Subject: Mass Transfer Operation-II

Course Code: CHC601

Q1.	In minimum boiling azeotrope, total pressure curve
Option A:	passes through a maximum value
Option B:	passes through a minimum value
Option C:	continuously increases
Option D:	continuously decreases
Q2.	Flash vaporization is a
Option A:	Equilibrium distillation
Option B:	Differential distillation
Option C:	Steam distillation
Option D:	Azeotropic distillation
Q3.	For effective separation with liquid-liquid extraction, the selectivity should be
Option A:	Less than 1
Option B:	Equal to 1
Option C:	Greater than 1
Option D:	Equal to zero
Q4.	On the binodal solubility curve, the point where A-rich and B-rich curves merge is called
	as
Option A:	Tripple point
Option B:	Boiling point
Option C:	Dew point
Option D:	Plait point
Q.5.	Which of the following is not a step in the process of distillation?
Option A:	Vaporization

Option B:	Condensation
Option C:	Heating
Option D:	Precipitation
Q6.	The slope of a feed line for a saturated vapor feed is
Option A:	0
Option B:	1
Option C:	Infinity
Option D:	>1
Q7	In chemical adsorption, how many layers are adsorbed
Option A:	One
Option B:	Two
Option C:	Many
Option D:	Zero
Q8	In adsorption of oxalic acid on activated charcoal, the activated charcoal is known as
Option A:	Adsorbent
Option B:	Absorbate
Option C:	Adsorber
Option D:	Absorber
Q9.	Crystallization is based on the
Option A:	Difference in melting point
Option B:	Difference in boiling point
Option C:	Difference in pressure
Option D:	Difference in solubility
Q10.	The solvent rich phase in liquid-liquid extraction is
Option A:	Distillate
Option B:	Residue
Option C:	Extract

Option D:	Raffinate
011	In distillation where g is defined as the moles of liquid flow in the stripping section per
	mole of feed introduced, for saturated liquid feed
Option A:	q > 1
Option B:	q < 1
Option C:	q = 1
Option D:	q = 0
Q12	Fenske equation determines the
Option A:	maximum number of ideal plates
Option B:	height of the distillation column
Option C:	minimum number of theoretical plates.
Option D:	optimum reflux ratio.
Q13	In a counter-current extractor, as the axial mixing increases, the extraction efficiency
Option A:	increases
Option B:	decreases
Option C:	remains unchanged
Option D:	depends on the pressure of the system
Q14.	In the leaching operation, the exhausted solids phase is called as-
Option A:	The underflow
Option B:	The overflow.
Option C:	The extract.
Option D:	The raffinate.
Q15.	In distillation, overhead product contains
Option A:	only one component
Option B:	two components
Option C:	any number of components
Option D:	only saturated liquid
Q16.	is the temperature at which a gas-vapor mixture becomes saturated, when cooled at
	constant total pressure out of contact with a liquid.
Option A:	Dew point
Option B:	
Option C:	Dry bulb temperature
Option D:	Wel build temperature
Q1/	raffinate phase is called as
Option A:	The distribution coefficient.
Option B:	The separation factor
Option C:	The selectivity.
Option D:	The relative volatility.
Q18	A minimum boiling azeotrope is formed due to
Option A:	Ideal behavior
Option B:	Excessive positive deviations from ideality.
Option C:	Excessive negative deviations from ideality.

