisition, Processing, Communication,	05					
	Display; Electromagnetic spectrum; Elements of visual perception - Structure of the						
	human eye, Image formation in the eye, Brightness adaptation and discrimination,						
	Image formation model, Uniform and non-uniform sampling, Quantization, Image						
	formats.						
2.	Image Enhancement: Spatial domain - Point processing techniques, Histogram	12					
	processing, Neighbourhood processing, Frequency domain techniques - 2D-DFT,						
	Properties of 2D-DFT, Low pass, High pass, Noise removal, Homomorphic filters,						

	Basics of colour image processing.							
3.	Image Segmentation: Basic relationships between pixels - Neighbours, Adjacency,	08						
	Connectivity, Regions, Boundaries, Distance measures; Detection of discontinuities,							
	Point, Line, Edge detection, Edge linking, Hough transform, Thresholding-based							
	segmentation, Region-based segmentation.							
4.	Image Transforms: DFT, FFT, DCT, DST, Hadamard, Walsh, Haar, Slant, K-L	08						
	Transforms, Basis functions and basis images, Introduction to wavelet transform.							
5.	Image Compression: Fundamentals of image compression models, Lossless	08						
	compression - RLE, Huffman, LZW, Arithmetic coding techniques. Lossy							
	compression - IGS coding, Predictive coding, Transform coding, JPEG, JPEG 2000.							
6.	Morphology, Representation and Description: Dilation, Erosion, Open, Close, Hit-	07						
	or-miss, Boundary extraction, Region filling, Thinning and thickening;							
	Chain Codes, Polygonal approximations, Signatures;							
	Fourier descriptors, Moments.							

List of Experiments (using Matlab / C/ Labview/ similar software)

- 1. Point Processing techniques (At least 4 experiments).
- 2. Spatial domain Filtering.
- 3. Histogram Processing (Histogram Stretching and Equalisation).
- 4. Frequency Domain Filtering (Plotting 2D-DFT, Low pass and High Pass-Butterworth and Gaussian Filters).
- 5. Segmentation-Gradient operators.
- 6. Transforms-DCT.
- 7. Morphology-Dilation Erosion.

Text books:

- 1. Digital Image Processing, Gonzalez and Woods- Pearson Education.
- 2. Fundamentals of Digital Image Processing, A.K. Jain P.H.I.
- 3. Digital Image Processing and Analysis, Chanda Majumder-Printice Hall India.

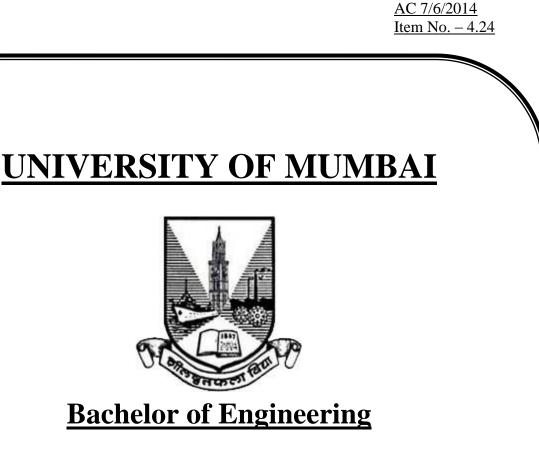
Reference Books:

- 1. Digital Image Processing and Computer Vision, Sonka, Hlavac, Boyle-Cengage learning.
- 2. Digital Image Processing, William Pratt- John Wiley.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:


Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Biomedical Engineering (Fourth Year Sem VII & VIII)

Revised Course (Rev- 2012)

With effect from Academic Year 2015 -16

<u>Under</u>

FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and Course objectives and Course outcomes to be clearly defined for each Course, so that all faculty members in affiliated institutes understand the depth and approach of Course to be taught, which will enhance Learners's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teachercentric to Learners-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade Learners's performance. Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and also to achieve recognition of the institution or program meeting certain specified standards. The main focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a Learner will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Electrical Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Electrical Engineering, more than twenty senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs were finalized for undergraduate program in Electrical Engineering are listed below;

- To provide the overall strong technical foundation to formulate, solve and analyse engineering problems during undergraduate program.
- To prepare Learners to demonstrate an ability to identify, formulate and solve electrical based issues.
- To prepare Learners to demonstrate an ability in the area of design, control, analyse and interpret the electrical and electronics systems.
- To prepare Learners for successful career in industry, research and development.
- To develop the ability among Learners for supervisory control and data acquisition for power system application.
- To provide opportunity for Learners to handle the multidisciplinary projects.
- To create the awareness of the life-long learning and to introduce them to professional ethics and codes of professional practice.

The affiliated institutes may include their own PEOs in addition to the above list

To support the philosophy of outcome based education, in addition to stated PEOs, objectives and expected outcomes are also included in the curriculum. I know, this is a small step taken to enhance and provide the quality education to the stake holders.

Dr. M. V. Bhatkar Chairman, Board of Studies in Electrical Engineering, University of Mumbai

Course	Course Name	Teaching Scheme			Credits Assigned				
Code	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BMC701	Biomedical Instrumentation-III	4	2	-	4	1	-	5	
BMC702	Medical Imaging – II	4	2	-	4	1	-	5	
BMC703	Biomechanics Prosthesis and Orthosis	4	2	-	4	1	-	5	
BMC704	Very Large Scale Integrated Circuits	4	2	-	4	1	-	5	
BMC705	Networking and Information System in Medicine	4	2	-	4	1	-	5	
BMP706	Project Stage – I	-	*	-	-	3	-	3	
	TOTAL	20	16	-	20	8	-	28	

Syllabus Scheme for B.E. Semester VII Biomedical Engineering

* Learner is allotted 6hrs per week for the project work.

				Exa	aminati	on schen	ne		
Course			Theory N	Marks					Total
Code	Course Name	Intern	al Assess	ment	End	Term work	Pract.	Oral	
		Test 1	Test 2	Avg.	Sem exam	WULK			
BMC701	Biomedical Instrumentation-III	20	20	20	80	25	-	25	150
BMC702	Medical Imaging – II	20	20	20	80	25	-	25	150
BMC703	Biomechanics Prosthesis and Orthosis	20	20	20	80	25	-	-	125
BMC704	Very Large Scale Integrated Circuits	20	20	20	80	25	-	-	125
BMC705	Networking and Information System in Medicine	20	20	20	80	25	-	25	150
BMP706	Project Stage – I	-	-	-	-	25	-	25	50
	TOTAL				400	150	-	100	750

Syllabus Scheme for B.E. Semester VIII Biomedical Engineering

Course	Course Name	Teac	ching Sch	eme	Credits Assigned				
Code		Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BMC801	Nuclear Medicine	4	-	1	4	-	1	5	
BMC802	Biomedical Microsystems	4	2	-	4	1	-	5	
BMC803	Hospital Management	4	-	1	4	-	1	5	
BME804	Elective	4	2	-	4	1	-	5	
BMP805	Project Stage – II	-	**	-	-	6	-	6	
	TOTAL	16	16	2	16	8	2	26	

** Learner is allotted 12hrs per week for the project work.

Electives:

BME8011. Lasers and Fiber Optics

BME8012. Robotics in Medicine

BME8013. Health care Informatics

BME8014. Rehabilitation Engineering

				Ex	aminati	on schem	ie		
Course	~		Theory N	Marks					Total
Code	Course Name	Intern	al Assess	ment	End	Term work	Pract.	Oral	
		Test 1	Test 2	Avg.	Sem exam	WUIK			
BMC801	Nuclear Medicine	20	20	20	80	25	-	25	150
BMC802	Biomedical Microsystems	20	20	20	80	25	-	25	150
BMC803	Hospital Management	20	20	20	80	25	-	25	150
BME804	Elective	20	20	20	80	25	-	25	150
BMP805	Project Stage – II	-	-	-	-	50	-	100	150
	TOTAL				320	150		200	750

Course	Course Name	Teac	ching Sch	ieme	Credits Assigned				
Code		Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BMC701	Biomedical Instrumentation-III	4	2	-	4	1	-	5	
BMC702	Medical Imaging – II	4	2	-	4	1	-	5	
BMC703	Biomechanics Prosthesis and Orthosis	4	2	-	4	1	-	5	
BMC704	Very Large Scale Integrated Circuits	4	2	-	4	1	-	5	
BMC705	Networking and Information System in Medicine	4	2	-	4	1	-	5	
BMP706	Project Stage – I	-	*	-	-	3	-	3	
	TOTAL	20	16	-	20	8	-	28	

Syllabus Scheme for B.E. Semester VII Biomedical Engineering

* Learner is allotted 6hrs per week for the project work.

				Exa	aminati	on schem	ie		
Course			Theory N	Marks					Total
Code	Course Name	Intern	al Assess	ment	End	Term work	Pract.	Oral	
		Test 1	Test 2	Avg.	Sem exam	WUIK			
BMC701	Biomedical Instrumentation-III	20	20	20	80	25	-	25	150
BMC702	Medical Imaging – II	20	20	20	80	25	-	25	150
BMC703	Biomechanics Prosthesis and Orthosis	20	20	20	80	25	-	-	125
BMC704	Very Large Scale Integrated Circuits	20	20	20	80	25	-	-	125
BMC705	Networking and Information System in Medicine	20	20	20	80	25	-	25	150
BMP706	Project Stage – I	-	-	-	-	25	-	25	50
	TOTAL				400	150	-	100	750

Course	Course Name	Tea	ching Schei	Credits Assigned				
Code	Course Manie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC701	Biomedical Instrumentation-III (abbreviated as BMI-III)	4	2	-	4	1	-	5

Course Code	Course Name		Examination scheme									
			Theory	v Marks								
		Internal Assessment End				work	Pract.	Oral	Total			
		Test 1	Test 2	Avg.	Sem ^w exam							
BMC701	Biomedical Instrumentation-III	20	20	20	80	25	-	25	150			

Course Objectives	1. To understand the basic principle, working and design of various automated diagnostic equipments.
	2. To develop skills enabling Biomedical Engineers to serve Hospitals, National and
	International Industries and Government Agencies.
	3. To develop core competency in the field of Biomedical Engineering to gain
	technical expertise in biology and medicine for effective contribution in the
	development and improvement of health care solutions.
	4. To study various medical instrumentation systems, drug delivery systems and
	health management systems.
Course Outcomes	A Learner will be able to
	1. Demonstrate the principles of electronics used in designing various diagnostic
	equipment.
	2. Have in-depth knowledge about different streams in Biomedical Engineering with greater emphasis on health care equipments and the advanced technologies such as Telemedicine, Telemetry, Medical Imaging, etc.
	3. Exhibit competency in suggesting, designing and offering the apt, reliable and optimum solution after understanding customer's requirement completely.
	4. Demonstrate ability of correlating theoretical concepts with their practical implementation while performing laboratory exercises and project work.
	5. Provide a better technical support with exposure to the hospitals and health care industry.
	6. Use modern methodologies, multi-disciplinary skill set and knowledge while working on real time projects that demand convergence of engineering, science and technology.
	and technology.

Module	Contents	Time
1.	Physiotherapy, Electrotherapy Equipments: Basic principle, working and	14
	technical specifications of Shortwave Diathermy, Ultrasonic therapy unit, Infrared	
	and UV lamps, Nerve and Muscle Stimulator.	
2.	Surgical Instruments: Surgical Diathermy machine, electrodes used with surgical	10
	diathermy, safety aspects in electronic surgical units, surgical diathermy analyzers.	
3.	Cardiac Pacemakers: Modes of operation, leads and electrodes. Power supply	8
	sources. External and Implantable Pacemaker, Performance aspects of Implantable	
	Pacemaker.	
4.	Cardiac Defibrillators: DC defibrillator, Modes of operation and electrodes,	8
	Performance aspects of dc-defibrillator, defibrillator analyzers. Implantable	
	defibrillator and defibrillator analyzer.	
5.	Hemodialysis Machine: Basic principle of Dialysis and its type. Different types of	4
	dialyzer membrane, Portable type. Various monitoring circuits.	
6.	Laser Applications in Biomedical Engineering	4
	Laser classifications, Types of Lasers, Medical Applications, Laser delivery Systems	
	and safety.	

Text books:

- 1. Handbook of Biomedical Instrumentation: R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)

Reference Books:

- 1. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 2. Various Instruments Manuals.
- 3. Various internet resources.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course Code	Course Name	Tea	ching Scher	Credits Assigned				
		Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC702	Medical Imaging-II (abbreviated as MI-II)	4	2	-	4	1	-	5

Course Code	Course Name		Examination scheme									
			Theory	v Marks								
		Internal Assessment En				Term work	Pract.	Oral	Total			
		Test 1	Test 2	Avg.	Sem exam							
BMC702	Medical Imaging-II	20	20	20	80	25	-	25	150			

Course Objectives	1. To familiarize the learners with the various Imaging techniques in medicine operating principles and quality control aspects of various imaging modalities.					
	2. To keep the learners abreast with the technological developments in the field					
	of Medical Imaging					
Course Outcomes	A Learner will able to					
	1. Understand essential physics, concepts of Medical Imaging and how they are					
	employed in diagnosis and therapy.					
	2. Get familiar with the current techniques of medical Imaging along with their					
	clinical applications.					
	3. To apprehend the importance of radiation constructive utilization and safety.					

Module	Contents	Time						
1.	Principle of Computed tomography	10						
	Scanner configurations/generations, CT system: Scanning unit(gantry), detectors,							
	data acquisition system, spiral CT, scanner parameters, CT Number Reconstruction							
	techniques, Radon Transform, Filtered Back projection, Fourier Reconstruction							
	Technique, Iterative							
	reconstruction Technique, Image quality and artifacts, Clinical applications of CT							
2.	Advancements in CT	06						
	Multi-detector computed tomography (MDCT), Flat panel detectors							
	CT-Angiography contrast agents in CT							
3.	Nuclear Magnetic Resonance:	06						
	Physics of MRI, Relaxation Parameters and Spin Echoes, Magnetic Field Gradients,							
	Slice selection and Frequency Encoding							
4.	Magnetic Resonance Imaging	10						
	Hardware: Magnets, Gradient systems, RF coils, Fourier Reconstruction techniques,							
	Image contrast, Resolution and Factors affecting signal-to-noise. Safety							
	Considerations/Biological Effects of MRI							

5.	Pulse sequences in MRI,Contrst agents MR Angiography,Perfusion MRI, Clinical	08
	applications	
6.	Magnetic Resonance Spectroscopy (MRS)	08
	Basic Principle of MRS and localization techniques, Chemical Shift Imaging, Single-	
	voxel and Multivoxel MRS, Water Suppression techniques	

Text books:

- 1. Physics of Diagnostic Radiology : Christensen
- 2. Medical Imaging Physics William .R.Hendee

Reference Books:

- 1. Biomedical Technology and Devices by James Moore .
- 2. Biomedical Engineering Handbook by Bronzino
- 3. Physics of Diagnostic images –Dowsett

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	ching Schei	Credits Assigned				
Code		Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC703	Biomechanics Prosthesis and Orthosis (abbreviated as BPO)	4	2	-	4	1	-	5

Course Code		Examination scheme								
	Course Name		Theory	y Marks						
		Internal Assessment			End	Term work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem work exam					
BMC703	Biomechanics Prosthesis and Orthosis	20	20	20	80	25	-	-	125	

Course Objectives	1. To recall the general characteristics, mechanical properties of bone and tissues.			
-	2. To analyze the forces at joints for various static and dynamic human activities;			
	analyze the stresses and strains in biological tissues.			
	3. To understand principles used in designing orthoses and prostheses.			
	4. To study different materials used for orthoses and prosthesis.			
5. To understand the fabrication of prostheses and orthoses.				
Course Outcomes	A learner will be able to			
	1. Understand the definition of biomechanics, prostheses orthoses and its			
	classification and design principles.			
	2. Develop a better understanding of how mechanical principles influence human			
	motion during everyday life.			

Module	Contents	Time
	BIOMECHANICS	
1.	Force system:	02
	Classification of force system. Equilibrium of force system.	
2.	Tissue Biomechanics:	12
	Direct shear, bending and torque actions and the corresponding stresses and strains in	
	biological tissues. Stress relaxation and creep. Bone structure & composition,	
	Mechanical properties of bone, Fracture mechanism & crack propagation in bones.	
	Soft connective (skin, tendon, ligaments, etc.) covering structure function, and	
	physiological factors.	
3.	Movement Biomechanics:	08
	Study of joints and movements. Anatomical levers, Gait Analysis.	
4.	Joint analysis:	07
	Instrumentation for gait analysis: Measurement devices-footswitches, instrumented	

	walkway, Motion analysis- interrupted light photography, film/video, Selspot,						
	Goniometers.						
	PROSTHETICS AND ORTHOTICS						
5.	Principles in designing orthoses and prostheses:	06					
	Principles of three point pressure, total contact, partial weight bearing.						
6.	Classification in prosthetics and orthotics: Lower Extremity orthoses and	13					
	prostheses, Upper Extremity orthoses and prostheses. Spinal orthoses.						

List of Experiments:

- 1. To study the concurrent coplanar force system.
- 2. To study the Stress Strain relation of Mild steel
- 3. To study the Classification of the human bones
- 4. To study different types of joints in human body and joint movements
- 5. To study the Classification of Muscles
- 6. To simulate elbow joint using bell crank lever.
- 7. To study the human gait cycle
- 8. To study the Gait Cycle Parameters
- 9. Fabrication of PTB/socket.

The concerned teachers of the Course BPO can arrange the visit in rehabilitation centre.

Text books:

- 1. Basic Biomechanics- Susan J. Hall, MC Graw Hill.
- 2. Basics of Biomechanics" by Dr. Ajay Bahl and others
- 3. Basic Biomechanics of the Musculoskeletal System, M. Nordin, V.Frankel
- 4. Human Limbs and their substitutes Atlas, C. V. Mosby
- 5. American Atlas of Orthopedics: Prosthetics, C. V. Mosby.
- 6. American Atlas of Orthopedics: Orthotics, C. V. Mosby
- 7. Biomechanics Prof Ghista (Private Publication UAE)
- 8. Biomechanics By White and Puyator (Private Publication UAE)

Reference Books:

- 1. Introductory Biomechanics: from cells to tissues by Ethier and Simmons
- 2.Biomechanics: Mechanical properties of living tissues by Y. C. Fung

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	ching Schei	Credits Assigned				
Code		Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC704	Very Large Scale Integrated Circuits (abbreviated as VLSI)	4	2	-	4	1	-	5

Course Code		Examination scheme							
	Course Name		Theory						
		internur rissessment			End	Term work	Pract.	Oral	Total
		Test 1	Test 2	Avg.	Sem exam				
BMC704	Very Large Scale Integrated Circuits	20	20	20	80	25	-	-	125

Course Objectives	 To introduce to various fabrication technologies for electronic devices. To expose to hardware description language which will help them to understand and design various tools for the devices.
Course Outcomes	A Learner will be able to1. Understand the technology behind the integrated circuits and will be able to design them as for various VLSI applications.

Module	Contents	Time
1.	Introduction to VHDL hardware description language, core features of VHDL, data	08
	types, concurrent and sequential statements, data flow, behavioral, structural	
	architecture. Architecture of Xilinx XC4000 FPGA family	
2.	Combinational and Sequential Logic design using VHDL .Using VHDL	08
	combinational circuit design examples- multipliers, decoders and encoders,	
	cascading comparator. VHDL sequential circuit design features. Implementation of	
	counters and registers in VHDL	
3.	Very Large Scale Integration (VLSI) Technology Physics of NMOS, PMOS,	08
	enhancement and depletion mode transistor, MOSFET, threshold voltage, flatband	
	condition, linear and saturated operation, FET capacitance, short channel and hot	
	electron effect.	
4.	MOS Transistors, MOS transistor switches, Basic MOS inverter and its working,	08
	types of MOS invertors viz active load nMOS inverter, MOSFET Inverter with E-	
	nMOS as pull up, MOSFET Inverter with D- nMOS as pull up, MOSFET Inverter	
	with pMOS as pull up, cmos inverter, voltage transfer characteristics, noise immunity	
	and noise margins, power and area considerations, Parameter measurement in MOS	
	circuits	
5.	Silicon Semiconductor Technology Wafer processing, mask generation, oxidation,	08

	epitaxy growth diffusion, ion implantation, lithography, etching, metalization, basic NMOS and PMOS processes. Latch up in CMOS and CMOS using twin tub process. Scaling of MOS circuits, types of scaling and limitations of scaling.	
6.	Design rules and Layout NMOS and CMOS design rules and layout, Design of NMOS and CMOS inverters, NAND and NOR gates. Interlayer contacts, butting and buried contacts, stick diagrams, layout of inverter, NAND and NOR gates. Design of basic VLSI circuits Design of circuits like multiplexer, decoder, priority encoder, Flip flops, shift registers using MOS circuits	08

List of Experiments:

- 1. Study of NMOq W modulation of NMOS channel (Using ORCAD or similar software)
- 2. Study of CMOS Inverter characteristics (Using ORCAD or similar software)
- 3. Basic Logic gates (using VHDL)
- 4. Binary to gray and Gray to Binary code conversion(using VHDL)
- 5. Binary to Excess-3 code conversion(using VHDL)
- 6. Implementation of 4:1/8:1 Mux(using VHDL)
- 7. Implementation of 3:8 Deoder(using VHDL)
- 8. Implementation of one bit Half Adder a Full adder (using VHDL)
- 9. Implementation of 4 bit full adder using half adder as component(using VHDL)
- 10. Implementation of JK flip flop(using VHDL)

Text books:

- 1. Introduction to VLSI design, E. D. Fabricus, McGraw Hill Publications, first edition, 1990
- 2. Basic VLSI Design D.A. Pucknell and Eshraghian,
- 3. Digital Design Principles and Practises John F Wakerly,
- 4. CMOS Digital Integrated Circuits, Kang, Tata McGraw Hill Publications

Reference Books:

- 1. VHDL Programming by Examples Douglas Perry, , Tata McGraw Hill Publications, 2002
- 2. Principles of CMOS VLSI Design : ASystems Perspective Neil H.E. Weste, Kamran Eshraghian second edition, Addison Wesley Publications, 1993
- 3. Digital Integrated Circuits: A Desiqn Perspective, Rabaey Jan M., Chandrakasan Anantha, Nikolic Borivoje, second edition, Prentice Hall of India

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Nome	Tea	ching Schei	Credits Assigned				
Code	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC705	Networking and Information System in Medicine (abbreviated as NISM)	4	2	_	4	1	-	5

		Examination scheme							
Course	Course Name	Theory Marks							
Code		Internal Assessment			End Som Work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	exam				
BMC705	Networking and Information Systems in Medicine	20	20	20	80	25	-	25	150

Course Objectives					
	2. To understand the functioning and configuration of various networking devices				
	and components.				
	3. To understand a concept about network security.				
	4. To understand the healthcare IT infrastructure and also the prevalent standards in				
	healthcare informatics.				
Course Outcomes	A Learner will be able to				
	1. Design and configure basic computer network.				
	2. Understand the information system of healthcare.				

Module	Contents	Time				
	Networking Technology					
1.	LAN, MAN, WAN, Performance of network/device parameters	08				
	Ethernet Technology: Ethernet types, Types of cables and connectors, Crossover and					
	straight through cables, Colour coding of cables					
	OSI Model, TCP/IP, Addressing types (IP, MAC & Port)					
2.	IP V4 addressing, Subnetting, Supernetting, IP V6, Detailed working of networking	08				
	equipment: HUB, Switch, Router, Modem, Bridge; Packet switching, Circuit					
	switching.					
3.	Basic Security Concepts	06				
	Security Mechanism and security services, Authentication, Authorization,					
	Confidentiality, Integrity, Symmetric and Asymmetric Key cryptography, RSA					
	algorithm					
	Information Systems in Medicine					
4.	PACS Components, Generic workflow, PACS architectures stand-alone, client-	10				
	server, and Web-based, PACS and Teleradiology, Enterprise PACS and ePR System					
	with Image Distribution					

5.	Introduction to RIS and HIS, HIS/RIS/PACS integration, PIR, Storage Area Network, Network Attached storage, RAID, PACS Server & Archive and operating systems	08
6.	Introduction to Healthcare informatics standard HL7 and DICOM, IHE, IHE Domains, Legal issues in PACS, HIPAA.	08

List of Experiments:

- 1. Study of various networking cables, demonstration of crimping of cables and configuring networking parameters for computer.
- 2. Tutorial on IP addressing.
- 3. Introduction and basic commands used in various network simulation software.
- 4. Internetwork Communcation through Router and Switch, See the Mac Table of each switch and Routing table of Router
- 5. Static routing configuration.
- 6. Generating the HL7 message format.

Text books:

- 1. PACS and Imaging Informatics by Huang, Second Edition, Wiley and Blackwell
- 2. PACS Guide to Digital Revolution by Keith J. Dreyer (Springer)
- 3. Data Communication and Networking by Behrouz A. Forouzan McGrow Hill
- 4. Computer Networks by A.S. Tanenbaum, Pearson Education

Reference Books:

- 1. Governance of Picture Archiving and Communications Systems by Carrison K.S. Tong (Medical Information Science Reference)
- 2. Practical Imaging Informatics, By Barton F. Branstetter, Springer
- 3. PACS fundamentals- By Herman Oosterwijk
- 4. Cryptography and Network Security By William Stalling, Pearsons

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	ching Schei	Credits Assigned				
Code	Course maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMP706	Project Stage - I	-	*	-	-	3	-	3

* Learner is allotted 6hrs per week for the project work.

	Course Name	Examination scheme								
Course			Theory	v Marks						
Code					End	work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem exam					
BMP706	Project Stage - I	-	-	-	-	25	-	25	50	

Guidelines for Project

 Learners should do literature survey/visit industry/analyze current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor. Learners should use multiple literatures and understand the problem. Learners should attempt solution to the problem by experimental/simulation methods. The solution to be validated with proper justification and compile the report in standard format.

Guidelines for Assessment of Project I

- Project I should be assessed based on following points
 - Quality of problem selected
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization
 - Clarity of objective and scope
- Project II should be assessed through a presentation jointly by Internal and External Examiners approved/appointed by the University of Mumbai

Project Guidelines

Project Groups: Learners can form groups with minimum 2 (Two) and not more than 4 (Four)

Faculty Load: In semester VII – 1/2 (half) period of 1/2 hour per week per project group

Each faculty is permitted to take (guide) maximum 4 (Four) project groups.

Syllabus Scheme for B.E. Semester VIII Biomedical Engineering

Course	Course Name	Teac	ching Sch	eme	Credits Assigned				
Code	Course Mame	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BMC801	Nuclear Medicine	4	-	1	4	-	1	5	
BMC802	Biomedical Microsystems	4	2	-	4	1	-	5	
BMC803	Hospital Management	4	-	1	4	-	1	5	
BME804	Elective	4	2	-	4	1	-	5	
BMP805	Project Stage – II	-	**	-	-	6	-	6	
	TOTAL	16	16	2	16	8	2	26	

** Learner is allotted 12hrs per week for the project work.

Electives:

BME8011. Lasers and Fiber Optics

BME8012. Robotics in Medicine

BME8013. Health care Informatics

BME8014. Rehabilitation Engineering

				Exa	aminati	on schem	ie		
Course	C N		Theory N	Marks					
Code	Course Name	Intern	al Assess	ment	End	Term work	Pract.	Oral 25 25 25 25 25 25 25 200	Total
		Test 1	Test 2	Avg.	Sem exam	WOLK			
BMC801	Nuclear Medicine	20	20	20	80	25	-	25	150
BMC802	Biomedical Microsystems	20	20	20	80	25	-	25	150
BMC803	Hospital Management	20	20	20	80	25	-	25	150
BME804	Elective	20	20	20	80	25	-	25	150
BMP805	Project Stage – II	-	-	-	-	50	-	100	150
	TOTAL			80	320	150		200	750

Course	Course Name	Tea	ching Scher	ne	(Credits A	ssigned	
Code	Course Ivanie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC801	Nuclear Medicine (abbreviated as NM)	4	-	1	4	-	1	5

		Examination scheme									
Course	Course Name		Theory								
Code	Course maine	Interi	nal Asses	sment	End	Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	Sem exam						
BMC801	Nuclear Medicine	20	20	20	80	25	-	25	150		

Course Objectives	1. To enable the learners to understand the basic science of nuclear medicine,
	operating principles and quality control aspects of various nuclear medicine
	equipment.
	2. To keep the Learners abreast with the technological developments in the field of
	nuclear medicine.
Course Outcomes	A Learners will able to
	1. Understand essential physics, concepts of radiopharmaceuticals and how they are
	employed in nuclear medicine diagnosis and therapy.
	2. Be familiar with the current In-vivo and In-vitro techniques of nuclear medicine
	along with their clinical applications.
	3. Apprehend the importance of radiation safety and radioactive waste management.

