Sample Questions

Chemical Engineering

Subject Name: Engineering Mathematics IV

Semester: IV

Multiple Choice Questions

Choose the	correct option for following questions. All the Questions carry equal marks
1.	The order of the pole of $f(z) = \frac{\sinh z}{z^7}$
Option A:	7
Option B:	6
Option C:	5
Option D:	0
2.	Find the residue at $z = -2$ of the function $f(z) = \frac{z^2}{(z-1)^2(z+2)}$
Option A:	4
Option B:	5/9
Option C:	4/9
Option D:	5
3.	What is the expectation of heads if an unbiased coin is tossed 12 times
Option A:	4
Option B:	6
Option C:	8
Option D:	12
4.	Find r if $\sum xy = 24$, $\sum x^2 = 36$ and $\sum y^2 = 44$
Option A:	0.0151
Option B:	0.6030
Option C:	0.9062
Option D:	0.3504
5.	If $F = (x + 2y + 4z)i + (ax - 3y - z)j + (4x - y + 2z)k$ is irrotational
	then find the constants a
Option A:	4
Option B:	1
Option C:	-1
Option D:	2
6.	If a random variable X follows Poisson distribution such that $P(X = 1) = P(X = 2)$ Find
	the mean.
Option A:	1
Option B:	2
Option C:	3
Option D:	4

7.	If X is a normal variate with mean 10 and standard deviation 4. The value of standard					
	normal variate Z is					
Option A:	2					
Option B:	1					
Option C:	3					
Option D:	2.5					
8.	Given $N = 10, \sum d_i^2 = 96$. Find the rank correlation coefficient R.					
Option A:	R = 0.4181					
Option B:	R = 0.5181					
Option C:	R = 0.2524					
Option D:	R = 0.3524					
opuon 21						
9.	A continuous random variable X has the p.d.f $f(x) = kx^2, 0 \le x \le 2$ The value k is					
Option A:	8/3					
Option B:	1/12					
Option C:	3/8					
Option D:	2/7					
-						
10.	There are in a bag three true coins and one false coin with head on both sides. A coin is chosen at random and tossed four times. If head occurs all the four times, what is the probability that the false coin was chosen and used?					
Option A:	1/16					
Option B:	3/4					
Option C:	1/4					
Option D:	16/19					
1						
11.	IF $\vec{F} = (y + kx)\hat{i} + (y - 2z)\hat{j} + (x - 2z)\hat{k}$ is solenoidal, Find the value of k					
Option A:	-2					
Option B:	3					
Option C:	1					
Option D:	-3					
12.	If \vec{F} is the gradient of some scalar point function .then what is nature of Line integral .					
Option A:	Dependent of path					
Option B:	Independent of path					
Option C:	Closed path					
Option D:	Straight line					
13.	What is the Value $\int_{C} \frac{dz}{z-2}$ Where C is the circle $ z-2 = 1$					
Option A:	0					
Option B:	4πi					
Option C:	2πi					
Option D:	3πi					
14.	Find Residue at $z = -1$ of $f(z) = \frac{7z-2}{z(z-2)(z+1)}$					

Option A:	3					
Option A: Option B:	-3					
Option B: Option C:	5					
Option D:	-5					
Option D.						
15.	Value of Correlation coefficient lies between					
Option A:	0 and 1					
Option A: Option B:	1 and -1					
Option D:	0 and -1					
Option D:	2 and 1					
Option D.						
16.	Karl Pearson's coefficient of correlation symbol represented by					
Option A:	r					
Option R:	K					
Option D:	R					
Option D:	S					
Option D.						
17.	What is r -th Moment about origin μ'_r ?					
Option A:	$\frac{1}{E(x)^{r}}$					
Option A: Option B:	$\frac{E(x)}{E(x)^2}$					
Option B: Option C:	$\frac{E(x)^2}{E(x)^3}$					
Option D:	E(X)					
Option D:	E(x) ⁰					
18.	Which of the fallowing one't he Drahability					
	Which of the following can't be Probability 5%					
Option A:	3					
Option B:	$\frac{3}{8}$					
Option C:	8 0.5					
Option D:	-0.5					
Option D.	-0.5					
19.	What is the size of Large sample					
Option A:	Less than 30					
Option B:	More than 30					
Option D: Option C:	More than 50					
Option D:	Less than 50					
option D.						
20.	Chi Square test used to analyze					
Option A:	Mean					
Option B:	Variance					
Option C:	Frequencies					
Option D:	Rank					
- phon D.						
21	$\vec{A} = (n + q)i + (n + q)i + (n + q)kiq$					
	$\vec{A} = (y+z)i + (x+z)j + (x+y)k is$					
Option A	Solenoidal and not irrotational					
Option B	Neither solenoidal nor irrotational					
Option C	Solenoidal and irrotational					
Option D	Not solenoidal but irrotational					
22	If S is a closed surface enclosing a volume V and $ec{F}=axi+byj+czk$, then $\iint \ ec{F}. \hat{n}ds$					
	is					
Option A	(a+b+c)V					
Option A						

a+b+c							
abcV							
abc							
The value of $\int_C \frac{1}{z-a} dz$; Where C is the circle with centre at z=a and radius c units is equal to							
0							
2πi							
2πl 2π							
πί							
Value of $\int_c (z+1)dz$; where c: boundary of the square with vertices at (0,0); (1,0); (1,1); (0,1) is							
2i							
3+2i							
5							
0							
Residue of f(z) = $\frac{1}{z^3(z+4)}$ at $z = 0$ is							
1 64							
$\frac{1}{32}$							
$\frac{-1}{64}$							
$ \begin{array}{c} \frac{1}{64} \\ \frac{1}{32} \\ \frac{-1}{64} \\ \frac{-1}{32} \\ \end{array} $							
If f(a)= $\int_c \frac{4z^2+z+5}{z-a} dz$ where c is an ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ then the value of f(i) is							
2π+2πі							
0							
2π-2πί							
-2π+2πi							
Given: $\sum X = 21$; $\sum Y = 24$; $\sum XY = 75$; $\sum Y^2 = 106$; $n = 6$. The Line of best fit to the above data for determining the best estimate of X corresponding to specified value of Y is							
X=0.9Y-7.1							
X=7.1-0.9Y							
Y=7.1+0.9X							
Y=7.1-0.9X							
The Regression line of X on Y is $3Y-5X=-180$ and $Var(X)=\frac{9}{16}Var(Y)$. The Karl Pearson's correlation coefficient is equal to							
-0.8							
0.93							
0.8							
-0.93							

29	Given: $\sum xy = -93$; $\sum x^2 = 140$; $\sum y^2 = 398$; [x and y denote the deviations of X							
	and Y from their respective means]. The regression coefficients of X on Y and Y on X are							
	respectively							
Option A	{0.234 ;0.664}							
Option B	{-0.664; -0.234}							
Option C	{-0.664; 0.234}							
Option D	{-0.234; -0.664 }							
30	Given: Rank correlation coefficient between X and Y is 2/3 .The number of pairs of observations is 10.{No ranks are repeated in both X and Y series}.Then the sum of the squares of the differences between the corresponding rank is							
Option A	110							
Option B	55							
Option C	165							
Option D	330							
· ·								
31	Given: $P(A) = \frac{1}{12}$; $P(B) = \frac{5}{12}$; $P(B/A) = \frac{1}{15}$; Then P(AUB) is equal to							
Option A	$\frac{89}{180}$							
Option B	$\frac{8}{9}$							
Option C	$\frac{17}{18}$							
Option D	$\frac{\frac{91}{180}}{180}$							
32	A R.V. X has a probability density function $f(x) = \begin{cases} xe^{-x} & ; x \ge 0 \\ 0 & ; otherwise \end{cases}$. Then mean of X is							
Option A	6							
Option B	1							
	4							
Option C Option D	2							
Option D								
33	A R.V. X has a probability mass function $P(x) = kx^3$; x={1,2,3,4}.Then value of k is							
Option A	$\frac{1}{30}$							
Option B	$\frac{1}{10}$							
Option C	$\frac{1}{100}$							
Option D	1							
•	5							
34	In usual notation :E(X)=4 ; E(Y)= -2 then E(2X+4Y-3)							
Option A	13							
Option B	-3							
Option C	0							
Option D	16							

	Find the value of a if $\overline{F} = (x - 2z)i + (y - 5x)j + (az + 2x)k$ is solenoidal					
Sphond						
Option D	1.4671					
Option C	0.4585					
Option B	2.1409					
Option A	the calculated value of the F-Statistic is 2.1806					
-	squares of the deviations from the respective means are 120 and 314 respectively. Then					
40	Two sample of size 10 and 12 are drawn from two normal population. Their sum of the					
Option D	$\frac{5}{6}$					
•	$\overline{3}$					
Option C	<u>3</u> 250					
Option B	<u>6</u> 500					
Option A	1					
39	Given:the observed frequencies {200,300} and the corresponding expected frequencies{300,200}, the value of the Chi-square Statistic is					
Option D	(159.3,170.7)					
Option C	(113.5,216.5)					
Option B	(157.4,172.6)					
Option A	(162.74,167.26)					
38	A sample of size 10 (drawn from a normal population) had a mean 165 cms with s,d . of 7.6.Then 95% confidence limits for the population mean [given :Table value of t=2.26] are					
Option D	1					
•	4					
Option C	$\overline{\frac{2}{1}}$					
Option B	<u>2</u> -1					
Option A	2-1					
37	A R.V. X has Moment Generating function $\frac{2}{2}$. Then mean of X is					
Option D	2330					
Option C	10000					
Option B	4780					
Option A	1000					
30	units .[X denotes the weight of boys].If 228 boys weigh more than 115 units ,then the total number of boys in the group is [Area under S.N.C. between z=0 and z=2 is 0.4772]					
36	A R.V. X follows a Normal distribution with mean 105 units and standard deviation of 5					
Option D	0.8347					
Option C	0.7025					
Option A Option B	0.2975					
	0.1653					

Ontion A.							
Option A: Option B:	$\begin{array}{c} a = 2 \\ a = -2 \end{array}$						
Option C:	$\begin{array}{c} a = -2 \\ a = -4 \end{array}$						
Option D:	$\begin{array}{c} a = -4 \\ a = 4 \end{array}$						
Option D.							
42.	Vector field is Irrotational if						
Option A:	$\nabla \times \vec{f} = 0$						
Option B:	$\nabla \cdot \vec{f} = 0$						
Option D: Option C:	$\frac{f}{f} \rightarrow 0$						
	$\nabla \times \vec{f} \neq 0$ $\nabla \cdot \vec{f} = 1$						
Option D:	$\nabla \cdot f = 1$						
	1						
43.	The residue at the pole z =-1 of $f(z) = \frac{1}{(z+1)(z-2)^2}$ is						
Option A:	1/3						
Option B:	-1/3						
Option C:	1/9						
Option D:	-1/9						
44.	The poles of $f(z) = \frac{3z-1}{(z+1)(z-2)}$ are						
Option A:	1,-2						
Option B:	-1,-2						
Option C:	-1,2						
Option D:	1,2						
45.	Value of $\int_c \frac{\sin 2z dz}{(z + \pi/3)^4} dz$ is where C: $ z = 2$						
Option A:	$4\pi i/3$						
Option B:	$\pi i/3$						
Option C:	$2\pi i/3$						
Option D:	$4\pi i$						
46.	The value of $\int_0^{1+i} \bar{z} dz$ along straight line y=x is						
Option A:							
Option B:	2						
Option C:	3						
Option D:	1						
47.	If the two regression coefficient are -8/15 and -5/6 then the correlation coefficient is						
Option A:	0.667						
Option B:	- 0.507						
Option C:	-0.667						
Option D:	0.607						
48.	Line of regression y on x is $8x-10y+66=0$. Line of regression x on y is $40x-18y-214=0$. The value of variance of y is 16. The standard deviation of x is						
Option A:	3						
Option B:	2						
Option C:	6						
Option D:	7						

49.	$\sum xy = 2638$, $\bar{x} = 14$, $\bar{y} = 17$, n=10 then cov (x,y) is								
		x = 14, y	-1/,1	-10 then co	v (x,y) is				
Option A:	24.2								
Option B:	25.8								
Option C:	23.9								
Option D:	20.5								
50	Least square fit for the straight line $y = ay \pm b$ to the date								
50.	Least square fit for the straight line $y=ax + b$ to the data								
	x 1	2	3						
	y 5	7	9						
Option A:	y = 2x + 4								
Option B:	y = 2x - 3								
Option C:	y = 2x + 3								
Option D:	y = 3x - 4								
51.	A random var	iable X has	the fol	lowing prob	ability distrib	ution. The value	of K is		
	X	2	3		4	5	_		
	P(x)	5/K	7	7/K	9/K	11/K			
Option A:	16								
Option B:	8								
Option C:	48								
Option D:	32								
52.									
	In Poisson dis	tribution if	n = 10	0, p = 0.01, t	then the value	e of P(r=0)			
Option A:	1/e								
Option B:	2/e								
Option C:	3/e								
Option D:	1/4e								
53.	A continuous								
	$f(x) = kx; 0 \le$	$x \le 1$ and	k; 1 ≤	$x \leq 2$.then	the value of	k			
Option A:	2								
Option B:	2/3								
Option C:	3/2								
Option D:	3								
54.			es the v	alues of $x = 1$,2,3 with cor	responding Prob	abilities 1/6, 2/3		
	1/6 then E(x)	18							
Option A:	1								
Option B:	3								
Option C:	4								
Option D:	2								
		1 • •		1 1 1			1		
55.							listribution with		
		bility that i	n certa:	in month nur	nber of accide	ents in the highw	ay will be equal		
	to 2 is								
Option A:	0.354								
Option B:	0.2707								
Option C:	0.435								
Option D:	0.521								

56.	In a normal distribution when mean is 1 and S.D =3 then for the intervals 1.42×10^{-1} G 10^{-1} C 10^{-1}
	$-1.43 \le x \le 6.19$ (for z = -0.81, A= 0.2910, for z =1.73, A = 0.4582)
Option A:	0.7492
Option B:	0.4582
Option C:	0.2910
Option D:	0.1672
57	
57.	X is normally distributed $\mu = 15$, $\sigma^2 = 9$. Given that for z=1, A=0.3413
Oution As	$P(X \ge 18)$ is given by
Option A:	0.1587 0.4231
Option B:	0.4231
Option C:	
Option D:	0.3413
59	In a small distribution. The sure we dere tendend as much summer to the right of a sure is
58.	In normal distribution. The area under standard normal curve to the right of y axis is
Option A:	
Option B:	0 0.5
Option C:	0.5
Option D:	0.0
50	If showing the sum is an 5,10,15 and supported the support of the support of the support
59.	If observed frequencies are 5,10,15 and expected frequencies are each equal to 10 then chi
Ontion A:	square value is 20
Option A: Option B:	10
Option C:	15
Option D:	5
Option D.	
60.	Among 64 offspring of a certain cross between guinea pig 34 were red,10 were black and
00.	20 were white, According to genetic model these number should in the ratio 9:3:4.
	Expected frequencies in the order
Option A:	36,12,16
Option B:	50,12,10
Option C:	12 36 16
	12,36,16 20,12,16
-	20,12,16
Option D:	
Option D:	20,12,16 36,12,35
-	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is
Option D: 61.	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational.
Option D: 61. Option A:	20,12,16 36,12,35 Find the constants a, b, c if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational.
Option D: 61. Option A: Option B:	20,12,16 36,12,35 Find the constants a, b, c if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational.
Option D: 61. Option A: Option B: Option C:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = 1 a = 6, b = -1, c = -1
Option D: 61. Option A: Option B:	20,12,16 36,12,35 Find the constants a, b, c if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational.
Option D: 61. Option A: Option B: Option C: Option D:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = 1 a = 6, b = -1, c = -1 a = 6, b = 1, c = -1
Option D: 61. Option A: Option B: Option C:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = 1 a = 6, b = -1, c = -1 a = 6, b = 1, c = -1
Option D: 61. Option A: Option B: Option C: Option D:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = -1 a = 6, b = -1, c = -1 a = 6, b = 1, c = -1
Option D: 61. Option A: Option B: Option C: Option D:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = 1 a = 6, b = -1, c = -1 a = 6, b = 1, c = -1 a = 6, b = 1, c = -1 If $f(a) = \int_{C} \frac{4z^2 + z + 5}{z - a} dz$ where C is a ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, then what is the value of
Option D: 61. Option A: Option B: Option C: Option D:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = -1 a = 6, b = -1, c = -1 a = 6, b = 1, c = -1
Option D: 61. Option A: Option B: Option C: Option D:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = 1 a = 6, b = -1, c = -1 a = 6, b = 1, c = -1 a = 6, b = 1, c = -1 If $f(a) = \int_{C} \frac{4z^2 + z + 5}{z - a} dz$ where C is a ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, then what is the value of
Option D: 61. Option A: Option B: Option C: Option D: 62.	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = -1 a = 6, b = -1, c = -1 If $f(a) = \int_{C} \frac{4z^2 + z + 5}{z - a} dz$ where C is a ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, then what is the value of f'(-1)?
Option D: 61. Option A: Option B: Option C: Option D: 62. Option A:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = -1 a = 6, b = -1, c = -1 If $f(a) = \int_{C} \frac{4z^2 + z + 5}{z - a} dz$ where C is a ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, then what is the value of f'(-1)? 0
Option D: 61. Option A: Option B: Option C: Option D: 62. Option A: Option B: Option C:	20,12,16 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. a = 6, b = 1, c = 1 a = 6, b = -1, c = -1 a = 6, b = -1, c = -1 a = 6, b = -1, c = -1 If $f(a) = \int_{C} \frac{4z^2 + z + 5}{z - a} dz$ where C is a ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, then what is the value of f'(-1)? 0 $-14\pi i$ $14\pi i$
Option D: 61. Option A: Option B: Option C: Option D: 62. Option A: Option B:	$20,12,16$ 36,12,35 Find the constants <i>a</i> , <i>b</i> , <i>c</i> if $\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$ is irrotational. $a = 6, b = 1, c = 1$ $a = 6, b = -1, c = -1$ $a = 6, b = -1, c = -1$ If $f(a) = \int_{c} \frac{4z^2 + z + 5}{z - a} dz$ where C is a ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, then what is the value of $f'(-1)?$ 0 $-14\pi i$

63.	
03.	If null hypothesis is $H_0: \mu = 10$ and alternate hypothesis is $H_a: \mu < 10$, then the test is
Option A:	right tailed
Option B:	left tailed
Option C:	two tailed
Option D:	cross tailed
64.	If X is a Poisson variate with mean m, then $P(X = x)$ is given by
Option A:	$e^{-m}m^x$
Option B:	$\frac{x!}{\frac{e^{-x}m^x}{x!}}$
1	$\left \frac{\varepsilon}{1}\right $
	x!
Option C:	$e^{-m}x^m$
	$\overline{x!}$
Option D:	
Option D.	$\frac{e^{-x}x^m}{x}$
	x!
65.	If two lines of regression are $x + 3y = 5$ and $4x + 3y = 8$, then the correlation coefficient
	is
Option A:	2
Option B:	1
Option C:	0.8
Option D:	0.5
option D.	
66.	If we have two samples of sizes n_1 and n_2 with standard deviations s_1 and s_2 respectively, then to test the equality of population variances, the test statistic <i>F</i> is given by
Option A:	$F = \frac{s_1^2 / (n_1 - 1)}{s_2^2 / (n_2 - 1)}$
Option B:	$F = \frac{n_1 s_1^2 / (n_1 - 1)}{n_2 s_2^2 / (n_2 - 1)}$
Option C:	$F = \frac{n_1 s_1^2 / (n_2 - 1)}{n_2 s_2^2 / (n_1 - 1)}$
Option D:	$F = \frac{s_2^2 / (n_1 - 1)}{s_1^2 / (n_2 - 1)}$
67.	Find $\int_C \frac{z+2}{(z-3)(z-4)} dz$ where C is $ z = 1$.
Option A:	$2\pi i$
Option B:	$-10\pi i$
Option C:	0
Option D:	$6\pi i$
eruon D.	
60	Fit a straight line $y = a + by$ into the given date
68.	Fit a straight line $y = a + bx$ into the given data.
	x: 10 20 30 40 50
	y: 22 23 27 28 30
	What is the value of <i>b</i> ?