Q19. The simple distillation is also called as- Option R: Flash distillation. Option D: Continuous rectification. Option D: Continuous rectification. Q20. In a flash distillation operation, 73 % of the feed solution gets vaporized. The slope of the operating line in this case is- Qption A: -0.63 Option B: 0.63 Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option C: Both selectivity Option D: -0.63 Option C: Both selectivity and nor Distribution coefficient Option C: Both selectivity and nor Distribution coefficient Option C: In triangular co-ordinates, the ternary composition point falls Option C: in the corrers Option C: in sides Option C: inside Option A: The length of the to line is infinite. Option C: The length of the to line is secro. Q23. At the plait point on the binodal solubility curve-
Option A: Equilibrium distillation. Option D: Offerential distillation. Option D: Continuous rectification. Q20. In a flash distillation operation, 73 % of the feed solution gets vaporized. The slope of the operating line in this case is- Option A: 0.63 Option D: 0.63 Option D: 0.37 Option A: Selectivity Option A: Selectivity Option D: 0.37 Option A: Selectivity and nor Distribution coefficient Option D: In triangular co-ordinates, the ternary composition point falls of the triangle. Option B: In triangular co-ordinates, the ternary composition point falls of the triangle. Option B: In triangular co-ordinates, the ternary composition point falls of the triangle. Option D: In triangular co-ordinates, the ternary composition point falls of the triangle. Option D: In the deave Q23. At the plait point on the binodal solubility curve- Option C: In the tabove Q24. The physical adsorption Option C: The tis line is infinite. Option C.
Option B: Flash distillation. Option D: Continuous rectification. Q20. In a flash distillation operation, 73 % of the feed solution gets vaporized. The slope of the operating line in this case is- Option A: -0.63 Option D: 0.37 Option D: 0.37 Option B: Description Q21. The solvent in liquid-liquid extraction should haveless than one. Option A: -0.63 Option B: Distribution coefficient Option B: Distribution coefficient Option D: Both selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Option C: In triangular co-ordinates, the ternary composition point falls of the triangle. Option D: In the sides Option D: of the above Option D: In the cline is infinite. Option C: Distribution coefficient Option C: Inside Option D: Option The tength of the te line is zero. Option B: The tength of the te line is zero. Option D: Option D: The physical adsorption </td
Option C: Differential distillation. Option D: Continuous rectification. Q20. In a flash distillation operation, 73 % of the feed solution gets vaporized. The slope of the operating line in this case is- Option A: -0.63 Option B: 0.63 Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option B: Distribution coefficient Option C: Both selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Q21. In triangular co-ordinates, the ternary composition point falls Option B: on the sides Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option B: net is infinite. Option B: The ting th of the tie line is stratical. Option C: The length of the tie line is stratical. Option B: The teight of the tie line is zero. Q24. The physical adsorption Option B: Irvever
Option D: Continuous rectification. Q20. In a flash distillation operation, 73 % of the feed solution gets vaporized. The slope of the operating line in this case is- Option A: -0.63 Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option A: Selectivity Q10 no B: Distribution coefficient Option D: Selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Option C: Both selectivity and nor Distribution coefficient Option B: In triangular co-ordinates, the ternary composition point falls Option A: in the corners Option B: on the sides Option C: inside Option A: The length of the tic line is infinite. Option B: The tic line is vertical. Option D: Potion B: Option C: The length of the tic line is izero. Q24. The physical adsorption Option D: The tic line is descret. Option D: The tic line is descret. Q24.
Q20. In a flash distillation operation, 73 % of the feed solution gets vaporized. The slope of the operating line in this case is- Option A: -0.63 Option D: 0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option B: 0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option B: Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Option B: on the sides Option D: of the triangular co-ordinates, the ternary composition point falls Option A: in the corners Option D: on the sides Option D: note sides Option C: inside Option A: The length of the tic line is infinite. Option D: The tic line is vertical. Option C: The tic line is sero. Q24. The physical adsorption Option C: The tic line is ore called as Option D: Complicated adsorption
operating line in this case is- Option A: -0.63 Option B: 0.63 Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option B: Distribution coefficient Option C: Both selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls Option B: on the sides Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option C: The length of the tile line is infinite. Option D: none of the above Option D: The length of the tile line is zero. Q24. The physical adsorption is also called as Option C: The tile line is also called as Option D: Complicated adsorption Option A: Activated
Option A: -0.63 Option D: 0.37 Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option A: Selectivity Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option A: Selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Q10. Neither selectivity and nor Distribution coefficient Q21. In triangular co-ordinates, the ternary composition point falls of the triangle. Option D: Neither selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Option B: on the sides Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option B: The tig in is infinite. Option D: The tig in is is vertical. Option D: The tig is extractal. Option D: The tig is call aborption is also called as Option A: Activated adsorption Option B: Inreversible adsorp
Option B: 0.63 Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option A: Selectivity Option D: Neither solvent in liquid-liquid extraction should haveless than one. Option A: Selectivity and nor Distribution coefficient Option D: Neither solvent in liquid-liquid extraction should haveless than one. Option D: Neither solvent in liquid-liquid extraction should haveless than one. Option D: Neither solvent in and or Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Option A: in the corners Option D: none of the above Q23. At the plati point on the binodal solubility curve- Option B: The tie line is vertical. Option D: The tie line is horizontal. Option D: The length of the tie line is zero. Q24. The physical adsorption Option D: Complicated adsorption Option A: Activated adsorption Option D: Complicated adsorption Option A: Nucleation Option A: Nu
Option C: 0.37 Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option A: Selectivity Option D: Neither selectivity and nor Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Qption A: in the corners Option B: on the sides Option C: inside Option A: none of the above Q23. At the plait point on the binodal solubility curve- Option B: The tig length of the tig line is infinite. Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option B: The tig line is vertical. Option D: The length of the tig line is zero. Q24. The physical adsorption is also called as Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Q25. The following is one of the basic steps in crystallization Option D:
Option D: -0.37 Q21. The solvent in liquid-liquid extraction should haveless than one. Option A: Selectivity Option D: Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Option A: in the corners Option C: Option D: none of the above Q23. Q23. At the plait point on the binodal solubility curve- Option A: Option D: none of the above Q23. Q23. At the plait point on the binodal solubility curve- Option D: Option D: none of the above Q23. Q23. At the plait point on the binodal solubility curve- Option A: Option D: The toe line is is viricatal. Option D: Option D: The tig line is horizontal. Option A: Option A: Activated adsorption is also called as Option A: Activated adsorption Option C: Q24. The physical adsorption Option D: Complicated adsorption Option D: Complicated adsorption
Q21. The solvent in liquid-liquid extraction should haveless than one. Option A: Selectivity Option B: Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Option D: Neither selectivity and nor Distribution coefficient Q22. Option B: of the triangular co-ordinates, the ternary composition point falls of the triangle. Option D: on the sides Option B: of the triangle. Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option A: The length of the tie line is infinite. Option D: Option B: The tie line is horizontal. Option D: The length of the tie line is zero. Q24. Q24. The physical adsorption is also called as Option A: Activated adsorption Option B: Irreversible adsorption Option C: Option B: Irreversible adsorption Option C: Van der Waals adsorption Option C: Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Option D:<
Option A: Selectivity Option B: Distribution coefficient Option D: Both selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Option A: in the corners Option D: not he sides Option D: note of the above Q23. At the plait point on the binodal solubility curve- Option A: The length of the tie line is infinite. Option B: The tie line is vertical. Option C: The length of the tie line is zero. Q24. The physical adsorption is also called as Option B: Irreversible adsorption Option B: Irreversible adsorption Option B: Irreversible adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option B: Irreversible adsorption Option A: Activated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option B: Mixing Option B: <td< td=""></td<>
Option B: Distribution coefficient Option D: Neither selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Option A: in the corners Option D: noe of the above Q23. At the plait point on the binodal solubility curve- Option D: noe of the above Q23. At the plait point on the binodal solubility curve- Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option A: The length of the tie line is infinite. Option D: The tie line is vertical. Option D: The tie line is vertical. Option D: The length of the tie line is zero. Q24. The physical adsorption is also called as Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Option B: Irreversible adsorption Option A: Nucleation Option C: Van der Waals adsorption Option D: Complicated adsorption Option D: Complicate
Option C: Both selectivity and nor Distribution coefficient Option C: Both selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Option A: in the corners Option D: not esides Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option B: The length of the tie line is infinite. Option D: The length of the tie line is infinite. Option D: The tie line is vertical. Option D: The tie line is portical. Option D: The length of the tie line is zero. Q24. The physical adsorption is also called as Option D: Retivate adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Retivate adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Sedimentation Q25. The following is one of t
Option D: Neither selectivity and nor Distribution coefficient Q22. In triangular co-ordinates, the ternary composition point falls of the triangle. Option A: in the corners Option D: of the triangle. Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option A: The length of the tic line is infinite. Q100 C: The tength of the tic line is infinite. Option D: The tight of the tic line is zero. Q24. The tight of the tic line is zero. Q24. The physical adsorption is also called as Option D: Option D: Option D: The tight of the tight on the basic steps in crystallization Option D: Option C: Option D: The following is one of the basic steps in crystallization Option D: Option D: Option D: Complicated adsorption Q25. The following is one of the basic steps in crystallization Option A: Nucleation Q26. ML's law of crystals growth states that Option D: Sedimentation Q26. ML's law of crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same s
Option D: In triangular co-ordinates, the ternary composition point falls
Option A: in the corners Option B: on the sides Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option A: The length of the tie line is infinite. Option D: none of the above Q24. The length of the tie line is zero. Q24. The physical adsorption is also called as Option A: Activated adsorption Q24. The physical adsorption Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Sedimentation Option D: Sedimentation Option C: Filtration Option D: Sedimentation Q26. $\Delta L's$ law of crystals growth states that Option D: All geometri
Option B: on the sides Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option A: The length of the tie line is infinite. Option B: The tie line is horizontal. Option A: The length of the tie line is zero. Q24. The physical adsorption is also called as Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option B: Irreversible adsorption Option D: Complicated adsorption Q25. The following is one of the basic steps in crystallization Option B: Mixing Option C: Filtration Option C: Filtration Option D: Sedimentation Q26. AL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute gr
Option C: inside Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option A: The length of the tie line is infinite. Option B: The tie line is vertical. Option D: The tie line is horizontal. Option D: The tie line is desorption is also called as Option A: Activated adsorption Q24. The physical adsorption Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option A: Nucleation Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Q25. The following is one of the basic steps in crystallization Option B: Mixing Option D: Sedimentation Q26. AL's law of crystals growth states that Option B: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute g
Option D: none of the above Q23. At the plait point on the binodal solubility curve- Option A: The length of the tie line is infinite. Option B: The tie line is vertical. Option D: The length of the tie line is zero. Q24. The physical adsorption is also called as Option B: Ireversible adsorption Option B: Ireversible adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option B: Irreversible adsorption Option A: Nucleation Option B: Mixing Option D: Filtration Option D: Sedimentation Q26. AL's law of crystals growth states that Option B: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: A