Module	Contents	Time
1.	Basics of Nuclear Physics: Radioactivity, Radioactive Decay Law, Radioactive	10
	Decay Processes, Units of Radioactivity Measurement, Successive Decay	
	Equations. Statistics of Counting, Interaction of Radiation with Matter	
	Production of Radionuclide:	
	Methods of radionuclide production: Nuclear Reactor, Medical Cyclotron &	
	Radionuclide Generators	
	Spectra of commonly used radio nuclides e.g. I-131, Tc-99m, Cr-51, Cs-137.	
	Problems in radiation measurements.	
2.	Radiopharmaceuticals: Ideal Radiopharmaceutical, Methods of Radiolabeling	08
	Internal Radiation Dosimetry: Absorbed Dose Calculations to Target & Non-	
	Target Tissues, MIRD Methodology	
	Radiation Safety:	
	Natural & Artificial Radiation Exposure, External & Internal Radiation Hazard,	
	Methods of Minimizing External Exposure, Methods of Preventing Internal	
	Exposure, Evaluation of External & Internal Hazard, Biological Effects of	
	Radiation, Radioactive Waste Management,	

	Ethics in Nuclear medicine.	
3.	Detectors in Nuclear Medicine & Counting and Measuring System:	10
	Gas filled Detectors, Scintillation Detectors and Solid State Detectors,	
	Scintillation Counting System, Gamma Ray Spectrometry, Radionuclide Dose	
	Calibrator, Properties of Detectors.	
	In Vitro techniques(Brief Description):	
	Introduction, Single and Double Isotope method, Radioimmunoassay, RIA	
	Counting System, Liquid scintillation Counting system, RIA	
	Applications.	
4.	In Vivo Techniques:	09
	General Principle, Uptake Monitoring System, Rectilinear Scanner, Gamma	
	Camera Fundamentals, Position Circuitry and working, Computer Interface,	
	Performance Parameters, Quality Control Functions	
5.	Emission Tomography Techniques and Clinical Applications:	08
	Introduction, Principles and applications of SPECT, Principles and applications of	
	PET, System performance parameters and Quality Control Functions.	
	Introduction to Hybrid Modalities:	
	PET/CT, SPECT/CT	
	Clinical Applications	
	Clinical Applications of PET, SPECT and Hybrid Modalities in Cardiology,	
	Neurology and Oncology.	
6.	Radionuclide Therapy	03
	Choice of a Radionuclide in Therapeutic Nuclear Medicine	
	Treatment of Benign & Malignant Diseases	
	Palliative & Curative Procedures:	

Text books:

- 1. Textbook of Nuclear medicine: J. Harbert and A.F.G. Rocha, Second Edition, Lea& Febiger.
- 2. Handbook of Nuclear medicine Instruments, B.R. Bairi, Balvinder Singh, N.C. Rathod and P.V. Narurkar, Tata McGraw Hill.
- 3. Fundamentals of Nuclear Pharmacy, Gopal B. Saha, Springer Science Business Media
- 4. Introductory Physics of Nuclear Medicine, Ramesh Chandra, Lea& Febiger

Reference Books:

- 1. Medical Radiation Physics William R. Hendee, , Year Book Medical Publishers
- 2. Instrumentation of Nuclear medicine G. Hine, , Academic Press
- 3. Radiation Detection & Measurement Glenn F. Knoll, , John Wiley & Sons.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of total 6 questions, each of 20 marks.

Only 4 questions need to be solved.

Q.1 will be compulsory and based on the entire syllabus.

Remaining questions will be mixed in nature.

In question paper weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.

Term Work:

Term work consists of minimum eight experiments / assignments and one presentation based on any topic on the recent trends in the Course . Learners are supposed carryout thorough literature survey, collect data and prepare their presentation.

The distribution of the term work shall be as follows:

Laboratory work (Experiments / assignment and Journal):10 marks

Presentation :10 marks Attendance (Practical and Theory) :05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	ching Schei	ne	(Credits A	ssigned	
Code	Course Ivanie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC802	Biomedical Microsystems (abbreviated as BM)	4	2	-	4	1	-	5

		Examination scheme									
Course	Course Nome		Theory								
Code	Course Name	Intern	nal Asses	sment	End	Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	Sem exam						
BMC802	Biomedical Microsystems	20	20	20	80	25	-	25	150		

Course Objectives	1. To understand various fabrication technology for MEMS devices.
	2. To apply the knowledge of MEMS in Biomedical field.
	3. To understand recent advancements in Biomedical Engineering for a
	successful career in the area of nanotechnology.
Course Outcomes	A learner will be able to
	1. Use the knowledge of MEMS to develop various miniaturized Biomedical
	devices.

Module	Contents	Time
1.	BASICS OF MINIATURIZATION & MATERIALS	08
	Dimensional effect on engineering systems	
	Clean room classification	
	Scaling Laws in Miniaturization	
	MEMS & Micro system products	
	Substrates and Wafers	
	Properties of Silicon Compounds SiO2, Si3N4, Polysilicon, Amorphous silicon	
	Polymers: Dielectric polymers, Conducting polymers, and piezoelectric polymers	
2.	MEMS FABRICATION PROCESSES	16
	Fabrication techniques in MEMS: Bulk micromachining, Surface micromachining,	
	and LIGA	
	Cleaning processes: RCA, Piranha	
	Deposition processes for metals: e-beam evaporation, thermal evaporation and DC	
	Sputter	
	Deposition processes for dielectrics: Physical (RF Sputter) and Chemical Techniques	
	(CVD: APCVD, LPCVD, PECVD, and HWCVD).	
	Polymers coating techniques: spinning, spraying and electrodeposition	

	Photolithography: light sources (UV, DUV, and EUV), photoresist, mask design and	
	fabrication using EBL, dark and bright field photo-mask, different projection systems	
	in lithography, detailed study of lithography process, study of fabrication processes	
	like optical grating structure, SiO2 cantilever, SiNx cantilever and basics of EBL	
	Etching Processes : Dry (RIE, DRIE) and wet etching	
	Doping – ion implantation and diffusion	
	Soft lithography: Micro contact Printing, Imprinting or hot embossing, and Replica	
	Molding	
	Surface characterization techniques: AFM, SEM, Profilometer, Elipsometer, Fluorimeter	
3.	MICRO TOTAL ANALYSIS SYSTEMS (µTAS)	08
	Basic block diagram: importance of µ-TAS	
	Flow techniques in µ-fluidics: pressure driven force, electro-kinematics; electro-	
	osmosis, electrophoresis, dielectrophoresis	
	Components in µ-TAS: Micropump, microvalves, microchannels	
	μ -TAS: separation and mixing techniques	
	fabrication of micro-channels: SU8 channel, glass channel, silicon channel	
4.	MICRO/ NANO BIOSENSORS	08
	Biosensor: definition, block diagram and working	
	Classification based on the basis of detection techniques: Electric	
	Magnetic, Optical, Thermal, Mechanical, and Chemical.	
	Basic steps involved in the development of biosensors: surface modification,	
	immobilization, integration with transducer	
	Examples: (i) Design, fabrication of SiO cantilever for antibody detection, (ii)	
	Design, fabrication of Optical waveguide biosensor, (iii) Microfluidics based	
5	biosensor	04
5.	DRUG DELIVERY DEVICES	04
	Overview of drug delivery systems, Types of drug delivery systems, Different parts	
	of drug delivery system, MEMS based drug delivery systems: Implantable drug delivery systems (IDDS), Micro needles and its fabrication, Micro particles for oral	
	drug delivery	
	ung denvery	
6.	MICROSYSTEM PACKAGING	04
	Importance of packaging	
	Packaging materials	
	Packaging techniques	
	Wafer bonding	

List of Experiment/ Tutorials:

1.Literature review on MEMS technology and growth

2.Materials in MEMS technology: Single crystal Silicon, Dielectrics, and metals

- 3.Numericals on Polymer spinning, Dry and Wet oxidation
- 4.Detailed fabrication process for SiO2 cantilever
- 5.Importance of soft-lithography with example (compare with traditional method)
- 6.Different flow techniques in µ-TAS
- 7.Detailed fabrication process for glass-glass microfluidic channel
- 8.Design, fabrication of Biosensor (all three listed in Chapter 6)
- 9.Drug delivery systems
- 10. Over view on MEMS packaging

Text books:

- 1. MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering, 2nd Edition Tai-Ran Hsu, ISBN: 978-0-470-08301-7
- 2. MEMS and Microsystems: Design and Manufacture," mcgraw-Hill, Boston, 2002 (ISBN 0-07-239391-2).

Reference Books:

- 1. "Fundamentals of Microfabrication" Marc Madou, by, CRC Press, 1997. Gregory Kovacs,
- "Fundamentals of BioMEMS and Medical Microdevices", Steven S. Saliterman, (SPIE Press Monograph Vol. PM153 by Wiley Interscience
- 3. "Microsystem Technology", W. Menz, J. Mohr, 0. Paul, WILEY-VCH, ISBN 3-527-29634-4
- 4. "Electro Mechanical System Design", James J. Allen, Taylor & Francis Group, LLC, ISBN-0-8247-5824-2, 2005
- 5. "MICROSYSTEM DESIGN", Stephen D. Senturia, KLUWER ACADEMIC PUBLISHERS, eBook ISBN: 0-306-47601-0
- "Introduction to Microfabrication", Sami FranssilaJohn Wiley & Sons Ltd, ISBN 0-470-85106-6
- 7. "Microelectromechanical Systems", Nicolae Lobontiu, Ephrahim Garcia, KLUWER ACADEMIC PUBLISHERS, eBook ISBN: 0-387-23037-8
- 8. "BIOMEDICAL NANOTECHNOLOGY", Neelina H. MalschCRC PRESS, Taylor and Francis Group, ISBN 10: 0-8247-2579-4

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Nome	Tea	ching Schei	Credits Assigned				
Code	Code Course Name		Pract.	Tut	Theory	Pract.	Tut	Total
BMC803	Hospital Management (abbreviated as HM)	4	-	1	4	-	1	5

Course Code	Course Name	Examination scheme							
		Theory Marks							
					End Sem	Term work	Pract	Oral	Total
		Test 1	Test 2	Avg.	exam				
BMC803	Hospital Management	20	20	20	80	25	-	25	150

Course Objectives	1. To promote the development of high quality of hospital care in the community.
Course Objectives	2. To provide a satisfactory environment to the patient and also to the doctors for
	clinical research.
	3. To understand the design considerations in a hospital for designing of various
	departments in the hospital.
	4. To develop skills enabling Biomedical Engineers to serve Hospitals, National and
	International Industries and Government Agencies.
	5. To understand the role of Biomedical Engineer in hospitals.
Course Outcomes	A learner will be able to
	1. Understand and apply resource management concepts (personnel, finance, and
	material resources) and the processes and strategies needed in specific hospital
	sectors.
	2. Communicate effectively and develop their leadership and teambuilding abilities.
	3. Apply modern change management and innovation management concepts to
	optimize structures.
	4. Analyze existing hospital service policies and enhance their alignment within the
	local and national context.

Module	Contents	Time
1.	Process of management:	10
	Principles of management, Leadership, Motivation, Time management,	
	Communication in hospital, H.R. management (Recruitment, Performance appraisal,	
	Reward management, Training and development, Conflict resolution and labor	
	relations), Accounting - Types of Budget	
2.	Organization of the hospital & Hospital Planning:	06
	Management structure, Types of hospitals, Governing body, Hospital committee and	
	hospital functionaries ,Duties and responsibilities of various positions	
	Guiding principles in planning hospital facilities and services and planning the	
	hospital building	
3.	Planning for Clinical and Supportive Services :	14

University of Mumbai Biomedical Engineering, (R- 2012) (From A.Y. 2015-16) Pa

	A) Clinical Services: Emergency, IN patient, OUT patient, Intensive care unit,	
	Operation Theatre, Laboratory, Blood Bank, Radiology	
	B) Utility/ Supportive services: Registration Medical record department, Central	
	Sterile Service Dept, Pharmacy, Laundry and Linen Medical social service	
	Dept. Hospital security, Housekeeping, Dietary (Food services)	
4.	Planning for Engineering and Auxiliary Services :	11
	A) Engineering Services : Maintenance, Biomedical Dept.: Need and responsibilities,	
	Installation, Maintenance, Calibration, Electrical & HVAC (Hospital Ventilation and	
	Air Conditioning), Medical Gas systems, Communication, Transport Services	
	(Ambulance)Hospital information systems	
	B) Auxiliary Services :Waste management, Hospital Infection control, Disaster	
	management Marketing Department	
5.	Material Management & Inventory Control	04
	Classification of Materials	
	Purchase Management: Purchase system(Centralized, Decentralized, Local	
	purchase), Purchase Procedures: Selection of Suppliers, Tendering procedures,	
	Analyzing bids, Price negotiations, Issue of purchase orders, Rate Contracts, Follow	
	up action	
	Store Management: Organization & layout, Functions of Store Manager, Materials	
	handling, Flow of goods/FIFO, Computerization of inventory transactions, Security	
	of stores, Disposal of scrap/unserviceable materials	
	Inventory Control: Lead-time, Buffer stock, Reorder level, Two Bin System, EOQ	
6.	Legal Aspects in a hospital:	03
	Medico legal aspects (with reference to Biomedical Engineer),	
	Preventive Steps for Doctors/Hospitals to Avoid Litigation : Consent Form, Life	
	Support Dying Declaration, Death Certificate, High Risk Post Mortem	

Text books:

- 6. Hospital Management by Dr. Pradyna Pai
- 7. Hospital Planning, Designing and Management: Kunders G D, Gopinath, A katakam (Private Pub Bangalore)

Reference Books:

- 1. Computers in Medicine: R. D. Lele (TMH Pub)
- 2. Hospital Care and Hospital Management AICTE Journal Vol. 1,2,3 by Dr. Kalanidhi. (AICTE Pub Bangalore
- 3. Careers in Biomedical : Shantanu Thatte.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments / assignments and one presentation based on the any one department in the hospital. Learners are supposed to visit hospital, collect data and prepare their presentation.

The distribution of the term work shall be as follows:Laboratory work (Experiments / assignment and Journal):10 marksPresentation:10 marksAttendance (Practical and Theory):05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Teaching Scheme			Credits Assigned				
Code	Course Manie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BME8011	Elective: Lasers and Fiber Optics (abbreviated as LFO)	4	2	-	4	1	-	5	

		Examination scheme								
Course		Theory Marks								
Code	Course Name	Internal Assessment End			Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	- Sem work exam					
BME8011	Lasers and Fiber Optics	20	20	20	80	25	-	25	150	

Course Objectives	 To understand the fundamentals in Laser and Fiber Optics. To understand the applications of Laser and Fiber optics in health sector.
Course Outcomes	 A Learners will be able to 1. Understand the fundamentals and clinical applications of Laser and Fiber Optics. 2. Correlate the knowledge of medicine and engineering for the wellness of human being. 3. Understand the safety aspects while dealing with Laser and Fiber Optic Units.

Module	Contents	Time
1.	Laser Fundamentals	10
	Fundamental wave properties and quantum properties of light, Energy levels and	
	Radiative properties, Absorption and Stimulated Emission, Laser Amplifiers, Laser	
	Oscillation above threshold, Requirements for obtaining Population Inversion, Laser	
	pumping requirements and techniques, Laser Resonators, Cavity modes, Laser	
	interaction with tissue- Effects and principles, Thermal interaction between laser and	
	tissue.	
2.	Laser Types ,construction and working	10
	Laser system involving low density gain medium: He-Ne laser, Argon Ion Laser, He-	
	Cadmium laser, Carbon dioxide Laser, Excimer laser, Nitrogen Laser	
	Laser system involving high density gain medium: Solid State laser like Ruby laser,	
	Nd-YAG Laser, Titanium Sapphire Laser, Fiber Lasers, Semiconductor Diode Laser	
3.	Laser safety:	06
	Practical Laser Safety requirements, Environmental safety, Equipment safety,	
	personnel protection, Education/training for handling laser equipments, Role of Laser	
	Safety officer, Standards of practice for the use of Laser in medicine and Surgery,	
	Recommendation Regarding the Laser safety officer, Hospital Laser Committee	
4.	Optic Fibers Fundamentals	10

	Light transmission in optical fibers- principles, optical properties of optical fibers, Fiber materials ,Types of Optical fibers, Modes, Losses, Fabrication of optical fibers, Methods and Principle,Fiber Splicing, Fiber optic imaging, Biomedical Optical fibers, Invivo Applications.	
5.	Laser and Fiber Optics in surgery Introduction, fiber optic laser systems in cardiovascular disease, gastroenterology, gynecology, neurosurgery, oncology, ophthalmology, orthopedics, otolaryngology (ENT), urology, and flow diagram for laser angioplasty ,Laser and Fiber optics used in Skin	06
6.	EndoscopyBasic Principle, System components and functions, Types of endoscopes, VideoEndoscopes, Accessories, Maintenance , Endoscopy Processing room requirements,Medical Application, Leakage tester and Trouble shooting	06

Text books:

- 1. Lasers and Optical Fibers in Medicine AbrahimCatzir Academic press 1998
- 2. Optical Fiber Communication by Gerd Keiser

Reference Books:

- 1. Therapeutic Lasers G David Baxter Churchill Living stone publications
- 2. Medical Laser and their safe use David H Shiny Stiffen and L Trokel Springer Publications
- 3. Element of Fiber optics S. L. Wymer Regents PHI

4. Lasers in Urologic Surgery – Joseph A.Smith, Jr, Barry S.Stein, Ralph C.Benson, Jr, Mosby Publication

5. Laser Fundamentals-William T.Silfvast, Cambridge University Press

6.Lasers in Medicine, Volume-1, Hans K. Koebner, John Wiley & Sons

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments / assignments and one presentation based on any topic on the recent trends in the Course . Learners are supposed carryout thorough literature survey, collect data and prepare their presentation.

The distribution of the term work shall be as follows:Laboratory work (Experiments / assignment and Journal):10 marksPresentation:10 marksAttendance (Practical and Theory):05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Page 34

Course	Course Name	Teaching Scheme			Credits Assigned				
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BME8012	Elective: Robotics in Medicine (abbreviated as RIM)	4	2	-	4	1	-	5	

		Examination scheme									
Course	Course Name	Theory Marks									
Code	Course Name	Internal Assessment End		End Sem	Term work	Pract.	Oral	Total			
		Test 1	Test 2	Avg.	exam						
BME8012	Robotics in Medicine	20	20	20	80	25	-	25	150		

Course Objectives	 To introduce to basics of Robotics, Kinematics, Inverse Kinematics, vision and motion planning. To introduce to various applications of Robots in Medicine.
Course Outcomes	 A Learner will be able to 1. Design basic Robotics system and formulate Kinematic, Inverse Kinematic motion planning solutions for various Robotic configurations. 2. Design Robotic systems for Medical application.

Module	Contents	Time
1.	Introduction	06
	Automation and Robots, Classification, Application, Specification, Notations	
2.	Direct Kinematics Dot and cross products, Coordinate frames, Rotations,	08
	Homogeneous coordinates Link coordination arm equation, (Five- axis robot, Four-	
	axis robot, Six-axis robot)	
3.	Inverse Kinematics General properties of solutions tool configuration Five axis	10
	robots, Three-Four axis, Six axis robot(Inverse Kinematics). Workspace analysis and	
	trajectory planning work envelope and examples, workspace fixtures, Pick and place	
	operations, Continuous path motion, Interpolated motion, Straight-line motion.	
4.	Robot Vision Image representation, Template matching, Polyhedral objects, Shane	10
	analysis, Segmentation (Thresholding, region labeling, Shrink operators, Swell	
	operators, Euler numbers, Perspective transformation, Structured illumination,	
	Camera calibration).	
5.	Task Planning Task level programming, Uncertainty, Configuration, Space, Gross	08
	motion, Planning, Grasp Planning, Fine-motion planning, Simulation of planar	
	motion, Source and Goal scenes, Task Planner simulation.	
6.	Applications in Biomedical Engineering Application in rehabilitation, Clinical and	06
	Surgery	

Text books:

- 1. Fundamentals of Robotics-Analysis and control, Robert Schilling, Prentice Hall of India.
- 2. Robotics, Fu, Gonzales and Lee, McGraw Hill
- 3. Introduction to Robotics, J.J, Craig, Pearson Education

Reference Books:

- 1. Robotics and AI, Staughard, Prentice Hall Of India.
- 2. Industrial Robotics Grover, Wiess, Nagel, Oderey, , McGraw Hill.
- 3. Robotics and Mechatronics. Walfram Stdder,
- 4. Introduction to Robotics, Niku, Pearson Education.
- 5. Robot Engineering, Klafter, Chmielewski, Negin, Prentice Hall Of India.
- 6. Robotics and Control, Mittal, Nagrath, Tata McGraw Hill publications.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments / assignments and one presentation based on any topic on the recent trends in the Course . Learners are supposed carryout thorough literature survey, collect data and prepare their presentation.

The distribution of the term work shall be as follows:

Laboratory work (Experiments / assignment and Journal):10 marksPresentation:10 marksAttendance (Practical and Theory):05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Page 36

Course	Course Name	Teaching Scheme			Credits Assigned				
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BME8013	Elective: Health Care Informatics (abbreviated as HCI)	4	2	-	4	1	-	5	

		Examination scheme								
Course		Theory Marks								
Code	Code Course Name		Internal Assessment Er			Term work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	- Sem work exam					
BME8013	Health Care Informatics	20	20	20	80	25	-	25	150	

Course Objectives	 To understand the healthcare interoperability semantic and syntactic. To understand the standards of healthcare interoperability standards for Medical Images and Medical Messages.
Course Outcomes	A learner will be able to1. Fabricate information messages associated with healthcare event.2. Fabricate and understand the information exchange messages for transfer of medical image data.

Module	Contents	Time
1.	Healthcare Interoperability	04
	Introduction: Standards In Healthcare System, Categorizing Standards, Standard	
	Development, Various Healthcare Informatics Standards	
2.	XML	06
	The Need for XML, Concepts and Definition, XML Syntex, Content Of an XML	
	Document, Structure of an XML document, Validation, Access to the content of the	
	Document	
3.	Health Level 7	10
	HL7 version 2.X, Message communication Concept, Segments, Fields, Components,	
	Subcomponents, Message delimiters, Data types, Rules for message formation,	
	Trigger Event, ADT Segments	
4.	DICOM standard	10
	DICOM SOPs, Unit Identification on n/w, Services and Data, DIMSE Example: C-	
	Echo, Storage, Query: Find, C-Find IOD, C-Find DIMSE, C-Cancel, Modality	
	Worklist, Basic DICOM Retrieval: C-Get, Advanced DICOM Retrieval: C-Move,	
	DICOM: Ping, Push and Pull	
5.	DICOM Communications	08
	DICOM SOPs, Unit Identification on n/w, Services and Data, DIMSE Example: C-	
	Echo, Storage, Query: Find, C-Find IOD, C-Find DIMSE, C-Cancel, Modality	

University of MumbaiBiomedical Engineering, (R- 2012) (From A.Y. 2015-16)Page 37

	Worklist, Basic DICOM Retrieval: C-Get, Advanced DICOM Retrieval: C-Move,				
	DICOM: Ping, Push and Pull				
6.	DICOM Associations	10			
	Association Establishment, Transfer Syntax, Application Context, Presentation				
	Context, User Information, Protocol Data Unit (PDU)				
	DICOM Media: Files, Folders, and DICOMDIRs				
	DICOM File Format, DICOM File Services, Storing DICOM Data in PACS				

Text books:

- 1) CDATM Book, By Keith Boone, Springer Publication
- 2) Digital Imaging and Communication in Medicine by Oleg S. Pianykh, Springer Publication

Reference Books:

1) Principles of Health Interoperability HL7 and SNOMED (Health Information Technology Standards), Springer Publication by Tim Benson

2) Informatics in Medical Imaging, George C. Kagadis, Steve G. Langer CRC Press

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments / assignments and one presentation based on any topic on the recent trends in the Course . Learners are supposed carryout thorough literature survey, collect data and prepare their presentation.

The distribution of the term work shall be as follows:

Laboratory work (Experiments / assignment and Journal):10 marks Presentation :10 marks

Attendance (Practical and Theory) :05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Page 38

Course	Course Name	Tea	ching Schei	Credits Assigned				
Code	Course maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BME8014	Elective: Rehabilitation Engineering (abbreviated as RE)	4	2	-	4	1	-	5

Course	Course Name	Examination scheme									
		Theory Marks									
Code		Interi	nal Asses	sment	End Sem exam	Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.							
BME8014	Rehabilitation Engineering	20	20	20	80	25	-	25	150		

Course Objectives	1. To introduce learners to basics of Kinetics and Kinematics, Flow properties of blood and give overview of Rehabilitation Engineering.
Course Outcomes	A learner will be able to
	1. Build foundation for learners enabling the learners to pursue higher studies with
	specialization in Rehabilitation Engineering.

Module	Contents	Time
1.	Introduction and socio-legal aspects of Rehabilitation Engineering: Medical Rehabilitation, Epidemiology of Rehabilitation, preventive Rehabilitation, Impairment Disability and Handicap. Delivery of Rehabilitation Care: The team-Medical, Paramedical, Socio-vocational	06
2.	Orthotics, Amputation, and Prosthetics, Activities of Daily Living (ADL): Orthotics: General Principles of Orthotics, Biomechanics of orthotics, Classification: Upper & Lower Extremity orthotics, spinal Orthotics Amputation & Prosthetics: Causes of Amputation, Types of Amputation, and Levels of Amputation for upper and lower Extremity. Preoperative and post-operative period. Pre-prosthetic stage. Endo & Exo-skeletal Prosthetics. Classification: Upper & lower limb Prosthetics Activities of Daily Living: ADL grouping, Barthel's Index of ADL. Functional Independence, Measures, Environmental control system, communication, ADL training.	13
3.	Mechanical principles of Kinematics and Kinetics: Planar classification of position and motion, Rotary and translatory motion, Degree of freedom, Kinematic Chain Theories of motion, Levers, Torque, Parallel force, Resolution of force, Calculation of muscle and joint forces Clinical application on weight and center of gravity ,applied weights and resistance,	08

	muscle force and leverage, joint forces, Clinical application on stretching versus joint mobilization	
4.	Flow properties of blood: An outline of Blood Rheology, Constitutive equation of blood based viscometric Data and Casson's equation, laminar flow of blood in a tube, fluid mechanical interaction of RBCs with a solid wall, thrombus formation and dissolution, medical application of Blood Rheology	08
5.	Common deformities and role of surgery in rehabilitation engineering. Types of deformities, Management of 1 st and 2 nd degree deformities. Common deformities of lower limb. Treatment for partial foot deformities. Deformities of the foot. Arm deformities. Torticollis	05
6.	An overview of rehabilitation of muscular dystrophy, paraplegia, and quadriplegia: Muscular Dystrophy, Duchenne Muscular Dystrophy, Rehabilitation, facioscapulohumeral Muscular Dystrophy Paraplegia: Etiology, mechanism of injury, Identification of level of lesion, Management of active spinal cord injury, Rehabilitation, Gait training Quadriplegia: Mobility, Training, Level of injury & outcome, Management	08

Text books:

3. BRUNNSTROM'S CLINICAL KINESIOLOG, By Laura K Smith, Elizabeth Laurance

Weiss; Jaypee brothers Publication

- 4. Mechanical properties of living tissues by Y. C. Fung
- 3. Textbook of Rehabilitation by S. Sundar, 3rd edition Jaypee publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The Learners need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments / assignments and one presentation based on any topic on the recent trends in the Course . Learners are supposed carryout thorough literature survey, collect data and prepare their presentation.

The distribution of the term work shall be as follows:

Laboratory work (Experiments / assignment and Journal):10 marks

Presentation	:10 marks
Attendance (Practical and Theory)	:05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

Course	Course Name	Tea	ching Scher	Credits Assigned				
Code		Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMP805	Project Stage - II	-	**	-	-	6	-	6

Course	Course Name	Examination scheme									
		Theory Marks									
Code		Internal Assessment				Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	Sem exam						
BMP805	Project Stage – II	-	-	-	-	50	-	100	150		

** Learner is allotted 12hrs per week for the project work.

Guidelines for Project

 Learners should do literature survey/visit industry/analyze current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor. Learners should use multiple literatures and understand the problem. Learners should attempt solution to the problem by experimental/simulation methods. The solution to be validated with proper justification and compile the report in standard format.

Guidelines for Assessment of Project II

- Project II should be assessed based on following points
 - Quality of problem selected
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization / Industrial trends
 - Clarity of objective and scope
 - Quality of work attempted
 - Validation of results
 - Quality of Written and Oral Presentation
- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Project II should be assessed through a presentation jointly by Internal and External Examiners approved by the University of Mumbai.
- $\circ~$ Learners should be motivated to publish a paper based on the work in Conferences/students competitions.