Option A:	2.1
Option B:	0.21
Option C:	1.2
Option D:	0.8
69.	If the probability density function of a continuous random variable is given by
	$f(x) = kx^2, \ 0 \le x \le 1$, then what is the value of k?
Ontion As	
Option A:	
Option B:	2
Option C:	3
Option D:	4
70.	What is the value of $\int_{0}^{1+i} (x - y + ix^2) dz$ along the line from $z = 0$ to $z = 1 + i$?
Option A:	1-i
	$\overline{3}$
Option B:	
CPROUD.	$\frac{i-1}{2}$
Option C:	$\frac{1-i}{2}$
	6
Option D:	<i>i</i> -1
	$\frac{1}{3}$
	3
71	The sector of a state of the sector of the s
<u>71.</u>	The value of rank correlation coefficient <i>R</i> lies between
Option A:	-1 and 1
Option B:	- 0.5 and 0.5
Option C:	0 and 1
Option D:	- 1 and 0
72.	There are 11 tickets in a box bearing numbers 1 to 11. Three tickets are drawn one after
	the other without replacement. What is the probability that they are drawn in the order
	bearing even, odd, even number?
Option A:	5
	33
Option B:	4
_	$\overline{33}$
Option C:	
	$\frac{3}{12}$
	22
Option D:	5
	22
73.	It is known that the probability of an item produced by a certain machine will be
	defective is 0.05. If the produced items are sent to the market in packets of 20, then the
	number of packets containing at most 2 defective items in a consignment of 1000 packets
	will be
Option A:	918
Option B:	916
Option C:	922
option C.	/

Option D:	920									
74.	In order to investigate the association between education of fathers and intelligence of sons									
	from the following data, what will be the expected frequency of intelligent sons with									
	educated fathers?									
		Intelligent sons	Unintelligent sons	Total						
	Educated fathers	40	35	75						
	Uneducated fathers	35	85	125						
	Total	75	125	200						
Option A:	40									
Option B:	75									
Option C:	15									
Option D:	28									
75.	If $f(z) = e^{\frac{1}{z}}$, then $z =$	= 0 is								
Option A:	a simple pole									
Option B:	an isolated essential sin	gularity								
Option C:	a removable singularity	e /								
Option D:	a non-isolated essential									
•										
76.	If a random	variable X	has probability	density	function					
	$\left[\begin{array}{c}3\\\end{array}\right]$	1 5 5								
	$f(x) = \begin{cases} \frac{3}{4}x(2-x), & 0 \le x \le 2\\ 0, & \text{elsewhere} \end{cases}, \text{ then what is } E(X)?$									
	$f(x) = \begin{cases} 4 & \text{, then what is } E(x) \end{cases}$									
		eisewnere								
Option A:	1									
Option B:	1									
	$\overline{2}$									
Option C:	3									
Option D:	1									
	$\overline{3}$									
	5									
77.		··· 10.0 ···	1 1 1	1	D(V < 12)					
//.	If X is normal variate v			n what is	$P(X \le 12)?$					
	(Given: Area from $z = 0$	0 to $z = 0.5$ is 0.191	5)							
Option A:	0.6915									
Option B:	0.1915									
Option C:	0.5									
Option D:	0.36									
78.	When the values of two	variables move in	the same direction, cor	relation is s	said to be					
Option A:	Linear									
Option B:	Non-linear									
Option C:	Positive									
Option D:	Negative									
	XX71	1			0					
79.	What is the	•	ntial of the	vector	function					
	$\overline{F} = \left(y^2 \cos x + z^3\right)i + \frac{1}{2}i + 1$	$+(2y\sin x-4)j+$	$(3xz^2+2)k?$							
Option A:	$\frac{1}{2y^2\sin x + xz^3 - 4y + y}$. /							
Option B:	$y^2 \sin x + xz^3 - 4y + 2$									
L	L									

Option C:	$y^2 \sin x + 2xz^3 + 4y - 2z$
Option D:	$y^2 \sin x - xz^3 + 4y + 2z$
80.	The means of two independent samples of size 8 and 7 are 1134 and 1024 respectively.
	The standard deviation of these two samples is 35 and 40 respectively. What is the value
	of test statistic <i>t</i> in order to test the significance of difference between sample means?
Option A:	5.788
Option B:	6.235
Option C:	5.288
Option D:	4.135

Descriptive Questions

1	Evaluate $\int_C \frac{z^2+3}{z^2-1}$ where C	C is circle $ z - 1 = 1$				
	Find the coefficient of correlation between height of father and height of son from the following data					
2	Height of father65Height of son67	66 67 67 68 69 68 64 68 72 70				
3	The marks obtained by students in a college are normally distributed with mean 65 and variance 25. If 3 students are selected at random from this college what is the probability that at least one of them would have scored more than 75 marks?					
4	Based on the following da smoking	ata determine if there is	a relational between literacy	and		
4		Smokers	Non smokers			
	Literates	83	57			
	Illiterates	45	68			
5	Show that $\overline{F} = (x^2 - y)$ scalar potential.	$z)i + (y^2 - zx)j + (z^2)$	-xy)k is conservative field	l. Find its		
	Find the mean and varian	ce of the following distr	ribution			
		C C				
6	X 1	3 4				
	P(X=x) 0.4	0.1 0	0.2 0.3			
	Calculate the value of ran	k correlation coefficient	t form the following data			
	regarding the marks of 6 s					
7	Marks in Statistics	40 42 45 35 36	39			
	Marks in Accountancy	46 43 44 39 40				
8	Find all possible Laurent'	s expansion $\frac{z}{(z-1)(z-2)}$ a	bout $z = -2$			
9		at most 4 defective bulbs	s will be found in a box of			
10		iable X has probability	density function $f(x) = kx^2$	$e^{-x}, x \ge$		
11	Evaluate by Greens Theorem	rem $\oint \overline{(x^2 v dx + v^3 dv)}$				

	where C is the closed path formed by $y = x$ and $y = x^2$						
	Sample of electric tubes of two companies were tested for lengths of their life and						
	following information was obtained						
	Company A Company B						
12	No. of sample 8 7						
	Mean life (in hours) 1210 1314						
	Standard deviation (in hours) 36 42						
	Test at 5% level of significance whether the difference in the sample means is						
	significance.						
	A random variable X has the following probability						
13	X 0 1 2						
15	P(X=x) 1/3 1/3 1/3						
	Find moment generating function and first four raw moments.						
14	Ten individuals are chosen at random from population and their heights are found to be						
17	63, 63, 64, 65, 66, 69, 69, 70, 70, 71 inches. Test if the mean height is 65.						
15	Evaluate $\int_0^{1+i} z^2 dz$ along the parabola $x = y^2$						
16	It is given that the means of x and y are 5 and 10. If the line of regression of y						
16	on x is parallel to the line $20y = 9x + 40$, estimate the value of y for $x = 30$.						
17	Using Divergence theorem, evaluate $\iint_{s} \overline{F} \cdot \hat{n} ds$; $F = 4xi + 3yj - 2zk$ and S is closed						
17	surface bounded by the planes $x = 0$, $y = 0$, $z = 0$ and $2x + 2y + z = 4$						
	A die was thrown 132 times and the following frequencies were observed						
	The die was another to 2 times and the following nequencies were coserved						
18	No. Obtained 1 2 3 4 5 6						
	Frequency 15 20 25 15 29 28						
	Test the hypothesis that the die is unbiased.						
	Using Cauchy's Residue theorem Evaluate $\int_{c} \frac{\sin 3z}{z + \frac{\pi}{2}} dz$						
19	Using Eulery 5 Residue theorem Dividual $\int_C z + \frac{\pi}{2}$						
	Find Rank correlation coefficient for the following data						
20	x: 12 17 22 27 32 y: 113 119 117 115 121						
	y: 113 119 117 115 121						
	The mean I.Q. of a large number of children of age 14 is 100 with S.D. 16 .Assuming the						
	distribution Of I.Q. to be normal, find the percentage of children having I.Q. between 70						
21	and 120.(Area for S.N.V.Z from $z = 0$ to $z=1.875$ is 0.4696 and that from $z = 0$ to $z = 1.25$						
	is 0.3944)						
	If the probability density of a random variable is given by $f(x) = kxe^{\frac{-x}{3}}$ for $x > 0$						
22	otherwise zero. Find value of k and mean						
	Evaluate by Green's theorem $\int (e^{-x} \sin y dy \pm e^{-x} \cos y dy)$ where e is the Destangle						
23	Evaluate by Green's theorem $\int_c (e^{-x} \sin y dx + e^{-x} \cos y dy)$ where c is the Rectangle						
	whose vertices are $(0,0)$ $(\pi,0)$ $(\pi,\frac{\pi}{2})$ $(0,\frac{\pi}{2})$						
24	Using Gauss Divergence theorem, prove that						
	$\iint (y^2 z^2 i + z^2 x^2 j + y^2 z^2 k) \cdot \overline{N} dS = \frac{\pi}{12}$						
	where S is the part of the sphere $x^2 + y^2 + z^2 = 1$ above the XY planeFind mean and Variance of the following distribution						
25	X : 1 3 4 5						
	P(X) : 0.4 0.1 0.2 0.3						
26	Given $var(x) = 25$. The equation of two lines of regression are $5x - y = 22$ and $64x - 45y$						
26	=24 ,then Find (i) \bar{x} , \bar{y} (ii) r (iii) σ_{v}						

	Obtain all possible Laurent 's series of						
27	$\frac{z}{(z-1)(z-2)} \text{about } Z = -2$						
28	Evaluate $\int_{A}^{B} (ydx + xdy)$ along $y = x^2$ from A (0,0) to B (1,1)						
	A machine is designed to produce insulating washers for electrical devices of average						
29	thickness of 0.024cms. A random sample of 10 washers was found to have average thickness of 0.024cms.with standard deviation of 0.002cms.Test the significance of deviation.						
	Based on the following data determine if there exist is a relation between literacy and smoking.						
20	Smokers Non Smokers						
30	Literates 83 57						
	Illiterates 45 68						
31	If the probability density of a random variable is given by $f(x) = kxe^{\frac{-x}{3}}$ for $x > 0$ otherwise zero. Find value of k and mean						
	Fit Poisson Distribution to the following data						
32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
22	Obtain the Line of regression of y on x for the data given below $V_{x} = 1.52 = 1.52 = 2.62 = 2.05 = 2.42$						
33	X: 1.53 1.78 2.60 2.95 3.42 Y: 33.50 36.30 40.00 45.80 53.50						
34	Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path (i) $y = x$. (ii) $y = x^2$						
35	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is both irrotational and solenoidal.						
36	In a test given to two groups of students drawn from two normal populations marks obtained Were as follows. Group A ; 18 , 20 , 36 , 50 , 49 , 36 , 34 , 49 , 41 . Group B : 29 , 28 , 26 , 35 , 30 , 44 , 46 . Examine the equality of variances at 5 % level of significance.						
	(Given : = 4.65 with d.o.f. 6 and 8) If $\vec{F} = (z^2 + 2x + 3y)i + (3x + 2y + z)j + (y + 2xz)k$ is irrotational, then (i)						
37	Find the scalar potential associated with \vec{F} such that $\phi(1,1,0)=4$						
	(ii) Also the work done in moving a particle under \vec{F} from A(0,1,1) to B(3,0,2)						
38	Evaluate: $\int_{c} \frac{z^2}{(z-1)^2(z-2)} dz$; <i>c</i> is $ z = 2.5$						
	Estimate the test score (X) when sales (Y in hundreds of Rs) is Rs 3000 using the						
39	following data						
	X 14 19 24 21 26 22 15 20 19 Y 31 36 48 37 50 45 33 41 39						
	Y313648375045334139The chance that a doctor will diagnose a disease correctly is 60%. The chance that a						
40	patient will die by his correct diagnosis is 40% and that by his wrong diagnosis is 70%. A						
	patient dies on a particular day. What is the chance that he was diagnosed correctly?						
41	(i) Verify whether probability mass function of R.V.X.						
	$p(x) = \frac{(X +1)^2}{9}$ for $x = \{-1,0,1\}$ is well defined						
	(ii) If so find its mean and variance .						

									0/1	<u> </u>	·· · ·	
	Discuss whether drug and sugar pills differ in curing cold(at 5% level of significance)ar Table value of Chi-square statistic is 3.84 using the data:-								and			
40		of Chi-	square s			sing	the da					1
42	Drug			Helpe 150	u			30	med			-
	Drug			-								-
	Sugar pills		•	130				40				
43	Evaluate: ∫	₿.dr	; where	$\vec{F} = (x$	$(x^2 - y^2)$	i +	(x + y)) <i>j</i> and	c is the	triangle	with	
15	vertices (0,0),(1,1),	(2 <i>,</i> 1) usi	ng Greei	n's theo	rem.	•					
44	Expand: f(z)=	7 <i>z</i> -	$\frac{-2}{ab}$	out z =	-1, for	·1<	z +	1 < 3	as a Lau	rent's S	eries	
	Find the Spe	<u>z(z+1)</u> arman	(z-2) 's Rank	correlati	on hetu	aan	V and	Vusina	data			
45	X 100				90		84	88	90	93	95	ן
+3	Y 500						800	800	750	700	690	-
	In a normal I											Find
46	the mean an											
40	0.46 is betw				ni. Alea	0.00	s is bet	weenz		-0.21 a	nu Area	
	An experime				neonle s	how	od the	follow	ing chan	ages in r	ulco rat	0
	due the smo					110 00	reu the	10110 00		iges in p		C
47	. Test wheth					ի ուլ	lse rate	o'in gei	neral (G	iven [.] Ta	ahle valu	ie of
	t =1.86 at 5%		-		ci cuse il	i pu				iven. re		
	Test whethe		,	oles give	n below	are	drawn	from n	ormal p	opulati	ons with	1
	same varian			-						o p 0.10.0.		
	Sample-I	9	11	13	11	15	9)	12	14	Given]
	Sample-II	10	12	10	14	9	8		10	_	:	
48	Compie in										Table	
											value	
											of	
											F(7,6)	
											=4.21	
49				•								
-0	Evaluate by	Green	's theore	em for th	e field							
50	$\overrightarrow{F} = x^2 \overrightarrow{i} + x$	^ vi ov	er the r	eaion R	enclos	ed h	v v=x	² and li	ne v=x			
		$\vec{F} = x^{2}\vec{i} + xy\vec{j} \text{ over the region } R \text{ enclosed by } y=x^{2} \text{ and line } y=x$ Evaluate $\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz; c \text{ is } z = 3$										
51	Evaluate J	c (z-	1)(z-2)	-az;cı	S Z	= 3						
	Determine th			1						owing d	lata	
52	X 5	1	54	56	59	65	5	60	70			
	Y 3	8	44	33	36	33	3	23	13			
	There is wor											
53	rest all are fr									•		
		83 % of the women who have come from neighboring town are also graduates. Find the										
		probability that a woman selected at a random is graduates from the same town.										
54		In a certain examination test 2000 students appeared in a subject of statistics. Average										
		marks obtained were 50% with standard deviation 5%. How many students do you expect to obtain more than 60% of marks, supposing that marks are distributed normally? (For 7										
	to obtain more than 60% of marks, supposing that marks are distributed normally? (For z =2, A = 0.4772)											
	The followin		e gives f	he numb	er of ac	cide	nts in a	distric	t during	a week	Apply	chi-
55												
	square test to find whether the accidents are uniformly distributed over the week.											
	Day Su	ın	Mon	Tues	Wed	Γ	Thu	Fri	Sat			

							
	No.of 13 12 11 9 15 10 14 accide nts 1						
	(Table value of $\chi^2 = 12.59, d.f = 6$, level of significance = 5%)						
	Evaluate using Stokes theorem $\iint_{s} (\nabla \times \overline{f}) \cdot \widehat{n} ds$ where s is curve surface of the						
56	paraboloid $x^2 + y^2 = 2z$ bounded by the plane $z=2$ where $\vec{f} = 3(x - y)\vec{i} + 2xz\vec{i} + xy\vec{k}$						
57	Obtain Laurent's series expansions of $f(x) = \frac{z-1}{z^2-2z-3}$; $ z > 3$						
58	Calculate the Spearman's rank correlation coefficient for the following data.x32554960433743491020						
	y 40 30 70 20 30 50 72 60 45 25						
59	A C.R.V X has the following pdf. $f(x) = k(x - x^2)$; $0 \le x \le 1$ Find K and mean						
60	Ten individuals are chosen at random from a population & their height are found to be (inches): 63,63,64,65,66,69,69,70,70 &71. In the light of the data, discuss the suggestion that the mean height in the population is 66 inches. (Table value of t_{α} =2.6, d.f =9, level of significance = 5%))						
61	Standard deviation of two samples of size 9 & 13 were found to be 12.15 & 11.85. Can it be concluded that the samples were drawn from the normal population with the same standard deviation? (Given $F_{0.025} = 3.51$ for d. o. f. 8& 12 & $F_{0.025} = 4.20$ for d. o. f. 12& 8)						
62	Evaluate $\int_{C} (xy + y^2) dx + x^2 dy$ where <i>C</i> is the closed curve of the region bounded by $y = x$ and $y = x^2$.						
63	Evaluate $\int_{C} \tan z dz$ by Cauchy's residue theorem, where <i>C</i> is $ z = 2$.						
64	From the following table showing age of cars of a certain make and annual maintenance costs, obtain the regression equation for cost related to age.Age of cars (years)246781012Annual Maintenance Cost (Rs.)1600150018001900170021002000						
65	A coin is tossed. If it turns up heads two balls are drawn from urn A otherwise two balls are drawn from urn B. Urn A contains 3 black and 5 white balls. Urn B contains 7 black and one white ball. What is the probability that urn A was used, given that both balls drawn are black?						
66	The marks obtained by students in an examination are normally distributed with mean 70 and standard deviation 5. Find the probability of securing mark (i) between 60 and 75 (ii) more than 75. (Given: Area from $z = 0$ to $z = 1$ is 0.3413 and area from $z = 0$ to $z = 2$ is 0.4772)						
67	A die was thrown 132 times and the following frequencies were observed.No. obtained123456TotalFrequency152025152928132Test the hypothesis that the die is unbiased at 5% level of significance.(Given: Table value of χ^2 at 5% level of significance and 5 degree of freedom is 11.07)						