Q23. At the plait point on the binodal solubility curve- Option A: The length of the tie line is infinite. Option B: The tie line is horizontal. Option D: The length of the tie line is zero. Q24. The physical adsorption is also called as Option A: Activated adsorption Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option A: Nucleation Option A: Nucleation Option A: Nucleation Option B: Mixing Option C: Filtration Option D: Sedimentation Q26. AL's law of crystals growth states that Option B: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option C: Filtration Option A: All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically dissimilar cry
Option A:The length of the tile line is infinite.Option B:The tile line is vertical.Option C:The tile line is horizontal.Option D:The length of the tile line is zero.Q24.The physical adsorption is also called asOption A:Activated adsorptionOption B:Irreversible adsorptionOption D:Complicated adsorptionOption D:Complicated adsorptionOption C:Van der Waals adsorptionOption D:Complicated adsorptionOption D:Complicated adsorptionOption D:Complicated adsorptionOption A:NucleationOption B:MixingOption B:MixingOption C:FiltrationOption D:SedimentationQ26. $\Delta L's$ law of crystals growth states thatOption A:All geometrically similar crystals of the same solute grow at the same rate in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different sol
Option B:The tie line is vertical.Option C:The length of the tie line is zero.Q24.The physical adsorption is also called asOption A:Activated adsorptionOption B:Irreversible adsorptionOption D:Complicated adsorptionOption D:Complicated adsorptionOption D:Complicated adsorptionOption A:Activated adsorptionOption B:Irreversible adsorptionOption C:Van der Waals adsorptionOption D:Complicated adsorptionOption A:NucleationOption B:MixingOption C:FiltrationOption D:SedimentationOption D:SedimentationOption A:All geometrically similar crystals of the same solute grow at the same rate in the same solution.Option B:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.
Option C: The tie line is horizontal. Option D: The length of the tie line is zero. Q24. The physical adsorption is also called as Option A: Activated adsorption Option B: Irreversible adsorption Option D: Van der Waals adsorption Option D: Complicated adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Q25. The following is one of the basic steps in crystallization Option B: Mixing Option C: Filtration Option D: Sedimentation Q26. AL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: <
Option D: The length of the tie line is zero. Q24. The physical adsorption is also called as Option A: Activated adsorption Option B: Irreversible adsorption Option D: Complicated adsorption Option D: Complicated adsorption Option D: Complicated adsorption Q25. The following is one of the basic steps in crystallization Option A: Nucleation Option D: Edimentation Option C: Filtration Option D: Sedimentation Q26. AL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different
Q24. The physical adsorption is also called as Option A: Activated adsorption Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Q25. The following is one of the basic steps in crystallization Option A: Nucleation Option B: Mixing Option C: Filtration Option D: Sedimentation Q26. ΔL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution.
Option A: Activated adsorption Option B: Irreversible adsorption Option C: Van der Waals adsorption Option D: Complicated adsorption Q25. The following is one of the basic steps in crystallization Option A: Nucleation Option B: Mixing Option D: Sedimentation Option D: Sedimentation Q26. ΔL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same
Option B:Irreversible adsorptionOption C:Van der Waals adsorptionOption D:Complicated adsorptionQ25.The following is one of the basic steps in crystallizationOption A:NucleationOption B:MixingOption C:FiltrationOption D:SedimentationQ26. $\Delta L's$ law of crystals growth states thatOption A:All geometrically similar crystals of the same solute grow at the same rate in the same solution.Option C:FiltrationOption B:All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution.Option C:All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.
Option C:Van der Waals adsorptionOption D:Complicated adsorptionQ25.The following is one of the basic steps in crystallizationOption A:NucleationOption B:MixingOption C:FiltrationOption D:SedimentationQ26. $\Delta L's$ law of crystals growth states thatOption B:All geometrically similar crystals of the same solute grow at the same rate in the same solution.Option C:FiltrationOption A:All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.
Option D:Complicated adsorptionQ25.The following is one of the basic steps in crystallizationOption A:NucleationOption B:MixingOption C:FiltrationOption D:SedimentationQ26. $\Delta L's$ law of crystals growth states thatOption A:All geometrically similar crystals of the same solute grow at the same rate in the same solution.Option B:All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution.Option C:All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.
Q25. The following is one of the basic steps in crystallization Option A: Nucleation Option B: Mixing Option C: Filtration Option D: Sedimentation Q26. ΔL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution.
Option A: Nucleation Option B: Mixing Option C: Filtration Option D: Sedimentation Q26. ΔL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution.
Option B: Mixing Option C: Filtration Option D: Sedimentation Q26. ΔL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. O27 The most common operation used for dehumidification of air and gases is
Option C: Filtration Option D: Sedimentation Q26. ΔL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. O27 The most common operation used for dehumidification of air and gases is
Option D: Sedimentation Q26. ΔL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. O27 The most common operation used for dehumidification of air and gases is
 Q26. ΔL's law of crystals growth states that Option A: All geometrically similar crystals of the same solute grow at the same rate in the same solution. Option B: All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution. Option C: All geometrically similar crystals of the same solute grow at the different rates in the same solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution.
Option A:All geometrically similar crystals of the same solute grow at the same rate in the same solution.Option B:All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution.Option C:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.O27The most common operation used for dehumidification of air and gases is
Option B:All geometrically dissimilar crystals of the same solute grow at the same rate in the same solution.Option C:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.O27The most common operation used for dehumidification of air and gases is
Option C:All geometrically similar crystals of the same solute grow at the different rates in the same solution.Option D:All geometrically similar crystals of the same solute grow at the same rate in different solution.O27The most common operation used for dehumidification of air and gases is
Option D: All geometrically similar crystals of the same solute grow at the same rate in different solution. O27 The most common operation used for dehumidification of air and gases is
O27 The most common operation used for dehumidification of air and gases is
+ OZI = 1 The HION COMPANIES OF USED TO COMPANIES OF USED TO A COMPANIES IN
Ontion A: Distillation
Ontion B: Leaching
Ontion C: Crystallization
Option D: Adsorption