Project Guidelines

Project Groups: Learners can form groups with minimum 2 (Two) and not more than 4 (Four)

Faculty Load: In semester VIII - 1 (One) periods of 1 hour each per week per project group Each faculty is permitted to take (guide) maximum 4 (Four) project groups. THADOMAL SHAHANI ENGINEERING COLLEGE

Biotechnology Engineering

,

EGE

THADOMAL SHAHANI SF

Sr. No.	Subject Code	Subject Name	Count
1	BTL301	Microbiology Lab	1
2	BTL302	Biochemistry Lab	1
3	BTL303	Unit Operations-I Lab	1
4	BTL401	Fermentation Technology Lab	1
5	BTL402	Analytical Methods in Biotechnology Lab	1
6	BTL403	Unit Operations –II Lab	1
7	BTC506	Business Communication & Ethics	1
8	BTL507	Lab – I	1
9	BTL508	Lab – II	1
10	CHL607	Lab – III	1
11	CHL608	Lab – IV	1
12	CHL609	Lab – V	1
13	BTL706	LAB VI	1
14	BTL707	LAB VII	1
15	BTL806	LAB VIII	1
16	BTL807	LAB IX	1
		Total	16

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17

Biotechnology

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

Under FACULTY OF TECHNOLOGY

As per **Choice Based Credit and Grading System** With effect from the AY 2016–17

Page 1

From Coordinator's Desk

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) give freedom to affiliated Institutes to add few (PEO's) course objectives course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. Choice Based Credit and grading based system is implemented for Second Year of B.E. in Biotechnology Engineering from the academic year 2017-2018. This system will be carried forward for Third Year of B.E. in Biotechnology Engineering in the academic year 2018-2019 and for Fourth Year B.E. in the year 2019-2020 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Preamble to the Revision of Syllabus in Biotechnology Engineering

The onset of nineties brought about some paradigm shifts. One was in the sphere of market economics. Suddenly the Indian manufacturing sector started jostling for a place with international competition in the arena. The presence of International products at competitive rates and quality forced some small and medium scale units to close their operations. The larger industry players realized the importance of R&D and accordingly set up separate cells to optimize production and improve quality. The second major impact was in the sphere of knowledge. With the advent of World Wide Web in the early nineties and its subsequent growth, the latest research trends have become accessible from drawing rooms across the globe. This acted as a positive feedback mechanism in increasing the pace of research in all fields including Biotechnology. This was the motivation for an in depth analysis of what is actually required for today's technology. It is also important to take advantage of the freely available software to enhance the quality and quantity of material that can be covered in the class room.

With this scenario as the backdrop, the first meeting was conducted by Board of Studies in Biotechnology at Thadomal Shahani College of Engineering Bandra on 3rd February 2017. It was attended by the various heads of departments of Biotechnology engineering as well as experts from industry. The academic scheme and exam scheme of the program was discussed along with the program objectives and outcomes. The core structure of the syllabus was formulated keeping in mind **choice based credit and grading system** curriculum to be introduced in this revised syllabus for B.E. (Biotechnology) for all semesters. A second meeting was held in Datta Meghe College of Engineering Airoli on 20th February 2017 and detailed syllabus of Semesters III and IV was finalised. Subsequently another meeting was held in Thadomal Shahani Engineering College Bandra on 11th April 2017 to finalise the detail syllabus of subjects pertaining to semester V, VI, VII and VIII.

Dr. Kalpana S. Deshmukh, Chairman, Board of Studies in Chemical Engineering (Adhoc), University of Mumbai, Mumbai.

General Guidelines

Tutorials

- The number of tutorial batches can be decided based on facilities available in the institution.
- Tutorials can be creative assignments in the form of models, charts, projects, etc.

Term Work

- Term work will be an evaluation of the tutorial/practical done over the entire semester.
- It is suggested that each tutorial/practical be graded immediately and an average be taken at the end.
- A minimum of eight tutorials/ten practical will form the basis for final evaluation.
- The total 25 marks for term work (except project and seminar) will be awarded as follows:

Tutorial / Practical Journal - 20 marks

Overall Attendance – 05

Further, while calculating marks for attendance, the following guidelines shall be adhered to:

75 % to 80%. - 03 marks

81% to 90% - 04 marks

 $91\%\ onwards-05\ marks$

Theory Examination

- In general all theory examinations will be of 3 hours duration.
- Question paper will comprise of total six questions, each of 20 Marks.
- Only four questions need to be solved.
- Question one will be compulsory and based on maximum part of the syllabus.

Note:

In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus as far as possible.

Practical Examination:

- Duration for practical examination would be the same as assigned to the respective Lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Project and Seminar Guidelines

- Project Groups: Students can form groups with minimum 2 (Two) and not more than 3 (Three)
- The load for projects may be calculated proportional to the number of groups, not exceeding two hours per week.
- The load for projects may be calculated as: Sem VII: ½ hr for teacher per group. Sem VIII: 1 hr for teacher per group.
- Each teacher should have ideally a maximum of three groups and only in exceptional cases four groups can be allotted to the faculty.
- Seminar topics will be the consensus of the project guide and the students. Each student will work on a unique topic.
- The load for seminar will be calculated as one hour per week irrespective of the number of students
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, eight hours each were allotted in Project A, B and three hours for Seminar to the students.

University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) S.E. Semester III (w.e.f 2017-2018)

Course	Course Name	1	Ceaching Scheme (Contact Hours		Credits Assigned				
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
BTC301	Applied Mathematics-III	3	-	1	3	-	1	4	
BTC302	Microbiology	4	-	-	4	-	-	4	
BTC303	Cell Biology	3	-	1	3	-	1	4	
BTC304	Biochemistry	4	-	-	4	-	-	4	
BTC305	Unit Operations-I	3	-	-	3	-	-	3	
BTC306	Process Calculations	3	-	1	3	-	1	4	
BTL301	Microbiology Lab	-	3	-	-	1.5	-	1.5	
BTL302	Biochemistry Lab	-	3	-	-	1.5	-	1.5	
BTL303	Unit Operations-I Lab	-	2	-	-	1	-	1	
	Total	20	8	3	20	4	3	27	

					Exami	ination Sch	eme			
~				Theor	y		Term Work	Pract/ Oral	Oral	Total
Course code	Course Name	Internal Assessmer			End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC301	Applied Mathematics-III	20	20	20	80	3	25	-	-	125
BTC302	Microbiology	20	20	20	80	3	-		-	100
BTC303	Cell Biology	20	20	20	80	3	25	-	-	125
BTC304	Biochemistry	20	20	20	80	3	-		-	100
BTC305	Unit Operations-I	20	20	20	80	3		-	-	100
BTC306	Process Calculations	20	20	20	80	3	25	-	-	125
BTL301	Microbiology Lab							25		25
BTL302	Biochemistry Lab							25		25
BTL303	Unit Operations-I Lab								25	25
	Total			120	480	-	75	50	25	750

University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) S.E. Semester IV (w.e.f 2017-2018)

Course	Course Name		aching Sch Contact Hou		Credits Assigned						
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
BTC401	Applied Mathematics-IV	3	-	1	3	-	1	4			
BTC402	Molecular Genetics	3	-	1	3	-	1	4			
BTC403	Fermentation Technology	4		-	4		-	4			
BTC404	Analytical Methods in Biotechnology	4	-	-	4	-	-	4			
BTC405	Immunology and Immunotechnology	3	-	1	3	-	1	4			
BTC406	Unit Operations -II	3		-	3		-	3			
BTL401	Fermentation Technology Lab	-	3	-		1.5	-	1.5			
BTL402	Analytical Methods in Biotechnology Lab	-	3	-		1.5	-	1.5			
BTL403	Unit Operations –II Lab	-	2	-		1	-	1			
	Total	20	8	3	20	4	3	27			

					Exami	ination Scher	me			
				Theor	Term Work	Pract/ Oral	Oral	Total		
Course code	Course Name		Internal Assessment		End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC401	Applied Mathematics-IV	20	20	20	80	3	25	-	-	125
BTC402	Molecular Genetics	20	20	20	80	3	25	-	-	125
BTC403	Fermentation Technology	20	20	20	80	3	-		-	100
BTC404	Analytical Methods in Biotechnology	20	20	20	80	3	-	-	-	100
BTC405	Immunology and Immunotechnology	20	20	20	80	3	25	-	-	125
BTC406	Unit Operations -II	20	20	20	80	3	-	-	-	100
BTL401	Fermentation Technology Lab		-	-	-	3	-	25		25
BTL402	Analytical Methods in Biotechnology Lab	-	-	-	-	3	-	25	-	25
BTL403	Unit Operations –II Lab	-	-	-	-	-	-	-	25	25
	Total			120	480	-	75	50	25	750

University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) T.E. Semester V (w.e.f 2018-2019)

Course	Course Name		aching Sch Contact Ho		Cro			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC501	Bioinformatics	4	-	-	4	-	-	4
BTC502	Genetic Engineering	4	-	-	4	-	-	4
BTC503	Thermodynamics and Biochemical Engineering	3	-	1	3	-	1	4
BTC504	Bioreactor Analysis and Technology	3	-	1	3	-	1	4
BTC505	Business Communication and Ethics	2	-	2	-	-	2	2
BTE501X	Elective I	3	-	1	3	-	1	4
BTL501	Bioinformatics Lab	-	2	-	-	1	-	1
BTL502	Genetic Engineering Lab		3			1.5		1.5
BTL503	Lab I		3			1.5		1.5
	Total	17	12	3	17	6	3	26

					Examir	nation Sche	eme			
				Theo	ry		Term Work	Pract/ Oral	Oral	Total
Course code	Course Name	A	Intern		End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC501	Bioinformatics	20	20	20	80	3	•		-	100
BTC502	Genetic Engineering	20	20	20	80	3			-	100
R 1 1 5014	Thermodynamics and Biochemical Engineering	20	20	20	80	3	25	-	-	125
BTC504	Bioreactor Analysis and Technology	20	20	20	80	3	25	-	-	125
BTC505	Business Communication and Ethics	-	-	-	-	-	50	-		50
BTE501X	Department Elective I	20	20	20	80	3	25	-	-	125
BTL501	Bioinformatics Lab					2		25		25
BTL502	Genetic Engineering Lab					3		25		25
BTL503	Lab I	-	-	-	-	3		25	-	25
	Total			100	400	-	125	75	-	700

Department Elective I (Sem V)								
Engineering Stream Advanced Science Stream Technology Stream								
1. Biosensors and Diagnosis (BTE5011)	1.Biophysics (BTE5012) 2.Biostatistics (BTE5013)	1. Pharmaceutical Technology (BTE5014)						

University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) T.E. Semester VI (w.e.f 2018-2019)

Course	Course Name		Teaching Sche Contact Hou		Cı	Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
BTC601	Food Technology	3	-	1	3	-	1	4	
BTC602	Cell & Tissue Culture	4	-	-	4	-	-	4	
BTC603	Enzyme Engineering	4	-		4	-	-	4	
BTC604	IPR, Bioethics and Bio safety	3	-	1	3	-	1	4	
BTC605	Process Control & Instrumentation	3	-	1	3	-	1	4	
BTE602X	Elective-II	3	-	1	3	-	1	4	
BTL601	Lab-II	-	3	-	-	1.5	-	1.5	
BTL602	Lab-III	-	3	-	-	1.5	-	1.5	
	Total	20	6	4	20	3	4	27	

					Exa	mination S	cheme			
				Theo	ry	Term Work	Pract/ Oral	Oral	Total	
Course code	Course Name		Inter Assess		End Sem Exam	Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
BTC601	Food Technology	20	20	20	80	3	25	-	-	125
	Cell & Tissue									
BTC602	Culture	20	20	20	80	3	-	-	-	100
BTC603	Enzyme Engineering	20	20	20	80	3	-	-	-	100
	IPR, Bioethics and									
BTC604	Bio safety	20	20	20	80	3	25	-	-	125
	Process Control &									
BTC605	Instrumentation	20	20	20	80	3	25	-	-	125
BTE602X	Elective-II	20	20	20	80	3	25	-	-	125
BTL601	Lab-II	-	-	-	-	3	-	25		25
BTL602	Lab-III	-	-	-	-	3	-	25	-	25
	Total			120	480	-	100	50		750

Department Elective II (Sem VI)									
Engineering Stream		Advanced Scie	nce Stream	Technology S	Stream				
1. Computational Fluid Dynamics (BTE6021)	1.	Protein (BTE6022)	Engineering	1. Green (BTE6024)	technology				
	2.	Cancer Biolog	y(BTE6023)						

University of Mumbai

B. E. (Biotechnology)

Page 9

University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) B.E. Semester VII (w.e.f 2019-2020)

Course	Course Name		eaching Scho Contact Ho		Credits Assigned				
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
BTC701	Bioseperation & Downstream	4	-	1	4	-	1	5	
	Processing Technology-I								
BTC702	Bioprocess Modelling and								
	Simulation	4	-	1	4	-	1	5	
BTC703	Agriculture Biotechnology	3	-	1	3	-	1	4	
BTE703X	Department Elective III	3	-	1	3	-	1	4	
ILO701X	Institute Level optional								
	Subject I	3	-	-	3	-	-	3	
BTP701	Project A	-	-	6	-	-	3	3	
BTL701	Lab - IV	-	3	-	-	1.5	-	1.5	
BTL702	Lab - V	-	3	-	-	1.5	-	1.5	
	Total	17	6	10	17	3	7	27	

					Exan	nination Sc	heme			
				The	ory	Term Work	Pract/ Oral	Oral	Total	
Course code	Course Name			Internal Assessment		Exam Duration (in hrs)				
		Test 1	Test 2	Avg						
	Bioseperation & Downstream Processing Technology-I	20	20	20	80	3	25	-	-	125
	Bioprocess Modelling and									
	Simulation	20	20	20	80	3	25	-	-	125
BTC703	Agriculture Biotechnology	20	20	20	80	3	25	-	-	125
BTE703X	Department Elective III	20	20	20	80	3	25	-	-	125
ILO701X	Institute Level optional Subject I	20	20	20	80	3	-	-	-	100
BTP701	Project A	-	-	-	-	-	100		50	150
BTL701	Lab - IV	-	-	-	-	-	-	25	-	25
BTL702	Lab - V	-	-	-	-	-	-	25	-	25
	Total			100	400	-	200	50	50	800

Department Elective III (Sem VII)									
Engineering Stream	Advanced Science Stream	Technology Stream							
1. Stem Cell & Tissue Engineering	1. Operation research in Biotechnology	1. Nanotechnology							
(BTE7031)	(BTE7032)	(BTE7034)							
	2. Project Management (BTE7033)								

Institute Level Optional Subject I (Sem VII)								
1. Product Lifecycle Management	4. Design of Experiments (ILO7014)	7. Disaster Management and						
(ILO7011)		Mitigation Measures (ILO7017)						
2. Reliability Engineering	5. Operation Research (ILO7015)	8. Energy Audit and						
(ILO7012)		Management (ILO7018)						
3. Management Information	6. Cyber Security and Laws	9. Development Engineering						
System (ILO7013)	(ILO7016)	(ILO7019)						

University of Mumbai

B. E. (Biotechnology)

University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) B.E. Semester VIII (w.e.f 2019-2020)

Course	Course Name		eaching Sch ontact Ho		Cr			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC801	Environmental Biotechnology	4	-	-	4	-	-	4
	Bioseperation & Downstream Processing technology-II	4	-	-	4	-	-	4
	Bioprocess Plant & Equipment				_			
BTC803	design	3	-	1	3	-	1	4
BTE804X	Department Elective IV	3	-	1	3	-	1	4
ILO802X	Institute Level optional Subject II	3	-	-	3	-	-	3
BTP801	Project B	-	-	8	-	-	6	6
BTL801	Lab - VI	-	3	-	-	1.5	-	1.5
BTL802	Lab - VII	-	3	-	-	1.5	-	1.5
	Total	17	6	10	17	3	8	28

		Examination S			nination Sc	cheme					
G	Course Name			The	ory		Term Work		Oral	Total	
Course code			Internal Assessment Exam			Exam Duration (in hrs)					
			Test 2	Avg							
BTC801	Environmental Biotechnology	20	20	20	80	3	-	-	-	100	
BTC802	Bioseperation & Downstream Processing technology-II	20	20	20	80	3	-	-	-	100	
BTC803	Bioprocess Plant & Equipment design	20	20	20	80	3	25	-	-	125	
BTE804X	Department Elective IV	20	20	20	80	3	25	-		125	
ILO802X	Institute Level optional Subject II	20	20	20	80	3	-	-	-	100	
BTP801	Project B	-	-	-	-	-	100	-	50	150	
BTL801	Lab - VI	-	-	-	-	3	-	25	-	25	
BTL802	Lab - VII	-	-	-	-	3	-	25	-	25	
	Total			100	400	-	150	50	50	750	

Department Elective IV (Sem VIII)									
Engineering Stream		Ac	ogy Stream						
1. Non-conventional Sources of Energy	1.	Total	Quality	Management	1. Advanced	Bioinformatics			
(BTE8041)		(BTE8042)			(BTE8044)				
	2.	Entrep	reneurship (E	BTE8043)					

Institute Level Optional Subject II (Sem VIII)								
1. Project Management (ILO8021)	4. Human Resource	7. IPR and Patenting						
	Management (ILO8024)	(ILO8027)						
2. Finance Management (ILO8022)	5. Professional Ethics and CSR	8. Digital Business						
	(ILO8025)	Management (ILO8028)						
3. Entrepreneurship Development and	6. Research Methodology	9. Environmental						
Management (ILO8023)	(ILO8026)	Management (ILO8029)						

University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) S.E. Semester III (w.e.f 2017-2018)

Course	Course Name		eaching Sche Contact Hou					
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC301	Applied Mathematics- III	3	-	1	3	-	1	4
BTC302	Microbiology I	4	-	-	4	-	-	4
BTC303	Cell Biology	3	-	1	3	-	1	4
BTC304	Biochemistry	4	-	-	4	-	-	4
BTC305	Unit Operations-I	3	-	-	3	-	-	3
BTC306	Process Calculations	3	-	1	3	-	1	4
BTL301	Microbiology Lab	-	3	-	-	1.5	-	1.5
BTL302	Biochemistry Lab	-	3	-	-	1.5	-	1.5
BTL303	Unit Operations-I Lab	-	2	-	-	1	-	1
	Total	20	8	3	20	4	3	27

		Examination Scheme									
Course	Course Name	Course Name Theory		Theory			Term	Pract/			
code		Intern	al Assessi	nent	End	Exam	Work	Oral	Oral	Total	
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)	Duration				
BTC301	Applied Mathematics-III	20	20	20	80	3	25	-	-	125	
BTC302	Microbiology I	20	20	20	80	3	-	-	-	100	
BTC303	Cell Biology	20	20	20	80	3	25	-	-	125	
BTC304	Biochemistry	20	20	20	80	3	-	-	-	100	
BTC305	Unit Operations-I	20	20	20	80	3		-	-	100	
BTC306	Process Calculations	20	20	20	80	3	25	-	-	125	
BTL301	Microbiology Lab	-	-	-	-	3		25	-	25	
BTL302	Biochemistry Lab	-	-	-	-	3		25	-	25	
BTL303	Unit Operations-I Lab	-	-	-	-	-		-	25	25	
	Total			120	480	-	75	50	25	750	

Course Code	Name of Subject	Credits
BTC301	Applied Mathematics III	04

Pre-requisites:

• Basics of complex numbers: modulus, argument; equation of a circle, roots of unity, Euler's formula; hyperbolic functions; matrices: symmetric, orthogonal and unitary matrices, rank, normal form, solutions of systems of linear equations; basics of LPP: graphical method; calculus: partial derivatives, Hessian, maxima/minima of functions of 1 and 2 real variables.

Course Objectives:

- To introduce students to the basic methods of Laplace transforms.
- Laplace transforms and inverse Laplace transforms of all the standard functions.
- To enable students to solve initial value ODE problems using L-transforms.
- To study eigen values and eigen spaces of matrices.
- Orthogonal and congruent reduction of quadratic forms.
- Complex analysis: C-R equations, Milne-Thomson method.
- Bilinear transformations and cross-ratios.
- Introduction to statistics.
- Lagrange multiplier method for 2 and 3 variables with no more than two constraints.
- To introduce the basics of optimization using Kuhn-Tucker conditions.

Course outcomes:

- The student will be able to solve initial value ODE problems.
- The student will have a good understanding of real and complex analysis.
- The student will have a thorough grounding in matrix algebra.
- The student will be ready for any further courses on optimization.

Module	Contents	Contact
		Hours
01	The Laplace transform: Definition and properties (without	07
	proofs); all standard transform methods for elementary functions	
	including hyperbolic functions; Heaviside unit step function,	
	Dirac delta function; the error function; evaluation of integrals	
	using Laplace transforms; inverse Laplace transforms using	
	partial fractions and H(t-a); convolution (no proof).	
02	Matrices: Eigen values and eigens paces of 2x2 and 3x3 matrices;	07
	existence of a basis and finding the dimension of the eigen space	
	(no proofs); non- diagonalisable matrices; minimal polynomial;	
	Cayley - Hamilton theorem (no proof); quadratic forms;	
	orthogonal and congruent reduction of a quadratic form in 2 or 3	
	variables; rank, index, signature; definite and indefinite forms.	
03	Complex analysis: Cauchy-Riemann equations (only in Cartesian	07
	co- ordinates) for an analytic function (no proof); harmonic	
	function; Laplace's equation; harmonic conjugates and orthogonal	
	trajectories (Cartesian co- ordinates); to find f(z) when u+v or u -	

Rev 2016

	v are given; Milne-Thomson method; cross-ratio (no proofs); conformal mappings; images of straight lines and circles.	
04	Complex Integration Cauchy's integral formula; poles and residues; Cauchy's residue theorem; applications to evaluate real integrals of trigonometric functions; integrals in the upper half plane; the argument principle.	
05	Statistics: (No theory questions expected in this module) Mean, median, variance, standard deviation; binomial, Poisson and normal distributions; correlation and regression between 2 variables.	05
06	Optimization (No theory). Non-linear programming: Lagrange multiplier method for 2 or 3 variables with at most 2 constraints; conditions on the Hessian matrix (no proof); Kuhn-Tucker conditions with at most 2 constraints.	

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:20 marksAttendance:05 marksTotal:25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

References

- 1. Mathematical Methods in Chemical Engineering, V.G. Jenson and G.V. Jeffreys, Academic Press, 1970
- 2. Laplace transforms, Murray Spiegel, Schaum's Outline Series, 1974
- 3. Complex variables, Murray Spiegel, Schaum's Outline Series, 1964
- 4. Linear Algebra, Murray Spiegel, Schaum's Outline Series, 1964
- 5. Probability and Statistics: Murray R. Spiegel, Schaum's Outline Series, 1965
- 6. Advanced Engineering Mathematics by *Erwin Kreyszig*, 9TH Edition, Wiley India.

Course Code	Course/Subject Name	Credits
BTC302	Microbiology	4

Prerequisites:

Basic Knowledge of Living Cells

Course Objectives:

- The course aims to develop skills of the Students in the area of Microbiology particularly to identify microbes, their structure, their metabolism and their industrial applications.
- They will study various sterilization techniques and their effects.
- This will be a prerequisite for all courses offered in Bioprocess Technology

Course outcomes:

- Students will be able to carry out various microbiological techniques like staining and isolation very well.
- They would be able to identify microbes.
- They would have detailed knowledge of various sterilization techniques, which would be useful for other courses.

1 History and Scope of Industrial Microbiology: 03 1 History and Scope of Industrial Microbiology: 03 • Introduction: Discovery of Microbial world • The experiments of Pasteur; The discovery of Anaerobic Life 03 • Physiological significance of Fermentation; Pasteur and Fermentation • The Era of discovery of Antibiotics; Growth of Industrial fermentation 08 2 Classification of Microorganisms: 08 • Types and general characteristics of microorganisms: 1) Bacteria- Archaebacteria, Actinomycetes, Rickettsia, Mycoplasma, Chlamydia 08 • The classification of bacteria Species: The unit of classification, New approaches to bacterial taxonomy, Bacterial taxonomy the problems of taxonomic arrangements, Bacterial phylogeny. •	Module	Contents	Contact Hours.
 The experiments of Pasteur; The discovery of Anaerobic Life Physiological significance of Fermentation; Pasteur and Fermentation The Era of discovery of Antibiotics; Growth of Industrial fermentation Classification of Microorganisms: Types and general characteristics of microorganisms:	1	• •	
Life Physiological significance of Fermentation; Pasteur and Fermentation The Era of discovery of Antibiotics; Growth of Industrial fermentation 2 Classification of Microorganisms: Types and general characteristics of microorganisms: Bacteria- Archaebacteria, Actinomycetes, Rickettsia, Mycoplasma, Chlamydia Fungi – Molds and yeasts Algae 4) Protozoa 5) Viruses The classification of bacteria Species: The unit of classification, New approaches to bacterial taxonomy, Bacterial taxonomy the problems of taxonomic 		-	
FermentationFermentation• The Era of discovery of Antibiotics; Growth of Industrial fermentation2Classification of Microorganisms: • Types and general characteristics of microorganisms: 1) Bacteria- Archaebacteria, Actinomycetes, Rickettsia, 			
fermentation082Classification of Microorganisms: 			
 Types and general characteristics of microorganisms: Bacteria- Archaebacteria, Actinomycetes, Rickettsia, Mycoplasma, Chlamydia Fungi – Molds and yeasts Algae 4) Protozoa 5) Viruses The classification of bacteria Species: The unit of classification, New approaches to bacterial taxonomy, Bacterial taxonomy the problems of taxonomic 			
 Types and general characteristics of microorganisms: Bacteria- Archaebacteria, Actinomycetes, Rickettsia, Mycoplasma, Chlamydia Fungi – Molds and yeasts Algae 4) Protozoa 5) Viruses The classification of bacteria Species: The unit of classification, New approaches to bacterial taxonomy, Bacterial taxonomy the problems of taxonomic 	2	Classification of Microorganisms:	08
Aerobic and Anaerobic cultures Microbial Pathogenesis:		 Types and general characteristics of microorganisms: Bacteria- Archaebacteria, Actinomycetes, Rickettsia, Mycoplasma, Chlamydia Fungi – Molds and yeasts Algae 4) Protozoa 5) Viruses The classification of bacteria Species: The unit of classification, New approaches to bacterial taxonomy, Bacterial taxonomy the problems of taxonomic arrangements, Bacterial phylogeny. Aerobic and Anaerobic cultures 	
Microbial Pathogenesis:			
• Epidemiology of infectious diseases, Bacterial, Fungal, Protozoal, Viral Diseases;			
Bacterial invasion and colonization		Bacterial invasion and colonization	
Bacterial toxins- types and mode of action		Bacterial toxins- types and mode of action	

3	Microbial Nutrition:	05
	Nutritional requirements of microorganisms	
	• Different types of media- Synthetic media, complex media	
	Selective media, differential media, enrichment media.	
4	Microbial Growth:	05
	• Introduction: phases of growth	
	• Growth curve	
	Kinetics of growth	
	Measurement of growth	
	Continuous & batch culture	
	• Synchrony	
	Chemostat & turbidostat	
	• Effects of solutes, temperature, ion concentration, oxygen,	
	hydrostatic pressure, heavy metal ions, and UV light on	
	microbial growth	
5	Microbiological Techniques:	09
	• Sterilization and disinfection techniques,	
	• Principles and methods of sterilization.	
	• Physical methods - autoclave, hot-air oven, pressure	
	cooker, laminar airflow, filter sterilization.	
	• Radiation methods – UV rays, gamma rays, ultrasonic	
	methods.	
	• Chemical methods - Use of alcohols, aldehydes, fumigants,	
	phenols, halogens and hypochlorites. Phenol coefficient.	
	• Isolation of pure culture techniques - Enrichment culturing,	
	dilution plating, streak- plate, spread-plate and	
	micromanipulator.	
	• Preservation of microbial cultures - sub culturing,	
	overlaying cultures with mineral oils, lyophilization, sand	
(cultures, storage at low temperature.	07
6	Antimicrobial Therapy:	07
	Antimicrobial sensitivity tests.	
	• Agents used in treating infection: Antibacterial, antiviral,	
	antiretroviral, antifungal, anti-protozoan & anti helminthes.	
	Resistance mechanism.	0.
7	Water & Soil Microbiology:	07
	• Microbiological analysis of water purity-sanitary tests for	
	coliforms (presumptive test, confirmed test, competed	
	test), MPN test, defined substrate test, IMVIC test.	
	• Soil microbiology- soil as a habitat for microorganisms,	
	physico-chemical properties of soil, microbial community	
	in soil, role of microorganisms in organic matter	
	decomposition.	

Assessment Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules. Weightage of marks should be proportional to number of hours assigned to each Module.