68	Use Gauss Divergence theorem to evaluate $\iint_{S} \overline{N} \cdot \overline{F} ds$ where $\overline{F} = 2xi + xyj + zk$ over					
	the region bounded by the cylinder $x^2 + y^2 = 4$ between $z = 0$ and $z = 6$.					
69	Find Laurent's series for $f(z) = \frac{4z+3}{z(z-3)(z+2)}$ valid for					
	(i) $2 < z < 3$ (ii) $ z > 3$					
	Obtain the rank correlation coefficient from the following data. $V = 1 + 12 + 12 + 15 + 40$					
70	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	Y 1 18 25 25 50 25					
	A random variable X has the following probability function:					
71	X 1 2 3 4 5 6 7 P(X = x) k 2k 3k k^2 $k^2 + k$ $2k^2$ $4k^2$					
	Find (i) k (ii) $P(X < 5)$ (iii) $P(X > 5)$.					
72	An I.Q. test was taken of 5 persons before and after training. The results are given below:I.Q. before training110120123132125I.Q. after training120118125136121					
	Test whether there is any charge in I.Q. after the training program. Use 1% level of significance.(Given: The table value of <i>t</i> at 1% level of significance and 4 degree of freedom is 4.604)					
	Apples were grown under two different conditions. Two random samples of sizes 11 and 9 showed the standard deviations of weights as 0.8 and 0.5 respectively. Test the					
73	by showed the standard deviations of weights as 0.8 and 0.5 respectively. Test the hypothesis that population variances are equal at 10% level of significance. (Given: The table value $F_{(8,10)}(0.05) = 3.07$ and $F_{(10,8)}(0.05) = 3.34$)					

Sample Questions

Chemical Engineering

Subject Name: Industrial & Engineering Chemistry-II

Semester: IV

Multiple Choice Questions

	Choose the correct option for following questions. All the Questions are compulsory			
	and carry equal marks			
1.	The movement of dispersed phase in colloids is observed in			
OptionA:	Sedimentation potential			
Option B:	Electroosmosis			
Option C:	Streaming potential			
Option D:	Electrolysis			
2.	Which of the following properties does aprotic solvents possess?			
Option A:	Strong tendency to donate protons.			
Option B:	Strong tendency to accept protons			
Option C:	Inert to proton transfer			
Option D:	Function as proton donator and proton acceptor			
3.	Keto-enol tautomerism involves migration of			
Option A:	Hydride ion			
Option B:	Hydrogen atom			
Option C:	Hydrogen ion			
Option D:	Hydroxyl ion			
4.	Which of the following options is incorrect?			
Option A:	Micelle formation by soap in aqueous solution occurs above a particular conc.			
Option B:	Micelles are not always spherical.			
Option C:	Micelles form only when the concentration of surfactant is greater than critical micelle			
	conc.			
Option D:	Ionic micelles influence many properties of the mixture.			
5.	Favorskii reaction results in formation of			
Option A:	An Amide			
Option B:	β- hydroxy ester			
Option C:	α – hydroxy carboxylic acid			
Option D:	A carboxylic acid derivative			
6.	State the correct statement.			
Option A:	Catalyst is most active at any temp.			
Option B:	Catalyst does not affect the final state of equilibrium.			
Option C:	Catalyst can change in chemical composition.			
Option D:	Acitvity of catalyst can never be inhibited.			
7.	In preparation of unsaturated carboxylic acid from acetoacetic ester which of the			
	following compounds is used?			

Option A:	A carbonyl compound
Option B:	A halogen ester
Option C:	Urea
Option D:	A dihaloalkane
8.	NaCl is insoluble in Carbon tetrachloride because
Option A:	Carbon tetrachloride has high dielectric constant
Option B:	Carbon tetrachloride has low dielectric constant
_	
Option C:	Carbon tetrachloride is polar in nature
Option D:	Carbon tetrachloride is a volatile solvent
9.	The most abundant fragment give rise to peak on mass spectrum.
Option A:	Base
Option B:	Molecular ion
Option C:	Least fragmented
Option D:	Non fragmented
10.	How many signals in NMR are expected in ethyl acetate?
Option A:	3
Option B:	2
Option C:	1
Option D:	
11.	The diagnostic region in the IR spectrum is the IR.
Option A:	Mid
Option B:	Far
Option C:	Near
Option D:	Very far
12.	Friedal Craft's reaction is an example of
Option A:	Adsorption Theory
Option B:	Autocatalysis
Option C:	Catalyst promoters
Option D:	Intermediate compound theory
13.	Pyridine is strongly alkaline in nature because
Option A:	It has delocalised pi electron cloud
Option B:	It has six membered ring with nitrogen atom
Option C:	Lone pair of nitrogen is involved in conjugated system
Option D:	Lone pair of nitrogen is not a part of conjugated system
14.	In reversed phase HPLC, the polar component (analyte) is retained.
Option A:	Most
Option B:	Moderate
Option C:	Least
Option D:	Maximum
15.	Absorption of radiation in the UV region causes transition.
Option A:	Vibrational
Option B:	Rotational
Option C:	Electronic
Option D:	Nuclear
16.	The example of homogeneous catalysis is
Option A:	Formation of methanol from (CO +H2) gases, with ZnO catalyst.
Option B:	Acid - base catalysis
Option C:	Formation of H2 & CO2 from formic acid in presence of Cu foil.

Option D:	Formation of ammonia over powdered Fe catalyst.
17.	On autoionization of liq. NH3 which of the following species are generated?
Option A:	Ammonium ion and Ammonia gas
Option B:	Hydrogen ion and Amide ion
Option C:	Ammonium ion and Amide ion
Option D:	Only Ammonium ion
18.	The temperature of the sample is compared with that of reference material as both are
10.	heated at uniform rate.
Option A:	TGA
Option B:	DTA
Option C:	DSC
Option D:	TSC
19.	In which chromatography, the second development of analyte is performed at right angle
19.	to the detection of the first run.
Option A:	Radial
Option A: Option B:	Two dimensional
Option B.	Ascending
Option D:	Descending
20.	Example of" Oil is dispersed phase and water is dispersion medium" is
	Gel
Option A: Option B:	Milk
A	
Option C:	Cheese spread
Option D:	Vanishing cream
21.	Comparing H ₂ O and NH ₃ as solvents leads to analogies between which pair of species?
Option A:	NH ₃ and [OH] ⁻
Option B:	$[NH_2]^-$ and H_2O
Option C:	$[NH_2]^-$ and $[OH]^-$
Option D:	$[NH_4]^+$ and H_2O
- opuon 21	
22.	Which of hydrogens a-d in the following molecule gives a triplet signal in a normal 1H
	NMR spectrum?
	0
	CH ₃ -C-CH ₂ CH(OCH ₃) ₂
	a b c d
Option A:	Hydrogen a
Option B:	Hydrogen b
Option C:	Hydrogen c
Option D:	Hydrogen d
23.	In a chromatographic separation, which of the following is most appropriate for the
	qualitative analysis of a substance?
Option A:	Taking factor
Option B:	Capacity factor
Option C:	Retention time
Option D:	Resolution
24.	Which of the following is not a feature of carrier gas used in gas chromatography?
Option A:	It must be chemically inert
Option B:	It should not be completely pure

Option D: It should be cheap 25. The active site of an enzyme remains Option A: At the center of globular proteins Option B: Rigid and does not change shape Option D: On the surface of catalyst 26. Movement of colloidal particles under the influence of electrostatic field is Option D: On the surface of catalyst 26. Movement of colloidal particles under the influence of electrostatic field is Option D: Dialysis Option C: Dialysis Option D: In infrared spectroscopy which frequency range is known as the fingerprint region? Option B: 1400 - 900cm-1 Option B: 1400 - 900cm-1 Option B: 1400 - 900cm-1 Option B: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option B: Bases is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Option B: H2O~CCl4 Option B: H2O~CCl4 Option A: NH3~H2OCCl4 Option A: NH3~H2O Option B: <	Option C:	It should be suitable for the detector employed
25. The active site of an enzyme remains Option A: At the center of globular proteins Option D: Complementary to the rest of the molecule Option D: On the surface of catalyst 26. Movement of colloidal particles under the influence of electrostatic field is Option A: Electrophoresis Option D: Inifared spectroscopy which frequency range is known as the fingerprint region? Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis. Option B: H2O=×NH3>CI4		
Option A: At the center of globular proteins Option B: Rigid and does not change shape Option C: Complementary to the rest of the molecule Option D: On the surface of catalyst 26. Movement of colloidal particles under the influence of electrostatic field is Option A: Electrophoresis Option D: Dialysis Option D: Dialysis Option C: Dialysis Option A: Electrophoresis Option A: In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option B: Bases increases the reaction by accepting a proton Option D: Specific hydroxide ion catalysis. Option D: Specific hydroxide ion catalysis. Option D: Specific hydroxide ion catalysis. Option B: Bases is heterogeneous catalysis. Option B: 29. Choose the correct order of dielectric constant of solvents Option A: NH3< <h2o<< td=""></h2o<<>	Option D.	
Option A: At the center of globular proteins Option B: Rigid and does not change shape Option D: On the surface of catalyst 26. Movement of colloidal particles under the influence of electrostatic field is Option A: Electrophoresis Option D: Diration A: 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option A: 900 - 600cm-1 Option A: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option R: Bases increases the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option D: Specific hydroxide ion catalysis. Option B: Specific hydroxide ion catalysis. Option B: 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3>CCI4 Option B: H2O>NH3>CCI4 Option B: H2O>NH3>CCI4 Option B: H2O>NH3>CCI4 Option D: C	25	The active site of an enzyme remains
Option B: Rigid and does not change shape Option C: Complementary to the rest of the molecule Option D: On the surface of catalyst 26. Movement of colloidal particles under the influence of electrostatic field is Option B: Electrolysis Option D: In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option D: 600 - 250cm-1 Option A: 8ases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Option A: NH3 <h2o<< td=""> Que Haloo>NH3<</h2o<<>		
Option C: Complementary to the rest of the molecule Option D: On the surface of catalyst 26. Movement of colloidal particles under the influence of electrostatic field is Option A: Electrophoresis Option B: Electrolysis Option D: In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option D: 1400 - 900cm-1 Option D: 600 - 250cm-1 Option D: 600 - 250cm-1 Option B: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Option A: H13>H2O>CH4 Option B: H2O>NH3>CCI4 Option D: Choose the correct order of dielectric constant of solvents Option B: H2O>NH3>CCI4 Option B: H2O>NH3>CCI4 Option B: H2O>NH3>CCI4 Option B: H2O>CH4 Option B: Soap solution		
Option D: On the surface of catalyst 26. Movement of colloidal particles under the influence of electrostatic field is Option A: Electrophoresis Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option D: 600 - 250cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option D: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O< <ni3-cci4< td=""> Option D: Cl4>>NH3 Option D: Cl4>>NH3 Option A: Milk Option B: H2O<cci4< td=""> Option B: H2O<cci4< td=""> Option B: Soap solution <td< td=""><td></td><td></td></td<></cci4<></cci4<></ni3-cci4<>		
26. Movement of colloidal particles under the influence of electrostatic field is Option A: Electrophoresis Option B: Electrolysis Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 Option B: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases the reaction tate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Option A: MH3 <hi2o< td=""> 29. Choose the correct order of dielectric constant of solvents Option A: H12<hi2o<< td=""> Quotion B: H2O 29. Choose the correct order of dielectric constant of solvents Option A: MH3<<hi2o< td=""> Quotion D:</hi2o<></hi2o<<></hi2o<>		Complementary to the rest of the molecule
Option A: Electrophoresis Option B: Electrolysis Option C: Dialysis Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases catalyze the reaction rate by increasing the nucleophilic character of the attacking group Option D: Specific hydroxide ion catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Option A: NH3 <h2o<< td=""> 29. Choose the correct order of dielectric constant of solvents Option B: H2O<ci4< td=""> Option D: CCl4>NH3 Option A: Milk Option A: Milk Option B: Soap solution 30. An example of an associated colloid is Option B: Soap solution</ci4<></h2o<<>	Option D:	On the surface of catalyst
Option A: Electrophoresis Option B: Electrolysis Option C: Dialysis Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option D: Specific hydroxide ion catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Option A: NH3 <h2o<< td=""> 29. Choose the correct order of dielectric constant of solvents Option B: H2O<ci4< td=""> Option D: CCl4>NH3 Option A: Milk Option A: Milk Option B: Soap solution 30. An example of an associated colloid is Option B: Soap solution</ci4<></h2o<<>	26	Maxament of colloidel particles under the influence of electrostatic field is
Option B: Electrolysis Option C: Dialysis Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3>CCl4 Option C: H2O <ccl4<nh3< td=""> Option D: Ccl4>NH3>H2O 30. An example of an associated colloid is Option B: Soap solution Option B: Soap solution Option B: Soap solution Option B: Soap solution Option C: Rubber l</ccl4<nh3<>		
Option C: Dialysis Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option D: Specific hydroxide ion catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3>CCl4 Option D: CCl4>NH3 Option D: CCl4>NH3>H2O 30. An example of an associated colloid is Option B: Soap solution Option B: Soap solution Option B: Soap solution Option D: Ckl4>NH3 Option B: Milk Option B: Milk Option D: Ccl4>NH3		
Option D: Ionization 27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option B: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option D: Specific hydroxide ion catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3>CCl4 Option D: CCl4>NH3 Option A: Milk Option B: Kaxmple of an associated colloid is Option B: Soap solution Option B: Soap solution Option B: Milk Option B: Kilker Option B: Kilker Option B: Kose the correct order of dielectric constant of solvents Option B: H2O <ccl4< td=""> Soap solution</ccl4<>	^	
27. In infrared spectroscopy which frequency range is known as the fingerprint region? Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option D: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O <ccl4< td=""> Option D: CCl4>NH3 Option D: CCl4>NH3 Option C: H2O<ccl4< td=""> Option B: Milk Option B: Soap solution Option B: Soap solution Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</ccl4<></ccl4<>		
Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option A: NH3 <h2o<< td=""> 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3>CCl4 Option D: CCl4>NH3 Option D: CCl4>NH3 Option B: Milk Option B: Soap solution Option B: Soap solution Option B: Soap solution Option D: Vegetable oil</h2o<<>	Option D:	Ionization
Option A: 400 - 1400cm-1 Option B: 1400 - 900cm-1 Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option A: NH3 <h2o<< td=""> Option C: H2O<</h2o<<>		
Option B: 1400 - 900cm-1 Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H20>NH3>CCl4 Option D: CCl4>NH3 Option D: CCl4>NH3 Option D: CCl4>NH3 Option B: Milk Option B: Soap solution Option B: Soap solution Option D: Cuestal colloid is		
Option C: 900 - 600cm-1 Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3>CCl4 Option D: Cl4>NH3>H2O 30. An example of an associated colloid is Option B: Soap solution Option B: Soap solution Option B: Soap solution Option D: Vegetable oil		
Option D: 600 - 250cm-1 28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3>CCl4 Option C: H2O <ccl4>NH3 Option D: Ccl4>NH3 Option A: Milk Option A: Milk Option B: Soap solution Option B: Soap solution</ccl4>		
28. Which of the following is not true for acid base catalysis? Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O <ccl4< td=""> Option C: H2O<ccl4< td=""> Option C: H2O<ccl4< td=""> Option D: CCl4>NH3 Option A: Milk Option A: Milk Option B: Soap solution Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</ccl4<></ccl4<></ccl4<>		
Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3 Option D: CCl4 Option D: CCl4 Option B: H2O>NH3>CCl4 Option D: CCl4>NH3 Option D: CCl4>NH3 Option B: Milk Option A: Milk Option B: Soap solution Option B: Soap solution Option D: Vegetable oil	Option D:	600 - 250cm-1
Option A: Bases catalyze the reaction by accepting a proton Option B: Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option B: H2O>NH3 Qption D: CCl4 Option C: H2O <nh3>CCl4 Option D: CCl4>NH3 Option B: Soap solution Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</nh3>		
Option B:Bases increases the reaction rate by increasing the nucleophilic character of the attacking groupOption C:Acid base is heterogeneous catalysis.Option D:Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis29.Choose the correct order of dielectric constant of solventsOption A:NH3 <h2o<ccl4< td="">Option B:H2O>NH3>CCl4Option C:H2O<ccl4< td="">Option D:CCl4>NH3Option B:H2O<id>IdOption B:Goto an associated colloid isOption A:MilkOption B:Soap solutionOption B:Soap solutionOption C:Rubber latexOption D:Vegetable oil</id></ccl4<></h2o<ccl4<>		
groupOption C:Acid base is heterogeneous catalysis.Option D:Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis29.Choose the correct order of dielectric constant of solventsOption A:NH3 <h2o<ccl4< td="">Option B:H2O>NH3>CCl4Option C:H2O<ccl4< td="">Option D:CCl4>NH3>H2O30.An example of an associated colloid isOption A:MilkOption B:Soap solutionOption C:Rubber latexOption D:Vegetable oil</ccl4<></h2o<ccl4<>		
Option C: Acid base is heterogeneous catalysis. Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option A: NH3 <h2o<ccl4< td=""> Option B: H2O>NH3>CCl4 Option D: CCl4<nh3< td=""> Option D: CCl4>NH3>H2O 30. An example of an associated colloid is Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</nh3<></h2o<ccl4<>	Option A:	Bases catalyze the reaction by accepting a proton
Option D: Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis 29. Choose the correct order of dielectric constant of solvents Option A: NH3 <h2o<ccl4< td=""> Option B: H2O>NH3>CCl4 Option C: H2O<ccl4<nh3< td=""> Option D: CCl4>NH3>H2O 30. An example of an associated colloid is Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</ccl4<nh3<></h2o<ccl4<>	Option A:	Bases catalyze the reaction by accepting a proton
catalysis 29. Choose the correct order of dielectric constant of solvents Option A: NH3 <h2o<ccl4< td=""> Option B: H2O>NH3>CCl4 Option C: H2O<ccl4<nh3< td=""> Option D: CCl4>NH3>H2O 30. An example of an associated colloid is Option A: Milk Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</ccl4<nh3<></h2o<ccl4<>	Option A: Option B:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group
29. Choose the correct order of dielectric constant of solvents Option A: NH3 <h2o<ccl4< td=""> Option B: H2O>NH3>CCl4 Option C: H2O<ccl4<nh3< td=""> Option D: CCl4>NH3>H2O 30. An example of an associated colloid is Option A: Milk Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</ccl4<nh3<></h2o<ccl4<>	Option A: Option B: Option C:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis.
Option A: NH3 <h2o<ccl4< td=""> Option B: H2O>NH3>CCl4 Option C: H2O<ccl4<nh3< td=""> Option D: CCl4>NH3>H2O 30. An example of an associated colloid is Option A: Milk Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</ccl4<nh3<></h2o<ccl4<>	Option A: Option B: Option C:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis.
Option A:NH3 <h2o<ccl4< th="">Option B:H2O>NH3>CCl4Option C:H2O<ccl4<nh3< td="">Option D:CCl4>NH3>H2O30.An example of an associated colloid isOption A:MilkOption B:Soap solutionOption C:Rubber latexOption D:Vegetable oil</ccl4<nh3<></h2o<ccl4<>	Option A: Option B: Option C:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of
Option B:H2O>NH3>CCl4Option C:H2O <ccl4<nh3< td="">Option D:CCl4>NH3>H2O30.An example of an associated colloid isOption A:MilkOption B:Soap solutionOption C:Rubber latexOption D:Vegetable oil</ccl4<nh3<>	Option A: Option B: Option C: Option D:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis
Option C: H2O <ccl4<nh3< td=""> Option D: CCl4>NH3>H2O 30. An example of an associated colloid is Option A: Milk Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil</ccl4<nh3<>	Option A: Option B: Option C: Option D: 29.	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis
Option D: CC14>NH3>H2O 30. An example of an associated colloid is Option A: Milk Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil	Option A: Option B: Option C: Option D: 29. Option A:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""></h2o<ccl4<>
30. An example of an associated colloid is Option A: Milk Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil	Option A: Option B: Option C: Option D: 29. Option A: Option B:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4</h2o<ccl4<>
Option A: Milk Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil	Option A: Option B: Option C: Option D: 29. Option A: Option B:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4</h2o<ccl4<>
Option A: Milk Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil	Option A: Option B: Option C: Option D: 29. Option A: Option B: Option C:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4 H2O<<ccl4< td=""></ccl4<></h2o<ccl4<>
Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil	Option A: Option B: Option C: Option D: 29. Option A: Option B: Option C:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4 H2O<<ccl4< td=""></ccl4<></h2o<ccl4<>
Option B: Soap solution Option C: Rubber latex Option D: Vegetable oil	Option A: Option B: Option C: Option D: 29. Option A: Option B: Option C: Option D:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4 H2O<ccl4<< td=""> H2O State Cold</ccl4<<></h2o<ccl4<>
Option C: Rubber latex Option D: Vegetable oil	Option A: Option B: Option C: Option D: 29. Option A: Option B: Option C: Option D: 30.	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4 H2O<ccl4<< td=""> H2O An example of an associated colloid is</ccl4<<></h2o<ccl4<>
Option D: Vegetable oil	Option A: Option B: Option C: Option D: 29. Option A: Option A: Option C: Option D: 30. Option A:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4 H2O<ccl4< td=""> H2O An example of an associated colloid is Milk</ccl4<></h2o<ccl4<>
	Option A: Option B: Option C: Option D: 29. Option A: Option B: Option C: Option D: 30. Option A: Option B:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O<nh3>CCl4 H2O<ccl4<nh3< td=""> CCl4>NH3 CCl4>NH3 Milk Soap solution</ccl4<nh3<></nh3></h2o<ccl4<>
	Option A: Option B: Option C: Option D: 29. Option A: Option B: Option C: Option D: 30. Option A: Option B: Option B: Option C:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4 H2O<ccl4< td=""> H2O<ccl4< td=""> NH3>H2O An example of an associated colloid is Milk Soap solution Rubber latex</ccl4<></ccl4<></h2o<ccl4<>
31. Which of the following compounds is not aromatic?	Option A: Option B: Option C: Option D: 29. Option A: Option B: Option C: Option D: 30. Option A: Option B: Option B: Option C:	Bases catalyze the reaction by accepting a proton Bases increases the reaction rate by increasing the nucleophilic character of the attacking group Acid base is heterogeneous catalysis. Specific hydroxide ion catalysis of reaction in water is an example of this type of catalysis Choose the correct order of dielectric constant of solvents NH3 <h2o<ccl4< td=""> H2O>NH3>CCl4 H2O<ccl4< td=""> H2O<ccl4< td=""> NH3>H2O An example of an associated colloid is Milk Soap solution Rubber latex</ccl4<></ccl4<></h2o<ccl4<>