Q28	The chemical adsorption is also called as-
Option A:	Reversible adsorption
Option B:	Van der Waals adsorption
Option C:	Complicated adsorption.
Option D:	Activated adsorption
Q29	What is the membrane that selectively allows certain species to pass through is
Option A:	Permeable membrane
Option B:	Semi-permeable membrane
Option C:	Impermeable membrane
Option D:	membrane
Q30	The amount of pressure to be applied in RO system depends upon
Option A:	Oraganic content
Option B:	Bacteria
Option C:	Salt concentration
Option D:	Membrane strength

Subjective Question Bank-MTO-II

1	Elaborate choice of solvent for Liquid-Liquid extraction operation.
2	Carbon disulphide (CS ₂) is used to extract iodine from its aqueous solution. The distribution of iodine between Carbon disulphide (CS ₂) and Water at equilibrium is given by, $Y=550.X$. Calculate the concentration of iodine in aqueous phase of 1 liter of water is stirred with 50 ml of Carbon disulphide (CS ₂) for two stage extraction operation.
3	Write down material balance for a single stage leaching operation.
4	Explain Basket extractor with suitable diagram.
5	Differentiate between Physical Adsorption and Chemisorption.
6	Write a note on Ion Exchange with principle.
7	Perform material balance for single stage cross current L-L extraction for insoluble solvent? Explain how to calculate theoretical stages by graphical method. Consider pure solve stream.
8	Explain in detail Oslo Cooling crystallizer with diagram.
9	A hot solution containing 2000 kg of MgSo ₄ and water at 330K, with concentration of 30 wt % MgSo ₄ is cooled to 293K and MgSo ₄ .7H ₂ O crystals are removed. The solubility of at 293K is 35.5kg MgSo ₄ per 100 kg water. Calculate the yield of crystals. Assume that no water is evaporated. (At. Wt. Mg = 24, O = 16, H = 1)
10	Explain in detail principle of Ultrafiltration.
11	Write a note on need of membrane separation and its advantages.
12	Explain steam distillation in detail
13	Derive operating line equation of feed line with suitable diagram.
14	A mixture of Benzene and Toluene containing 40 mole % benzene is to be separated to give a product of 90 mole % of benzene at a top and bottom product with not more than 10 mole % benzene. Calculate the number of theoretical plates required at total reflux.