References

- 1. Textbook of Microbiology ;R. Ananthnarayan, C. K. J. Panicker, Orient Longman 6th Edition (2003)
- 2. General Microbiology, R.Y. Stanier, J.L. Ingraham, M.L.Wheelis and P.R. Painter, Macmillian
- 3. Microbiology VI Edition, M.J. Pelczar, E.C.S. Chan and N.R. Kreig, Tata McGraw Hill Microbiology by Prescott
- 4. Microbiology: An Introduction (9th Ed.) by Tortora GJ, Funke BR, and Case CL, Pearson Education, 2008.
- 5. Industrial Microbiology, Casida, New Age International
- 6. Industrial Microbiology, Prescott and Dunn, C.B.S. Publishers Principles of Microbiology, R.M. Atlas, WMC. Brown Publisher.
- 7. Microbiology Fundamentals and Application, 6th Ed. Purohit, S.S. (Agrobios)
- 8. Textbook of Microbiology, P.Charkborthy
- General Microbiology Vol. II by Powar and Daginawala Himalaya Publ. House 8th edition (2004)

Course Code	Course/Subject Name	Credits
BTC303	Cell Biology	4

Prerequisites:

- Knowledge of basic terminology of cell and cell organelles
- Knowledge of structure and function of prokaryotic and eukaryotic cell
- Knowledge of different compartments of cell organelle.
- Knowledge of cell division
- Basic knowledge of cell events like photosynthesis, respiration

Course Objectives:

- In this course, Students will explore the great diversity of all cellular form and function.
- Course emphasis is placed on the molecular mechanisms of cell metabolism, growth, division, and communication.
- This course is central to the cell biology and serves as the bridge between foundational courses in the cell and advanced courses in the complexity of sorting in the cell.

Course Outcome:

- By the end of the course students should be able to grasp the fundamentals in Understanding the molecular organization of the cells, function and structure of The different organelles including transport mechanisms for processes like; Protein sorting, cell communication and flow of information and transport across the unit membrane, cell signaling.
- Students will have good knowledge of cancer, its types and etiology. Students will be able to appreciate all basic concepts which he may encounter in future courses in biotechnology engineering.
- Students will be ready for application of these concepts in the field of research in biotechnology.

Module	Contents	Contact Hours
1	Cytology:	05
	• Developmental history of cytology: Origin of cell, Robert	
	Hooke's Experiment, Cell theory, Miller's Experiment	
	Properties & Types of cells: Prokaryotic & Eukaryotic cell	
	• Structure and function of cells such as Viruses, Bacteria,	
	Animal cells, Plant cells.	
2	Cell cycle & cell death:	05
	• Cell cycle and its regulation: Cyclins, CDKs, Checkpoints	
	Cell division: Mitosis & Meiosis	
	 Programmed cell death: Apoptosis, Extrinsic & Intrinsic pathway 	
	 Apoptosis vs. Necrosis 	
3	Structural organization of cell and role of cell organelles in	08
	sorting and intracellular transport:	
University of M	Mumbai B. E. (Biotechnology) Rev 2016	Page 18

	• Cell membrane: Function, Composition, Membrane proteins, Fluid Mosaic model, Electrical properties of membrane,	
	Neurotransmission	
	• Nucleus: Nuclear Envelop, Nuclear Pore Complex & its role	
	in nucleocytoplasmic exchange	
	• Overview of endomembrane system: secretory and endocytic pathway	
	 Endoplasmic Reticulum: SER & RER, Protein synthesis on membrane bound and free ribosomes, Protein Glycosylation in ER & Golgi complex, Membrane biosynthesis in the ER Golgi bodies: Movement of materials through the Golgi 	
	complex	
	 Structure & function of Cell wall, Mitochondria, Lysosomes 	
	-	
	• Structure and function of cytoskeleton:	
	(i)Microtubules – Structure & composition, MAPs, MTOCs, Dynamic properties of microtubules, Overview of motor	
	proteins.	
	(ii)Microfilaments – Structure, Assembly & disassembly.	
	(iii)Intermediate filaments – Structure, Assembly &	
	disassembly, Types and functions.	0.5
4	Transport across cell:	05
	• Bulk transport: Exocytosis, Phagocytosis,	
	Endocytosis – Pinocytosis & Receptor mediated endocytosis	
	 Mechanism of transport of substances through membrane: 	
	(i) Active Transport – Ion pumps	
	(ii) Passive Transport – Diffusion, Osmosis, Facilitated	
	diffusion, Ion channels	
5	Cellular communication:	07
	• General principles of cell communication: Types of adhesion, CAMs	
	• Extracellular matrix: Components – Collagen, Proteoglycans, Fibronectin, Laminin	
	• Interactions of cells with extracellular materials: Integrins, Focal Adhesions & Hemidesmosomes	
	• Interactions of cells with other cells: Selectins, IgSF,	
	Cadherins, Adherens junction, Desmosomes	
	• Tight junctions	
	• Gap junctions and plasmodesmata	
6	Cell Signaling:	05
	• Types of intercellular signaling: Auto, Para & Endocrine	
	• Overview of cellular signaling pathway	
	 Various extracellular messengers and their receptors 	
	 Signal transduction by RTKs: Receptor dimerization, Protein 	
	kinase activation, Activation of downstream signaling	
	pathways, Ending the response. Signaling by Insulin receptor	
	pairways, Ending the response. Signating by insulin receptor	

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:	20 marks
Attendance:	05 marks
Total:	25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

References

- 1. Cell and Molecular biology: Concepts and Experiments, Gerald Karp, John Wiley and sons Inc, 6th Edition (2010)
- 2. Molecular Cell Biology, H. Lodish et. al., W.H. Freeman & Co Ltd, 5th Edition (2003)
- 3. Cell and Molecular Biology, DeRobertis; Lippincott Williams & Wilkins 8th Edition (2001)
- 4. Molecular Biology of the Cell and the Hypercell with CDROM; Alberts, Bray; Garland Publishing 1st Edition (1999)
- 5. Molecular Biology of the Cell with CDROM Alberts, Bruce; Johnson, Alexander; Lewis, Julian 4th Edition (2005).

Course Code	Course/Subject Name	Credits
BTC304	Biochemistry	4

Prerequisites:

- Knowledge of organic chemistry: functional groups and their reactions
- Knowledge of living cell and its components

Course Objectives:

- The major objective is to provide complete understanding of all the chemical processes associated with living cells at the molecular level.
- To ensure students have a strong grounding in structures and reactions of biomolecules.
- To introduce them to the metabolic pathways of the major biomolecules.
- To correlate biochemical processes with biotechnological applications.

Course outcomes:

• The students will be able to understand and analyze the correlation between biomolecules, their associated pathways and various biological processes underlying the living systems.

Module	Contents	Contact Hours
1	• Introduction, aims and scope	05
	• Chemical foundations of Biology- Properties of water, acids,	
	bases and buffers, covalent bonds, Non-covalent interactions	
	in biological systems.	
2	Biomolecules:	10
	Classification, Structure and Functions of :	
	Carbohydrates:	
	• Lipids	
	• Proteins	
	Nucleic acids	
3	Enzymes:	05
	Working of Enzymes	
	• Concept of Activation energy and transition state	
	• Factors affecting enzyme activity- pH, Temperature,	
	Substrate & Enzyme Concentration	
4	Vitamins and Hormones:	05
	• Vitamins: Classification, functions, role in metabolism,	
	vitamins as cofactors.	
	• Hormones: Classification, endocrine glands, function and	
	mechanism of action of hormones.	
5	Metabolism:	15
	Carbohydrates- Glycolysis, TCA cycle	
	• Lipids- Digestion by GI enzymes and breakdown of	
	Triglycerides: α , β , ω oxidation of fatty acids	
University of	Mumbai B. E. (Biotechnology) Rev 2016 P	age 21

	 Amino acids- decarboxylation, deamination & transamination. Urea cycle; fate of amino acids (connection to TCA) Electron Transport Chain Photophosphorylation- Photosystems, reaction centers, pigments, cyclic and non-cyclic photophosphorylation, Z pathway 	
6	Bioenergetics:	05
	Laws of Thermodynamics	
	Concept of Enthalpy, Entropy	
	• Energy rich compounds – ATP as energy currency	

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

References

- 1. Nelson, D.L. and M.M. Cox, "Lehninger's Principles of Biochemsitry", 4th Edition, W.H. Freemen & Co., 2005.
- 2. Murray, R.K., et al "Harper's Biochemistry", 23rd Edition, Prentice Hall International, 1993
- 3. Lubert Stryer. 2007. Principles of Biochemistry. Freeman.
- 4. Voet and Voet. 2005. Biochemistry. Wiley.
- 5. D. Skoog, D. West, F.Holler, S. Crouch "Fundamentals of Analytical Chemistry" 8th Edition, 2004. Thomson Brooks/ Cole
- 6. David T. Plummer, An Introduction to practical biochemistry, Tata McGraw Publishing Company Ltd.

Course Code	Course/Subject Name	Credits
BTC305	Unit Operations – I	3

Prerequisites:

Basic knowledge in physics, units and dimensions and thermodynamics

Course Objectives:

- To impart the basic concepts of fluid statics and dynamics
- To study the basic equations of fluid flow.
- They should be comfortable with measurement of pressure or pressure drop.
- To enable students to determine viscosity using method such as Stokes Law.
- To study the different types of size reduction equipment used in Industries.
- To study about the metering and pumping of fluids.

Course Outcomes:

- The student will have a thorough grounding on measurement of pressure drop, velocity, flow rates etc. of fluids.
- They can select pumps and would be able to calculate power requirement for pumping as well as agitation operations.
- They will be able to operate certain flow measurement devices and size reduction equipment.

Module	Content	Contact
1	Introduction: Classification of fluids, Rheological behavior of	Hours 05
1	fluids & Newton's Law of viscosity. Effect of temperature &	0.0
	pressure on viscosity of fluids.	
	Fluid statics: Pascal's law ,Hydrostatic equilibrium,	
	Barometric equation and pressure measurement (problems)	
2	Fluid Dynamics: Continuity Equation, Equation of motion,	07
	Euler's equation of motion, Bernoulli's equation (problems),	
	Bernoulli's equation for compressible fluids (isothermal and	
	adiabatic process) concept of Reynold's number, Laminar flow in pipes, Turbulent flow in pipes, velocity and shear stress	
	distribution across pipe, Boundary layer formation and	
	separation of boundary layer.	
3	Flow of Incompressible fluids: Relationship between skin	08
	friction and wall shear, Fanning friction factor, friction factor	
	law for smooth pipes, Form friction, effect of roughness,	
	energy relationships, pipe fittings, major and minor losses in	
	pipe flow. (problems)	
	Flow measurements: Venturimeter, Orificemeter, Pitot tube,	
	Rotameter. (problems)	
	Pumping: Reciprocating pumps, Rotary pumps, centrifugal pumps (Characteristics, NPSH, and Cavitation) and blowers.	
4	Particle Size distribution: Importance of particle size in	07
-	reactions, particle size, shape and mass distributions,	07
L		

Rev 2016

	measurement and analysis, concept of average diameter.				
	(problems)				
	Screening: Screening equipment, capacity and effectiveness				
	of screen, effect of mesh size on capacity of screen. Particle				
	size analysis – mean diameter, derived diameter. Sieving -				
	cumulative method and differential method.				
	Transportation and storage of solids: Studies performance				
	and operation of different conveyor systems like Belt, Screw,				
	Apron, Flight, pneumatic conveyor and elevators; Storage of				
	solids and discharge pattern from storage bin.				
5	Size Reduction: Factors affecting size reduction,	04			
	comminution laws – Kick's law, Rittinger's law and Bond's				
	law and their limitations. Crushing efficiency & power				
	consumption (problems)				
	Size reduction equipment: Grinder – Construction and				
	operation of Hammer mill, Ball mill (problems), Ultrafine				
	grinder – Fluid energy mill, Cutting machines: knife cutters.				
6	Sedimentation: Free settling and Hindered settling, Stoke's	04			
	law & Newton's law regimes of settling. Clarifiers and				
	thickeners, flocculation, batch Sedimentation (Kynch theory),				
	rate of sedimentation.				
:					

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

Text books

- 1. Dr. R. K. Bansal, "A Textbook of Fluid Mechanics & Hydraulic Machines", Laxmi Publications, 9th Edition, 2010.
- 2. R. S. Hiremath & A. Kulkarni. Mechanical Operations Vol. I.
- 3. McCabe, W.L, Smith J.C and Harriot, P., "Unit Operations in Chemical Engineering", McGraw Hill, Fourth Edition, 1984.
- **4.** Narayanan C.M. & Bhattacharya B.C. "Mechanical operations for chemical engineers", Khanna.

References

- 1. Coulson, J.M., Richardson, J.F., "Chemical Engineering", Volume 2, Third Edition, Pergamon Press, 1977.
- 2. Badger and Bencharo, "Introduction to Chemical Engineering". TMH,
- 3. Fluid Mechanics and Hydraulics by Suresh Ukarande, Ane Books, 2012.

University of Mumbai	B. E. (Biotechnology)	Rev 2016	Page 24

Course Code	Course/Subject Name	Credits
BTC306	Process Calculations	4

Prerequisites:

- Linear Algebra •
- **Differential Equation** •

Course Objectives:

- To study the laws regarding gas, liquid and vapor •
- To develop understanding about material balance and energy balances •
- To study the stoichiometry and thermodynamics of microbial growth and • product formation

Course outcomes:

- The student will be able to understand basic application of various unit • operations & unit processes to industrial &theoretical problems
- They will have a clear understanding of the various systems of units will be • able to do the conversion of units of one system to another.
- They will be able to do basic calculations for biological systems & access the • property data from appropriate sources.

Module	Content	Contact Hours
1	Units and dimensions: Systems of units, fundamental and derived units, unit conversions, dimensional homogeneity and dimensional analysis problems. Conversion of units Chemical arithmetic: Mole concept, atomic weight, molecular weight and equivalent weight- methods of determination. Chemical composition: Methods of expressing compositions of mixtures and solutions- mole percent, mass percent, volume percent, molarity, molality, normality etc. P-V-T behavior of pure liquids- Gas laws, real and ideal gases, equation of state, critical properties, properties of gas mixtures- Dalton's laws, Amagat's law-Average molecular weight and density problems. Biochemical stoichiometry: Limiting and excess reactants- conversion, degree of completion, selectivity, yield problems.	07
2	Fundamentals of material balances- Law of conservation of mass- Types of material balances, material balance with recycle bypass and purge streams	07
3	Material Balance for process involving chemical reaction, Calculations using Psychrometric chart; Humidity and saturation	07
4	Fundamentals of energy balances, Law of conservation of energy, Heat capacity, sensible heat, latent heat, calculation of enthalpy changes. General energy balance equation; Energy balance calculations with and without reactions, Energy	07
Iniversity of Mumbai B. E. (Biotechnology) Rev 2016		

	balance for fermentation and downstream processing problems.	
5	Stoichiometry of microbial growth and product formation, Growth, Stoichiometry and elemental balances, respiratory quotient, degree of reduction, Yield and maintenance coefficients, Oxygen consumption in aerobic microbial cultures. Theoretical Oxygen demand- problems. Biochemical energetics: Metabolic reaction coupling, energetics of metabolic processes (respiration and biosynthesis). Transport across cell membranes, Thermodynamics of microbial growth, Heat generation in microbial cultures problems.	07

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:	20 marks
Attendance:	05 marks
Total:	25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules.
- Weightage of marks should be proportional to number of hours assigned to each Module.

- 1. David M. Himmelblau. 1989. Basic Principles and Calculations in Chemical Engineering. Prentice Hall of India (P) Ltd.
- 2. Hougen, K. M. Watson and R. A. Ragatz. 1970. Chemical Process Principles, Part - I, John Wiley and Asia Publishing Co.
- 3. Bhat B.I and S. M. Vora, 2005. Stoichiometry. Tata McGraw Hill.
- 4. Richard Felder and Ronald W. Rausseau. 1986. Elementary Principles of Chemical Processes. John Wiley & Sons.
- 5. Doran P.M, Bioprocess Engineering Principles, Academic Press
- 6. Bailey G.E and Ollis D.F, Bioprocess Engineering Fundamentals McGraw Hill
- 7. Shuler M.L and Kargi F, Bioprocess Engineering- Basic Concepts, Pearson Education
- 8. Segel I.H, Biochemical Calculations, John Wiley
- 9. Blanch H.W and Clark D.S, Biochemical Engineering Marcel Dekker Inc.

Course Code	Course/Subject Name	
BTL301	Microbiology Lab	1.5

- Study of different equipments- Bunsen burner, water bath, Autoclave, Laminar air flow, Incubator, Hot air oven, Centrifuge, and Refrigerator.
- Study of Microscope- Compound Microscope & its parts. Use of oil Immersion objective.
- Preparation of medium -nutrients broth, nutrient agar, agar slant.
- Staining: Simple, Differential staining methods, Capsule, Endospore; Study of shape and arrangement of bacterial cells
- Isolation of microorganism by Pure Culture Techniques.
- Effect of disinfectants on microbial flora
- Isolation and identification of microorganisms from different sources soil, water and milk
- Antibiotic sensitivity assay
- Effect of different parameters on bacterial growth (pH, temperature & UV irradiation)
- Culture of aerobic &anaerobic bacteria
- Effect of TDP & TDT on bacterial growth
- Filter paper disc methods for evaluation of antiseptics
- Study of growth curve of *E. coli*
- Bacterial colony counting using Haemocytometer

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Course Code	Course/Subject Name	
BTL302	Biochemistry Lab	1.5

- Preparations of solutions -molar, normal, ppm, percent
- Study of pH meter and preparation of buffers
- Study of Beer and Lambert's Law and absorption maxima
- Glucose estimation by DNSA method
- Protein estimation by Biurette Test
- DNA estimation by DPA method
- RNA estimation by Orcinol method
- Estimation of Vitamin C by Iodometry
- Extraction and separation of plant pigment by paper chromatography
- TLC of Fatty acids
- Study of Enzyme Activity
- Estimation of Lipids

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Course Code	Course/Subject Name	
BTL303	Unit Operations - I Lab	1.0

- Viscosity by Stoke's Law
- Venturimeter
- Orificemeter
- Flow through Helical coil
- Reynold's Apparatus.
- Bernoulli's apparatus
- Sieve analysis
- Screen effectiveness
- Major and Minor losses
- Ball mill
- Hammer mill
- Sedimentation
- Centrifugal pumps

University of Mumbai Program Structure for B.E. Biotechnology (Revised 2016) S.E. Semester IV (w.e.f 2017-2018)

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
BTC401	Applied Mathematics-IV	3	-	1	3	-	1	4
BTC402	Molecular Genetics	3	-	1	3	-	1	4
BTC403	Fermentation Technology	4	-	-	4	-	-	4
BTC404	Analytical Methods in Biotechnology	4	-	-	4	-	-	4
BTC405	Immunology and Immunotechnology	3	-	1	3	-	1	4
BTC406	Unit Operations-II	3	-	-	3	-	-	3
BTL401	Fermentation Technology Lab	-	3	-	-	1.5	-	1.5
BTL402	Analytical Methods in Biotechnology Lab	-	3	-	-	1.5	-	1.5
BTL403	Unit Operations-II Lab	-	2	-	-	1	-	1
	Total	20	8	3	20	4	3	27

		Examination Scheme								
Course	Course Name	Theory				Term	Pract/			
code		Intern	al Assessi	nent	End	Exam	Work	Oral	Oral	Total
		Test 1	Test 2	Avg	Sem Exam	Duration (in hrs)				
BTC401	Applied Mathematics-IV	20	20	20	80	3	25	-	-	125
BTC402	Molecular Genetics	20	20	20	80	3	25	-	-	125
BTC403	Fermentation Technology	20	20	20	80	3	-	-	-	100
BTC404	Analytical Methods in Biotechnology	20	20	20	80	3	-	-	-	100
BTC405	Immunology and Immunotechnology	20	20	20	80	3	25	-	-	125
BTC406	Unit Operations-II	20	20	20	80	3		-	-	100
BTL401	Fermentation Technology Lab	-	-	-	-	3		25	-	25
BTL402	Analytical Methods in Biotechnology Lab	-	-	-	-	3		25	-	25
BTL403	Unit Operations-II Lab	-	-	-	-	-		-	25	25
	Total			120	480	-	75	50	25	750

Course Code	Course/Subject Name	Credits
BTC401	Applied Mathematics IV	4

Prerequisites:

- Vector Calculus:- Multiple Integral, Partial differentiation, basic knowledge of vectors and their products, Knowledge of spherical and cylindrical coordinate system.
- Partial Differential Equation:- Integration, Know2ledge of partial derivatives.

Course Objectives:

- The syllabus/module aims to introduce the above topics (to the Learner) so as to equip the learner with mathematic tools to effectively model, analyze and find the solution of various problems in Chemical Engineering and Biotechnology processes.
- One can use vector formation and calculus together to describe and solve many problems in two/three dimension. The Fourier Transform and PDE module does the ground work for the techniques required to solve and find the answer for various physiochemical problems.

Course Outcomes:

• It is expected that the learner will develop the proactive approach towards the selection of methods to a solution of Chemical Engineering and Biotechnology problems coming across while studying higher level of the Course. (Example: Flow of Liquid through Pipes/Gases etc.)

Module	Contents	Contact Hours
01	Fourier Series Expansion of functions in any interval (a, b). Half range expansion; Complex form; Parseval's identity theorem; Orthogonal and Orthonormal functions. NO PROOFS REQUIRED.	09
02	Fourier Integrals and Fourier Transform; sine & cosine Integrals, sine & cosine transforms, complex transforms. NO PROOFS REQUIRED.	10
03	Partial Differential Equations Elliptic, Parabolic & Hyperbolic Equations; Laplace's equation; One dimensional Heat & Wave Equation, Two Dimensional wave equation. (ONLY NUMERICAL PROBLEMS. NO PROOFS REQUIRED).	10
04	Vector Integration Green's Theorem in the plain; Conservative & Solenoidal Fields. Green's Theorem in the plain; Conservative, Gauss Divergence Theorem, Stokes' Theorem. (ONLY	10
	NUMERICAL PROBLEMS. NO PROOFS REQUIRED).	10

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:	20 marks
Attendance:	05 marks
Total:	25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules. Weightage of marks should be proportional to number of hours assigned to each Module

- 1. Advanced Engineering Mathematics by *Erwin Kreyszig*, 9TH Edition, Wiley India.
- 2. Schuam's outline series in Fourier series.
- 3. Schuam's outline series in partial differential equations.
- 4. Partial differential equations Vol 1 by Rutherford Aris.

Course Code	Course/Subject Name	Credits
BTC402	Molecular Genetics	4

Prerequisites:

- Knowledge of Cell and its components
- Knowledge of Biomolecules and their functions
- Knowledge of Cellular Metabolism

Course Objective:

- Understand the Central Dogma of gene expression
- Explain the foundations of Mendelian genetics and chromosomal theory and apply these, with appropriate terminology, to contemporary concepts in genetics.
- Understand the redundant and universal qualities of the genetic code and how it is used to determine the amino acid sequence of a polypeptide.
- Describe the processes of transcription and translation in both prokaryotes and eukaryotes at the molecular level.
- Describe how prokaryotes control their gene expression through positive and negative regulatory mechanisms.

Course outcome:

- Students will get knowledge of molecular biology and genetics of Prokaryotic and eukaryotic organisms.
- Students will get insight on Replication, Transcription and translation processes in prokaryotes and eukaryotes, various mutations, their Repair mechanisms. Genetic syndromes.

Module	Contents	Contact Hours
01	Structure of Nucleic Acid:	04
	• DNA, RNA: mRNA,tRNA, rRNA,	
	 Denaturation and Renaturation of DNA, 	
	• Tm, GC content from Tm,	
	 Complexity of DNA, Cot curves 	
	• Satellite DNA: Repetitive DNA, SNP, STR	
02	Mendelism and its extensions	06
	 Mendel's Laws, problems based on his laws 	
	Linkage and Crossing Over	
	Multiple allelism	
	ABO blood group inheritance	
03	Cytogenetics	04
	• International System for Human Chromosome Nomenclature	
	 Mechanisms of numerical and structural chromosomal 	
	aberrations	
	• Chromosomal and non-chromosomal basis of sex determination	
	• Syndromes – Down's, Turner, Cri Du Chat, Klinfelter	
	Transposons	
	• Fluorescence in-situ hybridization technique and applications	

04	 DNA Replication and Repair: Prokaryotic and Eukaryotic DNA replication mechanism - Enzymes and accessory proteins involved in DNA replication , DNA Mutations: Types of Mutations and Mutagens DNA Repair Mechanism – Excision, recombinational, SOS, Photo reactivation, Mis-match repair 	06
05	 Transcription Relationship between Genes and Proteins Prokaryotic transcription Eukaryotic transcription: Eukaryotic RNA Polymerases, Transcription of protein coding genes, Production of mature mRNAs in Eukaryotes- 5' Modification, 3' Modification, Intron splicing, RNA Editing 	05
06	 Translation The nature of Genetic Code Synthesis of aminoacyl-tRNA, Ribosomal RNA genes Mechanism of initiation, elongation and termination of Translation in bacteria Co-and post-translational modifications of proteins 	05
07	 Regulation of gene expression Operon theory lac Operon: Structure, Regulation of Lac genes, Positive control of Lac Operon trp Operon: Gene organization of the tryptophan biosynthetic genes, Regulation of the trp operon, attenuation ara operon: structure and regulation of ara operon 	05

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:	20 marks
Attendance:	05 marks
Total:	25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules. Weightage of marks should be proportional to number of hours assigned to each Module

- 1. Molecular Biology; David Freifelder, Narosa Publishing House, 2nd edition (2004).
- 2. Microbial Genetics; David Freifelder, Narosa Publishing House, 2nd edition (2004).
- 3. Principles of Gene Manipulations; S. B. Primrose, R. M. Twyman, R. W. old, Blackwell Science,6th Edition (2003) 4. Genetics: A molecular Approach, 2nd edition; Peter J Russell
- 5. Gene VIII; Benjamin Lewin; Oxford Univ. Press, 8th edition (2004)
- 6. Cell and Molecular biology: Concepts and Experiments, Gerald Karp, John Wiley and sons Inc, 6th Edition (2010)

Course Code	Course/Subject Name	Credits
BTC403	Fermentation Technology	4

Prerequisites:

• Knowledge of microbiology

Course Objectives: To gain broad knowledge on

- Role of microorganisms in fermentation
- The various fermentation technologies used
- Production of important products through fermentation

Course Outcomes:

- Appreciate the use of microorganisms for the production of value added commodities.
- Understand the working of a fermentation system.
- To describe key industrial bioprocesses, from the traditional to the recently evolved.
- Integrate biological and engineering principles involved in the production and recovery of commercial products.
- Develop critical thinking skills and learn to employ a quantitative, scientific approach towards conversion of biological materials to value added products.

Module	Contents	Contact Hours			
01	Introduction to fermentation				
01	History and development of fermentation, general	04			
	requirements of the fermentation, range of fermentation				
	processes, parts of a fermentation process- upstream and				
	downstream processing, aerobic and anaerobic fermentation,				
	solid state and submerged fermentation.				
02	Introduction to Microbial Growth Kinetics	05			
	Batch culture (Quantifying cell concentration, Growth patterns				
	and Kinetics), Continuous culture, Comparison of batch and				
	continuous cultures in industrial processes, Fed batch culture,				
	Examples of use of fed batch cultures.				
03	Isolation, preservation and improvement of industrial				
	microorganisms				
	• Isolation methods utilizing selection of the desired characteristics				
	• Isolation methods not utilizing selection of the desired characteristics				
	• The preservation of industrially important microorganisms				
	Improvement of industrial microorganisms				
	• The selection of induced mutants synthesizing improved levels of products				
	• The use of rDNA techniques				
04	Regulatory Mechanisms controlling the catabolic and	03			

	anabolic pathways of microbes Induction, carbon catabolite		
	repression, crab tree effect, feedback inhibition and repression		
05	Media for industrial fermentations & sterilization	06	
	Introduction, Typical media, Energy sources, Carbon sources,		
	Nitrogen sources, Buffers, Oxygen requirements, Antifoams,		
	Medium optimization, Medium sterilization: The design of		
	batch sterilization processes, The design of continuous		
	sterilization processes, Sterilization of the fermenter, feeds and		
	air, Filter sterilization		
06	The development of inocula for industrial fermentations	04	
	The development of inocula for yeast, bacterial and fungal		
	processes, The aseptic inoculation of plant fermenters		
07	Aeration and agitation	04	
	The oxygen requirements and supply of industrial		
	fermentations, Determination of KLa, Factors affecting KLa		
	values, The balance between oxygen supply and demand		
08	Design of fermenter	04	
	Basic function of a fermenter for microbial or animal cell		
	culture, body construction, various parts of a fermenter		
09	Important products through Fermentation	08	
	Organic acids: citric and acetic acid; enzymes : amylase,		
	protease, lipase; antibiotics: penicillin; vitamins: vitB12;		
	aminoacids: lysine, Glutamic acid ; organic solvents: ethanol,		
	acetone butanol; alcoholic breverages: wine, beer; biomass :		
	bakers yeast; biofertilizers; biopesticides; biosurfactant;		
	steroid transformation; biopolymers		

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules. Weightage of marks should be proportional to number of hours assigned to each Module

- 1. Principles of Fermentation Technology Stanbury P.F., Whitaker A, Hall S. J.
- 2. Bioprocess Engineering: Basic concepts Shuler M.L., Kargi F. (PHI)
- 3. Bioprocess Engineering Principles Doran Pauline M. (Elsevier Pub.)
- 4. Biotechnology: A textbook of Industrial Microbiology- Cruger, W. and A. Cruger
- 5. Introduction to Biochemical Engineering DG Rao, 2005, Tata McGraw-Hill, New Delhi

Course Code	Course/Subject Name	Credits
BTC404	Analytical Methods In Biotechnology	4

Pre-requisites:

- Basic knowledge of Physical and Analytical Chemistry
- Knowledge of various types of spectra
- Knowledge of Biomolecules and their properties

Course Objective:

• To study the various analytical techniques used in Biotechnology.