	(a) (b) (c) (d)				
Ontion A:	Ontion A				
Option A:	Option A Option B				
Option B:	Option B				
Option C: Option D:	Option C Option D				
Option D.					
32.	Which of the following statements is not true for a lyophilic sol?				
Option A:	It can be easily solvated				
Option B:	It carries no charge				
Option C:	Coagulation of this sol is reversible in nature				
Option D:	It is not very stable in a solvent				
33.	When energy is absorbed by the sample, the absorption can be observed as a change in signal developed by which of the following components?				
Option A:	Amplifier				
Option B:	Any type of detector				
Option C:	GM counter				
Option D:	Photomultiplier tube				
34.	Which of the following is used as a catalyst for the following reaction?				
	$N_2 + 3H_2 \rightarrow 2NH_3$				
Option A:	Zinc				
Option B:	Chlorine				
Option C:	Iron				
Option D:	Water				
35.	Which of the following is not soluble in Liq.Ammonia				
Option A:	Alkali Metals				
Option B:	Esters				
Option D:	Alcohols				
Option D:	Alkanes				
36.	Preparation of β - hydroxy ester is favoured by which reaction?				
Option A:	Cannizaro's Reaction				
Option B:	Reformatsky Reaction				
Option C:	Favorskii Reaction				
Option D:	Wittig reaction				
37.	In reverse phase HPLC, there is a				

Option A:	Non-polar solvent/polar column
Option B:	Polar solvent/Non-polar column
Option D:	Polar solvent/Polar column
Option D:	Non-polar solvent/Non-polar column
Option D.	
38.	The benzylic acid rearrangement reaction of a cyclic diketone leads to
Option A:	Ring expansion
Option B:	Ring contraction
Option C:	Ring fusion
Option D:	Isomers
- opnon 2.	
39.	H2, CH4, C2H6 and C6H6 exhibit which NMR spectra?
Option A:	Singlet
Option B:	Doublet
Option C:	Triplet
Option D:	Quintet
40.	$\begin{array}{c} & & O \\ \parallel \\ C_6H_5 \longrightarrow C_6H_5 \longrightarrow C_6H_5 \longrightarrow C_6H_5 \end{array}$
	$C_{eH_{e}} \longrightarrow C_{eH_{e}} \longrightarrow C_{$
	C _e H _e
	-65
	Reagent X could be
Option A:	КОН
Option B:	NaOH
Option C:	dil.H2SO4
Option D:	Conc.H2SO4
41.	Which is the example of aprotic solvent ?
Option A:	H2SO4
-	
Option B:	КОН
Option C:	HAC
-	
Option D:	Benzene
42.	Which of the following is a Lewis acid?
Option A:	BF ₃
Option B:	$[SbF_6]^-$
Option C:	[AlCl ₄] ⁻
Option D:	NF ₃
43.	Which of the following non-aqueous solvents has the longest liquid range?
Option A:	H ₂ SO ₄ N ₂ O ₄
Option B: Option C:	N ₂ O ₄ NH ₃
Option D:	HF
44.	What is the range of UV spectrum of light?
Option A:	400 nm - 700 nm
Option B:	200 nm - 400 nm
Option D: Option C:	800 nm - 900 nm
Option D:	700 nm to 1 mm
option D.	

45.	How many proton signals in NMP spectre will present in Deprese?
	How many proton signals in NMR spectra will present in Benzene?
Option A:	3
Option B: Option C:	3
i	2
Option D:	
46.	In which type of chromatography, the stationary phase held in a narrow tube and the mobile phase is forced through it under pressure?
Option A:	Column chromatography
	Paper chromatography
Option B: Option C:	Liquid chromatography
Option D:	Gas chromatography
47.	The paper chromatography is type of chromatography.
Option A:	Column
	Adsorption
Option B: Option C:	Partition
-	
Option D:	Gas-liquid
48.	IR spectrum is a plot of % Transmittance versus time
Option A:	
Option B:	% Transmittance versus wavenumber
Option C:	Peak area versus time
Option D:	Peak area versus wavenumber
49.	In this layer chromatography, the stationary phase is made of and the mobile
Outing As	phase is made of
Option A:	Solid, liquid
Option B:	Liquid, liquid
Option C:	Liquid, gas
Option D: 50.	Solid, gas Which of the following is used as a carrier gas in gas chromatography ?
Option A:	Carbon dioxide
Option A: Option B:	
Option B: Option C:	Oxygen Methane
Option D:	Helium
51.	Potential developed at the surface of the fixed layer is called
Option A:	Nernst potential
Option B:	Liquid junction potential
Option D.	Equil junction potential
Option C:	Theta potential
Option D:	Zeta potential
52.	Which of the following process is not responsible for the presence of electric charge on
	sol particle?
	sor particle:
Option A:	Electron capture by sol particles
	1 ····· · J ···· · I ·······
Option B:	Adsorption of ionic species from solution
1	
Option C:	Formation of Helmholtz electrical double layer
-	
Option D:	Absorption ionic species from solution.
53.	Sedimentation potential is the reverse of

Option A:	Electrosmosis
Option B:	Electrophoresis
Option C:	Electrokinetic potential
Option D:	Dorn effect
54.	In which name reaction product β -hydroxy ester is formed
Option A:	Beckmann Reaction
Option B:	Favorskii Reaction
Option C:	Claisen condensation
Option D:	Reformatsky Reaction
<u>55.</u>	Select the correct aromatic compound
Option A:	Cyclobutadiene
Option B:	Cyclopentadienyl cation
Option C:	Naphthalene
Option D:	Cyclobutane
56.	The conversion of R2CNOH to RCONHR is the with Lewis acid.
Option A:	Intramolecular arrangement
Option B:	intermolecular arrangement
Option C:	Trimolecular arrangement
Option D:	Intermediate arrangement
57.	Which of the following statements is FALSE about aromatic compounds?
Option A:	They are made of rings consisting of alternating double bonds
Option B:	They are non cyclic
Option C:	They are planar and contain pi bond.
Option D:	Aromatic compounds follow Huckel's Rule.
58.	In chemical reaction, catalyst
Option A:	Alters the amount of product
Option B:	Lowers the activation energy
Option C:	Increases the activation energy
Option D:	Increase the amount of product
59	is used as a catalyst in the conversion of SO ₂ to SO ₃ in the manufacture of sulphuric acid.
Option A:	Pt
Option B:	Ca
Option D: Option C:	Pb
Option D:	Co
60.	Positive catalyst is
-	

Option A:	When rate of reaction is accelerated by the foreign substance								
Option B:	When rate of reaction is retarded by the foreign substance								
Option C:	When rate of reaction is accelerated and retarded by the foreign substance								
Option D:	Only rate of reaction is retarded by the foreign substance								
(1									
61.	how closely a computed value agrees with the true value								
Option A:	Accuracy								
Option B: Option C:	Bias Precision								
Option D:	Truncation Error								
Option D:									
62.	Diagonal Matrix Is one in which								
Option A:	All diagonal elements are zero								
Option R:	All diagonal elements are one								
Option D:	All elements are zero								
Option D:	All elements except diagonal elements are zero								
63.	Approximate (absolute) error = Current approximation - Previous approximation.								
	It is used to measure the								
Option A:	lack of precision of an estimate								
Option B:	lack of accuracy of an estimate								
Option C:	Truncation error								
Option D:	Round off error								
64.	The convergence of which of the following method is sensitive to starting value?								
Option A:	Guass Elimination Method								
Option B:	Guass Jordon Method								
Option C:	Newton Raphson Method								
Option D:	Euler's Method								
•									
65.	Select the incorrect statement in case of interpolation								
Option A:	It is used in statistical analysis								
Option B:	It is used to predict intermediate value of dependent variable for given value of independent variable								
Option C:	It is used in research analysis								
Option D:	It is used to solve ODE function								
66.	Given is the formula for								
	$y_p = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \dots$								
	$y_p = y_0 + p = y_0 + 2! = y_0 + 3! = y_0 +$								
Option A:	Newton's forward interpolation formula								
Option B:	Newton's backward interpolation formula								
Option C:	Newton's central interpolation formula								
Option D:	Taylor series expansion								
67.	Power function of the form $y=ab^x$ can be linearized by performing								
Option A:	y= a+b								
Option B:	$\cos(y) = \cos(a) + \cos(b)$								
Option C:	$\sin y = \sin(b^x)$								
Option C:	$\sin y - \sin(0)$								