	Also calculate minimum reflux ratio, if feed is liquid at its bubble point.
15	Discuss various methods of creating supersaturation during crystallization process
16	Explain fractional distillation with suitable diagram. Also Explain concept of q line for various feed conditions.
17	1000 kgmoles/hr of a binary mixture contains 40 mole% light component is fed to a distillation column.The output concentrations are xD=0.92 & xW=0.07.The feed is saturated vapor. Reflux ratio=3 & relative volatility 2.1. Find the no.of theoretical plates Explain: Describe Swenson walker crystalliser
10	Evaluin brook through ourse for adaption in fixed had Derive equation for length of
19	unused bed (LUB).
20	Derive the equation for the operating line for flash distillation and find its intersection point with the diagonal line of the x-y plot.
21	A solution containing 5 % acetaldehyde and 95 % Toluene is to be extracted with water in a three-stage cross current unit to extract acetaldehyde. Toluene and water are essentially insoluble. If 25 kg of water each time are used per 100 kg of feed, calculate the amount of acetaldehyde extracted and final concentration of the exit solution. The equilibrium relationship is Y=2.2X. in this case X is kg of acetaldehyde/kg of Toluene and Y is kg of acetaldehyde/kg of water
22	Differentiate between Physical and Chemical Adsorption
23	Derive the operating line equation for flash Distillation
24	A feed containing 75 mole percent of A and remaining B is to be distilled in a column. The distillate contains 98 percent A and the bottom contains 1 percent A. The feed is cold and for each mole of feed, 0.3 moles of vapour is condensed on the feed plate. The reflux ratio is 1.28 and the reflux is at its bubble point. Average relative volatility is $\alpha_{AB} = 2.5$.
	Calculate 1. the minimum reflux ratio
	the reflux is in equilibrium with the distillate vapour.
25	A 200 cm3 portion of an aqueous solution containing 0.05 mole of a certain solute is extracted twice with the 25 cm3 of ether Calculate
26	A batch of crude pentane containing 15 mole percentage butane and 85 mole percentage
	pentane is subjected to simple batch distillation at atmospheric pressure to remove 90 percentage of butane. What should be the composition of remaining liquid? Also determine quantity of pentane removed per kmol of feed. Average relative volatility of butane to pentane is 3.5.
27	A solution containing 5% acetaldehyde and 95% toluene is to be extracted with water in a five stage crosscurrent extraction unit to extract acetaldehyde. Toluene and water are essentially insoluble. If 25 kg of water each time are used per 100 kg of feed, calculate the amount of acetaldehyde extracted and final concentration of the exit solution. Equilibrium relationship,Y=2.20 X

28	Explain Reverse osmosis process.
29	Write short note on electrodialysis
30	A salt solution weighing 10,000 kg with 30 wt. percent Na ₂ CO ₃ is cooled to 239 K. The
	salt crystallizes the decahydrate. What will be the yield of Na ₂ CO ₃ .10H ₂ O crystals if the
	solubility is 21.5 kg unhydrous Na ₂ CO ₃ per 100 kg water. For (a) No water evaporated
	(b) 3 percent of total weight of solution is lost by evaporation of water in cooling.

Subject: Chemical Reaction Engineering-II

Course Code: CHC602

Q1.	Tanks in series model isparameter model
Option A:	Zero
Option B:	One
Option C:	Two
Option D:	Three
Q2.	The vessel dispersion number $(D/\mu L)$ for plug flow is
Option A:	0
Option B:	500
Option C:	750
Option D:	∞
Q3.	F(t) is
Option A:	Cumulative residence time Distribution function
Option B:	Exit age distribution function
Option C:	Dirac delta function
Option D:	Step function
Q4.	resistance is not involved in the combustion of a carbon particle
Option A:	Ash
Option B:	Gas film
Option C:	None of these
Option D:	Chemical reaction
Q.5.	Which of the following resistances is not involved in a gas phase catalytic (gas-solid) reaction?
Option A.	Ash resistance
Option B:	Gas film and pore surface diffusion resistances for reactants
Option C:	Surface phenomenon resistance
Option D:	Gas film and pore surface diffusion resistances for products
06	An ore of uniform size particles is to be roasted in a fluidised bed reactor. The time
20.	required for complete conversion of solid particles is 20 min and the mean residence time
	of particles in the bed is 48 min. The solids remain unchanged in size during reaction.
	Calculate the fraction of the original ore remaining unconverted assuming Ash diffusion
	step as rate controlling
Option A:	8.6 %
Option B:	4.5 %
Option C:	7.6 %
Option D:	10.6 %
Q7	Determine the role of pore diffusion and external mass transfer processes
Option A:	Strong pore diffusion control and mass transfer not controlling
Option B:	Mass transfer controlling