Course outcomes:

- The students will be capable of handling different instruments in the laboratory.
- They would be able to compare different separation techniques and use them effectively in research work

Module	Contents	
01	Centrifugation: General principle- sedimentation velocity, sedimentation equilibrium Types of centrifuges, preparative and analytical centrifugation, differential centrifugation, density gradient methods Applications	08
02	 Chromatographic Techniques: Introduction to chromatography, General principles Planar Chromatography: Thin layer chromatography, paper chromatography Column chromatography–columns, stationary phases. Packing of columns, application of sample, column development, fraction collection and analysis. Partition chromatography, Adsorption chromatography Affinity Chromatography, Ion Exchange Chromatography, Chromato focussing, Size exclusion chromatography. Gas Chromatography, HPLC: Principle & Components: pumping systems, detectors systems Applications 	12
03	 Electro kinetic methods of separation: Electro kinetic methods of separation: Electrophoresis: General principle and application, factors affecting electrophoresis – voltage, current, resistance, buffer, composition, concentration, pH. Agarose Gel electrophoresis SDS-PAGE – Native and denaturing gels, gradient gels, discontinuous buffer system Two dimensional gel electrophoresis Isoelectric focusing Capillary electrophoresis 	09

	□ Immuno electrophoresis	
04	 Spectroscopy: Spectroscopic Techniques; Beers Lamberts law, molar and extinction coefficient, limitations of Beers Lamberts law Visible and UV Spectrophotometry; Principles, Instrumentation and applications 	08
05	Radio isotopic techniques: Use of radioisotopes in life sciences, radioactive labelling, principle and application of tracer techniques Detection and measurement of radioactivity using ionization chamber, proportional chamber, Geiger-Muller and Scintillation counters, Autoradiography Applications	

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules. Weightage of marks should be proportional to number of hours assigned to each Module

- 1. Wilson K and Goulding K.H., A biologist's guide to Principles and Techniques of Practical Biochemistry.
- 2. Willard and Merrit, Instrumental Methods and Analysis
- 3. Ewing GW, Instrumental Methods of Chemical analysis.
- 4. Robert. M. Silverstein et al, Spectrometric identification of Organic Compounds, 7th Edition, 1981.
- 5. Vogel's, Text Book of Quantitative Chemical Analysis, 6th Edition, 2004.
- 6. John A. Adamovic, Chromatographic Analysis of Pharmaceuticals, 2nd Edition.
- 7. Raymond P. W. Scott, Techniques and Practice of Chromatography –Vol. 70.
- 8. Sethi P.D, Dilip Charegaonkar, Chromatography –2nd Edition.
- 9. Niessen W. M. A., Van Der Greef J, Liquid Chromatography– Mass Spectrometry, Vol. 58.
- 10. Kalsi. P.K, Spectroscopy of Organic Compounds.
- 11. Hanes, Gel Electrophoresis of Proteins- A Practical Approach,
- 12. Hamilton R. J. and Sewell P. A, Introduction to High Performance Liquid Chromatography
- 13. Gordon M. Message, Practical aspects of Gas Chromatography and Mass Spectrometry, John Wiley and Sons, New York. 1984
- 14. Chapman J.M and G. Ayrey, The use of radioactive isotopes in the life sciences, George Allen and Unwin Ltd., London.
- 15. Biophysical chemistry by Upadhyay, Upadhyay and Nath, Himalaya publication house.

Course Code	Course/Subject Name	Credits
BTC405	Immunology and Immunotechnology	4

Prerequisites:

- Knowledge of anatomy and physiology of human body
- Knowledge of blood components and blood cells
- Knowledge of lymphatic system
- Knowledge of principle of immune response and vaccine
- Knowledge of history and basic terminology in immunology

Objectives

- To learn about various basic terminology in immunology
- To have knowledge of immune system in detail
- To describe the interaction of antigens and antibodies in antibody mediated and cell-mediated immune responses.
- To make familiar with the techniques involved in antigen and antibody reactions
- To understand the concepts and principle of immunoassay techniques in routine diagnosis, research
- To learn principle and types of vaccines

Outcomes:

- Student can define innate and adaptive immunity
- Student can define the characteristics of antigens
- Student can define the characteristics of antibodies
- Student can describe cellular cooperation in antibody and cell mediated immune responses
- Student can define antigen antibody interaction
- Student can describe Production of Monoclonal Antibodies and Recombinant Vaccines.

Module	Contents	Contact Hours
01	Introduction to immune system	06
	□ Innate and adaptive immunity	
	□ Cells and organs of the immune system	
	□ Primary and secondary immune responses;	
	Cell mediated and humoral response	
02	Antigens & Antibodies	04
	□ Antigens	
	□ Antibodies and T cell receptors: Antigens, Structure and	
	function of immunoglobulin,	
	□ B and T cell receptors	
03	Generation and regulation of immune responses	08
	□ Antigen processing and presentation	
	□ MHC-restriction; Cytokines	
	□ T Cell Maturation, activation and Differentiation B Cell	
	Generation, activation and differentiation	

	□ Clonal selection and immunological memory	
	□ Complement system, classical, alternative and MBL	
	pathway	
	□ Cell mediated cytotoxic responses	
	\Box Regulation of immune responses; Immunological tolerance	
04	Antigen-antibody Reactions	07
	Strength of Antigen-Antibody Reactions	
	In Vivo Antigen-Antibody Reactions, In Vitro Antigen- Antibody Reactions	
	□ Precipitation (In Fluid and In Gel Immuno electrophoresis),	
	□ Agglutination (Heamagglutination, Bacterial agglutination, Passive agglutination and Agglutination Inhibition).	
	□ Radio immuno Assay (RIA)	
	Enzyme Linked Immunosorbant Assay (ELISA),	
	U Western Blot	
	Immune Fluorescence	
05	Disorders of Human Immune System	06
	Primary and secondary immunodeficiency; Autoimmune	
	disorders; Hypersensitive reactions; Cytokine related	
	diseases	
06	Production of Monoclonal Antibodies and Recombinant Vaccines.	05
	□ Monoclonal antibody, polyclonal antibody. Production of	
	Monoclonal antibodies - Definition, production, applications.	
	□ Vaccines - Definition, recombinant vector vaccines,	
	DNA vaccines ,Multivalent subunit vaccines, minicell vaccines, conjugate vaccines	

Term work

Term work shall consist of minimum **eight** tutorials from entire syllabus which are to be given at regular intervals Batch wise.

Tutorials:	20 marks
Attendance:	05 marks
Total:	25 marks

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.

• Remaining questions will be randomly selected from all the modules. Weightage of marks should be proportional to number of hours assigned to each Module

- 1. Essential Immunology: Ivan Roitt.
- 2. Kuby Immunology: Golds by, Kindt and Osborne.
- 3. Immunology: Roitt, Brostoff, Mole.
- 4. Introductory Immunology : Huw Davies

Course Code	Course/Subject Name	Credits
BTC406	Unit Operation - II	3

Pre-requisites:

• An understanding of differential equations and basic physical concepts, units and dimensions

Course Objectives:

- To study the basics of Heat and Mass Transfer
- To develop understanding about the application of Heat and Mass transfer in Bio processing.
- To calculate the size of heat transfer equipments, for a known quantity of raw material.
- To apply energy balance.
- To understand the role of diffusion, drying &distillation in the processes. To apply material balance.
- To design equipments in which heat &mass transfer occurs.

Course outcomes:

- The student will be able to understand basic application of various unit operations & unit processes to industrial & theoretical problems
- They will have a clear understanding of the theories of Heat and Mass transfer which are used for modeling.
- They will be able to do design the fermenter and Bioreactors using the models developed.

Module	Contents	Contact Hours
01	Introduction: Various modes of heat transfer Viz. Conduction, Convection and Radiation.	07
	Conduction: Fouriers law, Steady state unidirectional heat flow	
	through single and multiple layer slabs, Cylinders and spheres	
	for constant and variable thermal conductivity.	
	Insulation: Properties of insulation materials, Types of insulation, Critical and Optimum thickness of insulation	
	Extended Surfaces: Fins – Types of fins, Derivation of fin	
	efficiency for longitudinal fins, Fin effectiveness. Elementary	
	treatment of unsteady state heat conduction. Problems	
02	Convection: Individual and overall heat transfer coefficient, LMTD, LMTD correction factor.	08
	Dimensionless numbers, - Dimensional analysis, Empirical	
	correlation for forced and natural convection.	
	Analogy between momentum and heat transfer – Reynolds,	
	Coulburn and Prandtl analogies. Problems	
	Heat Transfer with Phase Change: Boiling phenomena,	
	Nucleate and film boiling, Condensation – Film and Drop wise	
	condensation, Nusselts equations.	
03	Radiation: Properties and definitions, Absorptivity, Reflectivity,	08
	Emissive power and intensity of radiation, Black body radiation,	

	Gray body radiation,	
	Stefen – Boltzmann law, Wien's displacement law, Kirchoffs	
	law, View factors, Radiation between surfaces- different shapes,	
	Radiation involving gases and vapours, Radiation shields.	
	Heat Transfer Equipment: Double pipe heat exchangers, Shell	
	and tube heat exchangers - Types of shell and tube heat	
	exchangers, Condenser - types of condensers. Design of heat	
	exchanger.	
	Evaporators: Types of evaporators, performance of tubular	
	evaporator – Evaporator capacity, Evaporator economy,	
	Multiple effect evaporator	
04	Diffusion: Molecular diffusion in fluids, Diffusion coefficient,	07
	Flick's Law of diffusion, Dependence of diffusion coefficient	
	on temperature, pressure and composition, Diffusion in multi-	
	component gas mixtures. Diffusion in solids: Molecular,	
	Knudsen & surface diffusion Inter- phase mass transfer, Mass	
	transfer coefficients ,Diffusion between phases , Equilibrium	
	solubility of gases in liquids, Mass Transfer theories, Mass	
	transfer in fluidized beds, flow past solids and boundary layers,	
	Simultaneous heat and mass transfer.	
05	Mass Transfer in Bioprocess Operations: Role of Diffusion in	05
00	Bio processing, Oxygen Uptake in Cell Culture, Factors	00
	affecting cellular oxygen demand, oxygen transfer from gas	
	bubble to cell, oxygen transfer in fermenters, sparging stirring	
	and medium properties, anti foaming agents, temperature, gas	
	pressure and oxygen partial pressure, presence of cells,	
	measuring dissolved oxygen concentration, estimating oxygen	
	solubility, effect of oxygen partial pressure, effect of	
	temperature, effect of solutes, mass transfer correlations,	
	measurement of kLa, oxygen balance method, dynamic method,	
	sulphite oxidation method, oxygen transfer in large vessels.	

Assessment

Internal:

• Assessment consists of average of two tests which should be conducted at proper interval.

End Semester Theory Examination:

- Question paper will comprise of 6 questions, each carrying 20 marks.
- Total 4 questions need to be solved.
- Question No.1 will be compulsory and based on entire syllabus wherein sub questions can be asked.
- Remaining questions will be randomly selected from all the modules. Weightage of marks should be proportional to number of hours assigned to each Module

- 1. Robert E Treybal, Mass Transfer Operations, McGraw Hill Third Edition
- 2. Diffusion: Mass Transfer in Fluid System (Cambridge series in Chemical Engineering) by E.L.Cussler"

- 3. McCabe & Smith, Unit Operations in Chemical Engineering, 6th Edition, McGraw Hall, 2001.
- 4. Coulson and Richardson, Chemical Engineering Vol I, 4th Edition, Pergmon
- 5. Press, 1998.
- 6. Badger & Banchero, Introduction to Chemical Engineering, TMH 6th Reprint, 1998.
- 7. Doran P.M, Bioprocess Engineering Principles, Academic Press
- 8. Bailey G.E and Ollis D.F, Bioprocess Engineering Fundamentals McGraw Hill
- 9. Shuler M.L and Kargi F, Bioprocess Engineering- Basic Concepts, Pearson Education
- 10. Blanch H.W and Clark D.S, Biochemical Engineering Marcel Dekker Inc.

Course Code	Course/Subject Name	Credits
BTL401	Fermentation Technology Lab	1.5

- Alcohol production by baker's yeast
- Isolation and preservation of microorganism of commercial importance
- Cell immobilization technique by immobilizing yeast cells in calcium alginate beads.
- Production of citric acid by A.niger
- Hydrolysis of sucrose by immobilized yeast cells
- Determination of cell mass by different methods (dry weight method, density method and haemocytometer method)
- Estimation of carbohydrates from fermentation media.
- Production of amylase
- Isolation of auxotrophic mutants of industrially important microorganisms
- Study of substrate utilization kinetics of the organism
- Study the set up of various types of bioreactors
- Introduction to fermentor.

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Course Code	Course/Subject Name	Credits
BTL402	Analytical Methods In Biotechnology Lab	1.5

- Chromatography of amino acids and sugars
- Agarose gel electrophoresis
- SDS-PAGE, Native PAGE
- Iso-electric Focussing
- Centrifugation
- Density gradient Centrifugation
- Affinity chromatography
- Ion exchange chromatography
- Gel filtration chromatography
- UV-Visible spectrophotometer
- Thin Layer Chromatography
- Paper Chromatography

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Course Code	Course/Subject Name	Credits
BTL403	Unit Operations - II Lab	1

- Plate type H.E
- Natural convection
- Forced convection
- Critical Heat flux
- Emissivity
- Heat transfer through composite wall
- Shell & Tube H.E
- k of insulating material
- Vapor-liquid equilibrium
- Diffusivity of a liquid
- Diffusion through porous solids
- Determination of Mass transfer coefficients in Gas Liquid sysytem by evaporation
- Determination of Mass transfer coefficients in Liquid Liquid system.

AC ??/??/2014 Item no. ?.??

UNIVERSITY OF MUMBAI

Revised Syllabus Program - Bachelor of Engineering Course - Biotechnology (Third year - Sem V and VI)

under **Faculty of Technology** (As per Credit Based Semester and Grading System from 2014-15)

General Guidelines

Tutorials

- The number of tutorial batches can be decided based on facilities available in the institution.
- Tutorials can be creative assignments in the form of models, charts, projects, etc.

Term Work

- Term work will be an evaluation of the tutorial work done over the entire semester.
- It is suggested that each tutorial be graded immediately and an average be taken at the end.
- A minimum of ten (unless specified in course syllabus) tutorials will form the basis for final evaluation.

Theory Examination

- In general all theory examinations will be of 3 hours duration.
- Question paper will comprise of total six questions, each of 20 Marks.
- Only four questions need to be solved.
- Question one will be compulsory and based on maximum part of the syllabus.

Note: In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus as far as possible.

Practical Examination

- Duration for practical examination would be the same as assigned to the respective lab per week.
- A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments(unless specified minimum requirement in syllabus).

University of Mumbai

Scheme for TE: Semester-V

Course	Course Name		ching Sch	eme	Credit Assigned			
Code	Course Manie	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BTC501	Bioinformatics-1	04	_	_	4.0	_	_	4.0
BTC502	Genetic Engineering	04	_	—	4.0	_	—	4.0
BTC503	Biophysics	03	_	01	3.0	_	1.0	4.0
BTC504	Thermodynamics &	03	—	01	3.0	_	1.0	4.0
	Biochemical Engineering							
BTC505	Bioreactor Analysis &	03	—	01	3.0	_	1.0	4.0
	technology							
BTC506	Business Communication &	_	$02^{*} +$	—	_	2.0	_	2.0
	Ethics		02					
BTL507	Lab - I	_	03	_	_	1.5	_	1.5
BTL508	Lab – II	—	03	_	—	1.5	_	1.5
Total 17 10 03 17.0						5.0	3.0	25.0

*Theory for entire class.

		Examination Scheme							
Course	Course Name	Theory marks				T			
Code	Course Maine				End	Term Work	Pract.	Oral	Total
		Test	Test	Avg.	Sem.	WOIN			
		1	2	of	Exam				
				Test 1					
				and					
				Test 2					
BTC501	Bioinformatics-1	20	20	20	80	—	—	—	100
BTC502	Genetic Engineering	20	20	20	80	_	-	_	100
BTC503	Biophysics	20	20	20	80	25	—	_	125
BTC504	Thermodynamics &	20	20	20	80	25	—	_	125
	Biochemical Engineering								
BTC505	Bioreactor Analysis &	20	20	20	80	25	—	_	125
	technology								
BTC506	Business Communication &	_	_	_	_	50	_	_	50
	Ethics								
BTL507	Lab – I	—	_	_	_	—	25	_	25
BTL508	Lab – II	—	_	_	_	_	25	25	50
	Total 100 400 125 50 25 700							700	

Examination Scheme

Course Code	Course Name	Credits
BTC501	Bioinformatics I	4.0

Prerequisites

Basic knowledge of computers, Biochemistry : Structures of DNA, RNA & Proteins.

Course Objectives

The objectives of this course are to :

- To develop skills of the Students in the area of Bioinformatics particularly to make them to learn all the techniques used with biological data
- To study various databases of DNA & Proteins along with current bioinformatics concepts & their implementation
- To help students to easily handle proteins by studying in detail about protein structure.
- To become knowledgeable about the storage, retrieval, sharing and use of biological data, information, and tools.

Course Outcomes

By learning this course the students will be able to :

- To cast a molecular biology problem as a bioinformatics problem, select relevant tools, optimize their settings and build pipelines to solve the set problem.
- To easily extract the required data from a given set of data & similarly be able to store it.
- To use conventional softwares and web-based applications.
- To analyze processed data with the support of analytical and visualization tools.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction to bioinformatics: Types of biological data, Sequencing Methods : DNA (Maxim Gilbert Method, Sangers Method) & Protein (MS-MS Analysis), Genomic Sequencing, ESTs and SNPs, Applications of bioinformatics.	10
2	Databases Types of databases: Based on storage techniques (Flat , Relational, Object Oriented), Based on data (Primary, Secondary , Specialized) Search engines : Entrez & SRS Sequence databases: NCBI , EMBL , DDBJ Structural databases : PDB Protein Databases : PIR ,SWISS PROT Other Databases : KEGG , TrEMBL , EBI.	10
3	Alignment: Global Alignment ,Local Alignment, Pair Wise Sequence Alignment: Dot Matrix Alignment Dynamic programming Methods : Needleman Wunch Algorithm, Smith Waterman Algorithm, Heuristic Method : BLAST ,FASTA Amino Acid Substitution Matrices: PAM , BLOSSUM Multiple Alignment: CLUSTAL W Phylogenetic Analysis.	12

\ldots continued

Module	Contents	No. of hrs
4	Visualization: Methods for representing biological data, Rasmol, Swiss PDB, 3D Structure Viewers.	05
5	Proteins: Structure, Classification, Classification databases Protein Structure prediction : Primary Structure Prediction, Sec- ondary Structure Prediction, Tertiary Structure Prediction, Homol- ogy Modelling, Chao-Fasman Algorithm, Neural Networks, Ab-Initio Modelling, Fold recognition (Threading)	10
6	Drug discovery Markov chains Hidden markov models.	05

- 1. Oreilly , Developing bioinformatics computer skills, Shroff publishers, 1st Indian edition
- 2. David mount, Bioinformatics sequence and genome analysis , CBS publishers, 2nd edition
- 3. N. Gautam , Bioinformatics databases & algorithm, Narosa publication
- 4. S. Ignacimuthu S.J , Basic bioinformatics , Narosa publications
- 5. T. K. Attwood , Introduction to bioinformatics, Pearson education, 8th reprint
- 6. R6 : S. C. Rastogi , Bioinformatics concepts , skills & applications , CBS publishers, 1st edition

Course Code	Course Name	Credits
BTC502	Genetic Engineering	4.0

Prerequisites

Knowledge of Biochemistry, Microbiology, Molecular Biology, Genetics.

Course Objectives

The objectives of this course are to

- Give insight into the functioning of Recombinant DNA molecules, their constructions, analysis and fine tuning. To engineer such molecules for making of difficult bio-molecules.
- This course also gives various ideas and approaches by different schools of thoughts.

Course Outcomes

By learning this course the students will be able to

- Understand how recombinant molecules are created, analysed with respect to DNA, RNA, Protein.
- They also will be familiar with the problems they could encounter and how to trouble shoot them.
- They will be able to monitor both in-vitro and in-vivo activity.
- They will be able to suggest more rational approach to solve problem of a living system, at a molecular level.

Detail syllabus

Module	Contents	No. of hrs
1	DNA structure, topology, Superhelical and relaxed molecules. Plas- mids in nature, Fundamentals of Density gradient Centrifugation and Alkaline lysis for Plasmid preparation.	6
2	Palindromes and repeat structures. Restriction Endonucleases and their action. Vectors used for Gene-cloning: Plasmids (e.g pUC type, conjugative, Ti etc.), Phages (Lambda and M13 type), Cosmids and Phagemids.	8
3	Cloning strategies: Expression and Fusion vectors Stability of plasmids(PAR locus, High copy number etc) Library construction (Genomic and C-DNA type), and Screening for the clone.	7
4	DNA transfer into cells: Transformation and Transfection Membrane Fusion and Electroporation Gene-Gun and Micro-injection	7
5	Enzymes for Recombinant Technology: Restriction Endonucleases, DNA polymerases, Reverse Transcriptase, Polynucleotide Kinase, Terminal Transferase, Alkaline Phosphatase, S1-Nuclease, Bal-31, DNA Ligase.	8

continued \ldots

 \ldots continued

Module	Contents	No. of hrs
6	DNA and Protein Analysis: DNA: Southern and Northern Hybridization. PCR Amplification, DNA Sequence Analysis (e.g Sangers Method), Automated Sequenc- ing, RFLP and RAPD. Protein: Western Blotting, ELISA and its variations.	8
7	Antisense and RNA interference Technology and their Applications. r-DNA in medicine, e.g. Insulin and Blood clotting factor VIII. Use of cell-lines in bio-molecules production.	8

- 1. Molecular Biology of the Cell: Alberts et al. 5th. Ed. Garland Publications.
- 2. Genes VIII: Benjamin Levine, Oxford University Press.
- 3. Principle of Gene Manipulations (2004): S. B. Primrose, R. M. Twyman & R. W. Old. Sixth edition. Blackwell Science.
- 4. Gene Cloning and DNA analysis: An Introduction.(2006). T. A. Brown. Blackwell Publishing.

Course Code	Course Name	Credits
BTC503	Biophysics	4.0

Prerequisites

Knowledge of Chemistry, Physics, Atomic physics, Biochemistry, Molecular Biology.

Course Objectives

The objectives of this course are to:

• Give insight into the structure of various macro-molecules, their constructions, analysis and interactions.

Course Outcomes

By learning this course the students will be able to:

- Understand how molecules are created, and studied.
- They will be able to monitor both in-vitro and in-vivo activity and interactions.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction to Biophysics. Physicochemical properties of biological macromolecules and their complexes, Structural studies of Nucleic Acids, Proteins, lipids and Carbohydrates. Approaches: Electron Microscopy, Atomic Force Microscopy, X ray Crystallography, NMR Spectroscopy.	8
2	Nucleic Acid interactions: Different nucleic acid carrier proteins, Carrier RNA, snRNA, Inter- actions between DNA & protein, Zinc finger proteins, various nucleic acid binding proteins, Nuclear transport.	8
3	Membrane Structure & Properties The principles governing the structures of biological membrane, Two- dimensional fluids, Assembly of membrane components.	7
4	Protein Structural study. Proteins - Intra- and inter-molecular forces, helix-coil transitions and protein folding in a thermodynamical context, Secondary Motifs, Tertiary Architecture and Quaternary Organization, crystallization, diffraction theory, phasing techniques and structure validation.	8
5	Lipids & their Interaction. Details of Lipid Structures, Lipoproteins and Glycolipids. High den- sity (HDL) and low density (LDL) lipoprotein, energetics-structure- function relationship in exchangeable apolipoproteins and lipopro- teins, Disorder caused by saturated fat and cholesterol. Artere- ochlerosis.	8

- 1. Cantor R, Samual P. R. (1985). Biophysical Chemistry. W. H. Freeman & Co.
- 2. Van Holde Johnson and Ho. (2006) Principles of Physical Biochemistry. Second Edition, Pearson Prentice Hall.
- 3. Igor N. Serdyuk, Nathan R. Zaccai, & Joseph Zac. Methods in Molecular Biophysics: Structure, dynamics and Function. Cambridge University Press.
- 4. Physical Biocheistry: Principles and applications by David Sheehan, Jon Wiley & Sons.

Course Code	Course Name	Credits
BTC504	Thermodynamics & Biochemical Engineering	4.0

Prerequisites

Knowledge of phase rule, knowledge of differentiation & Integration

Course Objectives

- To study the basic concepts of the energy flow in and out of the system.
- To apply the thermodynamic principles to the biochemical reactions.
- To check the feasibility of the reaction.

Course Outcomes

The student will be able to check the feasibility of a reaction.

Detail syllabus

Module	Contents	No. of hrs
1	Basic Concepts: System, Surrounding & Processes, Closed and Open systems, State and Properties, Intensive & Extensive Properties, State and Path functions, Equilibrium state and Phase rule, Zeroth law of Thermody- namics, Heat reservoir and Heat engines, Reversible and Irreversible processes.	04
2	Laws of Thermodynamics: General statement of First law of Thermodynamics, First law for Cyclic Process, Non-Flow Process, Flow process, Heat capacity. Gen- eral statements of the second law, Concept of entropy, The Carnot principle, Calculation of entropy changes, Clausius inequality, En- tropy and Irreversibility, Third law of Thermodynamics.	5
3	PVT Behaviour: PVT behaviour of pure fluids, equations of state and ideal gas law, Processes involving ideal gas law: Constant volume, constant pressure constant temperature, adiabatic and polytrophic processes. Equa- tions of state for real gases: Van-der Waals equation, Redlich- Kwong equation, Peng-Robinson equation, virial equation.	5
4	Biochemical Energetics: Coupled reactions and energy rise compounds,Reaction Stoichiome- try, criteria of biochemical reaction equilibrium,equilibrium constant and standard free energy change, effect of temperature, pressure on free energy change,effect of temperature, pressure on equilibrium con- stants and other- factors affecting equilibrium conversion. Le Chateliers principle, liquid phase reactions, heterogeneous biore- action equilibria, phase rule for reacting systems .	5

continued \dots

			continued
•	٠	٠	commuea

Module	Contents	No. of hrs
5	Properties of Pure Fluids: Principles of corresponding states, Generalized compressibility charts. Reference properties, energy properties, Derived properties, Helmholtz free energy, Gibbs free energy, Relationships among ther- modynamic Properties: Exact differential equations, fundamental property relations, Maxwell's equations, Clapeyron equations, En- tropy heat capacity relations, modified equations for internal energy (U) & enthalpy (H), Effect of temperature on U, H & Entropy (S), Relationships between Cp & Cv, Gibbs- Helmholtz equation.	6
6	Fugacity and Activity: Fugacity: Fugacity, Fugacity coefficient, effect of temperature and pressure on fugacity, Determination of fugacity of pure gases, Fugacities of solids and liquids, Activity: Effect of temperature and pressure on activity. Departure functions and generalized charts, thermodynamic diagrams types of diagrams and construction of thermodynamic diagrams.	4
7	Properties of Solutions: Partial molar properties - Partial molar properties of solutions, determination of partial molar properties, chemical potential effect of temperature and pressure, lewis randall rule, Raoults law for ideal solutions, Henry's law and dilute solutions ideal behavior of real solutions and Henrys law, Activity in solutions, Activity coefficients effect of temperature and pressure, Gibbs - Duhem equation, Property changes of mixing, excess properties excess Gibbs free energy.	6
8	Phase Equilibria: Criteria of phase Equilibria, criterion of stability, Duhem's theorem, Vapour-Liquid Equilibria, VLE in ideal solutions, Non-Ideal solutions - azeotropes, VLE at low pressures activity co efficient equation, bubble point and dew point equilibria, Consistency test for VLE data using slope of ln ? curves, using partial pressure data, calculation of activity coefficients using Gibbs - Duhem equation, Liquid-Liquid Equilibrium diagrams binary liquid Equilibrium diagrams.	4

- 1. Smith, J.M., Van Ness, H.C., and Abbott, M.M., Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, Inc..
- 2. Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, Inc.
- 3. Hougen, O.A., Watson, K.M., and Ragatz, R.A., Chemical Process Principles Part II, John Wiley & Sons, (CBS Publishers & Distributors, New Delhi).