68. Find the solution of ODE using Euler's method dy/dx = x+y y(0)= 1 at x = 0.2 with h= 0.1 Option A: 0.3678 Option D: 1.362 69. Classify the following partial differential equation u _x + 4u _{xy} +(x ²⁺⁴ y ²)u _y - sin(x+y) Option A: Elliptic Equation Option D: Linear Equation Option D: Hyperbolic Equation Option A: Elliptic Equation Option D: Hyperbolic Equation Option A: Method of divided difference Option C: Bendre Schmidt Scheme Option D: Current value into ecosideration Option B: Previous value into account Option B: Previous value into account Option D: Current value into account Option B: Previous value for calculation Option B: Previous value for calculation Option B: R ² - 4AC =0 Option B: R ² - 4AC =0 Option B: R ³ - 4AC =0	Option D:	Log y = log a + x log b
	68	Find the solution of ODE using Euler's method
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	08.	•
Option A: 0.3678 Option B: 1 Option D: 1.362 69. Classify the following partial differential equation $u_{xx} + 4u_{xy} + (x^3 + 4y^2)u_{yy} = sin(x + y)$ Option A: Elliptic Equation Option D: 1.362 69. Classify the following partial differential equation $u_{xx} + 4u_{xy} + (x^3 + 4y^2)u_{yy} = sin(x + y)$ Option A: Elliptic Equation Option D: In case of interpolating data points with unequal interval size is used Option A: Method of divided difference Option B: Liebman's method Option D: Bendre Schmidt Scheme Option D: Bendre Schmidt Scheme Option A: Current value into account Option R: Previous value into account Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is $Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² + 4AC $^{-0}$ Option B: B ² - 4AC $^{-0}$ Option B: B ² - 4AC $^{-0}$ Option B: Co-ordinate method Option		
Option B:1Option C:0.133Option D:1.36269.Classify the following partial differential equation $u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = sin(x+y)$ Option A:Elliptic EquationOption B:Parabolic EquationOption C:Linear EquationOption D:Hyperbolic EquationOption D:Hyperbolic EquationOption B:Licemar EquationOption D:Hyperbolic EquationOption D:Method of divided differenceOption B:Licemar EquationOption B:Licemar EquationOption B:Licemar EquationOption B:Licemar EquationOption B:Licemar EquationOption B:Cursent value find considerationOption D:Crank Nitcholson scheme71.The predictor-corrector method takesOption B:Previous value into accountOption D:doesn't take any value for calculation72.General form of second order partial differential equations is Au_{xx} + $Bu_{xy}+Cu_{yy}+Du_{x}+Eu_{y}+Fu = 0.$ The equation is said to be elliptic at a point (x,y) in the plane ifOption B:B ² - 4AC =0Option B:B ² - 4AC <0	Option A:	
Option D: 1.362 69. Classify the following partial differential equation $u_{xx} + 4u_{xy} + (x^2+4y^2)u_{yy} = sin(x+y)$ Option A: Elliptic Equation Option B: Parabolic Equation Option D: Hyperbolic Equation Option D: Hyperbolic Equation Option D: Hyperbolic Equation 70. In case of interpolating data points with unequal interval size is used Option A: Method of divided difference Option B: Liebman's method Option D: Grank Niicholson scheme 71. The predictor-corrector method takes Option B: Previous value into account Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is $Au_{xx} + Bu_{xy}+Cu_{xy}+Du_x+Eu_y+Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane if 73. Trapezoidal formula is also known as 73. Trapezoidal formula is also known as 74. In Simpson's rule Option B: C-ordinate method Option A: Simpson's rule Option B: C-ordinate method		1
Option D: 1.362 69. Classify the following partial differential equation $u_{xx} + 4u_{xy} + (x^2+4y^2)u_{yy} = sin(x+y)$ Option A: Elliptic Equation Option B: Parabolic Equation Option D: Hyperbolic Equation Option D: Hyperbolic Equation Option D: Hyperbolic Equation 70. In case of interpolating data points with unequal interval size is used Option A: Method of divided difference Option B: Liebman's method Option D: Grank Niicholson scheme 71. The predictor-corrector method takes Option B: Previous value into account Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is $Au_{xx} + Bu_{xy}+Cu_{xy}+Du_x+Eu_y+Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane if 73. Trapezoidal formula is also known as 73. Trapezoidal formula is also known as 74. In Simpson's rule Option B: C-ordinate method Option A: Simpson's rule Option B: C-ordinate method	Option C:	0.133
$u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = sin(x+y)$ Option A: Elliptic Equation Option B: Parabolic Equation Option D: Hyperbolic Equation 70. In case of interpolating data points with unequal interval size is used Option A: Method of divided difference Option B: Liebman's method Option D: Crank Niicholson scheme 71. The predictor-corrector method takes Option B: Previous value into account Option D: desen't take any value for calculation Option D: desen't take any value for calculation Option D: desen't take any value for calculation 72. General form of second order partial differential equations is $Au_{sx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC = 0 Option D: B ² - 4AC < 0		1.362
$u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = sin(x+y)$ Option A: Elliptic Equation Option B: Parabolic Equation Option D: Hyperbolic Equation 70. In case of interpolating data points with unequal interval size is used Option A: Method of divided difference Option B: Liebman's method Option D: Crank Niicholson scheme 71. The predictor-corrector method takes Option B: Previous value into account Option D: desen't take any value for calculation Option D: desen't take any value for calculation Option D: desen't take any value for calculation 72. General form of second order partial differential equations is $Au_{sx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC = 0 Option D: B ² - 4AC < 0		
Option A: Elliptic Equation Option D: Parabolic Equation Option D: Hyperbolic Equation 70. In case of interpolating data points with unequal interval size is used Option A: Method of divided difference Option B: Liebman's method Option C: Bendre Schmidt Scheme Option D: Crank Niicholson scheme 71. The predictor-corrector method takes Option A: Current value into consideration Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is Au_{xx} + $Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC =0 Option D: doesn't take any value for calculation 73. Trapezoidal formula is also known as 73. Trapezoidal formula is also known as 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option B: Co-ordinate method Option B: Co-ordinate method Option B: D 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option B: 2	69.	
Option B: Parabolic Equation Option C: Linear Equation Option D: Hyperbolic Equation 70. In case of interpolating data points with unequal interval size is used Option A: Method of divided difference Option D: Bendre Schmidt Scheme Option D: Crank Niicholson scheme 71. The predictor-corrector method takes Option A: Current value into consideration Option D: Next value into account Option D: desn't take any value for calculation 72. General form of second order partial differential equations is Au _{xx} + Bu _{xy} +Cu _{xy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B' - 4AC =0 Option D: B' - 4AC <0		$u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = \sin(x+y)$
Option B: Parabolic Equation Option C: Linear Equation Option D: Hyperbolic Equation 70. In case of interpolating data points with unequal interval size is used Option A: Method of divided difference Option D: Bendre Schmidt Scheme Option D: Crank Niicholson scheme 71. The predictor-corrector method takes Option A: Current value into consideration Option D: Next value into account Option D: desn't take any value for calculation 72. General form of second order partial differential equations is Au _{xx} + Bu _{xy} +Cu _{xy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B' - 4AC =0 Option D: B' - 4AC <0	Option A:	Elliptic Equation
Option C:Linear EquationOption D:Hyperbolic Equation70.In case of interpolating data points with unequal interval size70.In case of interpolating data points with unequal interval size70.In case of interpolating data points with unequal interval size71.The great of the second of divided difference71.The predictor-corrector method takes71.The predictor-corrector method takes71.The predictor-corrector method takes71.The predictor-corrector method takes72.Qeneral into account73.Trapezoidal form of second order partial differential equations is Au_{xx} + $Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = 0.$ The equation is said to be elliptic at a point (x,y) in the plane if74.B 2 - 4AC = 075.General form of second order partial differential $B^2 - 4AC = 0$ 76.B 2 - 4AC < 0	Option B:	
TotalTotal70.In case of interpolating data points with unequal interval size is usedOption A:Method of divided differenceOption B:Liebman's methodOption D:Crank Niicholson scheme71.The predictor-corrector method takesOption A:Current value into considerationOption D:Next value into accountOption D:doesn't take any value for calculationOption D:doesn't take any value for calculation72.General form of second order partial differential equations is Au_{xx} + $Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = 0.$ The equation is said to be elliptic at a point (x,y) in the plane ifOption A:B ² - 4AC = 0Option D:B ² - 4AC < 0		Linear Equation
Option A:Method of divided differenceOption B:Liebman's methodOption C:Bendre Schmidt SchemeOption D:Crank Niicholson scheme71.The predictor-corrector method takesOption A:Current value into considerationOption B:Previous value into accountOption D:doesn't take any value for calculationOption D:doesn't take any value for calculation72.General form of second order partial differential equations is Au_{xx} + $Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane ifOption B:B² - 4AC =0Option B:B² - 4AC <0	Option D:	Hyperbolic Equation
Option A:Method of divided differenceOption B:Liebman's methodOption C:Bendre Schmidt SchemeOption D:Crank Niicholson scheme71.The predictor-corrector method takesOption A:Current value into considerationOption B:Previous value into accountOption D:doesn't take any value for calculationOption D:doesn't take any value for calculation72.General form of second order partial differential equations is Au_{xx} + $Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane ifOption B:B² - 4AC =0Option B:B² - 4AC <0		
Option B: Liebman's method Option C: Bendre Schmidt Scheme Option D: Crank Niicholson scheme 71. The predictor-corrector method takes Option A: Current value into account Option D: Next value into account Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is Au _{sx} + Bu _{sy} +Cu _{yy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC =0 Option D: B ² - 4AC <0		
Option C:Bendre Schmidt SchemeOption D:Crank Niicholson scheme71.The predictor-corrector method takesOption A:Current value into considerationOption B:Previous value into accountOption D:doesn't take any value for calculation72.General form of second order partial differential equations is Au_{xx} + Bu_{xy} +Cu _{yy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane ifOption A:B² - 4AC =0Option D:B² - 4AC <0		
Option D:Crank Niicholson scheme71.The predictor-corrector method takesOption A:Current value into considerationOption B:Previous value into accountOption C:Next value into accountOption D:doesn't take any value for calculation72.General form of second order partial differential equations is Au_{xx} + $Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = 0.$ The equation is said to be elliptic at a point (x,y) in the plane ifOption B:B² - 4AC =0Option D:B² - 4AC <0		
71. The predictor-corrector method takes Option A: Current value into consideration Option B: Previous value into account Option C: Next value into account Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is Au _{xx} + Bu _{xy} +Cu _{yy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC =0 Option D: B ² - 4AC <0		
Option A: Current value into consideration Option B: Previous value into account Option C: Next value into account Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is Au _{xx} + Bu _{xy} +Cu _{yy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC =0 Option D: B ² - 4AC <0	Option D:	Crank Niicholson scheme
Option B: Previous value into account Option C: Next value into account Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is Au _{xx} + Bu _{xy} +Cu _{yy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC =0 Option D: B ² - 4AC <0	71.	The predictor-corrector method takes
Option C: Next value into account Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is Au _{xx} + Bu _{xy} +Cu _{yy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC =0 Option D: B ² - 4AC <0	Option A:	Current value into consideration
Option D: doesn't take any value for calculation 72. General form of second order partial differential equations is Au _{xx} + Bu _{xy} +Cu _{yy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if Option A: B ² - 4AC =0 Option B: B ² - 4AC <0	Option B:	Previous value into account
72.General form of second order partial differential equations is Au_{xx} + $Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane ifOption A: $B^2 - 4AC = 0$ Option B: $B^2 - 4AC < 0$ Option C: $B^2 - 4AC > 0$ Option D: $B^2 - 4AC = 0$ Option A: $B^2 - 4AC < 0$ Option A: $B^2 - 4AC = 0$ Option A: $B^2 - 4AC < 0$ Option B: $B^2 - 4AC = 0$ Option D: $B^2 - 4AC = 0$ Option B: $C - 0$ Option B: $C - 0$ Option B: $C - 0$ Option C:Prismoidal methodOption D:Average end area method74.In Simpson's 3/8 rule , y(x) is polynomial of degreeOption A:1Option B:2Option B:2Option C:3	Option C:	Next value into account
Buxy+Cuyy+Dux+Euy+Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane ifOption A: $B^2 - 4AC = 0$ Option B: $B^2 - 4AC < 0$ Option C: $B^2 - 4AC > 0$ Option D: $B^2 - 4AC = constant$ 73.Trapezoidal formula is also known asOption A:Simpson's ruleOption B:Co-ordinate methodOption C:Prismoidal methodOption D:Average end area method74.In Simpson's 3/8 rule , y(x) is polynomial of degreeOption B:2Option B:2Option C:3	Option D:	doesn't take any value for calculation
Buxy+Cuyy+Dux+Euy+Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane ifOption A: $B^2 - 4AC = 0$ Option B: $B^2 - 4AC < 0$ Option C: $B^2 - 4AC > 0$ Option D: $B^2 - 4AC = constant$ 73.Trapezoidal formula is also known asOption A:Simpson's ruleOption B:Co-ordinate methodOption C:Prismoidal methodOption D:Average end area method74.In Simpson's 3/8 rule , y(x) is polynomial of degreeOption B:2Option B:2Option C:3		
ifOption A: $B^2 - 4AC = 0$ Option B: $B^2 - 4AC < 0$ Option C: $B^2 - 4AC > 0$ Option D: $B^2 - 4AC = constant$ 73.Trapezoidal formula is also known as73.Trapezoidal formula is also known asOption A:Simpson's ruleOption B:Co-ordinate methodOption C:Prismoidal methodOption D:Average end area method74.In Simpson's 3/8 rule , y(x) is polynomial of degreeOption A:1Option B:2Option C:3	72.	
Option A: $B^2 - 4AC = 0$ Option B: $B^2 - 4AC < 0$ Option C: $B^2 - 4AC > 0$ Option D: $B^2 - 4AC = constant$ 73.Trapezoidal formula is also known asOption A:Simpson's ruleOption B:Co-ordinate methodOption C:Prismoidal methodOption D:Average end area method74.In Simpson's 3/8 rule , y(x) is polynomial of degreeOption A:1Option B:2Option C:3		$Bu_{xy}+Cu_{yy}+Du_x+Eu_y+Fu = 0$. The equation is said to be elliptic at a point (x,y) in the plane
$Option B:$ $B^2 - 4AC < 0$ $Option C:$ $B^2 - 4AC > 0$ $Option D:$ $B^2 - 4AC = constant$ 73.Trapezoidal formula is also known as $Option A:$ Simpson's rule $Option B:$ Co-ordinate method $Option C:$ Prismoidal method $Option D:$ Average end area method $Option A:$ In Simpson's 3/8 rule , y(x) is polynomial of degree $Option A:$ 1 $Option B:$ 2 $Option C:$ 3		if
Option C: B ² - 4AC >0 Option D: B ² - 4AC =constant 73. Trapezoidal formula is also known as Option A: Simpson's rule Option B: Co-ordinate method Option C: Prismoidal method Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3	Option A:	$B^2 - 4AC = 0$
Option D: B ² - 4AC =constant 73. Trapezoidal formula is also known as Option A: Simpson's rule Option B: Co-ordinate method Option C: Prismoidal method Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3	Option B:	$B^2 - 4AC < 0$
Option D: B ² - 4AC =constant 73. Trapezoidal formula is also known as Option A: Simpson's rule Option B: Co-ordinate method Option C: Prismoidal method Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3	Option C:	$B^2 - 4AC > 0$
73. Trapezoidal formula is also known as Option A: Simpson's rule Option B: Co-ordinate method Option C: Prismoidal method Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3		B^2 - 4AC = constant
Option A: Simpson's rule Option B: Co-ordinate method Option C: Prismoidal method Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3	1	
Option B: Co-ordinate method Option C: Prismoidal method Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3	73.	Trapezoidal formula is also known as
Option C: Prismoidal method Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3	Option A:	Simpson's rule
Option C: Prismoidal method Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3	Option B:	Co-ordinate method
Option D: Average end area method 74. In Simpson's 3/8 rule , y(x) is polynomial of degree Option A: 1 Option B: 2 Option C: 3	-	Prismoidal method
Option A: 1 Option B: 2 Option C: 3		Average end area method
Option A: 1 Option B: 2 Option C: 3		
Option B: 2 Option C: 3	74.	In Simpson's $3/8$ rule , $y(x)$ is polynomial of degree
Option C: 3	Option A:	1
	Option B:	2
		3
	Option D:	4
	-	

75.	Errors may occur in performing numerical computation on the computer due to
Option A:	Rounding errors
Option B:	Power fluctuation
Option C:	Operator fatigue
Option D:	All of these
76.	Truncation error is difference between
Option A:	the exact solution of the partial differential equation and the discretized equations
Option B:	the exact partial differential equation and the discretized equations
Option C:	the exact solution and the numerical solution of the partial differential equations
Option D:	the exact partial differential equation and its solution
Option D:	
77	
77.	The convergence of which of the following method is sensitive to starting value? Guass Siedel Method
Option A: Option B:	
	Newton Raphson Method Runge Kutta method
Option C: Option D:	Bisection method
Option D.	Disection method
78.	For the given equation $x^2=2$. Calculate x1, If initial guess $x0=1$ (Use Newton Raphson
70.	Method)
Option A:	1.05
Option B:	1.25
Option C:	1.5
Option D:	2.0
79.	If the equation $y = a^*exp^{(bx)}$ can be written in linear form $Y=A + BX$, what are Y, X, A,
	B?
Option A:	$Y = \log y, A = \log a, B = b and X = x$
Option B:	Y = y, A = a, B=b and X=x
Option C:	Y = y, A = a, B = logb and X = logx
Option D:	Y = logy, A = a, B = logb and X = x
80.	Newton forward interpolation formula is used for intervals.
Option A:	Open
Option B:	Unequal
Option C:	Equal
Option D:	Closed
01	The commence of which of the full mine wether lines of the test of the full of the full mine wether the second sec
81.	The convergence of which of the following method is sensitive to starting value?
Option A:	A. False position P. Gauss saidal method
Option B:	B. Gauss seidal method
Option C:	C. Newton-Raphson method D. All of these
Option D:	
82.	The Bisection method is also known as
Option A:	A. Binary Chopping
Option A: Option B:	B. Quarternary Chopping
Option B: Option C:	C. Tri region Chopping
Option D:	
	D. Hex region Chopping
1	
83.	The Gauss Jordan method reduces a original matrix into a

Option A:	A. Identity matrix
Option B:	B. Null matrix
Option C:	C. Skew Hermitian matrix
Option D:	D. Non-symmetric matrix
- opnon 2.	
84.	How the transformation of coefficient matrix A to upper triangular matrix is done?
Option A:	A. Elementary row transformations
Option B:	B. Elementary column transformations
Option C:	C. Successive multiplication
Option D:	D. Successive division
85.	As soon as a new value for a variable is obtained by iteration, it is used immediately in
	the following equation. This method is called
Option A:	A. Gauss Elimination Method
Option B:	B. Gauss Seidal Method
Option C:	C. Gauss Jacobi Method
Option D:	D. Gauss Jacobi Method
86.	The equation of straight line is
Option A:	y=a+bx+cx
Option B:	y=a+bx
Option C:	y=a+bx+cx ²
Option D:	y=c
87.	In Euler's method: Given initial value problem $y'=dy/dx=f(x, y)$ with $y(x0) = y0$, then
	approximation is given by
Option A:	A. yn+1=yn+hf(xn-1, yn-1)
Option B:	B. yn+1=yn+hf(xn, yn)
Option C:	C. yn+1=yn+hf(xn-1, yn)
Option D:	D. yn+1=yn+hf(xn, yn-1)
88.	The modified Euler method is based on the average of
Option A:	A. straight line
Option B:	B. ellipse
Option C:	C. chord
Option D:	D. points
89.	The Laplace equation is of type.
Option A:	A. Elliptic
Option B:	B. Hyperbolic
Option C:	C. Parabolic
Option D:	D. Circular
90.	$xu_{xx} + u_{yy} = 0$ is hyperbolic if
Option A:	A. x=0
Option B:	B. x>0
Option C:	C. x<0
Option D:	D. x=1

Descriptive Questions

1Explain concept of Zeta potential in detail.2Give a note on enzyme catalysis.3Write, with examples, the shielding & deshielding effects involved in NMR spectroscopy. Give the multiplicity of each kind of Hydrogen in the following molecule—i) CH3-CH2-CH3 (propane) ii) CH3-O-CH2-CH3 (Ethyl methyl ether)4Give principle & describe any 2 applications of HPLC.5Explain Dipole moment & Dielectric constants of ionising solvents.6Describe Beckmann rearrangement with its mechanism & application.7Give application of surfactants in detergents.8Give the principle & describe any 3 important applications of Thin Layer chromatography.	
 Write, with examples, the shielding & deshielding effects involved in NMR spectroscopy. Give the multiplicity of each kind of Hydrogen in the following molecule—i) CH3-CH2-CH3 (propane) ii) CH3-O-CH2-CH3 (Ethyl methyl ether) Give principle & describe any 2 applications of HPLC. Explain Dipole moment & Dielectric constants of ionising solvents. Describe Beckmann rearrangement with its mechanism & application. Give application of surfactants in detergents. Give the principle & describe any 3 important applications of Thin Layer 	
 3 spectroscopy. Give the multiplicity of each kind of Hydrogen in the following molecule—i) CH3-CH2-CH3 (propane) ii) CH3-O-CH2-CH3 (Ethyl methyl ether) 4 Give principle & describe any 2 applications of HPLC. 5 Explain Dipole moment & Dielectric constants of ionising solvents. 6 Describe Beckmann rearrangement with its mechanism & application. 7 Give application of surfactants in detergents. 8 Give the principle & describe any 3 important applications of Thin Layer 	
 4 Explain Dipole moment & Dielectric constants of ionising solvents. 5 Explain Dipole moment & Dielectric constants of ionising solvents. 6 Describe Beckmann rearrangement with its mechanism & application. 7 Give application of surfactants in detergents. 8 Give the principle & describe any 3 important applications of Thin Layer 	
6Describe Beckmann rearrangement with its mechanism & application.7Give application of surfactants in detergents.8Give the principle & describe any 3 important applications of Thin Layer	
7Give application of surfactants in detergents.8Give the principle & describe any 3 important applications of Thin Layer	
8 Give the principle & describe any 3 important applications of Thin Layer	
X I I I I I I	
9 Explain any 5 characteristics of catalysts.	
10 Describe Principle & Application of Thermogravimetric analysis.	
11 What is importance of non aqueous solvents? Give Acid-base & Redox reactions in SO2.	Liq
12 Explain the aromatic character of Furan.	
13Write a short note on Electroosmosis.	
14 Write in detail how to determine purity of given sample using TLC technique?	
15 Write in detail about amphoteric behaviour of Liq.NH3 with examples	
16 Write the mechanism for formation of carboxylic salts from Haloketones.	
17Describe the Autocatalysis & Catalyst poisons.	
18 Give the basic requirement of IR radiation absorption. Give any two applications of spectroscopy.	'IR
19 Write about how activation energy changes in a chemical reaction using a catalyst? in brief Adsorption theory of catalysis	Write
20 Explain the difference between water and Liq.NH3 as non aqueous solvent based or properties.	1 their
21 Write in detail the concept of Electrical double layer using Helmholtz and Stern Mo	del.
22 Write in detail about the aromaticity of Naphthalene .	
23 Write short notes on ThermoGravimetric Analysis (TGA). Give examples of it.	
24 Explain in detail working of HPLC, along with examples.	
25 Give the preparation of ethylacetoacetate with mechanism.	
26 Write the classification of solvents with suitable examples.	
27 What is the principle of infrared spectroscopy? Give applications in detail.	
28 Explain the principle, instrumentation and applications of HPLC.	
29 Explain the applications of surfactants in detail.	
30 What is acid-base catalysis? Give the mechanism for both acid and base catalysis.	
31 Explain with suitable examples, acid base reaction and redox reaction in liquid amm	10nia.
32 Write the principle. Instrumentation and application of TGA	
 32 Write the principle. Instrumentation and application of TGA 33 . Explain the principle, instrumentation and applications of TLC 34 Write short note on electrophoresis. 	