Option C:	Both pore diffusion and mass transfer not controlling
Option D:	Both pore diffusion and mass transfer controlling
Q8	Effectiveness factor of a catalyst pellet is measure of the resistance.
Option A:	Pore diffusion
Option B:	Gas film
Option C:	Chemical reaction
Option D:	None of these
Q9.	The Hatta number is important in
Option A:	Multicomponent distillation
Option B:	Binary distillation
Option C:	Gas absorption without chemical reaction
Option D:	Gas absorption with chemical reaction
Q10.	For high value of kg, which contactor is suitable?
Option A:	Bubble column
Option B:	Packed column
Option C:	Spray Column
Option D:	Trickle Bed
Q11	The exit age distribution of fluid leaving a vessel is used
Option A:	to study the reaction mechanism
Option B:	to study the extent of non-ideal flow in the vessel
Option C:	to know the reaction rate constants
Option D:	to know the activation energies of a reaction
Q12	Solid particle consumption dynamics as a function of conversion for different controlling regimes of Shrinking Core Model are given below
	A) $\frac{t}{\tau} = 1 - (1 - X_B)^{\frac{1}{3}}$
	B) $\frac{\tau}{\tau} = X_B$
	C) $\frac{t}{\tau} = 1 - 3(1 - X_B)^{\frac{1}{3}} + 2(1 - X_B)$
	Identify the controlling regime for each of these
Option A:	A-Gas film controlling, B-Ash layer controlling, C-Reaction controlling
Option B:	B-Gas film controlling, A-, B-Reaction controlling, C-Ash layer controlling
Option C:	B-Gas film controlling, A-Ash layer controlling, C-Reaction controlling
Option D:	C-Gas film controlling, B-Ash layer controlling, A-Reaction controlling
Q13	What is the dispersion number for a plug flow reactor?
Option A:	2
Option B:	1
Option C:	-1
Option D:	0
Q14.	Which of the following statement is false?
Option A:	RTD describes the deviation from ideal behavior.
Option B:	RTD is not a unique signature of a reactor.

Option C:	RTD of perfect PFR and perfect CSTR are same
Option D:	RTD can be measured using concentration of tracer
Q15.	If τ is the time necessary to consume the entire solid particle. which one of these is the correct relation for the case of reaction controlled condition? Note: All the symbols used have the usual meaning.
Option A:	$\tau = \frac{\rho_B \phi_B R_0^2}{6D_e C_{A0}}$
Option B:	$\tau = \frac{\rho_B R_0}{8k'' C_{A0}}$
Option C:	$\tau = \frac{\rho_B R_0}{3k'' C_{A0}}$
Option D:	$\tau = \frac{\rho_B R_0}{k'' C_{A0}}$
Q16.	If a solid-gas non-catalytic reaction occurs at very high temperature, the rate controlling step is
Option A:	film diffusion
Option B:	chemical reaction
Option C:	ash layer diffusion
Option D:	pore diffusion
Q17	Stimulus-response techniques are commonly used to characterize the extent of non-ideal
	flow in vessels. Tracer input signal is used as stimulus. Any material can be used
Option A:	as tracer if it can disturb the flow pattern in the vessel
Option B:	as tracer if it does not disturb the flow pattern in the vessel and it can be detected.
Option C:	as tracer if it follows i.e deal flow patterns
Option D:	as tracer.
Q18	For the non-catalytic reaction of particles with the surrounding fluid, the time needed to achieve the same fractional conversion for particles of different unchanging sizes is proportional to the particle diameter when the is the controlling resistance.
Option A:	Film diffusion
Option B:	Diffusion through ash layer
Option C:	Chemical reaction
Option D:	Either A, B or C
Q19.	Catalyst carriers
Option A:	Have very high selectivity
Option B:	Increase the activity of catalyst
Option C:	Provide large surface area with a small amount of active material
Option D:	Inhibit catalyst poisoning
Q20.	Carbon particles accumulated on the catalyst used in the gas oil cracking lies in the category of poison
Option A:	Deposited
Option B:	Chemisorbed
Option C:	Selectivity