Course Code	Course Name	Credits
BTC505	Bioreactor Analysis & Technology	4.0

Prerequisites

Knowledge of chemical reaction kinetics, Knowledge of differentiation and integration

Course Objectives

- To understand the basic concepts of Bioreactor design.
- To select the relevant principles and data for practical process engineering purposes.

Course Outcomes

- Student will be able to understand the different types of ideal and non- ideal reactors.
- Student will be able to design the reactors required for a particular processes.

Detail syllabus

Module	Contents	No. of hrs
1	Basic Reaction Kinetics: Reaction thermodynamics, order and molec- ularity of reaction, homogeneous and heterogeneous reactions, ele- mentary and non elementary reactions, reaction yield, reaction rate, calculation of reaction rates from experimental data, general reaction kinetics for biological system, production kinetics in cell culture, ki- netics of substrate uptake in cell culture, growth kinetics with plasmid instability	7
2	Ideal Reactors: Constant volume and variable reactors, batch oper- ation of a well mixed enzyme and cell culture reactor, fed batch op- eration of a well mixed enzyme and cell culture reactor, continuous operation of well mixed enzyme and cell culture reactor, continuous operation of plug flow enzyme and cell culture reactor, autocatalytic reactions, recycle reactors-plug flow reactor and continuous stirred tank reactor, comparison between major modes of reactor operation.	8
3	Multiple Reactors and Reaction Systems: Continuous stirred tank reactors of equal size in series, continuous stirred tank reactors of unequal size in series, finding conversion in given system, determining the best system for a given conversion, plug flow reactors in series and parallel, reactors of different types in series. Simple reactions ,stepwise reactions, parallel reactions ,series reactions, maximizing R in batch reactor , plug flow reactor and continuous stirred tank reactor, reactor choice for series reactions and series parallel reactions, concepts of reversible reactions.	8
4	Heterogeneous Reactions: Heterogeneous reactions in Bioprocessing, Concentration gradients and reaction rates in solid catalysts, Internal mass transfer and reactions, steady state mass balance (spherical ge- ometry), Concentration profile for first order kinetics, Concentration profile for zero order kinetics, Concentration profile for Michaelis- Menten kinetics, Effectiveness factor and Thiele Modulus, External mass transfer	7

continued \dots

 \ldots continued

Module	Contents	No. of hrs
5	Deviations from ideal reactors: Concept of non ideality, reasons of non ideality, RTD studies, F curve, C curve, E curve, diagnosis of ills of flow reactors, modeling of non ideal behaviour-dispersion model, tanks in series model.	5
6	Working principle of unconventional reactors: Selection criterion for bioreactors, Bubble column, Air lift reactor, Fluidized bed reactor, perfusion reactors, membrane reactors	4

- 1. D.G.Rao, Introduction to Biochemical Engg., Tata McGraw Hill Edu. Pvt. Ltd., Second edition .
- 2. P.M.Doran, Bioprocesses Engg. Principles, Academic Press, London, Second edition.
- 3. E.H. Perry 7 D.W. Green, Perrys Chemical Engineering Handbook, Seventh edition.
- 4. Octave Levenspiel, Chemical Reaction Engineering, John Wiley Publication, Third Edn
- 5. H Scott Fogler" Elements of Chemical Reaction engineering" Prentice Hall, 2006

Course Code	Course Name	Credits
BTC506	Business Communication & Ethics	2.0

Course Objectives

- To inculcate in students professional and ethical attitude, effective communication skills, teamwork, skills, multidisciplinary approach and an ability to understand engineers social responsibilities.
- To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
- To inculcate professional ethics and codes of professional practice.
- To prepare students for successful careers that meets the global Industrial and Corporate requirement provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.

Course Outcomes

A learner will be able to

- Communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities,
- participate and succeed in Campus placements and competitive examinations like GATE, CET,
- possess entrepreneurial approach and ability for life-long learning,
- have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.

Detail syllabus

Module	Contents	No. of hrs
1	Report Writing: Objectives of report writing Language and Style in a report Types of reports Formats of reports: Memo, letter, project and survey based	7
2	Technical Proposals Objective of technical proposals Parts of proposal	2
3	Introduction to Interpersonal Skills Emotional Intelligence Leader- ship Team Buliding Assertiveness Conflict Resolution Negotiation Skills Motivation Time Management	7
4	Meetings and Documentation Strategies for conducting effective meetings Notice Agenda Minutes of the meeting	2
5	Introduction to Corporate Ethics and etiquettes Business Meeting etiquettes, Interview etiquettes, Professional and work etiquettes, So- cial skills Greetings and Art of Conversation Dressing and Grooming Dinning etiquette Ethical codes of conduct in business and corpo- rate activities (Personal ethics, conflicting values, choosing a moral response, the process of making ethical decisions)	2
6	Employment Skills Cover letter Resume Group Discussion Presenta- tion Skills Interview Skills	6

- 1. Fred Luthans, Organizational Behavior , Mc Graw Hill, edition
- 2. Lesiker and Petit, Report Writing for Business , Mc Graw Hill, edition
- 3. Huckin and Olsen, Technical Writing and Professional Communication, McGraw Hill
- 4. Wallace and Masters, Personal Development for Life and Work , Thomson Learning, 12th edition
- 5. Heta Murphy, Effective Business Communication , Mc Graw Hill, edition
- 6. R.C Sharma and Krishna Mohan, Business Correspondence and Report Writing,
- 7. B N Ghosh, Managing Soft Skills for Personality Development, Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, BCOM, Cengage Learning, 2nd edition
- 9. Bell . Smith, Management Communication Wiley India Edition, 3rd edition.
- 10. Dr. K. Alex ,Soft Skills, S Chand and Company
- 11. Dr.KAlex,SoftSkills,S Chand and Company
- 12. R.Subramaniam, Professional Ethics Oxford University Press 2013.

Course Code	Course Name	Credits
BTL507	Lab I	1.5

- Physical method of microbial control.
- Chemical method of microbial control.
- Isolation of bioluminescent organisms.
- Diauxic growth curve of E.Coli.
- Detection of Amino acid producer from soil.
- Acid fast staining for mycobacteria.
- Study of air microflora & determination of sedimentation rate.
- Blood film preparation and identification of cells
- Antibiotic susceptibility test.
- E Test
- Blood group typing using haemagglutination tests.
- To detect the antigen/antibody using Enzyme Linked Immuno Sorbent Assay (ELISA)
- To test the pattern of antigen-antibody interaction through Ouchterlony double diffusion assay
- RID
- Lymphoid organs and their microscopic organization
- Separation of mononuclear cells by Ficoll-Hypaque
- VDRL test (Demonstration)
- Immunodiagnostics (demonstration using commercial kits)
- Determination of MIC of antibacterial drugs
- Identification of Ag Ab complex by Slide agglutination test

Course Code	Course Name	Credits
BTL508	Lab II	1.5

- Making the bacterial cells competent
- Transformation of E.coli.
- In vitro DNA ligation
- Bacterial conjugation
- Northern blotting technique
- Southern blotting
- RFLP technique
- PCR analysis of DNA fragments by agarose gel electrophoresis
- Protein Analysis by SDS-PAGE
- Isolation of Genomic DNA
- Bacterial survival against UV irradiation and mutagenesis
- Isolation, purification, quantification and separation of plasmid DNA by miniprep method (Boiling lysis)
- Isolation, purification, quantification and separation of plasmid DNA by maxiprep method (Alkaline lysis)
- separation of DNA by Agarose gel electrophoresis
- Isolation of mutants, e.g. auxotrophs, by chemical mutagenesis. (Acridine orange/ Ethydium bromide)
- β -galactosidase activity of lac+ & lac- mutant of E.coli
- Primary screening of antibiotic producers from soil

University of Mumbai

Subject Subject Name		Tea	ching Sch	eme	Credit Assigned			
Code	Subject Name	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
CHC601	Bioinformatics-II	03	_	_	3.0	_	_	3.0
CHC602	Cell & Tissue Culture	04	_	—	4.0	_	_	4.0
CHC603	Enzyme Engineering	03	_	_	3.0	_	_	3.0
CHC604	IPR,Bioethics & Biosafety	03	_	01	3.0	_	1.0	4.0
CHC605	Process Control &	03	_	01	3.0	_	1.0	4.0
	Instrumentation							
CHE606	Elective – I	03		01	3.0	I	1.0	4.0
CHL607	Lab - III	—	03	—	—	1.5	—	1.5
CHL608	Lab - IV	_	03	_	_	1.5	_	1.5
CHL609	Lab - V	_	02	_	—	1.0	_	1.0
	Total	19	08	03	19.0	4.0	3.0	26.0

Examination Scheme

		Examination Scheme								
Subject	Subject Name	Theory marks				m				
Code		Internal Assessment			End	Term Work	Pract.	Oral	Total	
		Test	Test	Avg.	Sem.					
		1	2	of	Exam					
				Test 1						
				and						
				Test 2						
CHC601	Bioinformatics-II	20	20	20	80	—	—	_	100	
CHC602	Cell & Tissue Culture	20	20	20	80	_	—	_	100	
CHC603	Enzyme Engineering	20	20	20	80	_	-	_	100	
CHC604	IPR,Bioethics & Biosafety	20	20	20	80	25	—	_	125	
CHC605	Process Control &	20	20	20	80	25	_	_	125	
	Instrumentation									
CHE606	Elective – I	20	20	20	80	25	—	_	125	
CHL607	Lab – III	_	_	_	_	_	25	_	25	
CHL609	Lab - IV	—	—	—	_	_	25	_	25	
CHL610	Lab - V	—	_	_	_	_	25	—	25	
			Total	120	480	75	75	_	750	

Elective Streams(CHE606)

- a Research Methodology and Scientific writing
- b Stem Cell Biology
- c Good Laboratory Practices (GLP) & Process Safety

Course Code	Course Name	Credits
BTC601	Bioinformatics II	3.0

Bioinformatics I, Knowledge of protein structure.

Course Objectives

The objectives of this course are to

- Study the development and implementation of tools that enables to efficiently access and manage various types of information.
- Study the development of new algorithms (mathematical formulas) and statistics used to assess relationships among members of large data sets. For example, methods to locate a gene within a sequence, predict protein structure and/or function, and cluster protein sequences into families of related sequences.
- The primary goal of bioinformatics is to increase the understanding of biological processes. What sets it apart from other approaches, however, is its focus on developing and applying computationally intensive techniques to achieve this goal.
- Help have a better knowledge of pharmaceutical biology & its relation with information technology.

Course Outcomes

By learning this course the students will be able to:

- Describe the contents and properties of the most important bioinformatical databases, perform textand sequence-based searches, and analyse and discuss the results in light of molecular biological knowledge
- Explain the major steps in pairwise and multiple sequence alignment, explain the principle for, and execute pairwise sequence alignment by dynamic programming
- Explain the major features of evolution of genes and proteins and explain how different methods can be used to construct phylogenetic trees.
- Explain the major features of methods for modelling protein structures and use programs for visualizing and analysing such structures.
- Give examples of methods for describing and analysing genes, genomes and gene expression
- To solve any biological sequence analysis problem, with choosing & modifying suitable computational model to solve it.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction to concepts of molecular modelling, Methods of molec- ular modelling: Molecular mechanics, Abinitio Quantum mechan- ics, Semi empirical quantum mechanics, Energy minimization of molecules: local & global energy minima.	10

continued \dots

 	continued

Module	Contents	No. of hrs			
2	2 Interactions: Protein ligand interactions, Torsion angle, Ramchan- dran plot, Protein folding & Chaperones. Cartesian coordidates				
3	Overview: Machine learning, Genetic algorithms, Simulated anneal- ing. Interoperability: Introduction, Its role in bioinformatics. Interexchange Languages: XML, CORBA, And UMLS. Clustering algorithms.				
4	Drug designing: Drug optimization, Identification of pharmacophore, Optimizing access to target, Prodrugs, Endogenous compounds as drugs, Quantitative structure- activity relationship (QSAR).	05			
5	5 Docking: Introduction, Protein protein docking, Protein Ligand docking, Applications of docking.				

- 1. Cynthia Gibas & Per Jambeck, Developing Bioinformatics computer skills, third edition.
- 2. S.C. Rastogi, Bioinformatics concepts, skills & applications, first edition.
- 3. DovStekel, Microarray Bioinformatics.
- 4. David W.Mount, Bioinformatics sequence and genome analysis.
- 5. N.Claude Cohen, Molecular modeling in drug design.
- 6. Oreilly , Developing bioinformatics computer skills, Shroff publishers, 1st Indian edition.

Course Code	Course Name	Credits
BTC602	Cell and Tissue Culture	4.0

Basic knowledge of Cell Biology, Microbiology and Plant and Animal Physiology

Course Objectives

The objectives of this course are to :

- To examine and analyse practical and theoretical principles of cell culture
- To explain the conditions under which cells can be cultured outside the body
- To explain the advantages and limitations of cell culture in biomedical research and applications.

Course Outcomes

By learning this course the students will be able to :

- Plan experiments using cultured cells
- Carry out cell culture, and associated laboratory techniques
- Carry out the most common analysis techniques associated with cell culture
- Perform adequate statistical processing of data generated by cell culture
- Present and analyse literature which covers cell culture

Detail syllabus

Module	Contents	No. of hrs
1	Plant tissue culture Introduction: Internal organization of plant, Plant Tissue Culture Media, Plant growth hormones, Concept of Totipotency, Study of various types of Organ Culture, Organogenesis, Micropropagation	7
2	Plant Cell Culture And its Applications: Plant Cell Suspension Culture, Single Cell Culture, Somatic Embryo- genesis, Artificial Seeds, Protoplast Culture & Somatic Hybridiza- tion, Scale-up and Automation of Plant Cell Culture	8
3	Transformation of Plants: Agrobacterium mediated Gene transfer, Direct Methods of Gene Transfer, Chemical Methods, Electroporation, Microinjection, Parti- cle Bombardment, Virus Mediated Gene Transfer, Transgenic Plants, Applications of Plant Biotechnology for Production of Quality Oil, Industrial Enzymes and Plantibodies	8
4	Introduction to Animal Cell Culture: Historical Background, Advan- tages of Tissue Culture, Limitations, Major Types of Tissue Culture	5

continued \dots

 \ldots continued

Module	Contents	No. of hrs
5	Laboratory Design & Layout of ATC laboratory, Equipments and Materials Of a Tissue Culture Laboratory, Media Preparation and Sterilization techniques, The Culture Environment, Cell Ad- hesion, Cell Proliferation, Differentiation, Cell Signaling, Energy Metabolism.	10
6	Primary Culture: Initiation of a Primary Cell Culture, Isolation of the Tissue, Types of Primary Culture, Subculture and Cell Lines.	7
7	Cloning and Selection of Animal Cells, Cell Separation, Character- ization, Differentiation, Cryopreservation, Scale-up & Automation, Antibody Engineering and Large scale Production of Pharmaceuti- cal Products, Stem cell Cultures, Embryonic Stem Cell Cultures and their Applications	7

- 1. Plant Tissue Culture: Theory and Practice: Theory and Practice By S.S. Bhojwani, M.K. Razdan; Elsevier Publishers
- 2. Plant Tissue Culture by Kalyan Kumar De; Published by New Central Book Agency, 1997
- 3. Plant Tissue and Cell Culture; Volume 11 of Botanical monographs, by Herbert Edward Street; Publisher: University of California Press, 1973
- 4. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications By R. Ian Freshney; Wiley Publishers
- 5. Animal Cell Culture (Introduction to Biotechniques): Sara j. Morgan, David C. Darling; Published by BIOS Scientific Publishers Ltd., 1993

Course Code	Course Name	Credits
BTC603	Enzyme Engineering	3.0

Knowledge of Biochemistry, Microbiology, Molecular Biology.

Course Objectives

The objectives of this course are to:

- Give insight into the functioning of Enzyme molecules(Biological Catalyst), their constructions, Structure, interactions with other cellular molecules, and the process of catalysis.
- Students will learn to use such molecules for making of difficult bio-molecules.
- They will also be able to understand Industrial uses and applications of Enzymes.

Course Outcomes

By learning this course the students will be able to:

- Understand how Enzymes are created as a functional bio-catalysts, analysed with respect to their efficiencies, their lability, and ways to make them durable.
- They also will be familiar with the problems they could encounter and how to trouble shoot them.
- They will be able to monitor both in-vitro and in-vivo activity.

Detail syllabus

Module	Contents	No. of hrs
1	Enzyme as a Biological Catalysts. Chemical nature, polypeptide structures Models of Enzyme-substrate interactions, Catalytic and Allosteric sites. Activation Energy and catalysis.	4
2	Structures of Enzymes (Primary, Secondary, Tertiary etc.), Effect of pH, Temperature and Salts on Enzyme efficiency and Inhibition. Enzyme Kinetics, models and degree of efficiencies/Inhibition, their types and analysis.	8
3	Enzyme activity Analysis: pH-change, Viscometry, Manometry, Col- orimetry, Spectrophotometry, etc. Fundamentals of each method, constants and variables involved. Criteria for the Degree of accuracy.	6
4	Working with Enzyme: Detection, Isolation and Purification of Enzyme under study. Stability of Enzyme. Genetic Modification of Enzyme. Immobilization of Enzyme for repeat use.	8
5	Criteria of Enzyme Purity, Specific Activity, Subunit Analysis, Western Blotting.	4

continued ...

			continued
٠	٠	٠	commucu

Module	Contents	No. of hrs
6	Process design and Operation strategies for Enzyme based reactors. Operational problems, Decline and loss of Enzyme efficiency, Reme- dies!	5
7	Application of Enzyme in Industries: Food, Leather, Beverage, De- tergents, Pharmaceuticals and Medicines, Analytical/ Diagnostics and Biosensors, Therapeutics.	4

- 1. Enzymes-Palmer;T,(Affiliated East West Press Pvt.Ltd.), 2004.
- 2. Biochemistry- Stryer, Berg, 6th Edition, (W.H.Freeman and Co.), 2007.
- 3. Biochemistry-Metzler; DE, 2ndEdn., (Academic press) 2001.
- 4. Lehninger Principles of biochemistry-Nesson, Cox, 4thEdn., (W.H.Freeman and Co.), 2005.
- 5. Biochemistry Voet & Voet; J, 3rd Edn. (John Wiley and sons Inc.), 2004.
- 6. Outlines of Biochemistry-Conn; E, Stumpf, 5thEdn. (Tata-McGraw Hill), 1988.
- 7. Enzyme Biotechnology- Tripathi;G, (ABD Publishers), 2003.
- 8. Enzyme Technology, M.F. Chaplin and C. Bucke. Cambridge University Press
- 9. Industrial Enzymes & their applications, H. Uhlig, (John Wiley and Sons Inc.)

Course Code	Course Name	Credits
BTC604	IPR, Bioethics and Biosafety	4.0

Knowledge of materials to be classified as biohazard, knowledge about current scenario of biotechnological issues

Course Objectives

- To understand the laws governing biotechnology and related field at national and international level
- To gain knowledge about safety precautions necessary during biotechnological work
- To understand the ethical perspective of handling biomaterials

Course Outcomes

- To be aware of rules and regulations setup at international level for various biotechnology related work so that any further research can be formulated accordingly
- To know the social and legal state of the society with respect to genetically engineered products or other outcomes of biotechnology
- Work according to the safety precautions set up by international bodies while handling biohazardous material

Module	Contents	No. of hrs
1	Introduction to Intellectual Property: Concept of Intellectual Property Kinds of Intellectual Property Patents, Copyrights, Designs, Trademarks, Geographical Indication. Infringement of IPR, Its protection and Remedies Licensing and its types	10
2	International Scenario: Introduction to the leading international instruments concerning in- tellectual property rights: The Berne Convention, GATT, WTO, In- dian Patent Act, Universal Copyright Convention, The Paris Conven- tion, TRIPS, The World Intellectual Property Rights Organization (WIPO), Budapest treaty	6
3	Patents: Requirement of patentable novelty, inventive step, prior art Classify- ing products as patentable and non-patentable Procedure for apply- ing for patent Patent Infringement and related case studies Biological Patentability	7

continued \dots

$\ldots continued$

Module	Contents	No. of hrs
4	IPR and Biotechnology: Biopiracy and Bioprospecting Farmers Rights and Plant breeders rights Biodiversity	5
5	Biosafety: Good Lab Practices Introduction to Biological Safety Cabinets Pri- mary Containment for Biohazards Biosafety Levels GMOs and LMOs and their environmental impact Roles of Institutional Biosafety Com- mittee, RCGM, GEAC etc. For GMO applications in food and agri- culture Risk analysis, assessment and management	7
6	Bioethics: Bioethical issues related to Healthcare & medicine Food & agricul- ture Genetic engineering The Human Genome Project and Genetic Testing Environmental problems	4

- 1. IPR, Biosafety and Bioethics by Deepa Goel and Shomini Parasha
- 2. Intellectual property rights by Dr. Reddy

Course Code	Course Name	Credits
BTC605	Process Control & Instrumentation	4.0

Knowledge of Laplace Transforms, Knowledge of differentiation and Integration

Course Objectives

- To understand the basic concepts of process parameter control
- To understand the closed loop and open loop control system
- To carry out the stability analysis for a given process

Course Outcomes

- Student will be able to design the process control of a parameter.
- Student will be able to carry out the stability analysis for a process.

Detail syllabus

Module	Contents	No. of hrs
1	Instrumentation Instrumentation principles, Introduction to temperature and liquid level measurements, measurement of important physico-chemical and biochemical parameters, methods of on-line and off-line biomass esti- mation, flow injection analysis for measurement of substrates, prod- ucts and other metabolites.	5
2	First order systems Process characteristics, Laplace transforms, first order systems ex- amples, mercury in glass thermometer, liquid level system, lineariza- tion, response of first order system for step, pulse, impulse and sinu- soidal changes in input, conceptual numericals.	6
3	First order systems in series Interacting and non-interacting systems and their dynamic response to step, pulse and impulse inputs; conceptual numericals.	4
4	Second order systems Second order systems with transfer functions (spring-damper, control valve, U-tube manometer), response of second order system to step, pulse / impulse and sinusoidal input Overdamped, underdamped and critically damped condition of second order system, transportation lag.	5

continued \dots

			continued
٠	٠	٠	commueu

Module	Contents	No. of hrs
5	Controllers and final control elements Actuators, Positioners, Valve body, Valve plugs, Characteristics of final control elements, controllers two position control, propor- tional control, derivative control, integral control, P-I (proportional- integral) control, P-D (proportional- derivative) control, P-I-D (proportional-integral- derivative) control, conceptual numericals.	5
6	Closed loop control systems Block diagrams for servo and regulatory problems. Transient re- sponse of first and second order processes for set point changes and load changes with proportional and PI controllers, conceptual numer- icals.	4
7	Controller design and stability Criteria for stability, Routh test; Root locus analysis, Introduction to frequency response, Qualitative discussion about Bode criteria and Nyquist criteria, Controller tuning- Gain & Phase margin; Concep- tual numerical on Routh test, Root locus and Bode plot.	6
8	Bioprocesses dynamics and control Dynamics and control of bioreactors & sterilizers. On-line data anal- ysis for state and parameter estimation techniques for biochemical processes, Complex control strategies such as feed forward, cascade, adapter, supervisory, multi variable controls and their application for optimum controls.	4

- 1. Coughnanowr., Process Systems Analysis and Control.
- 2. Stephanopoulos, G., Chemical Process Control, Prentice Hall of India., 1990.
- 3. Richardson, J. F., Peacock, D. G., Coulson & Richardson's Chemical Engineering, Vo. 3., ed. 3., Asian Books Pvt Ltd, New Delhi, 1994.
- 4. William L.Luyben, Process Modeling Simulation and Control for Chemical Engineers, McGraw Hill International Edition. 1990.
- 5. B.Wayne Bequette Process Control Modeling, Design and Simulation, Prentice Hall of India Pvt.Ltd.

Course Code	Course Name	Credits
BTE606	Research Methodology	4.0

Knowledge of Biochemistry, Microbiology, Molecular Biolog, Genetics.

Course Objectives

- To learn to express a scientific idea, or observation, logically and scientifically.
- To learn how to gather data, analyse them, and express them.
- To understand how an expression can cause an error or confusion, and how to avoid it.

Course Outcomes

- One learns to collect data and analyse it, express scientific finding in a logical and an understandable form.
- One also learns to cite references.

Detail syllabus

Module	Contents	No. of hrs
1	Methodology and Literature collection: Introduction to Research Methodology - Meaning of Research, Type of Research: Basic, Applied, Researches, Criterions of good Research, Problems Defining the Research Problem. Literature collection - Re- view process. Discriminative Reading, Consulting Source material. Literature citation - Different Systems of citing Reference:- Name Year System citation in the text, Name Year System List of Refer- ence.	11
2	Research, Data collection and Analysis. Research Design - Sample Collection - Criteria of Selecting a Sampling Procedure, Observation/Interview/Collection through Questionnaires/Schedules, Case study method. Processing and Analysis of data. Reporting of results. Interpretations and Discussion.	14
3	Scientific Writing: Report Writing: Steps in Report Writing. Title, Authors, Abstract, (Summary/Synopsis), Key Words, Introduction, Materials and Meth- ods, Results, Discussion, Acknowledgements, Appendix, references. Use of Table / Figures in Report Writing . (Placement of Table / figure, Numbering, Box Heading, Caption photographs. Formatting and Typing Introduction, Margins, Spacing, Alignment, Fonts, etc., Format of Thesis.)	14

- 1. Research Methodology for Biological Sciences (2006), N. Gurumani MJP Publishers
- 2. Research Methodology : Methods and Techniques. 2nd Edition C.R.Kothari, New age international Publishers 2004
- 3. Research methods for the bioscience: 2006 International Student Edition. Oxford University Press, Edition, D. Holmes, P. MP. Moody, D. Dine. ISBN 13 : 978-0-19-568631-9

Course Code	Course Name	Credits
BTE606	Stem Cell Biology	4.0

Cell Biology, Developmental Biology, Biochemistry, Molecular Biology and Genetics.

Course Objectives

- To understand the developmental processes in a complex living system.
- To manipulate the cells to change and perform tasks in a carefully directed fashion.
- To understand the possibilities this technology offers in a medical field

Course Outcomes

- Students will be well-versed with the new technology of Stem-cell.
- They will have understood Developmental biology at a cellular level, possibility of use of Stem cells for therapeutic purposes.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Universal mechanism of development: Cell proliferation, Specializa- tion, Interaction and Movement. Case study of. C. Elegans.	6
2	Cell proliferation and development: Morphogens and their gradients, Intrinsic programming, Sequential induction.	6
3	Plant Development: Root, Shoot, Flower, Seed & Meristem. Plant part generation, Plant growth regulators. Maintaining of the Meristem cells.	6
4	Stem cells: Epidermis renewal by stem cells, Maintaining population of stem cells, Transit amplifying cells, Multipotent stem cells and Blood cell formation.	7
5	Types of stem cell: Embryonic, Bone marrow (Hematopoietic), Pluripotent stem cells and methods of generating them.	7
6	Application of stem cells: Repairing Nervous system, Liver cell proliferation and repair, Cardiac repair, Diabetes treatment, GM stem cells and Gene therapy	7

- 1. Molecular biology of Cell: Alberts et al. 2014. (Chapter on Stem Cells.)
- 2. Please refer to on-line information for various sub topics, available an peered review research articles.

Course Code	Course Name	Credits
BTE606	Good Laboratory Practices (GLP) & Process	4.0
	Safety	

Knowledge of various pharmaceutical and biotechnological products and techniques invovled in such industries.

Course Objectives

- To learn the regulations and various guidelines, and how these regulations apply to the manufacturing nad distribution of pharmaceitical and biological products.
- To impart knowledge of the principles of GLP/GMP and their practical applications
- To attain knowledge of the safety procedures carried out in Bioprocess and chemical plants.
- To familiarize the basic concepts of safety and biosafety guideline.