35	Explain the aromaticity of pyridine.								
36	Write the distinguish between homogeneous and heterogeneous catalysis.								
37	Explain and derive the formula for Regula-falsi method to find the root of equation with the help of graph. Find the root of equation 2x -logx = 7 using the regula-falsi method								
38	Solve the following system of equations using Jacobi's Method 5x - y + z = 10 2x + 4y = 12 x + y + 5z = -1 Start the solution with (2,3,0)								
	Using Newton's d	livided differen	ice obtain th	ne polync	mial and find	1 f(8) an	d f(15)		
39	X 4 F(x) 48	5 100	7 294		11 1210	13 2028			
40	Write the algorith A mass balance for where V = volume rate (1 m ³ /min), the ODE until t= 3	or a chemical in V ($e (12 m^3), c = c$ and k = a secon	a complete dc /dt) = F - oncentratio nd-order rea	Qc - kVc ² on (g/m ³) action rat	²), F = feed rat	e (175 g	/min), Q		
	The specific volum temperatures. Fo	•						7	
41	T (∘F) V(ft³ /lbm)	0.0977	0.12184	4	0.14060		15509	0	
	Determine the va	it T= 750 F usin	ig linear reg	ression					
42	Write the general Find the values u(conditions 0 <x<8 h="1" t="0</td"><td>x,t) satisfying t u(0,t)=</td><td>he equation 0 u(8,t)= u(x,0) =</td><td>$\int_{0}^{\frac{\partial u}{\partial t}} =$ $\int_{0}^{0} 4x - \frac{1}{2}$</td><td>$4 \ \frac{\partial^2 u}{\partial x^2}$ and</td><td>e PDE ar</td><td>e classific</td><td>ed.</td></x<8>	x,t) satisfying t u(0,t)=	he equation 0 u(8,t)= u(x,0) =	$\int_{0}^{\frac{\partial u}{\partial t}} =$ $\int_{0}^{0} 4x - \frac{1}{2}$	$4 \ \frac{\partial^2 u}{\partial x^2}$ and	e PDE ar	e classific	ed.	
	0 <x<8< td="">h=1t=0 to 5 Use Bander Schmidt methodDefine Accuracy, Precision, and True Error</x<8<>								
43 43 1.8254 1.9633 2.0121 2.0283 2.0335 2.0 Calculate the all four errors for these estimates,					= 0. 2.0356 2.0	358		uation	
44	is 2.0359 Evaluate $\int_0^1 \frac{1}{(1+x)}$ iii) Trapezoidal R		ng i)Simps	on's 1/3	Rule ii) Sim	pson's 3	/8 th Rule		
45		ng table for x a 1.05 1.10 1.025 1.049	1.15 1.		25 1.30 118 1.140				

	Find y' and	d y'' at a)	k= 1.05 b)x=1.25	and c) x=1	.50			
16	Solve the following system of equations using Gauss-Elimination method								
46		x + y + z = 7, $x + 2y + 3z = 16$ & $x + 3y + 4z = 22$							
47	Using modified Euler's Method find an approximate value of y when $x = 0.3$ given that								
.,	$\frac{dy}{dx} = x + y \text{ and } y = 1 \text{ when } x = 0, \text{ Assume step size } h = 0.1$ Consider a reaction A> B carried out in a batch reactor. The differential equation for								
			A> B	carried	out in a ba	itch react	or. The	e differential	equation for
	species A i								
48	$\frac{dCA}{dt} = -k$	CA							
									ction is 1s ⁻¹ .
40						ine the co	oncentr	ation of A at	3 s.
49	Explain wi					1			
	Solve the f $x_1 + 7 x_2 - 4$		system of	r equation	is by LU c	iecompos	sition		
50	$4x_1 - 4x_2 + 9$								
	$12x_1 - x_2 + 3$								
	The table b	below give	es the ten	nperature	T(°C) and	d length c	of heate	ed rod. If leng	gth $l = a_0 + $
51	a_1T , find the	ne best val	ue of a ₀ a	and a ₁					
51	$T(^{\circ}C)$	20	30	40	50	60	70		
	l (mm)	800.3	800.4	800.6	800.7	800.9	801		
52		-				ing. Also	show	the progress	of bisection
	method usi					-)	<u> </u>		
	table. Calc							$(-r_A)$ is	given in the
	Design equ					•	J Tuic.		
53	$V = F_{A0} \int_0^X$				8				
55	Take initia			mol/sec.					
	Conversio		- 110		0	0.4	0).8	
		eaction, - r	A (mol/li	t.s)	0.01	0.008		0.002	
		-	heat con	dcution e	quation us	sing Bend	ler-Sch	midt relation	l
5.4	$u_{xx} - u_t = 0$		(x, 0) =	Arr2					
54	with the co u(0,t) = u(0,t)		I(x,0) = i	+X-X-					
			the value	e of u at i	nternal me	esh for tw	vo time	step i.e. t =	l sec.
								east Square	
55							_		~
	X 1	-	2	3	4		5 -	8	_
1	1 I V 1 2) /	2	24	1	4			
		2.4 ntration of	3 f salt x ir	3.6	4 made soar	maker i	/	ů	n of time by
	The concer	ntration of	f salt x ir	n a home	made soap	maker is	s given	as a functio	n of time by
56	The concerned $\frac{dx}{dt} = 37.5$	ntration of $-3.5 x_{2}$	f salt x in at the init	n a home tial time t	made soap =0,the salt	maker is	s given	as a function as a function n the tank of	50 g/l. using
56	The concerned $\frac{dx}{dt} = 37.5$	ntration of $-3.5 x_{2}$	f salt x in at the init	n a home tial time t	made soap =0,the salt	maker is	s given	as a functio	50 g/l. using
56	The concerned $\frac{dx}{dt} = 37.5$ Euler's me	ntration of $-3.5 x_{a}$	f salt x in at the init step size	n a home tial time t of h=1.5	made soar =0,the salt min; what	maker is	s given	as a function as a function n the tank of	50 g/l. using
56	The concerned $\frac{dx}{dt} = 37.5$ Euler's me	ntration of $-3.5 x_{2}$ ethod and so high high high high high high high hig	f salt x in at the init step size	n a home tial time t of h=1.5 eme solve	made soar =0,the salt min; what	maker is	s given	as a function as a function n the tank of	50 g/l. using
	The concern $\frac{dx}{dt} = 37.5$ Euler's me Using Crar $u_{xx} = 16ut$	ntration of $-3.5 x_{a}$ withod and s $-3.5 x_{a}$ withod and s $-3.5 x_{a}$ $-3.5 x_{a}$ -	f salt x in at the init step size lson scho t>0 giver	n a home tial time to of h=1.5 teme solve	made soar =0,the salt min; what	maker is	s given	as a function as a function n the tank of	50 g/l. using
56	The concer $\frac{dx}{dt} = 37.5$ Euler's me Using Crar $u_{xx} = 16ut$ u(x,0) = 0,	ntration of $-3.5 x_{a}$ ethod and s nk - Nichoo t, 0 < x < 1, 1 u(0,t) = 0	f salt x in at the init step size lson scho t>0 given , $u(1,t) =$	n a home tial time t of h=1.5 eme solve 1 100t	made soap =0,the salt min; what	concentri is the sal	s given	as a function as a function n the tank of	50 g/l. using
	The concern $\frac{dx}{dt} = 37.5$ Euler's me Using Crar $u_{xx} = 16ut$	ntration of $-3.5 x_{a}$ ethod and s nk - Nichoo t, 0 < x < 1, 1 u(0,t) = 0	f salt x in at the init step size lson scho t>0 given , $u(1,t) =$	n a home tial time t of h=1.5 eme solve 1 100t	made soap =0,the salt min; what	concentri is the sal	s given	as a function as a function n the tank of	50 g/l. using
	The concer $\frac{dx}{dt} = 37.5$ Euler's me Using Crar $u_{xx} = 16ut$ u(x,0) = 0,	ntration of $-3.5 x_{a}$ ethod and s nk - Nichoo t, 0 < x < 1, 1 u(0,t) = 0	f salt x in at the init step size lson scho t>0 given , $u(1,t) =$	n a home tial time t of h=1.5 eme solve 1 100t	made soap =0,the salt min; what	concentri is the sal	s given	as a function as a function n the tank of	50 g/l. using
	The concer $\frac{dx}{dt} = 37.5$ Euler's me Using Crar $u_{xx} = 16ut$ u(x,0) = 0,	ntration of $-3.5 x_{a}$ ethod and s nk - Nichoo t, 0 < x < 1, t u(0,t) = 0 u for one st Gauss - Sei	f salt x in at the init step size lson scho t>0 given , u(1,t) = tep in t d del Meth	n a home ial time t of h=1.5 eme solve 1 100t irection t	made soap =0,the salt min; what e aking h= $\frac{1}{4}$ following s	o maker is concentri is the sal	s given	as a function as a function n the tank of	50 g/l. using

59	Evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ using 1. Trapezoidal Rule 2. Simpsons $1/3^{rd}$ rule 3. Simpsons $3/8^{th}$ rule, also find value of Π (pie) in each case.				
60	Fit a Least Square geometric curve $y = a.x^{b}$; for following data.X12345Y0.524.5812.5				
61	Show progress of Bisection Method using graphical representation also find real root of the equation $X^3 - X - 1 = 0$ using Bisection method.				
62	A ball at 1200 K is allowed to cool down in air ambient temperature of 300K. Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by $\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8), \theta(0) = 1200 \text{ k}$ Where θ is in K and t is in seconds. Find the temperature at t = 480 seconds, using Euler's Method. Assume a step size of t = 240 seconds.				
63	What is accuracy and precision in Numerical Methods? Explain with the help of diagram also enlist various types of errors in Numerical Methods.				

Sample Questions

Chemical Engineering

Subject Name: Numerical Methods in Chemical Engineering

Semester: IV

Multiple Choice Questions

Choose the c	orrect option for following questions. All the Questions carry equal marks						
1.	"is a systematic deviation from the truth"						
Option A:	Inaccuracy						
Option B:	Accuracy						
Option C:	Precision						
Option D:	Approximate error						
2.	occurs when only certain digits and decimal places are used to represent exact numbers.						
Option A:	Truncation error						
Option B:	Round-off error						
Option C:	Approximate error						
Option D:	True error						
3.	Consider the number 7.1275432 If the number is written correct to 3 decimal places, then it is approximated as 7.127 If the number is written correct to 4 decimal places, then it is approximated as 7.1275 Error involved on this kind of approximation is called as						
Option A:	Truncation error						
Option B:	Round-off error						
Option C:	Approximate error						
Option D:	True error						
4.	Difference between True value and Approximation gives It is a measure of						
	accuracy of the system						
Option A:	Truncation error						
Option B:	Round-off error						
Option C:	True error						
Option D:	Approximate error						
5.	The general form of linear algebraic equations is given by						
	$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$						
	$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$						

	$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$
Option A:	 The x's = the forcing functions acting on the system The a's= the properties and characteristics that bear on the interactions between components. The b's = measures of the magnitudes of the responses of the individual components.
Option B:	 The x's = measures of the magnitudes of the responses of the individual components. The a's= the properties and characteristics that bear on the interactions between components. The b's = the forcing functions acting on the system
Option C:	 The x's = the properties and characteristics that bear on the interactions between components. The a's= measures of the magnitudes of the responses of the individual component The b's = the forcing functions acting on the system
Option D:	 The x's = the forcing functions acting on the system. The a's = measures of the magnitudes of the responses of the individual component The b's = the properties and characteristics that bear on the interactions between components
6.	To use Jacobi iteration method elements of leading diagonal elements must be
Option A:	Larger compared to other elements
Option B:	Smaller compared to other elements
Option C:	All zeros
Option D:	All ones
7.	LU decomposition method is based on the fact that the matrix A can be expressed as product of lower triangular and upper triangular matrices provided
Option A:	Matrix is diagonal
Option B:	All the principle minors of matrix a are non-singular.
Option C:	Matrix is singular
Option D:	Matrix is symmetric
8.	Select the incorrect statement in case of interpolation
Option A:	It is used in statistical analysis
Option B:	It is used to predict intermediate value of dependent variable for given value of independent variable
Option C:	It is used in research analysis
Option D:	It is used to solve ODE function
9.	Given is the formula for
	$y_p = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \dots$
	2. 0.
Option A:	Newton's forward interpolation formula

Option C:	Newton's central interpolation formula					
Option D:	Taylor series expansion					
•						
10.	In case of interpolating data points with unequal interval size is used					
Option A:	Method of divided difference					
Option B:	Liebman's method					
Option C:	Bendre Schmidt Scheme					
Option D:	Crank Niicholson scheme					
11.	Regression analysis is not used for					
Option A:	Trend analysis					
Option B:	Curve fitting					
Option C:	Hypothesis testing					
Option D:	Finding solution of ODE					
12.	Data points which are not linearly spread can be fitted by					
Option A:	Non-linear or polynomial regression					
Option B:	Interpolation					
Option C:	Linear regression					
Option D:	Line of regression					
13.	Power function of the form $y=ab^x$ can be linearized by performing					
Option A:	y= a+b					
Option B:	$\cos(y) = \cos(a) + \cos(b)$					
Option C:	$\sin y = \sin(b^x)$					
Option D:	Log y = log a + x log b					
14.	Using Bisection method find the root of $3x^2 = 5x+2$ in the interval [0.5, 0.6].up to 3 digit					
Option A:	0.517					
Option B:	0.522					
Option C:	0.532					
Option D:	0.542					
15.	For an equation to be an ordinary differential equation					
Option A:	It will have one dependent variable one independent variable					
Option B:	It will have one dependent variable two or more independent variable					
Option C:	It will have two or more dependent variable one independent variable					
Option D:	It will have two dependent variable one independent variable					
1.5						
16.	Find the solution of ODE using Euler's method					
	dy/dx = x+y y(0) = 1 at $x = 0.2$ with $b = 0.1$					
Option A:	y(0)=1 at x= 0.2 with h= 0.1 0.3678					
Option B: Option C:	1 0.133					
Option C: Option D:	1.362					
17.	Which of the following equations is an exact DE?					
Option A:	$(x^2 + 1) dx - xy dy = 0$					
1						

Option B:	x dy + (3x - 2y) dx = 0
Option C:	$2xy dx + (2 + x^2) dy = 0$
Option D:	$x^2y dy - y dx = 0$
- option 21	
18.	Laplace equation is represented by elliptic equation it defines heat
100	conduction in an element
Option A:	Steady state
Option B:	Unsteady state
Option C:	Linear
Option D:	Non linear
19.	Classify the following partial differential equation
	$u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = \sin(x+y)$
Option A:	Elliptic Equation
Option B:	Parabolic Equation
Option C: Option D:	Linear Equation
Option D:	Hyperbolic Equation
20.	The classification of PDEs are governed by
Option A:	Their highest order derivatives
-	
Option B:	Their least order derivatives
Option C:	The number of terms
Option D:	The constants
21.	In which of the following methods proper choice of initial value is very important?
Option A:	Bisection method
Option B:	False Position method
Option C:	Newton's method
Option D:	Regula Falsi method
<u>22.</u>	The improved Euler method is based on the average of
Option A:	straight line
Option B: Option C:	Ellipse Slopes
Option D:	Chord
23.	The modification of Gauss elimination method is called as
Option A:	Gauss Seidal
Option B:	Gauss Jordan
Option C:	Jacobi's Method
Option D:	Relaxation Method
24.	The bisection method of finding roots of nonlinear equations falls under the category of a
	(an) method.
Option A:	Open
Option B:	Bracketing
Option C:	Random
Option D:	Graphical

25.	The differential equation with more than one independent variable is called							
Option A:	An Ordinary Differential Equation							
Option B:	Partial Differential Equation							
Option C:	Simultaneous Equation							
Option D:	Simple Equation							
I								
26.	Which of these does not come under partial differential equations?							
Option A:	Laplace's equation							
Option B:	Equations of motion							
Option C:	1-D wave equation							
Option D:	Heat equation							
27.	Errors may occur in performing numerical computation on the computer due to							
Option A:	Rounding off answers							
Option B:	Power fluctuation							
Option C:	Operator fatigue							
Option D:	Bad weather							
28.	In solving simultaneous equations by Gauss Jordan method, the coefficient matrix is reduced to matrix.							
Option A:	Identity							
Option B:	Diagonal							
Option C:	Upper triangular							
Option D:	Lower triangular							
29.	False Position Method is also called as							
Option A:	Linear Interpolation Method							
Option B:	Users Method							
Option C:	Exact Method							
Option D:	Logical Method							
30.	The equation of straight line is							
Option A:	y=a+bx+cx							
Option B:	y=a+bx							
Option C:	y=a+bx+cx ²							
Option D:	y=c							
31.	If a matrix has one row, it is called avector							
Option A:	Row							
Option B:	Column							
Option C:	Active							
Option D:	Passive							
32.	Formula of Secant Method is same as that of							
Option A:	Bisection method							
Option B:	False Position method							
Option C:	Newton's Method							
Option D:	Iteration Method							
•								
33.	A square matrix with all non-diagonal elements equal to zero is called matrix.							

Option A:	Square						
Option B:	Diagonal						
Option C:	Row						
Option D:	Column						
option D.							
34.	The equation of second degree parabola is						
Option A:	v=a+bx+cx						
Option R:	y=a+bx						
Option C:	$y=a+bx+cx^2$						
Option D:	V=C						
Option D.							
35.	Which of the following step is not involved in Gauss Elimination Method?						
Option A:	Elimination of unknowns						
Option B:	Reduction to an upper triangular system						
Option C:	Finding unknowns by back substitution						
Option D:	Evaluation of cofactors						
· · · · ·							
36.	The Heat equation is of type.						
Option A:	Elliptic						
Option B:	Hyperbolic						
Option C:	Parabolic						
Option D:	Circular						
37.	In the Gauss elimination method for solving a system of linear algebraic equations, triangularization leads to						
Option A:	Diagonal matrix						
Option B:	Lower triangular matrix						
Option C:	Upper triangular matrix						
Option D:	Singular matrix						
38.	The differential equation with one independent variable is called						
Option A:	An Ordinary Differential Equation						
Option B:	Partial Differential Equation						
Option C:	Simultaneous Equation						
Option D:	Simple Equation						
39.	The Newton-Raphson method of finding roots of nonlinear equations falls under the						
	category of methods.						
Option A:	Bracketing						
Option B:	Open						
Option C:	Random						
Option D:	Graphical						
40.	y(x+h) = y(x) + h f(x,y) is referred as method.						
Option A:	Euler						
Option B:	Modified Euler						
Option C:	Taylor's Series						
Option D:	Runge-Kutta						
41.	In general the ratio of truncation error to that of round off error is						