Course Outcomes

- Gain the skills and knowledge necessary to understand and work in GLP/GMP compliant environment.
- Understand the purpose and reasoning of GLP/GMP regulations and their practical applications through key quality systems.
- Understand QA-GMP-QC relationship.
- Gain knowledge of the various safety procedures to be followed in laboratory and production units.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction to GLP: Good laboratory practices-Introduction, WHO guidlines on GLP and GMP History of Good Laboratory Practices Quality assurances in Good Laboratory Practices	06
2	Quality standards and Quality Assurances: Quality Standards- Advantages and Disadvantages, Concept of Qual- ity Control Quality Assurance- Their functions and advantages Qual- ity assurance and quality management in industry Customer require- ment of quality Government and trade standards of quality Federal Food and Drug Law FDA Action BSTI Laws, BSTI action and ac- tivities Other food laws (Legalization), Trade and Company Stan- dards Control by National, International, Social Organizations (ex- ample:FAO, WHO, UNICEF, CAB), Society (example: NSB, Profes- sional societies)	06

continued ...

 \ldots continued

Module	Contents	No. of hrs
3	Good Manufacturing Practices in Pharmaceutical and Food Industries: Types of validation in Pharma industry Scope and importance of Validation, Limitations, Organization and Elements of validation (Q, OQ, PQ and DQ) Cleaning Validation, Validation of Analytical Pro- cedures as per ICH Guidelines Implications of cGMP and Food plant sanitation The regulations cGMPs Planning of Plant Sanitation Programs and Construction factors Hygeinic design of food plants and equipments Sanitation in warehousing, storage, shipping, re- ceiving, containers and packaging materials Control of rats, rodents, birds, insects and microbes. Cleaning and Disinfection: Physical and Microbiological Approach	09
4	Quality Control: Introdution to Quality control and Total Quality Control in the food industry Various Quality Attributes of food such as size, shape, tex- ture, color, viscosity and flavor Instrumental chemical and microbial quality control Sensory evaluation of food and statistical analysis Food Regulation and Compliance Food Inspection and Food Law Critical Control Points in Food Industries: Critical Quality control point in different stages of production including raw materials and processing materials Food Quality and Quality control including the HACCP system (Critical quality control points in different stages of production including raw materials and processing materials	06
5	Biosafety: Introduction: Historical Background, Biosafety in Laboratory/ insti- tution. Laboratory associated infections and other hazards, assess- ment of Biological Hazards and levels of biosafety, prudent biosafety practices in the laboratory/institution Introduction to Biological safety cabinets, Primary Containment of Biohazards, Biosafety Lev- els, Recommended Biosafety Levels for Infectious Agents and Infected Animals Biosafet guidelines, Government of India Guidelines Defini- tion of Genetically Modified Organisms (GMOs)	06
6	Safety and Hazard Analysis Hazards: Chemical Hazards Classification, Radiation hazards and control of ex- posure to radiation Fire triangle, fire prevention methods Industrial hygiene: Introduction, evaluation and control Toxicology: Routes of entry of toxic substances, Toxic studies Safe Housekeeping instru- mentation for safe operation, personal protective equipments	09

- 1. Quality Control of Herbal Drugs- Dr. Pulok a. Mukherjee (Bussiness Horizons Pharmaceutical Publishers)
- 2. cGMP for Pharmaceuticals- Manohar A. Potdar (Pharma Med Press)

- 3. Validation of Active Pharmaceuticals-Ira R. Berry (CRC Press)
- 4. Guidelines on cGMP and Quality of Pharmaceutical Products-S Iyer (DK Publications)
- 5. Quality Assurance and Quality Management in Pharmaceutical Industry-Y. Anjaneyulu (Pharma Book Syndicate)
- 6. Quality Assurance in Analytical Chemistry, B.W.Wenclawiak, M.Koch E. Hadjicostas
- 7. WHO Library Cataloguing in Publication Data
- 8. Handbook: Good Laboratory Practices (GLP): quality practices for regulated non-clinical research and development-2nd ed.

Course Code	Course Name	Credits
BTL607	Lab III	1.5

- Medium Preparations
- Callus induction and Regenerations
- Callus propagation
- Organogenesis
- Haploid Culture
- Embryo Culture
- Somatic Embryogenesis
- Suspension Culture
- Anther culture for production of haploid plants
- In vitro seed germination
- Inoculate the tissue culture raised shoots on suitable medium for in vitro rooting
- Hardening and acclimatization of in vitro raised rooted shoots
- Hairy root induction by Agrobacterium tumefaciens
- seed anti-mitotic assay
- Meristem culture for obtaining Virus free plants
- Effect of plant growth regulators on callus induction : effect of hormone variation
- Encapsulate the shoot buds, seeds to demonstrate the production of synthetic seeds
- Sterilization procedures and media preparation for Animal Cell cultures
- Establishment of Primary cell culture from chick embryo
- Animal cell culture: viable cell counting by Haemocytometer

Course Code	Course Name	Credits
BTL608	Lab IV	1.5

- Isolation of enzyme from a plant source
- Isolation of enzyme from an animal source
- Isolation of intracellular enzyme
- Determination of specific activity of enzyme
- Determination of the optimum pH & temperature of enzyme
- Determine the stability of enzyme
- Immobilization of enzyme
- Determination of kinetic parameters $(K_m \text{ and } V_{max})$
- Purification of enzymes
- Enzyme Inhibition studies
- Characterization of enzymes/ Determination of molecular weight of enzyme.
- Studies of various enzyme reactors
- Bacteriological testing of milk (MBRT)
- Estimation of Calcium by EDTA method
- Isolation and separation of chloroplast by sucrose density gradient centrifugation
- Production of Grape wine and is biochemical analysis
- Determination of starch and sugar in plant tissue
- Clarification of fruit juices
- Study of pectinase activity
- Primary screening of Amylase producing bacteria and fungi from soil

Course Code	Course Name	Credits
BTL609	Lab V	1.0

- Access & use of different databases using NCBI metadatabase.
- To study use of ORF finder to find the correct reading frame.
- To study the characteristics of protein using PROT SCALE.
- To study prediction of coding sequence (CDS) of a gene using NCBI & Genemark and compare the results for percentage accuracy.
- To access & use different online gene & protein alignment softwares.
- Protein structure visualization using 'RASMOL' graphical user interface.
- Protein structure visualization using 'RASMOL' command line interface.
- Secondary structure prediction for amino acid sequences of a given protein.
- Homology modelling of protein using SWISS-PDB modeller.
- To study chemical structure of drugs using Chemsketch & Marvinsketch.
- To find & study phylogenetic relationships among different given species using CLUSTAL OMEGA.
- To study multiple sequence alignment (MSA) tools & compare the results.
- To study BLOCKS using Interpro.
- To study EXPASY tool for protein structure analysis.
- To find and study gene using MAP-VIEWER.

AC 26/02/2015 Item no. 4.64

UNIVERSITY OF MUMBAI

Revised Syllabus Program – Bachelor of Engineering Course – Biotechnology Engineering (Final Year – Sem VII and VIII)

under **Faculty of Technology** (As per Credit Based Semester and Grading System from 2015-16)

General Guidelines

Tutorials

- The number of tutorial batches can be decided based on facilities available in the institution.
- Tutorials can be creative assignments in the form of models, charts, projects, etc.

Term Work

- Term work will be an evaluation of the tutorial work done over the entire semester.
- It is suggested that each tutorial be graded immediately and an average be taken at the end.
- A minimum of ten tutorials will form the basis for final evaluation.
- Term work assessment has to be done based on the following:
- Assignments: 20 Marks
- Attendance: 05 Marks
- For giving weightage to attendance, the following guidelines should be followed:
- 75% 80%: 3 Marks, 81% 90%: 4 Marks, Abobe 91%: 5 marks

Theory Examination

- In general all theory examinations will be of 3 hours duration.
- Question paper will comprise of total six questions, each of 20 Marks.
- Only four questions need to be solved.
- Question one will be compulsory and based on as much of the syllabus possible.

Note: In question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus as far as possible.

Practical Examination

• A student becomes eligible for practical examination after completing a minimum of eight experiments out of ten experiments.

Project & Seminar Guidelines

- Project Groups: Students can form groups with not more than 3(Three).
- The load for projects may be calculated as below,
 - Sem VII: $\frac{1}{2}$ hr for teacher per group.
 - Sem VIII: 1 hr for teacher per group.
- Maximum of four groups can be allotted to a faculty.
- Seminar topics will be the consensus of the project guide and the students. Each student will work on a unique topic.
- The load for seminar will be calculated as one hour per week irrespective of the number of students.
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, six hours are allotted in Project A, 8 hours in Project-B and three hours for Seminar.

University of Mumbai

Subject	Subject Name		Teaching Scheme		Credit Assigned			
Code	Subject Name	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BTC701	Bioseparation & Downstream Processing Technology-I	04	_	01	04	_	01	05
BTC702	Bioprocess Modeling & Simulation	04	_	01	04	_	01	05
BTC703	Seminar	_	_	03	-	_	03	03
BTE704	Elective-II	04	_	01	04	_	01	05
BTP705	Project-A	_	_	06	_	_	03	03
BTL706	LAB VI	_	04	_	_	02	_	02
BTL707	LAB VII	—	04	—	-	02	_	02
	Total	12	08	12	12	04	09	25

Scheme for BE: Semester-VII

Examination Scheme

				Exa	minatio	n Scher	ne		
Subject	Subject Name		Theory marks						
Code	Subject Maine	Interr	al Asse	essment	End	Term Work	Pract.	Oral	Total
		Test	Test	Avg.of	Sem.	WOIN			
		1	2	(A)	Exam				
		(A)	(B)	& (B)					
BTC701	Bioseparation & Downstream	20	20	20	80	25	_	-	125
	Processing Technology-I								
BTC702	Bioprocess Modeling &	20	20	20	80	25	_	_	125
	Simulation								
BTC703	Seminar	_	_	_	_	50	_	_	50
BTE704	Elective – II	20	20	20	80	25		25	150
BTP705	Project-A	_	—	_	—	50	—	50	100
BTL706	LAB VI	_	_	—	—	_	25	_	25
BTL707	LAB VII	_	_	_	_	_	25	_	25
	Total 60 240 175 50 75 6					600			

Elective Streams(BTE704)

Sem.VII	Elective II	• Food Biotechnology
		• Pharmaceutical Technology
		• Nanotechnology

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
BTC701	Bioseparation & Downstream Processing I	4.0	1.0	5.0

- Basics of Bioprocesses and Unit Operations
- Basic knowledge of mass balace.
- Concepts of molecular diffusion and diffusion coefficients

Course Objectives

• To cover the fundamentals, and design concepts of various down stream purification steps (unit operations) involved in a biochemical process.

Course Outcomes

• Students will be able to describe theory, principle, design, application and possible integrations of unit operations in bioprocessing

Detail syllabus

Module	Contents	No. of hrs
1	Introduction to Bioproducts and Bioseparation: Range and characteristics of bioproducts Characteristics of Fermentation Broths Selection of unit operation with due consideration of physical, chemical and biochemical aspect of biomolecules Stages of Downstream Processing	06
2	Product release and recovery processes: Fundamental principles of obtaining the product from cell cul- tures intracellular vs. extracellular product Cell disruption-Physical, Chemical and Enzymatic methods of cell disruption Mechanical Cell disruption methods: High pressure Cell Ho- mogenizer, Sonication	07
3	Primary Separation: Removal of insolubles and Biomass (and particulate debris) sep- aration techniques Flocculation and sedimentation Centrifugation-Ultracentrifugation, Gradient centrifugation FiltrationTheory of Filtration, Pretreatment of Fermentation Broths, Filter Media and Equipment, Conventional and Cross- flow Filtration, Continuous Filtration, Filter cake resistance, specific cake resistance, Washing and dewatering of filter cakes	12

continued ...

\ldots continued

Module	Contents	No. of hrs
4	Gas Absorption: Solubility of gases in liquids, Effect of temperature and pressure on solubility, Ideal and Non-ideal solutions, Choice of solvent for gas absorption, absorption factor, stripping factor, minimum gas liq ratio, Single stage gas absorption- Cross Current, Co- current, Countercurrent, Multistage Counter current Opera- tion. Absorption with Chemical Reactions Related problems	10
5	Liquid-Liquid Extraction: Introduction to Liquid-Liquid Extraction, Choice of Solvent for Liquid-Liquid Extraction Triangular coordinate system, Ternary Equilibria [Binodal Sol- ubility Curve with effect of temperature and pressure on it], Single Stage Operation, Multistage Cross Current Operation, Multistage Counter Current Operation [with and without re- flux] Equipments for liquid-liquid extraction. Kinetics and modeling of extraction cycles, Types of extraction processes: Reactive extraction, Aqueous two phase systems, Reverse micellar extraction, Liquid-liquid and solid-liquid extraction, Super critical fluid Extraction. Design of extraction equipment. Different types of extractors and designing of extractors. Leaching: Representation of equilibria, single stage leaching, multistage cross current leaching,multistage counter current leaching, equipments for leaching.	12
6	Precipitation: Protein Precipitation methods: Isoelectric precipitation, Salt- ing out, Organic solvent addition, Non-ionic polymers, Poly- electrolyte Addition Selective denaturation of unwanted proteins Large scale precipitation Applications	05

- 1. Treybal R.E. , Mass transfer operation, 3 Ed., McGraw Hill New York, 1980.
- 2. McCabe W.L. and Smith J.C., Unit operation in chemical engineering, 5 Ed., McGraw Hill New York 1993.
- 3. Geankoplis C.J., Transport processed and unit operations, Prentice Hall , New Delhi 1997.
- 4. Roger G. Harrison, Paul Todd, Scott R. Rudge, Demetri P. Petrides, Bioseparations Science and Engineering, Oxford University Press

- 5. B.Shivshankar, Bioseparations: Priniples and Techniques, Eastern Economy Edition, PHI Learning Pvt. Ltd., Publishing House, New Delhi, 2012
- 6. Bioseparation & bioprocessing (2nd Ed.) 2-Volume set, Ed SUBRAMANIAN Ganapathy, Wiley-VCH, (09-2007)
- 7. P.A. Belter, E.L. Cussler and Wei-Shou Hu., Bioseparations-Downstream Processing for Biotechnology, WileyInterscience Publication, 1988.
- 8. J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, 2nd Edition, Mc-Graw Hill, Inc., 1986.
- 9. R. K. Scopes, Berlin, Protein Purification: Principles and Practice, Springer, 1982.
- 10. Scopes Ak, Protein Purification, IRL Press, 1993
- 11. Biotechnology: Bioprocessing, Rhem and Reed, Vol. 3, 1993
- 12. Separation and purification techniques in biotechnology, Fredreich Dechow, 1989
- 13. Asenjo J.A. and J.Hong (Eds), Separation Processes in Biotechnolgy, Taylor and Francis
- 14. T. Schepler et al, Biotreatment, Downstream Processing and Modeling (Advances in Biochemical Engineering /Biotechnology, Vol 56) by Springer Verlag

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
BTC702	Bioprocess Modelling and Simulation	4.0	1.0	5.0

- Knowledge of Fundamental Laws of Physics
- Knowledge of basic Mathematics
- Knowledge of Reactors and its types
- Knowledge of production of various fermentation products

Course Objectives

- To understand the mathematical models in Biochemical Engineering systems
- To learn about different apects of modelling in Bioprocess system
- To learn various techniques to solve and simulate various bioprocess models

Course Outcomes

- Students will be able to formulate model for biochemical System.
- Students will be able to solve Biochemical models

Detail syllabus

Module	Contents	No. of hrs
1	Basic Modelling Principles: Introduction, definition of Mod- elling and simulation, different types of models, application of mathematical modelling, fundamental laws: continuity equa- tion, energy equation, equation of motion, transport equation, equation of state, Phase and chemical equilibrium, chemical kinetics with examples	10
2	Mathematical Models for Biochemical Engineering Systems: Batch Reactor,CSTR isothermal with cooling/heating jacket or coil Continuous Stirred tank Bioreactor, Fed Batch reactor, Batch distillation	10
3	Numerical Methods: Solution of linear algebraic equations by cramer's rule, Gauss elimination, Gauss siedel iterative method Solution of Non algebraic equations by Bisection method, New- ton Raphson, Secant Method Numerical integration:Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, Euler's method, Runga Kutta method Basic data analysis-curve fitting	12

continued \dots

7

... continued

Module	Contents	No. of hrs
4	Modelling approaches for Biological systems Growth kinetic Models - structured and unstructured systems; Compartment models; Deterministic and stochastic approaches for modelling struc- tured systems Thermal death kinetics models, Stochastic Model for thermal sterilization of medium	10
5	Modelling for activated sludge process, Model for anaerobic di- gestion, Model for lactic acid fermentation, antibiotic produc- tion, Ethanol fermentation	10

- 1. J.E. Bailey and D.F. Ollis, Biochemical Engg Fundamentals, 1986, McGraw Hill Book Company
- 2. Said S.E.H. Elnashaie, Parag Garhyan, Conservation Equations and Modeling of Chemical and Biochemical Processes, 2003, Marcel Dekker
- 3. B. Wayne Bequette, Process Dynamics: Modeling, Analysis and Simulation, 1998, Prentice Hall
- 4. Michael Shuler and Fikret Kargi, Bioprocess Engineering: Basic Concepts, 2nd Edition, Prentice Hall, Englewood Cliffs, NJ, 2002
- 5. Process Modelling, Simulation and Control for Chemical Engineers, by William Luyben, McGraw Hill, Second Edition.
- 6. Numerical Methods and Modelling for Chemical Engineers, Davis M.E. ,Wiley, New York 1984
- 7. Numerical Methods for Engineers, Santosh Kumar Gupta, Tata McGraw hill, 1995
- 8. Numerical Methods, M. K. Jain, S. R. K. Iyengar, and R. K. Jain Sixth Edition.New Age International Publishers, New Delhi, 2012
- 9. Introduction to Chemical Engineering Computing by Bruce A. FinlaysonWiley- International, 2005.

Course Code	Course/ Subject Name	Credits
BTS703	Seminar	3.0

Details

- Seminar topics will be the consensus of the project guide and the students. Each student will work on a unique topic.
- Representation of seminar work can be in the form of presentation
- Students shall present research articles which may or may not be related to the topic of their project.

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
BTE704	Elective – II : Food Biotechnology	4.0	1.0	5.0

• Basic concepts of Microbiology and Fermentation Technology

Course Objectives

- To impart knowledge of various areas related to Food science and technology
- To enable the students to understand food composition and its physicochemical, nutritional and microbiological aspects
- To familiarize the students about the processing and preservation techniques of Food products

Course Outcomes

- Students will know the principles of preservation
- Students will understand the principles of food processing techniques and will be able to apply these principles to specific food commodities

Module	Contents	No. of hrs
1	Introduction to food technology, Constituent of food, con- tribution to texture, flavour and organoleptic properties of food; food additives coloring agents, emulsifiers, preservatives, flavours, vitamins, organic acids and their functions; enzymes in food processing	08
2	Sources and activity of microorganisms associated with food; Factors affecting the growth and survival of micro-organisms in foods- intrinsic and extrincis; Food borne diseases infections and intoxications, food spoilage causes. Microbial food- yeasts, bacteria and production of new protein foods - SCP, mushroom, algal proteins	10
3	Microbial fermentation and production of food and bever- ages using microorganisms. Pickling, Sauerkraut, vinegar, bread. Dairy product- Yogurt, cheese production by micro- bial and enzymatic(proteases) method. Alcholholic beverages- Beer(deoxygenating and desugaring by glucose oxidase of beer, beer mashing and chill proofing), Wine (red, white, sparkling), whiskey (Single Malt, Multi Malt), Vodka, Rum and Gin	10
4	Fermentation methods for preserving foods, Preparation of var- ious food additives like coloring agents, emulsifiers, vitamins, flavours and organic acids	08

Detail syllabus

continued \dots

\dots continued

Module	Contents	No. of hrs
5	Post Harvest technology for food crops. Food preservation- high temperature methods, low temperature methods, irradi- ation, high pressure method and chemical preservatives. Pro- duction of Fruit juices and types of Fruit juices	08
6	Food Packaging methods Materials used for food packaging of various food products like cheese, eggs, bread, alcoholic bever- ages, milk and juices	08

- 1. Frazier, Food Microbiology, Tl-IM Publications.
- 2. Heller, Genetic Engineering of Food: Detection of Genetic Modifications- Wiley Publications.
- 3. Le. A. et. Al., Microorganism & Fermentations- N.Y. Chemical
- 4. Rehm, Biotechnology Set Wiley Publications
- 5. M. R. Adams and M. O. Moss, Food Microbiology, Royal society of chemistry
- 6. James M. Jay, Modern food microbiology, An Aspen Publications
- 7. Prescott and dunn, Industrial microbiology, CBS Publications.

Course Code	Course/ Subject Name Credi		Credits	lits	
		Theory	Tut.	Total	
BTE704	Elective – II: Pharmaceutical Biotechnology	4.0	1.0	5.0	

- Knowledge about biochemistry and biochemical pathways in biological systems
- Knowledge about cell biology and metabolism

Course Objectives

- Student shall know about bioavailability, bioequivalence and factor affecting bioavailability.
- Students shall know the pharmacokinetic and pharmacodynamic on the basis of CADD. They also know the design evaluation and application related to oral, parenteral, transdermal, implants, bioadhesives and targeted drug delivery systems.

Course Outcomes

- Students will be able to tell factors affecting the bioavailability and stability of dosage form. They also know the parameters for the disposition, absorption and Michaelis-Menton constants for non-linear kinetics.
- Students will know the fabrication, design, evaluation and application of drug delivery systems.

Module	Contents	No. of hrs
1	Introduction To Pharmaceuticals: History & Definition of Drugs. Sources of Drugs - Plant, Ani- mals, Microbes and Minerals. Drug targets, Intermolecular bonding forces. Classification of Drugs Naming of Drugs and medicines	06
2	 Pharmacodynamics and Pharmacokinetics: Molecules acting as drug targets Enzymes, Receptors, Nucleic acid, Miscellaneous (Transport proteins, lipids, carbohydrates) Three Phases of drug action Drug Absorption, Distribution, Metabolism and Excretion (ADME) Modes of drug administration Drug dosing (half-life, steady state concentration, drug tolerance, Bioavailibility) 	08
3	In vivo and In vitro approach of Drug discovery, design and development: Drug discovery: finding a lead molecule Drug design: Optimizing target interaction	07

Detail syllabus

continued ...

... continued

Module	Contents	No. of hrs
4	Final stages of drug development trials: Preclinical and clinical trials Patenting and regulatory affairs	07
5	Medicinal Chemistry: Antibacterial, Anticancer, Antiviral drugs, Opioid anelgesics	06
6	Biopharmaceuticals: Production of Therapeutic Proteins, Hormones, Cytokines - Interferons, Interleukins I & II, Tumor Necrosis Factor (TNF); Nucleic acids Role of Biopharmaceuticals in treatment of various health dis- orders	10
7	Drug Delivery Systems, Biomaterials And Their Applications: Controlled and sustained delivery of drugs. Biomaterial for the sustained drug delivery. Liposome mediated drug delivery. Drug delivery methods for therapeutic proteins.	08

- 1. Biopharmaceuticals: Biochemistry & Biotechnology, Gary Walsh (1998), John Wiley & Sons Ltd.
- 2. Medicinal Chemistry by Graham L. Patrick, Oxford University Press
- 3. Remingtons Pharmaceutical sciences, (Mark Publications & Company eston PA) year 1980.
- 4. Medicinal Chemistry: an introduction by Gareth Thomas, Wiley Publications
- 5. Theory & Practice of Industrial Pharmacy, (3rd ed.) Leon Lachman, Lea & Febiger (1986)

Course Code	Course/ Subject Name	Credits			
		Theory	Tut.	Total	
BTE704	Elective – II: Nanotechnology	4.0	1.0	5.0	

• Knowledge of Biophysics, Biochemistry, Molecular Biology, Immunology and Analytical Methods in Biotechnology

Course Objectives

- To develop the skills of the student in the area of Nanotechnology and its application.
- To familiarize student with different techniques for synthesizing and characterizing of various nanoparticles.
- To motivate and facilitate student to undertake the project and research work in Nanotechnology.

Course Outcomes

At the end the student would have learned:

- Students will have an in depth understanding of the components of Nanotechnology and the instruments used in Nanotechnology.
- Students will be able to apply the concepts of Nanotechnology in various fields.

Detail syllabus

Module	Contents	No. of hrs
1	Basics and Scale of Nanotechnology: Introduction, Scientific revolutions, Time and length scale in structures, Definition of a nanosystem, Dimensionality and size dependent phenomena, Surface to volume ratio-Fraction of sur- face atoms, surface energy and surface stress, surface defects, Properties at nanoscale (optical, mechanical, electronic, and magnetic)	09
2	Different Classes of Nanomaterials: Classification based on dimensionality, Quantum Dots, Wells and Wires, Carbon-based nano materials (buckyballs, nan- otubes, graphene), Metalbased nanomaterials (nanogold, nanosilver and metal oxides), Nanocomposites, Nanopolymers, Nanoglasses, Nano ceramics, Biological nanomaterials	10
3	DNA and Protein based Nanostructures: DNA-gold particle conjugates, Polymer nanocontainers, Nanopores and nanomembranes for biochemical sensing, Micro and nanofluidic devices in biologica studies, Peptide nanotubes and their applications electronics, antibacterial agents; protein self assembly, nanochips, nanopolymers	10

continued ...

 \ldots continued

Module	Contents	No. of hrs
4	Nano-bioanalytics: Luminescent Quantum Dots for Biological Labeling, Nanopar- ticle Molecular Labels Surface Biology: Analysis of Biomolecular Structure by Atomic Force Microscopy and Molecular Pulling-Force Spectroscopy, Biofunctionalized Nanoparticles for Surface Enhanced Raman Scattering and Surface Plasmon Resonance, Bioconjugated Sil- ica Nanoparticles for Bioanalytical Applications	09
5	Nanotechnology in Food, Medicine and Health Sci- ences: Nanocomposites for food packaging, nanomaterials in cosmet- ics, Regenerative medicine - Nanostructured collagen mimics in tissue engineering, synthesis of nanodrugs, polymeric nanopar- ticle for Drug and gene delivery, Micelles for drug delivery, Nan- otechnology in cancer research, Preparation of nanobiomateri- als - Polymeric scaffolds collagen, Elastins, Mucopolysaccha- rides, proteoglycans, cellulose and derivates, Dextrans, Algi- nates,Pectins, Chitin Toxicity and Environmental Risks of Nanomaterial	14

- 1. Pradeep T., A textbook of nanoscience and nanotechnology , Tata Mcgrew Hill Education Pvt. Ltd., 2012.
- 2. Hari Singh Nalwa, Nanostructured Material and Nanotechnology, Academic Press, 2002
- 3. Niemeyer C. M., Bionanotechnology : Concepts, Application and Perspectives Wiley-VCH, 2006

Course Code	Course/ Subject Name	Credits
BTP705	Project-A	3.0

Details

- Project Groups: Students can form groups with not more than 3(Three).
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, six hours are allotted in Project A to the students.
- Students are advised to take up industrial/ experimental oriented/ simulation and/or optimization based topics for their projects.
- Students are expected to do research and literature survey for their topics and submit a synopsis at the end of the semester, specifying their hypothised methodology and expected outcome of their work to be conducted in Project-B.
- Students are also expected to present their synopsis at the end of the semester.

Course Code	Course/Subject Name	Credits
BTL706	LAB-VI	2.0

Concepts for experiments:

A minimum of 10 experiments must be performed based on the following concepts:

- Viscometer
- Cell disruption
- Conventional filtration
- Centrifugation
- Distribution coefficient in Liq liq extraction
- Binodal curve in liq liq extraction
- Solid-liquid extraction of natural product and subsequent purification
- Leaching
- Protein precipitation and its recovery
- Gas Chromatography
- Ion Exchange Chromatography
- Separation of Plant Pigments using Column Chromatography

Course Code	Course/Subject Name	Credits
BTL707	LAB-VII	2.0

Concepts for experiments:

A minimum of 10 experiments must be performed based on the following:

- Material Balance without Reaction
- Material Balance with Reaction
- Energy Balance equations
- Solving Linear equations
- Solving Non linear algebric equations
- Parameter Estimation in kinetics
- Modelling of Batch, Fed Batch and Continuous
- Simulation of Batch Reactor
- Simulation of Continuous Reactor
- Solving Numerical integrations
- Solving Algebric equations
- Solving Differential Equations

University of Mumbai

Subject	Subject Name	Teac	ching Sch	neme	Credit Assigned			
Code	Subject Name	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
BTC801	Environmental Biotechnology	04	_	_	04	-	_	04
BTC802	Bioseparation & Downstream	04	_	—	04	_	_	04
	Processing Technology-II							
BTC803	Bioprocess Plant &	03	—	01	03	—	01	04
	Equipment Design							
BTE804	Elective-III	03	_	01	03	_	01	04
BTP805	Project-B	_	_	08		_	06	06
BTL806	LAB VIII	_	03	_	_	1.5	—	1.5
BTL807	LAB IX	—	03	—	—	1.5	_	1.5
	Total	14	06	10	14	03	08	25

Scheme for BE: Semester-VIII

Examination Scheme

				Exar	ninatio	n Schen	ne		
Subject	Subject Name	Theory marks				T			
Code	Subject Name	Interr	nal Asse	essment	End	Term Work	Pract.	Oral	Total
		Test	Test	Avg.of	Sem.	WOIK			
		1	2	(A)	Exam				
		(A)	(B)	& (B)					
BTC801	Environmental Biotechnology	20	20	20	80	_	_	_	100
BTC802	Bioseparation & Downstream	20	20	20	80	_	_	_	100
	Processing Technology-II								
BTC803	Bioprocess Plant &	20	20	20	80	25	—	_	125
	Equipment Design								
BTE804	Elective-III	20	20	20	80	25	—	—	125
BTP805	Project-B	_	_	_	—	50	_	100	150
BTL806	LAB VIII	_	_	_	_	_	25	_	25
BTL807	LAB IX	-	—	—	—	—	25	—	25
				80	320	100	50	100	650

Elective Streams(BTE804)

Sem.VIII	Elective III	• Non Conventional Sources of Energy
		• Biosensor & Diagnostics
		• Protein Engineering
		• Agriculture Biotechnology

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
BTC801	Environmental Biotechnology	4.0	_	4.0

Knowledge of Biotechnological aspects and molecular genetics

Course Objectives

• The main objective of this course is to introduce to the students the current biotechnological approaches and technologies in the use of microbes and/or other organisms and their processes to improve environmental quality, clean up contaminated environment, renew resources and generate valuable products for human society.