Option B: 1:1 Option C: 1:2 Option D: 1:3 42. In the Gauss elimination method for solving a system of linear algebraic equations, triangularzation leads to Option A: Diagonal matrix Option B: Lower triangular matrix Option C: Upper triangular matrix Option D: Singular matrix Option D: Singular matrix 43. Least Squares Estimation minimizes: Option A: summation of squares of errors Option D: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option B: 6.25 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option C: 1.5 Option D: 2.0	Option A:	2:1
Option C: 1:2 Option D: 1:3 42. In the Gauss elimination method for solving a system of linear algebraic equations, triangularzation leads to Option A: Diagonal matrix Option D: Upper triangular matrix Option D: Singular matrix 43. Least Squares Estimation minimizes: Option B: summation of squares of errors Option D: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option B: 6.25 Option D: 100 45. For the given equation x^2-2 . Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option D: 2.0 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. Gene		
Option D: 1:3 42. In the Gauss elimination method for solving a system of linear algebraic equations, triangularzation leads to Option A: Diagonal matrix Option D: Lower triangular matrix Option D: Singular matrix Option A: Diagonal matrix Option D: Singular matrix 43. Least Squares Estimation minimizes: Option A: summation of squares of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option B: 6.25 Option B: 6.25 Option D: 100 45. For the given equation x²=2. Calculate x1, using Newton Raphson Method. If initial guess is xr=1 Option A: 1.05 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option C: Matrix Echelon form Option D: Augmented form Option D: Augor		
42. In the Gauss elimination method for solving a system of linear algebraic equations, triangularzation leads to Option A: Diagonal matrix Option B: Lower triangular matrix Option D: Singular matrix 43. Least Squares Estimation minimizes: Option A: summation of squares of errors Option B: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option B: 6.67 Option C: 6.67 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option C: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix is a matrix		
triangularzation leads to Option A: Diagonal matrix Option B: Lower triangular matrix Option C: Upper triangular matrix Option A: summation of squares of errors Option B: summation of absolute values of errors Option B: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option B: 6.25 Option B: 6.25 Option B: 100 45. For the given equation x^2-2 . Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option B: 1.25 Option B: 1.25 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option B: Column Echelon form Option C: Marix Echelon form Option D: Augmented form Option D: Augme	option D.	
Option B: Lower triangular matrix Option C: Upper triangular matrix Quiton D: Singular matrix 43. Least Squares Estimation minimizes: Option A: summation of squares of errors Option B: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option B: 6.25 Option D: 100 45. For the given equation x^2 =2. Calculate x_1 , using Newton Raphson Method. If initial guess is x_0 =1 Option A: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option B: Column Echelon form Option C: Matrix Echelon form Option C: Matrix Echelon form Option C: Matrix Echelon form Option B: Column Echelon form <t< td=""><td>42.</td><td></td></t<>	42.	
Option C: Upper triangular matrix Quiton D: Singular matrix 43. Least Squares Estimation minimizes: Option A: summation of squares of errors Option D: Summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option B: 6.25 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option B: Column Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option B: Old value = New value + (slope x step size) Option B:	Option A:	
Option D: Singular matrix 43. Least Squares Estimation minimizes: Option A: summation of squares of errors Option D: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option B: 6.25 Option D: 100 45. For the given equation x^2 -2. Calculate x_1 , using Newton Raphson Method. If initial guess is x_0 =1 Option A: 1.05 Option B: 1.25 Option C: 1.5 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option B: Column Echelon form Option C: Matrix Echelon form Option C: Matrix Echelon form Option B: Column Echelon form Option C: Matrix Echelon form Option B: Column Echelon form Option B: </td <td>Option B:</td> <td></td>	Option B:	
43. Least Squares Estimation minimizes: Option A: summation of squares of errors Option B: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option B: 6.25 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option C: 1.5 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option B: Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size) Option C: New value = old value + (slope x step size)	Option C:	
Option A: summation of squares of errors Option B: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option D: 6.25 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Column Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size)	Option D:	Singular matrix
Option A: summation of squares of errors Option B: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option D: 6.25 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Column Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size)		
Option B:summation of errorsOption C:summation of absolute values of errorsOption D:All of the above44.The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error isOption A:1Option B: 6.25 Option D:10045.For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46.In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced toOption A:Row Echelon formOption D:Column Echelon formOption D:Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written asOption A:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)	43.	*
Option C: summation of absolute values of errors Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option D: 6.25 Option D: 6.67 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option D: 100 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option D: Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size)	Option A:	summation of squares of errors
Option D:All of the above44.The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error isOption A:1Option B: 6.25 Option D:10045.For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46.In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced toOption B:Column Echelon formOption D:Augmented formOption D:Augmented formOption D:Augmented formOption B:Column Echelon formOption D:Augmented form of all such one-step methods is written asOption B:Old value = (old value x slope) + step sizeOption B:Old value = new value + (slope x step size)Option C:New value = old value + (slope x step size)	Option B:	summation of errors
Option D: All of the above 44. The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error is Option A: 1 Option B: 6.25 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option B: Column Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size)	Option C:	summation of absolute values of errors
44.The equation given is x-sinx = 0.5. The true value is 16 & after first step, approximate value calculated using bisection method is 15. then % error isOption A:1Option B: 6.25 Option D:10045.For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option D: 1.05 Option D: 2.0 46.In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced toOption A:Row Echelon formOption D:Column Echelon formOption D:Augmented form47.Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written asOption A:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)	Option D:	All of the above
value calculated using bisection method is 15. then % error isOption A:1Option B: 6.25 Option C: 6.67 Option D:10045.For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46.In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced toOption A:Row Echelon formOption B:Column Echelon formOption D:Augmented form47.Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written asOption A:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)		
Option A: 1 Option B: 6.25 Option C: 6.67 Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option C: Matrix Echelon form Option D: Column Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)	44.	
Option B: 6.25 Option C: 6.67 Option D:10045.For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46.In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced toOption B:Column Echelon formOption D:Column Echelon formOption D:Augmented form47.Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written asOption A:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)	Option A:	
Option C: 6.67 Option D:10045.For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option C: 1.5 Option D: 2.0 46.In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced toOption B:Column Echelon formOption D:Column Echelon formOption D:Augmented form0ption D:Augmented form0ption D:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)		6.25
Option D: 100 45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option B: Column Echelon form Option D: Augmented form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)		
45. For the given equation $x^2=2$. Calculate x_1 , using Newton Raphson Method. If initial guess is $x_0=1$ Option A: 1.05 Option B: 1.25 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option B: Column Echelon form Option C: Matrix Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)		
is $x_0=1$ Option A:1.05Option B:1.25Option C:1.5Option D:2.046.In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced toOption A:Row Echelon formOption B:Column Echelon formOption D:Augmented formOption D:Augmented form47.Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written asOption A:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)	option D.	
Option A: 1.05 Option B: 1.25 Option C: 1.5 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option B: Column Echelon form Option C: Matrix Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)	45.	
Option B: 1.25 Option C: 1.5 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option B: Column Echelon form Option C: Matrix Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)	Option A:	1.05
Option C: 1.5 Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option B: Column Echelon form Option C: Matrix Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)	-	1.25
Option D: 2.0 46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option B: Column Echelon form Option C: Matrix Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)	_	
46. In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to Option A: Row Echelon form Option B: Column Echelon form Option C: Matrix Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)		
The augmented matrix in Gauss Jordan method is reduced toOption A:Row Echelon formOption B:Column Echelon formOption C:Matrix Echelon formOption D:Augmented form47.Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written asOption A:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)	1	
Option A:Row Echelon formOption B:Column Echelon formOption C:Matrix Echelon formOption D:Augmented form47.Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written asOption A:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)	46.	In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices. The augmented matrix in Gauss Jordan method is reduced to
Option B: Column Echelon form Option C: Matrix Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)	Option A:	
Option C: Matrix Echelon form Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)		Column Echelon form
Option D: Augmented form 47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)		Matrix Echelon form
47. Algorithms for one-step techniques such as Euler's method are extremely simple to program. General form of all such one-step methods is written as Option A: New value = (old value x slope) + step size Option B: Old value = New value + (slope x step size) Option C: New value = old value + (slope x step size)		
program. General form of all such one-step methods is written asOption A:New value = (old value x slope) + step sizeOption B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)	1	
Option B:Old value = New value + (slope x step size)Option C:New value = old value + (slope x step size)	47.	program. General form of all such one-step methods is written as
Option C: New value = old value + (slope x step size)	Option A:	New value = (old value x slope) + step size
	Option B:	Old value = New value + (slope x step size)
Option D: New value = Old value + Error	Option C:	New value = old value + (slope x step size)
	Option D:	New value = Old value + Error

48.	The approximation of the derivative taken by the Crank-Nicolson scheme is the same as
10.	the of spatial derivative.
Option A:	second order forward difference approximation
Option B:	backward difference approximation
Option C:	forward difference approximation
Option D:	central difference approximation
*	
49.	Truncation error is difference between
Option A:	the exact solution of the partial differential equation and the discretized equations
Option B:	the exact partial differential equation and the discretized equations
Option C:	the exact solution and the numerical solution of the partial differential equations
Option D:	the exact partial differential equation and its solution
50.	A partial differential equation requires
Option A:	exactly one independent variable
Option B:	two or more independent variables
Option C:	more than one dependent variable
Option D:	equal number of dependent and independent variables
51.	What is the value of k to solve $du/dt = \frac{1}{2} u_{xx}$ by Bender Schmidt method with $h = 1$, if h &
	k are the increments of $x & t$ respectively
Option A:	1/2
Option B:	3/2
Option C:	1/4
Option D:	2/3
52.	The predictor-corrector method takes
Option A:	Current value into consideration
Option B:	Previous value into account
Option C:	Next value into account
Option D:	doesn't take any value for calculation
53.	The convergence of which of the following method is sensitive to starting value?
Option A:	Guass Siedel Method
Option B:	Newton Raphson Method
Option C:	Runge Kutta method
Option D:	Bisection method
54.	General form of second order partial differential equations is Au _{xx} +
1	$ P_{U} + C_{U} + D_{U} + F_{U} + F_{U} = 0$ The equation is said to be elliptic at a point (x y) in the plane
	Bu _{xy} +Cu _{yy} +Du _x +Eu _y +Fu = 0. The equation is said to be elliptic at a point (x,y) in the plane if
Option A:	
Option A: Option B:	if
-	if $B^2 - 4AC = 0$
Option B:	if $B^2 - 4AC = 0$ $B^2 - 4AC < 0$

55.	Errors may occur in performing numerical computation on the computer due to						
Option A:	Rounding errors						
Option B:	Power fluctuation						
Option C:	Operator fatigue						
Option D:	All of these						
56.	Which of the following is one dimensional wave equation?						
Option A:	$\partial^2 \mathbf{u} / \partial t^2 = \mathbf{C}$						
Option B:	$\partial^2 \mathbf{u} / \partial \mathbf{t}^2 = \mathbf{C} \partial \mathbf{u} / \partial \mathbf{x}$						
Option C:	$\partial^2 \mathbf{u} / \partial \mathbf{t}^2 = \mathbf{C}^2 \partial \mathbf{u} / \partial \mathbf{x}$						
Option D:	$\partial^2 \mathbf{u} / \partial \mathbf{t}^2 = \mathbf{C}^2 \partial^2 \mathbf{u} / \partial \mathbf{x}^2$						
57.	The results obtained by using Simpson's rule will be greater than those obtained by using						
	the trapezoidal rule						
Option A:	in all cases						
Option B:	provided the intervals are small						
Option C:	provided the boundary is concave towards the base line						
Option D:	provided the boundary is convex towards the base line.						
58.	Trapezoidal formula is also known as						
Option A:	Simpson's rule						
Option B:	Co-ordinate method						
Option C:	Prismoidal method						
Option D:	Average end area method						
59.	The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric						
	positive definite matrices because in this case						
Option A:	convergence is possible						
Option B:	error is less						
Option C:	solution is stable						
Option D:	solution is unstable						
60.	In Simpson's $3/8$ rule , $y(x)$ is polynomial of degree						
Option A:							
Option B:	2						
Option C:	3						
Option D:	4						

Descriptive Questions

1	Using Bisection method find the root of the equation $x^3-1.8x^2-10x+17=0$ that lies between the interval (1,2) at the end of the iterations n=5.
2	Solve the set of simultaneous equations using LU decomposition method 2x-y+z= -1 2y-z+u= 1 X+2z-u= -1

	X+y+2u=5	5									
	It is known	that the				creases as a	function o	f the time	it is		
	heat-treate										
	Fit a straig		these data	and use	the equatio	on to detern	nine the ten	sile streng	th at a		
	time of 45		1				1	1			
3	Time	10	15	20	25	40	50	55	60		
C I	Tensile	8	23	21	40	32	54	70	65		
	strengt										
	h										
	Given the	following	table for	x and y					_		
	x 1	1.0			1.20		.30				
4	y 1			1.072			.140				
	Find y' and	d y'' at a)	x = 1.05 b)x=1.25 a	nd c) x=1.:	50					
	A mass bal	ance for	a chemico	linacor	nletelymi	ved reactor	r can he w	itten as			
	A mass bai		a chichinea		/dt) = F -Q			itten as			
5	where V =	volume (14 m ³), c				ed rate (20	0 g/min), Q	= flow		
	rate (1 m^3)										
	the ODE u										
	Solve $\partial^2 u$		-		dary condi	tions u(0,t)	= 0 u(5,t)=	0 And with	initial		
	condition ι	u(x,0) = 2x									
6				,0)= 2(x-1							
	Take h= ¼	and k acc	ording to	Bendre-S	chmidt Sch	neme					
	Solve the s	system of	equation	ov Gauss	Seidel met	hod. corre	ct to three d	lecimal pla	ces.		
-	x + y + 54		equation	og Oddbo				eennar pra	••••		
7	27 x - 6 y										
	6 x + 15 y										
8	Find the re										
	The concer										
9	$\frac{dx}{dt} = 37.5 - 3.5 x$ at the initial time t=0,the salt concentration in the tank of 50 g/l. using										
,	Euler's method and step size of h=1.5 min; what is the salt concentration after 3 min?										
	Solve by T	II Deser	nonition 1	Matha d							
	Solve by LU Decomposition Method										
		11									
10	[25 5	1] 1									
10	[25 5	1									
10	$\begin{bmatrix} 25 & 5 \\ 64 & 8 \\ 144 & 12 \end{bmatrix}$	1 1									
10	25 5 64 8 144 12 Solve num	1 1 erically y									
	$\begin{bmatrix} 25 & 5 \\ 64 & 8 \\ 144 & 12 \end{bmatrix}$ Solve num For x = 0.2	1 1 erically y 2, 0.4 by I	mproved	Euler Me	thod.		agt Source	Mathed			
11	25 5 64 8 144 12 Solve num	1 1 erically y 2, 0.4 by I	mproved	Euler Me	thod.	a using Lea	ast Square]	Method.			
	$\begin{bmatrix} 25 & 5 \\ 64 & 8 \\ 144 & 12 \end{bmatrix}$ Solve num For x = 0.2	1 1 erically y 2, 0.4 by I	mproved	Euler Me for the fol	thod.	a using Lea	ast Square 1	Method.]		

	100012-5	.1 17	7.0	19.7	18.6		
	0						
	0	u1	u 2	u3	2	1.9	
	0	u4	u5	u6		21.0	
	0	u7	u8	u9	1	7.0	
	0						
	8.7		12.1	12.8	9.	0	
16	Show the progress o						
17	Solve the following $x + y + z = 7$, $x + 2y$		-	-		inatio	n method
18	Use Crank-Nicolson Given $u(x,0) = 0, u($	scheme to	solve, u_x	$u_x = u_t, 0 < 0$	< x < 1, h		
19	Solve $\int y dx$ using S x 0 0.1	0.2		0.3	0.4	0.4	
20				0.9776 ation <i>dy/</i>	0.86		0) = 1.0, take step size of
21		es the temp lue of a ₀ an		(°C) and 50	length o	f heate	ed rod. If length $l = a_0 +$
	<i>l</i> (mm) 800.3		800.6	800.7	800.9	801	
22	Consider a reaction A> B carried out in a batch reactor. The differential equation for species A is $\frac{dCA}{dt} = -k CA$ The initial condition is at t = 0, $C_A = 1 \text{ mol/m}^3$. The rate constant of the reaction is 1 s^{-1} . Using the Runge-Kutta 4 th order method, determine the concentration of A at 3 s.						ant of the reaction is $1s^{-1}$.
23	Friction factor in commercial pipe can be calculated using Colebrook equation. If roughness factor (ε) for carbon steel pipe is 0.0015 m for a pipe with ID 4 mm, using Newton's method calculate the friction factor (<i>f</i>) if the Reynolds number is 13743. Colebrook equation: $\frac{1}{\sqrt{f}} = -2.0 \log \left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}} \right)$						
24	distillation column s The composition of	hown in fig the feed st molar flow	gure. Dete tream and rates and	ermine m l the stre	olar flow ams D_1 ,	rates of B_1, D_2	barated in the sequence of of stream D_1 , B_1 , D_2 & B_2 . & B_2 is shown in figure. & B & D . The molar flow

Sample Questions

Chemical Engineering

Subject Name: Solid Fluid Mechanical Operations

Semester: IV

Multiple Choice Questions

	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks						
1.	In closed circuit grinding as compared to open circuit grinding, the						
Option A:	specific surface of product is more.						
Option B:	product has lesser size uniformity.						
Option C:	production rate at a given limiting size is lower.						
Option D:	operation is economical						
2.	The most suitable equipment for removing the fine dust particle (< 1 micron dia.) from air below its dew point will be a/an						
Option A:	bag filter						
Option B:	electrostatic precipitator						
Option C:	cyclone separator						
Option D:	wet scrubber						
3.	The capacity of a pneumatic conveying system depends upon the						
Option A:	bulk density of materials						
Option B:	pressure of the conveying air.						
Option C:	diameter of the conveying line.						
Option D:	all (a), (b) and (c).						
4.	Which of the following with respect to mixing is true?						
Option A:	It is used to distribute heat uniformly to all the components of the mixture						
Option B:	Mixing becomes difficult when one of the phases to be mixed is in minor quantity						
Option C:	Solid-solid mixing is more difficult than other phases						
Option D:	All of the mentioned						

5.	Which is the most suitable conveyor for transportation of sticky material?
Option A:	Apron conveyor
Option B:	Belt conveyor
Option C:	Screw conveyor
Option D:	Pneumatic conveyor
6.	Solid particles separation based on the difference in their flow velocities through fluids i termed as the
Option A:	Clarification
Option B:	Classification
Option C:	Elutriation
Option D:	Sedimentation
7.	What is the critical rotation speed in revolutions per second, for a ball mill of 1.2 m diameter charged with 70 mm diameter balls?
Option A:	0.5
Option B:	1.0
Option C:	2.76
Option D:	0.66
8.	Range of compressibility co-efficient of the commercial compressible cake obtained i filtration operation is
Option A:	0.01 to 0.1
Option B:	0.1 to 0.3
Option C:	0.2 to 0.8
Option D:	0.2 to 0.4
9.	Fluidization occurs when: Drag force by the upward moving gas
Option A:	Weight of the particles
Option B:	Weight of the fluid

Option C:	Volume of the bed
Option D:	Pressure drop across the bed
10.	In continuous filtration (at a constant pressure drop), filtrate flow rate varies inversely as the
Option A:	square root of the velocity.
Option B:	square of the viscosity.
Option C:	filtration time only.
Option D:	washing time only
11.	During the increase of velocity of fluid in the bed, how does the graph of pressure drop follows?
Option A:	Linear
Option B:	Exponential
Option C:	Non-linear
Option D:	Sinusoidal
12.	With an increase in drum speed in a rotary drum filter, the filtration rate
Option A:	increases
Option B:	increases linearly
Option C:	decreases
Option D:	is not affected
13.	Fluidization occurs when: Drag force by the upward moving gas
Option A:	Weight of the fluid
Option B:	Volume of the bed
Option C:	Weight of the particle
Option D:	Pressure drop across bed
14.	Which of the following is batch sedimentation equipment?
Option A:	Dust catcher
Option B:	Filter thickener

Option C:	Dry cyclone separator
Option D:	Rotary sprayer scrubber.
15.	How much wash water used when the cakes are washed with a pressure difference of 250 kN/m^2 for 10 minutes when the final rate of filtration is given as 2 × 10 ⁻⁵ m ³ /sec at 400 kN/m^2 .
Option A:	0.018
Option B:	0.0018
Option C:	0.019
Option D:	0.00019
16.	The shape of individual particles is expressed in the terms of
Option A:	Density
Option B:	Size
Option C:	Volume
Option D:	Sphericity
17.	Which of the following screens has the maximum capacity?
Option A:	Vibrating screen
Option B:	Shaking screen
Option C:	Trommels
Option D:	Grizzlies
18.	In froth floatation, chemical agent added to cause air adherence is called
Option A:	collector
Option B:	frother
Option C:	modifier
Option D:	activator
19.	Calculate the overflow ratio, if the mass fraction in feed is 0.635 and fraction in overflow is 0.945, while in underflow is 0.285?
Option A:	0.85

Option B:	0.66
Option C:	0.75
Option D:	0.50
20.	What is the device that rotates rapidly and uses centrifugal force to separate substances of different densities?
Option A:	Cyclone
Option B:	Floatation
Option C:	Impeller
Option D:	Centrifuge
21.	Which of the following screens has the maximum capacity?
Option A:	Grizzlies
Option B:	Trommels
Option C:	Shaking screens
Option D:	Vibrating screens
22.	In a ball mill, the volume occupied by the balls (when the mill is stopped) is about percent of the volume of the mill
Option A:	35
Option B:	50
Option C:	70
Option D:	85
23.	Out of the following size reduction equipments, the maximum feed size can be accepted by the
Option A:	Tube mill
Option B:	Ball mill
Option C:	Jaw crusher
Option D:	Jet pulveriser
24.	With increase in the capacity of screens, the screen effectiveness
∠7.	when mercase in the capacity of screens, the screen effectiveness

Option A:	Remain unchanged
Option B:	Increases
Option C:	Decreases
Option D:	Decreases exponentially
25.	Crushing efficiency is the ratio of the
Option A:	Surface energy created by crushing to the energy absorbed by the solid
Option B:	Energy absorbed by the solid to that fed to the machine
Option C:	Energy fed to the machine to the surface energy created by crushing
Option D:	Energy absorbed by the solid to the surface energy created by crushing
26.	In filtration, the use of filter aid helps in
Option A:	Reducing the filtration pressure
Option B:	Accelerating the rate of filtration
Option C:	Deplugging the filter medium
Option D:	Enhancing the cake porosity in case of a dense impermeable cake
27.	Which new term is utilized for measuring non spherical particles?
Option A:	Sphericity
Option B:	Volume displacement
Option C:	Geometry
Option D:	None of these
28.	Filtration capacity of a rotary drum vacuum filter depends upon
Option A:	Cake thickness
Option B:	Characteristics of the feed slurry
Option C:	Bothe A & B
Option D:	Neither A nor B
29.	The capacity of a pneumatic conveying system depends upon the

Option A:	Bulk density of material
Option B:	Pressure of the conveying air
Option C:	Diameter of the conveying line
Option D:	All of the above
30.	In continuous filtration (at a constant pressure drop), filtrate flow rate varies inversely as the
Option A:	Square root of the velocity
Option B:	Square root of the viscosity
Option C:	Filtration time only
Option D:	Washing time only

Descriptive Questions

1	Derive the expression for screen effectiveness for solid particles.								
2	In context solid storage derive the Jansen equation.								
3	If crushing rolls, 1 m in diameter, are set so that the crushing surfaces are 12.5 mm apart and the angle of nip is 31° , what is the maximum size of particle which should be fed to the rolls? If the actual capacity of the machine is 12 % of the theoretical, calculate the throughput in Kg/sec when running at 2.0 H _z if the working face of the roll is 0.4 m long and the bulk density of the feed is 2500 kg/m ³ .								
4	Write Short note on vibrati	ing scree	n						
5	Explain Positive pressure p	oneumati	c system	in detail	s.				
6	Explain construction and v	Explain construction and working of ball mill in details.							
7	Explain Batch sedimentation	Explain Batch sedimentation test in details.							
8	Explain with the help of neat sketch construction and working of plate and frame filter press.								
9	Write Short note on muller	Write Short note on muller mixer.							
10	Explain constant pressure	filtration	with ma	thematic	al expres	sion.			
11	Write short note on mixing								
12	Explain particulate and bu	bbling fl	uidizatio	n.					
13	Derive the expression to estimate the size of smallest particle that can be separated in Cyclone separator.								
14	A sample of pyrite was scr i) Calculate the me ii) Find specific su Mesh	ean surfa					vrite is 5.	0	
	Mass fraction retained	8/10	21.2	14/20	17.4	14		48/65	
		-					15.8		
	Aperture, mm	1.651	1.168	0.833	0.589	0.417	0.295	0.208	

15	Derive the basic filtration equation relating (- Δ P), V and T								
16	Write design equation for cyclone separator or derivation for smallest particle separation								
	in cyclone separator								
17	Write short note on Fabric Filter and Electrostatic precipitator.								
18	Derive the equation for calculating the area of the thickener								
19	Write a note on Energy for size reduction or laws for Crushing.								
20	Explain in details Rotary vacuum filter.								
21	Explain Kynch theory of sedimentation in detail								
22	Derive Janssen Equations								
23	Derive Screen Effectiveness								
24	Write short note on cyclone separator.								
25	Explain with the help of neat sketch construction and working of plate and frame filter press.								
26	Explain in brief Kynch theory of sedimentation.								
27	Write short note on Muller Mixer								
28	Discuss conditions for fluidization in details.								
29	Explain construction and working of Ball mill Calculate the minimum area and diameter of thickener with circular basin to treat 0.5								
30	m³/s of slurry having solid concentration 125 kg/m³ from the following data:Solid concentration1002003005006001000(Kg/m³)1409055201505Settling Velocity (μ m/1409055201505sec)1409055201505Masume Underflow concentration to be 1250kg/m³.								
31	Explain the degree of mixing and rate of mixing in case of mixing of dry solids.								
32	Ferric hydroxide is filtered at constant pressure in a plate and frame press having a total filter area of 2 m ² and frame thickness of 2.5 cm. After 6.5 hr of operation, the press is full and 1.37 m^3 of filtrate are collected per sq. m of filter area. It is decided to wash the cake with one third of the volume of the filtrate collected. How much time will be required to wash the cake, if the same pressure is applied.								
33	A filter press contains 24 frames each of 60 cm x 60 cm x 2.5 cm dimensions. In a filtration cycle, the frames are completely filled with cake in 2 hours. Washing of the cake is done at the same pressure as that of filtration and the volume of wash water is equal to 10% of the volume of filtrate per cycle. Calculate the washing time of filtration. If 0.05 m ³ of final cake is formed per m2 of the filter cloth.								
34	Derive the expression for screen effectiveness.								
35	A quartz mixture having analysis shown in table is screened through a standard 10 mesh screen. Calculate mass ratios of overflow and underflow of feed and overall effectiveness of screen								

Mesh	Dp mm	Mass retained in gms			
number		Feed	Overflow	Underflow	
4 .	4.699	0	0		
6 .	3.327	25	49.7	1814	
8	2.362	125	251.3	0	
10	1.651	320	294	58.5	
14 -	1.168	260	84	115.5	
20	0.833	155	15.4	75	
28	0.589	55	7	24	
35	0.417	20	from - from	9	
65-	0.208	20	00000	6	
Pan	1	20	-	12	

Sample Questions

Chemical Engineering

Subject Name: Chemical Engineering Thermodynamics II

Semester: IV

Multiple Choice Questions

	Choose the correct option for following questions. All the Questions are compulsory
	and carry equal marks
1.	Which of the following is an example of a non-ideal solution showing positive deviation?
Option A:	Acetone + Carbon disulphide
Option B:	Chlorobenzene + Bromobenzene
Option C:	Chloroform + Benzene
Option D:	Acetone + Aniline
2.	For a regular solution model what is the excess molar free energy dependent upon?
Option A:	Volume occupied by molecules
Option B:	Interaction of molecules
Option C:	Molecular size and intermolecular forces
Option D:	Enthalpy of formation of molecules
3.	How does the UNIQUAC model help?
Option A:	It helps to place calculations of activity coefficients on practical basis
Option B:	It helps to place calculations of activity coefficients on theoretical basis
Option C:	It helps to place calculations of activity coefficients from graph
Option D:	It helps to provide a easier way to place calculations
4.	In Margules equation, what is the one constant form equivalent to?
Option A:	Unsymmetrical activity coefficient curves
Option B:	Symmetrical activity coefficient curves
Option C:	Similar partial fugacity coefficients
Option D:	Dissimilar partial fugacity coefficients
5.	For an ideal solution the partial vapour pressure of a component in solution is equal to the
	mole fraction of that component times its vapour pressure. Is the
Option A:	Henry's Law
Option B:	Dalton's Law
Option C:	Charles Law
Option D:	Raoult's Law
6.	If standard free energy change is zero, then equilibrium constant(K)
Option A:	K = 0
Option B:	K =1
Option C:	K > 1
Option D:	K < 1

7	
7.	In a binary system at constant temperature and pressure, the equation used to test the
Option A:	thermodynamic consistency of VLE data is Lewis – Randall rule
Option B:	Henry's Law
Option C:	Gibbs – Duhem equation
Option D:	Gibbs – Helmholtz equation
8.	In a refrigeration cycle, the flow of refrigerant is controlled by
Option A:	Compressor
Option B:	Condenser
Option C: Option D:	Evaporator Expansion valve
Option D.	
9.	Decomposition of calcium carbonate (solid state) gives carbon dioxide (gas state) and calcium oxide (solid state). Find degree of freedom
Option A:	0
Option B:	1
Option C:	2
Option D:	3
10.	Addition of products to original reactant stream
Option A:	Decreases equilibrium conversion
Option B:	Increases equilibrium conversion
Option C:	Has no effect on equilibrium conversion
Option D:	Increases reaction temperature
11.	The ratio of fugacity to fugacity in the standard state is called
Option A:	Fugacity coefficient
Option B:	Activity coefficient
Option C:	Activity
Option D:	Chemical potential
12.	The constant boiling mixtures are called .
Option A:	Amalgams
Option B:	Alloys
Option C:	Azeotropes
Option D:	Colloids
13.	The excess volume and the volume change of mixing are .
Option A:	Equal
Option B:	Not equal
Option C:	Always negative
Option D:	Always positive
14.	Chemical potential is an property.
Option A:	Extensive
Option B:	Intensive
Option C:	Path
Option D:	Reference
15.	Free energy change at equilibrium is
Option A:	0

Option B:	<1
Option C:	>1
Option D:	1
16.	The equilibrium can be expected to shift in the exothermic direction if the
Option A:	Temperature is lowered
Option B:	Temperature is increased
Option C:	Temperature remains constant
Option D:	Temperature increased and then decreased
17.	In evaporation process of vapour compression refrigeration system
Option A:	Heat is rejected from refrigerant to surroundings
Option B:	Heat is rejected from surroundings to refrigerant
Option C:	Only pressure change takes place
Option D:	Only temperature change takes place
18.	For obtaining high COP, the pressure range of compressor should be
Option A:	High
Option B:	Low
Option C:	Optimum
Option D:	Any value
10	
19.	Which of the following is incorrect with reference to partial molar properties?
Option A:	They are intensive properties
Option B:	They are always positive
Option C:	They represent the contribution of individual components to the total solution property
Option D:	They vary with composition of the solution
20.	Which refrigerant is widely used in refrigeration facilities of food as cooling of fresh
20.	vegetables, dairy products, meat and fish and similar process industries?
Option A:	sulphur dioxide
Option B:	ethyl chloride
Option C:	Propane
Option D:	Ammonia
I	
21.	Raoult's law is valid when :
Option A:	both vapour and liquid are non-ideal
Option B:	both vapour and liquid are ideal
Option C:	vapour is ideal and liquid is non-ideal.
Option D:	vapour is non-ideal and liquid is ideal
1	
22.	A solution exhibiting positive deviation from ideality :
Option A:	Always forms a minimum boiling azeotrope
Option B:	Always forms a maximum boiling azeotrope
Option C:	Has a total pressure that is less than that predicted by Raoult's law
Option D:	When formed from its constituents there is an absorption of heat.
23.	Which one of the following is true for the excess property M ^E ?

Option A:	$M^{E} = M - M^{ig}$
Option B:	$\mathbf{M}^{E} = \mathbf{M} \textbf{-} \boldsymbol{\Sigma} \mathbf{x}_{i} \mathbf{M}_{i}$
Option C:	$M^E = \Delta M$
Option D:	$\mathbf{M}^{\mathrm{E}} = \mathbf{M} \cdot \mathbf{M}^{\mathrm{id}}$
24.	Chemical potential is an property.
Option A: Option B:	Intensive
Option D: Option C:	Path
Option D:	Reference
25.	The mole fraction of NH ₃ in the reaction $N_2 + 3H_2 \rightarrow 2NH_3$ if initial moles of nitrogen if 20 moles and hydrogen is 60 moles and conversion is 80% what is the mole fraction of NH ₃
Option A:	0.020408
Option B:	0.244898
Option C:	0.734694
Option D:	0.562
26.	If the reaction proceeds with an increase in the number of moles, presence of inerts in the system will
Option A:	decrease the equilibrium yield
Option B:	increase the equilibrium yield
Option C:	no change in equilibrium yield
Option D:	can not predict
27. Option A:	How is the COP of a refrigerator calculated $ \begin{array}{c} & T1 \\ & Q1 \\ & W & Ref. \\ & Q2 \\ & T2 \\ \end{array} $ Refrigerator COP $ [COP]_{Ref.} = Q1 / W$
Option A: Option B:	$[COP]_{Ref.} = Q2 / W$
Option D: Option C:	$[COP]_{Ref.} = W / Q1$
.	

Option D:	$[COP]_{Ref.} = W / Q2$
28.	How is the condensation process in vapour compression refrigeration cycle carried out?
Option A:	at constant volume
Option B:	at constant pressure
Option C:	at constant enthalpy
Option D:	at constant entropy
29.	The necessary and sufficient condition for equilibrium between two phases is :
Option A:	Concentration of each component should be same in the two phases
Option B:	The temperature of each phase should be the same
Option C:	The pressure should be the same in the two phases
Option D:	The chemical potential of each component should be the same in the two phases.
30.	Encer group of active rest
	Freon group of refrigerants are
Option A:	Inflammable
Option B:	Toxic
Option C:	Non-inflammable and toxic
Option D:	Nontoxic and non-inflammable

Descriptive Questions

1	Show that in a binary solution , if the molar volume of one of the components increases
	with concentration ,the molar volume of the other must decrease.
2	State Raoult's law .Show that it is simplified form of Lewis Randall Rule
3	Explain effect of temperature on equilibrium constant
4	Explain Concept of Phase Equilibria
5	Explain Equilibrium conversion
6	Explain Chemical Potential
7	Explain Vapour absorption refrigeration system with principle
	Define excess property and Property change of Mixing and show that the property change
8	of mixing and excess properties are identical.
9	A vapour compression Refrigerator employing Freon-12 works between pressure limits of
	182.5 kPa & 960.6 kPa. The heat transfer from the condenser is found to be 72KJ/min and
	the heat absorbed in the evaporator is 3200 KJ/hr. The refrigerant Vapor leaves the
	evaporator in the saturated state. The enthalpy of saturated Vapor at 182.5 kPa =
	181.2kJ/Kg & the enthalpy of saturated liquid at 960.6 kPa = 76.2 KJ/Kg.
	Calculate:
	a] The refrigerant flow rate through the system in kg/min
	b] The energy input to the compressor

	c] The COP of the system
10	The NH3 synthesis reaction: $N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$ is carried out under different sets of conditions described below. Calculate equilibrium conversion and fraction of nitrogen reacted if initial mixture consists of 1 mol N ₂ , 5 mol H ₂ and 0.3 mol NH ₃ at 800K and 100 bar. Data: K =1.1067 x 10 ⁻⁵ at 800 K
11	The vapour pressures of aceton (1) and acetonitrile (2) can be evaluated by the Antoin equations. $\ln p_1^s = 14.5463 - \frac{2940.46}{T-35.93}$ $\ln p_2^s = 14.2724 - \frac{2945.47}{T-49.15}$ where T is in K and P is in kPa. Assuming that the solution formed by these are ideal, calculate a) x_1 and y_1 at 327 K and 65 kPa b) T and y_1 at 65 kPa and $x_1 = 0.4$
12	The following simultaneous reaction take place in a gas mixture $A+B\rightarrow C+D$ $K_1=0.1429$ $A+C \rightarrow D+E$ $K_2 = 2$ Calculate the equilibrium composition at 1 bar if an equimolar mixture of A and B is fed to a reactor to produce D. Assume that the reaction mixture behaves like an ideal gas.
13	Explain vapour absorption cycle with its Principle.
14	Explain the Tangent Intercept method for determination of partial molar Properties.
15	The vapour pressures of aceton(1) and acetonitrile(2) can be evaluated by the Antoin equations. $\ln p_{1}^{s} = 14.5463 - \frac{2940.46}{T-35.93}$ $\ln p_{2}^{s} = 14.2724 - \frac{2945.47}{T-49.15}$ where T is in K and P is in kPa. Assuming that the solution formed by these are ideal, calculate a) x_{1} and y_{1} at 327 K and 65 kPa b) T and y_{1} at 65 kPa and $x_{1} = 0.4$
16	A gaseous mixture containing 30% CO, 50%H ₂ and rest inert gas is sent to a reaction chamber for methanol synthesis. The following reaction occurs at 635 K and 310 bar. $CO(g) + 2 H_2(g) \rightarrow CH_3OH(g)$

	1
	Assuming that the gas mixture behaves as an ideal solution. Calculate the percentage conversion of CO. given that $Kf = 5*10^{(-5)}$ and $K\phi = 0.35$
17	Explain with diagram Vapour Absorption refrigeration cycle.
18	Derive the relationship between mole fraction of species in multiple reactions and extent of reactions.
19	Explain the effect of temperature and pressure on Equilibrium constant
20	Show that the rate of change of chemical potential of a substance with pressure is equal to its partial molar volume in the solution.
21	With the help of T-S diagram Deduce the expressions for the COP of the vapour compression cycles.
22	The molar enthalpy of a binary solution at constant T and P is given by the relation $H=500 x_1+1000 x_2 + x_1 x_2 (50 x_1+40 x_2)$ where H is in J/mol. Obtain expression for H ₁ and H ₂ in terms of x ₁ and the numerical values of the pure component enthalpies H ₁ and H ₂ . Also determine the partial molar enthalpies of component 1 and 2 at infinite dilution.
23	Show that $ln\gamma = \frac{\mu_i}{RT} \left[\frac{\partial}{\partial n_i} \left(\frac{nG^E}{RT} \right) \right]_{\text{T, P, nj}}$
24	The azeotrope of the ethanol benzene system has a composition of 44.8% (mol) ethanol with a boiling point of 341.4 K at 101.3 kPa. At this temperature the vapour pressure of benzene is 68.9 kPa and the vapour pressure of ethanol is 67.4 kPa. What are the activity coefficients in a solution containing 10% alcohol.
25	Calculate maximum conversion of ethylene to ethyl alcohol. The vapour phase hydration of ethylene to alcohol is carried out at 523 K and 34 bar. The reaction occurring is $C_2H_{4(g)} + H_2O_{(g)} \rightarrow C_2H_5OH_{(g)}$ The variation of equilibrium constant with temperature is given by the relation $lnK = \frac{4760}{T} - 1.558 lnT + 2.22 \times 10^{-3}T - 0.29 \times 10^{-6}T^2 - 5.56$ The steam to ethylene ratio in the initial mixture is 5.
26	Expalin with diagram Vapor Compression Refrigeration cycle
27	Define extent of reaction and The following gas phase reactions occur in a mixture initially containing 3 mol ethylene and 2 mol oxygen . Derive expression for mole fractions in terms of extent of reaction. $CH_4 + \frac{1}{2} O2 \rightarrow (CH_2)_2 O$ $C_2H_4 + 3O2 \rightarrow 2 CO_2 + 2H_2O$
28	Explain Concept of Phase equilibria and prove that chemical potential is criteria of phase equilibria.

29	A refrigerating unit using Freon -12 as the working fluid operates between 18°C and 37°C.
	The rate of circulation of refrigerant is 2 kg/min and the efficiency of the compressor is
	0.85. Using the following data of enthalpy, calculate
	i) The capacity of the plant in tons of refrigeration
	ii) The power required to run the unit
	iii) The COP of the unit
	Data : The enthalpies of R-12 liquid at 37°C is 455 kJ/kg. The enthalpies of R-12 entering
	and leaving the compressor are 563.15 kJ/kg and 595.4 kJ/kg respectively.
30	For a system excess free energy is given by the relation
	$\frac{G^{E}}{RT} = (1.42 x_{1} + 0.59 x_{2}) x_{1} x_{2}$
	Find out the expression for ln_{Γ_1} and ln_{Γ_2} and Do the system satisfy Gibbs Duhem
	equation ?