Course Outcomes

- By studying this subject the students can be able to: Apply their knowledge of environmental science and biological systems to improve the quality of life in individual context.
- Recognize key environmental problems and to apply the operating principles and biotic systems for remediation.
- Design, improve and apply biotechnological systems and processes to meet practical needs of different environmental problems.

Module	Contents	No. of hrs
1	Introduction: Environmental Degradation, types of environmental degradation, factors affecting environmental degradation, biogeochemical cycles (Nitrogen, Carbon, Oxygen, Phosphorus, Sulfur, Hydrological), pollution, pollutants and their types (general idea), Man induced impact on environment (Global warming, Green house effect, ozone depletion, acid rain, Photochemical smog), Environmental monitoring- sampling (land, air, water), analysis- physical, chemical, biological, pollution monitoring- bio indicators, biosensors, biomarkers, pollution control aspects	07
2	Pollution control: Pollutants, types, sources, effects, atmospheric stability, atmospheric dispersion- (Gausian plume model), problems, air pollution control- Particulate and gaseous control, source correction methods, natural pathways of exchange of air pollutants from atmosphere to earth (wet precipitation- rain out, washout)	06

\dots continued

Module	Contents	No. of hrs
3	Water Pollution Control: Pollutants, types, sources, effects, measurement of organic and inorganic pollutants, DO depletion, modelling of BOD reaction, problems on BOD, Methods of waste water treatment, Microbiology and design (activated sludge process, trickling process), Rotating Biological contactors, Fluidized bed reactors, anaerobic sludge digestion, Methanogenesis, methanogenic, acetogenic,fermentative bacteria- technical process and condition, waste water treatment using aquatic plants, heavy metal removal by hairy roots.	08
4	Soil Pollution Control: Pollutants, types, sources, effects, bioremediation of contaminated soil, types of bioremediation, factors affecting bioremediation, phytoremediation, role of genetic engineering	06
5	Solid waste management: Types of solid waste, sources, effects, methods of collection, disposal methods, potential methods of disposal, disposal of hazardous waste, Biological conversion process (aerobic, anaerobic, bioventing), biotechnology applications to hazardous waste management	06
6	Special topics in Bioremediation technology: Nanotechnology for bioremediation of heavy metals, sulphate and sulphur reducing bacteria, bioremediation of petroleum sludge using bacterial consortium and biosurfactnts	04
7	Downstream Processing: Downstream processing in biological treatment process, effluent disposal and reuse, biofiltration of waste gas, treatment and purification of biogas	04
8	Effluent treatment: Need of ETP in industry, Components of ETP, general design procedure for ETP, ETP studies of industries like dairy, metal, food etc.	05
9	Environmental Legislations: Water Prevention and Control Pollution Act, Water pollution act, Air pollution and prevention act, The environment Protection Act, Forest Conservation Act, Municipal Solid Waste Rules, Biomedical Waste Rules, Hazardous Waste Rules, Environmental Clearance, Environmental Legislation and Pollution Control Acts in India, Central Pollution Control Board, its functions and powers, Procedure to operate an industry	03

 \ldots continued

Module	Contents	No. of hrs
10	Environmental Standards: Need and Use of environmental standards, Agencies and Bodies setting environmental standards, classification of environmental standards, National and International Standards for waste water	03

- 1. Environmental Biotechnology- Allen Scragg, Oxford University Press, Second edition
- 2. Environmental Biotechnology, 1995 S.N. Jogdand, Himalaya Publishing House.
- 3. Bioremediation, 1994 Barker, K.H. and Herson, D.S., Mcgraw Hill, Inc. New York
- 4. Waste water Engineering, Metcalf & Eddy, Tata McGraw Hill Publication, Fourth edition
- 5. Environmental Science, Richard T. Wright, PHI Pvt. Ltd., Ninth edition
- 6. Environmental Pollution Health and Toxicology, S.V.S. Rana, Narosa Publishing House Pvt. Ltd., First edition

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
BTC802	Bioseparation & Downstream Processing II	4.0	_	4.0

- Basics of Bioprocesses and Unit Operations
- Basic knowledge of mass balace.
- Concepts of molecular diffusion and diffusion coefficients

Course Objectives

• To cover the fundamentals, and design concepts of various down stream purification steps (unit operations) involved in a biochemical process.

Course Outcomes

• Students will be able to describe theory, principle, design, application and possible integrations of unit operations in bioprocessing

Detail syllabus

Module	Contents	No. of hrs
1	Adsorption and Ion Exchange: Introduction to Adsorption, Types of Adsorption, Adsorption Isotherms, Single Stage Adsorption, Multistage Cross Current Adsorption, Multistage Counter Current Adsorption, Equip- ments for Adsorption Ion Exchange Equilibria, Ion Exchange Equipments Design and Construction of Chromatographic Columns for Bioseparations	10
2	Membrane Separation Techniques: Membrane separation processes: Reverse Osmosis, Ultrafiltra- tion, Microfiltration, Nanofiltration, Dialysis, Electrodialysis, Gas Permeation, Pervaporation Types of Membranes, Membrane Modules and design Retention coefficient, Concentration Polarization, Membrane fouling Factors affecting membrane filtration Advantages of membrane separation processes over conven- tional separation techniques Industrial Applications	10

... continued

Module	Contents	No. of hrs
3	Equipments for Gas-Liquid Contacting applicable for Bioprocesses: Classification of equipments for gas-liquid contacting, Gas dis- persed and liquid continuous phase- Sparged Vessels (Bubble Columns), Mechanically Agitated Vessels, Tray Towers. Spray Towers and Spray Chambers, Packed Towers. Compari- son of Packed Towers with Tray Towers.	06
4	Crystallization: Solubility curve, Super saturation, Method of obtaining super saturation Effect of heat on size and growth of crystal, Rate of Crystal growth and Delta-L law of crystal growth, Material and energy balance for crystallizers Crystallization equipment-description	08
5	Drying: Introduction to drying, Equilibrium, Different types of moisture contents, Rate of Drying and drying curve, Batch Drying and calculation of time of drying, types of driers Lyophilization Formulation	06
6	Case Studies of downstream processing: Baker's yeast, Ethanol, Citric acid, Penicillin, Insulin, Casein, interferon, cephalosporin, Recombinant Streptokinase, Mon- oclonal antibodies, Tissue plasminogen activator, Taq poly- merase	12

- 1. Treybal R.E. , Mass transfer operation, 3 Ed., McGraw Hill New York, 1980.
- 2. McCabe W.L. and Smith J.C., Unit operation in chemical engineering, 5 Ed., McGraw Hill New York 1993.
- 3. Geankoplis C.J., Transport processed and unit operations, Prentice Hall , New Delhi 1997.
- 4. Roger G. Harrison, Paul Todd, Scott R. Rudge, Demetri P. Petrides, Bioseparations Science and Engineering, Oxford University Press
- 5. B.Shivshankar, Bioseparations: Priniples and Techniques, Eastern Economy Edition, PHI Learning Pvt. Ltd., Publishing House, New Delhi, 2012
- 6. Bioseparation & bioprocessing (2nd Ed.) 2-Volume set, Ed SUBRAMANIAN Ganapathy, Wiley-VCH, (09-2007)
- P.A. Belter, E.L. Cussler and Wei-Shou Hu., Bioseparations-Downstream Processing for Biotechnology, WileyInterscience Publication, 1988.

- 8. J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, 2nd Edition, Mc-Graw Hill, Inc., 1986.
- 9. R. K. Scopes, Berlin, Protein Purification: Principles and Practice, Springer, 1982.
- 10. Scopes Ak, Protein Purification, IRL Press, 1993
- 11. Biotechnology: Bioprocessing, Rhem and Reed, Vol. 3, 1993
- 12. Separation and purification techniques in biotechnology, Fredreich Dechow, 1989
- 13. Asenjo J.A. and J.Hong (Eds), Separation Processes in Biotechnolgy, Taylor and Francis
- 14. T. Schepler et al, Biotreatment, Downstream Processing and Modeling (Advances in Biochemical Engineering /Biotechnology, Vol 56) by Springer Verlag

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
BTC803	Bioprocess plant and Equipment Design	3.0	1.0	4.0

- Process Calculation
- Unit operation I and II

Course Objectives

- To impart basic concepts of mechanical and process design of process plant..
- To impart design principles for bioreactor design.

Course Outcomes

- This course makes the students to learn the methods and practice followed in the design of Bioprocess equipments.
- This course makes the students to draw the designed equipments to scale.
- The course imparts advanced knowledge on bioreactor design for efficient utilization of the principles in bioprocess technology

Detail syllabus

Module	Contents	No. of hrs
1	Module 1: Material of construction for process and bioprocess plants. Me- chanical design of process equipment.Design of cylindrical and spherical vessel under internal and external pressure. Selection and design of enclosures- flat plate, formed heads, torispherical and hemispherical heads, standard flanges and nozzles- classi- fication of flanges, flange thickness calculation, gasket selection and design, bolt selection and calculation (Numerical problems are not needed for design of flanges, gasket and nozzles) Design of heat exchange equipments for upstream and down- stream operations in bioprocessing industries: Heat exchangers : process design (TEMA and IS 4503 standards) of double pipe, single pipe and multipass shell and tube heat exchangers.	07
2	Module 2: Introduction to Indian Standards for storage tanks and their use in design of process vessel .Storage vessels for volatile and non volatile liquids including unfired pressure vessels. Design of supports- Bracket, leg, saddle and skirt support and fixed roof and open roof tanks.	07

... continued

Module	Contents	No. of hrs
3	Module 3: Development of flowsheet, piping and instrumentation diagram and its description. General design consideration, optimum design	07
4	Module 4: Detailed design and drawing of perforated plate distillation col- umn.Absorption columns: Detailed design and drawing of per- forated plate and packed towers.	06
5	Module 5: Design considerations for maintaining sterility of process streams and process equipments. Design of mechanically agitated fermenters and non- mechanically agitated (bubble column and air lift) fermenters.	06
6	Module 6: Design of various types of evaporators employed in bioprocess operation: Evaporators: Standard vertical tube evaporator, single and multiple effect evaporators and forced circulation evaporator. Thermal sterilization systems in fermentation processes: batch and continuous thermal sterilizers.	06

- 1. Sinnott, R.K., Coulson & Richardson's 'Chemical Engineering', Volume 6, 3rd Edn., Butterworth Heinemann, New Delhi, 1999.
- 2. Perry, R.H., et al., Perry's 'Chemical Engineers Handbook', 7 th Edn., McGraw Hill, NewYork, 1997.
- Joshi, M.V., and Mahajani, V.V., 'Process Equipment Design', 3 rd Edn., Macmillan India Limited, New Delhi, 1996.
- 4. Bownell, L.E., and Young, E.M., 'Process Equipment Design', Wiley Eastern, 1968.
- 5. Peters and Timmerhause, 'Plant Design and Economics for Chemical Engineers'
- 6. S.B. Thakore, B. I. Bhatt, 'Introduction to Process Engineering and Design', McGraw Hill Companies
- 7. Michael L Schuler and Fikret Kargi, 'Bioprocess Engineering' Printice Hall of India Pvt. Ltd
- 8. Pauline M Doran, 'Bioprocess Engineering Principles' Academic Press
- 9. Pressure vessel code-IS Code 2825, B.I.S., New Delhi, 1969
- 10. Heat Exchanger Design Code IS 4503, B.I.S., New Delhi, 1969
- 11. Process Equipment Design and Drawing by Kiran Ghadyalji,Nandu publication

Course Code	Course/ Subject Name	Credits		
		Theory	Tut.	Total
BTE804	Elective – III : Non Conventional Sources of	3.0	1.0	4.0
	Energy			

• Knowledge of conventional sources of energy and energy utilization.

Course Objectives

• The main objective of this course is to introduce to the students the current approaches and technologies in the development of non-conventional sources of energy their processes to improve environmental quality and energy requirement, clean and abundant energy, renewable resources and generate cost effecient methods to harness energy for human society.

Course Outcomes

- Apply their knowledge of energy generation and its conservation to improve the quality of life in individual context.
- Recognize key energy problems and to apply the operating principles and biotic systems for remediation.
- Design, improve and apply biotechnological systems and processes to meet practical needs of different problems of energy requirement.

Detail syllabus

Module	Contents	No. of hrs
1	Introduction: Traditional energy systems: fossil fuel, firewood, coal; Fossil fuel based systems, Impact of fossil fuel based systems; renew- able and non-renewable sources of energy; global and national energy crisis, Prospects of renewable energy sources.	03
2	Solar energy: Solar energy: solar radiation spectrum, radiation measure- ments, applications (heating, cooling, drying, distillation); flat plate collectors, concentrating collectors, Solar air heaters- types, solar driers, storage of solar energy-thermal storage, so- lar pond, solar water heaters, solar distillation, solar still, solar cooker, solar heating & cooling of buildings, photo voltaics - solar cells & its applications	08
3	Wind Energy: Principle of wind energy conversion; analysis of aerodynamic forces acting on wind mill blades and estimation of power out- put; wind patterns and wind data; types of wind mills, compo- nents of wind mill, site selection.	03

\dots continued

Module	Contents	No. of hrs
4	Geothermal energy: Estimation and nature of geothermal energy, geothermal sources and resources: hydrothermal, geo-pressured hot dry rock, magma; Advantages, disadvantages and application of geothermal energy; prospects of geothermal energy in India.	03
5	 Energy from the Ocean: Ocean Thermal Electric Conversion (OTEC) systems: open cycle, closed cycle, Hybrid cycle, prospects of OTEC in India. Energy from tides, basic principle of tidal power, single basin and double basin tidal power plants, advantages, limitation and scope of tidal energy. Wave energy and power from wave, wave energy conversion devices, advantages and disadvantages of wave energy. 	05
6	Energy from Biomass: Biomass conversion principle: combution and fermentation; Biogas generation plants: classification, advantages and disad- vantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of bio gas,utilization of biogas. Biodisel: principle, production, efficiency, scope in India.	05
7	Fuel cells: Introduction, Design principle, operation of fuel cell, Types of fuel cells, conversion efficiency of fuel cell, application of fuel cells. Microbial Fuel cells: Principle, construction, working, efficiency and scope in India.	03
8	Hydrogen energy: Introduction, Hydrogen Production methods, Hydrogen stor- age, hydrogen transportation, utilization of hydrogen gas, hy- drogen as alternative fuel for vehicles. Nuclear energy: nuclear reactors, fission and fusion reactions; advantages and disadvantages of nuclear energy.	03
9	Magneto Hydrodynamic (MDH) Power Generation: Principle of MHD power generation, MHD system, Design problems and developments, gas conductivity, materials for MHD generators and future prospects.	03
10	Energy Management: Energy economics, energy conservation, energy audit, general concept of total energy system, scope of alternative energy system in India.	03

- 1. Non-conventional energy sources by G.D. Rai, Khanna Publishers
- 2. Solar Energy: Fundamentals and Applications by H.P.Garg & Jai Prakash, Tata McGraw Hill
- 3. Solar Engineering of Thermal Processes by Duffic and Beckman, John Wiley
- 4. Solar Energy: Principles of Thermal Collection and Storage by S,P Sukhatme,Tata Mc-Graw Hill
- 5. Alternative Energy Sources by B.L. Singhal Tech Max Publication
- 6. Non Conventional Energy Resources by S.Hasan Saeed and D.K.Sharma
- 7. Fuel Cells by Bockris and Srinivasan; McGraw Hill
- 8. Magneto Hydrodynamics by Kuliovsky and Lyubimov, Addison

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
BTE804	Elective – III: Biosensors and Diagnostics	3.0	1.0	4.0

Biochemistry , Analytical Methods In Biotechnology, Principles of Basic Instruments Used In A Biotechnology Lab.

Course Objectives

The objectives of this course is that the students will be able to :

- Explain the role of biological macromolecules as recognition elements & biosensors.
- Describe the biomedical aspects of these sensors.
- Analyse the interplay between materials, components and systems in the field of bio sensing.
- Design an advanced biosensor for medical applications, using the current state of the art of biosensors.
- Describe what challenges are shared among and what challenged are unique to the major biosensor application areas.

Course Outcomes

By learning this course the students will be able to :

- Apply the principles of engineering to the development of bioanalytical devices and the design of biosensors
- Explain the principles of linking cell components and biological pathways with energy transduction, sensing and detection.
- Differentiate among various biosensor systems.
- Design a biosensor in response to agricultural, bioenvironmental, food safety, and biosecurity applications.
- Apply engineering and biological approaches to solve problems in diagnosis of diseases, such as diabetes, cancer or detection of other analytes/biomarkers .

Detail syllabus

Module	Contents	No. of hrs
1	Biosensors: Principles, Characteristics of Ideal Biosensors, Ba- sic measuring procedure, Components of biosensors, Advan- tages & Limitations	09
2	Biocatalysis based biosensors, Bioaffinity based biosensors & Microorganisms based biosensors, Biologically active material and analyte. Types of membranes used in biosensor constructions.	10

continued ...

... continued

Module	Contents	No. of hrs
3	Various types of transducers, Principles and applications - Calorimetric, Optical, Potentiometric/ Amperometric, Con- ductrometric/ resistormetric.	05
4	Piezoelectric, Semiconductor, Impedimetric, Mechanical and molecular electronics based transducers, Chemiluminiscene- based biosensors.	05
5	Biosensors in clinical chemistry, Medicine and health care, Biosensors for veterinary, Agriculture and food, Low cost- biosensor for industrial processes for online monitoring, Biosen- sors for environmental monitoring.	10

- Roger, K.R. and Gerlach, C.L. 1 99. Update on environmental for biosensors. Env. Sci. Techno! 33 500A - 506A.
- 2. Bilitewski, U. Turner, A.P.F. 2000 Biosensors for environmental monitoring Harwood, Amsterdam.
- 3. Moses, V and Cape, R.E. 1991, Biotechnology the science and business, Harwood, Academic Publisher London
- 4. Rogers, K.R. and Mascini, M. 2001. Biosensors for analytical monitoring EPA biosensors group.
- Aboul Enein, H. V., Stefan, R. and Van Staden, (1999) Chemiluminiscence based biosensors - An overview crit Rev. Anal. Chem. 29, 323-331.
- Pearson, J.E. Gill, A., and Vadgama, P. (2000) Analytical aspects of biosensors ,Ann Clin Biochem 37, 119-145.
- 7. Biosensors: Fundamentals and applications, Oxford, U.K: Oxford University Press by Turner, A.P.F., Karube, I. & Wilson, GS.

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
BTE804	Elective – III: Protein Engineering	3.0	1.0	4.0

- Principles of Biochemistry
- Principles of Recombinant DNA Technology
- Basics of Enzyme Activity

Course Objectives

- Imparting knowledge about structure function relationships of proteins
- Studying the problem of protein folding and methods of characterization folded proteins
- Aspects of Protein Engineering in the industry

Course Outcomes

At the end the student would have learned:

- Structure and Function relationship in proteins and its application in designing proteins
- Process of engineering proteins to increase its value by assisting folding, purification.
- Protein engineering of the rapeutic proteins, industrially important enzymes and antibodies.

Detail syllabus

Module	Contents	No. of hrs
1	Structure of Proteins: Post translational Modifications of proteins. Primary Structure and its determination Ramchandran Plot Secondary, Tertiary and Quaternary Structure of Proteins Bonds that stabilize a protein molecule Protein folding pathways and Energy Status of a Protein Molecule Protein Degradation in the cell	10
2	Techniques involved in studying protein structure: Methods of protein crystallization. Methods to study the quaternary structures of proteins: X-ray Crystallography, NMR Spectroscopy. MALDI-TOF, ESI-MS	07

... continued

Module	Contents	No. of hrs
3	Structure Function Relationships in Proteins: Helix-turn-Helix motif in DNA binding and homeodomain pro- tein. Zinc fingers. Leucine zippers. Membrane proteins: General characteristics, Transmembrane segments, bacteriorhodopsin and Photosynthetic reaction cen- ter	06
4	Concepts of designing a new Protein Molecule: Chemical synthesis of peptides. Target molecules for Protein Engineering. The protein cycle and steps involved in Engineering a new Pro- tein. de novo protein design	06
5	 Applications of Protein Engineering: Protein Engineering to enhance the solubility and assist folding of expressed proteins. Protein Engineering to assist purification of expressed proteins. Role in Vaccine Development. Engineering blood clotting factors: factor VIII. Engineering enzymes: tyrosyl-tRNA synthase. Engineering therapuetic hormones: insulin. Engineering humanized antibodies 	10

- 1. Lilia Arbenghina; Protein Engineering in Industrial Biotechnology; Harwood Academic Publishers
- 2. Creghton TE; Proteins Function, A Practical Approach; Freeman WH, Second Ed, 1993
- 3. Branden C. and Tooze J.; Introduction to Protein Structure; Second Edition, Garland Publishing, NY, USA, 1999
- 4. Moody PCE, and A.J.Wilkinson; Protein Engineering; IRL Press, Oxford, 1990
- 5. Walsh. G; Protein Biotechnology and Biochemistry; 2nd ed.; Wiley Publications
- 6. Klaus Demobowsky, Novel Therapeutic Proteins; Wiley Publications
- 7. Voet D. and Voet G.; Biochemistry' Third Edn. John Wiley and Sons, 2001

Course Code	Course/ Subject Name		Credits	
		Theory	Tut.	Total
BTE804	Elective – III: Agriculture Biotechnology	3.0	1.0	4.0

- Knowledge about plant tissue culture methods and applications
- Knowledge about genetic engineering methods for e.g. gene transfer techniques, plant vectors and basics of transgenic plants
- Knowledge about traditionally used herbicides, pesticides, its advantages and drawbacks
- Knowledge about ethical and biosafety issues and intellectual property rules associated with plants

Course Objectives

- To understand basic plant biology and breeding methods
- To gain knowledge about transgenic plant analysis, principle behind generation of herbicide and pest tolerant plants
- To understand the stress condition in plants and methods to overcome it
- To design methods for crop improvement
- To analyse applications based on molecular farming

Course Outcomes

Students will be able to:

- Apply the transgenic methods to develop better quality crops
- Understand the advantages and drawbacks of engineered plants and modify them accordingly
- Harness the plants for imroved quality biomaterials

Detail syllabus

Module	Contents	No. of hrs
1	Agricultural Microbiology: Microbial groups in soil, Plant and Microbe interactions. Plant pathogens. Biological nitrogen fixation. Microflora of Rhizosphere and Phyllosphere microflora, microbes in composting Beneficial microorganisms in Agriculture: Biofertilizer (Bacte- rial Cyanobacterial and Fungal), microbial insecticides, Micro- bial agents for control of Plant diseases	05

\dots continued

Module	Contents	No. of hrs
2	Plant Breeding:Historical milestones in plant breeding. Aims and objectives ofplant breeding, Significance of plant breeding in crop development.Concepts in plant breeding - Simple versus Complex Inheritance, Mating Systems, Varieties, and Pure Lines.Methods of Plant Breeding.Plant Hormone Signal Transduction - Auxin and GA Signaling,Cytokinin and Ethylene Signaling	07
3	Transgenic Plants: Transgenic Plant Analysis: screening on selection media, PCR, Intact Transgene Integration characterization, Real time PCR, Transgene expression, western blot analysis Regulations and Biosafety Field Testing of Transgenic Plants - Environmental Risk As- sessment (ERA) process, e.g. the case of Bt Maize, Agronomic Performance, Risk analysis. Clean-gene technology.	05
4	Genetic manipulation of herbicide tolerance: The use of herbicides in modern agriculture Types of compounds used as herbicides Strategies for engineering herbicide tolerance - Glyphosate tol- erance, Phosphinothricin, Prospects for plant detoxification systems Commercialization of herbicide-tolerant plants to date The environmental impact of herbicide-tolerant crops Development of Superweeds.	03
5	Biotic and Abiotic stress: Abiotic stress: Acclimation and crop adaptation to water stress, salinity stress, temperature stress, heat and cold, Photo oxidative stress, nutrient stress, heavy metal stress, metabolite engineering for abiotic stress tolerance Biotic stress: plant response to pathogens and herbivores, bio- chemical and molecular basis of host plant resistance, toxins of fungi and bacteria, systemic and induced resistance, pathogen derived resistance, genetic engineering for biotic stress resis- tance	08

•	•	continued

Module	Contents	No. of hrs
6	Genetic manipulation of pest resistance: The nature and scale of insect pest damage to crops. GM strategies for insect resistance: the <i>Bacillus thuringiensis</i> approach. The use of <i>Bacillus thuringiensis</i> as a biopesticide. Bt-based genetic modification of plants. Problem of insect resistance to Bt, environmental impact of Bt crops. Copy Nature strategy	03
7	Improvement of crop yield and quality: Genetic manipulation of fruit ripening, softening, genetic mod- ification of ethylene biosynthesis. Golden rice and Biofortified rice. Engineering plant protein composition for improved nutrition. The genetic manipulation of crop yield by enhancement of pho- tosynthesis	04
8	Molecular farming: Farming of carbohydrates (e.g. starch, polyfructans) Metabolic engineering of Lipids (e.g. Bioplastics) Molecular farming of proteins (e.g. oleosin system: hirudin and insulin production). Medically related proteins (e.g. custom made antibodies, Edi- ble vaccines)	04

- 1. Plant biotechnology -The genetic manipulations of plants by Slater, A., Scott, N. and Fowler, M., Oxford University press
- 2. Principles of Plant Breeding by Allard R W 1960 .Kalyani Publishers, New Delhi.
- 3. Plant Biotechnology and Genetics: Principles, Techniques, and Applications Edited by C. Neal Stewart, Jr.
- 4. Stress biology, by U. Chakraborty, Bishwanath Chakraborty, 2005. Narosa Publishing House.
- 5. Agricultural Microbiology by D. J. Bagyaraj, G. Rangaswami, Prentice Hall of India Pvt Ltd.

Course Code	Course/ Subject Name	Credits
BTP805	Project-B	6.0

Details

- Project Groups: Students can form groups with not more than 3(Three).
- Students should spend considerable time in applying all the concepts studied, into the project. Hence, eight hours are allotted in Project B to the students.
- Students are advised to take up industrial/ experimental oriented/ simulation and/or optimization based topics for their projects.
- Students have to submit a comprehensive thesis based on the research work conducted throughout the year.
- Students are expected to present their work and defend their thesis.

Course Code	Course/Subject Name	Credits
BTL806	LAB-VIII	1.5

Concepts for experiments:

A minimum of 10 experiments must be performed from the following list of experiments:

- Physical property like pH, turbidity, conductivity, alkalinity determination of waste water
- Determination of total phosphorus content of waste water
- Determination of total Kjeldahl Nitrogen of waste water
- Determination of BOD of waste water
- Determination of COD of waste water
- Determination of Oil and grease content of waste water
- Determination of total solids, total suspended solids and total dissolved solids
- Determination of MLSS and MLVSS
- Determination of Sludge Volume Index
- Estimation of metals like iron, copper in waste water
- Determination of chloride content of waste water
- Estimation of coliform bacteria in waste water
- Determination of phytoplankton in waste water
- Determination of Most Probable Number of waste water
- Removal of heavy metals by chemical methods from waste water Adsorption

Course Code	Course/Subject Name	Credits
BTL807	LAB-IX	1.5

Concepts for experiments:

A minimum of 10 experiments must be performed on the following concepts:

- Adsorption
- Membrane based filtration
- Dialysis
- Reverse Osmosis
- Storage techniques for bioactive compounds- Freeze drying, Spray drying
- Crystallization
- Isolation and purification of biomolecules (protein/s or enzyme) from crude source/fermentation broth
- Assessment of recovery and purity of the isolated product