Option D:	Stability
Q21.	A promoter is added to the catalyst to improve its
Option A:	Porosity
Option B:	activity
-	
Option C:	surface area
Option D:	none of these
Q22.	Fluidised bed reactor is characterized by
Option A:	Uniformity of temperature
Option B:	Comparatively small equipment
Option C:	Absence of continuous catalyst regeneration facility
Option D:	Very small pressure drop
Q23.	Packed towers are preferred for gas-liquid mass transfer operations with foaming
	liquids because
Option A:	in packed towers, high liquid to gas ratios are best handled
Option B:	in packed towers, continuous contact of gas and liquid takes place
Option C:	packed towers are packed with random packings
Option D:	in packed towers, the gas is not bubbled through the liquid pool
Q24.	The 'E' curve for a non-ideal reactor defines the fraction of fluid having age between t and
	t + dt
Option A:	at the inlet
Option A: Option B:	at the inlet at the outlet
Option A: Option B: Option C:	at the inlet at the outlet in the reactor
Option A: Option B: Option C: Option D:	at the inlet at the outlet in the reactor averaged over the inlet and outlet
Option A: Option B: Option C: Option D: Q25.	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SQL to SQL is accomplished by a
Option A: Option B: Option C: Option D: Q25.	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO ₂ to SO ₃ is accomplished by a reaction.
Option A: Option B: Option C: Option D: Q25.	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous
Option A: Option B: Option C: Option D: Q25. Option A: Option B:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous
Option A: Option B: Option C: Option D: Q25. Option A: Option B: Option C:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic homogenous
Option A: Option B: Option C: Option D: Q25. Option A: Option B: Option C: Option D:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO ₂ to SO ₃ is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous
Option A: Option B: Option C: Option D: Q25. Option A: Option B: Option C: Option D: Q26.	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the
Option A: Option B: Option C: Option D: Q25. Option A: Option B: Option C: Option D: Q26. Option A:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO ₂ to SO ₃ is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst.
Option A: Option C: Option D: Q25. Option A: Option B: Option C: Option D: Q26. Option A: Option B:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO ₂ to SO ₃ is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution.
Option A: Option C: Option D: Q25. Option A: Option A: Option B: Option C: Option A: Option A: Option B: Option A: Option B: Option C:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution. pore diameter.
Option A: Option B: Option C: Option D: Q25. Option A: Option B: Option C: Option A: Option A: Option A: Option B: Option C: Option C: Option C: Option D:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution. pore diameter. porosity of the catalyst bed.
Option A: Option B: Option C: Option D: Q25. Option A: Option B: Option C: Option A: Option A: Option A: Option A: Option B: Option C: Option C: Option D: Q27	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO ₂ to SO ₃ is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution. pore diameter. porosity of the catalyst bed. For the solid-gas non-catalytic reaction (spherical shape solid particles), the linear relation
Option A: Option B: Option C: Option D: Q25. Option A: Option B: Option C: Option A: Option A: Option A: Option B: Option C: Option C: Option C: Option D: Q26.	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO ₂ to SO ₃ is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution. pore diameter. porosity of the catalyst bed. For the solid-gas non-catalytic reaction (spherical shape solid particles), the linear relation between conversion of solid (XB) and time (t) signifies,
Option A: Option B: Option C: Option D: Q25. Option A: Option B: Option C: Option C: Option A: Option B: Option C: Option C: O	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution. pore diameter. porosity of the catalyst bed. For the solid-gas non-catalytic reaction (spherical shape solid particles), the linear relation between conversion of solid (XB) and time (t) signifies, Diffusion through ash layer is controlling mechanism
Option A: Option C: Option D: Q25. Option A: Option A: Option B: Option C: Option A: Option A: Option B: Option C: Option D: Q27 Option A: Option A: Option C: Option	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution. pore diameter. porosity of the catalyst bed. For the solid-gas non-catalytic reaction (spherical shape solid particles), the linear relation between conversion of solid (XB) and time (t) signifies, Diffusion through ash layer is controlling mechanism Chemical reaction is controlling mechanism
Option A: Option C: Option D: Q25. Option A: Option A: Option B: Option C: Option A: Option B: Option C: Option D: Q27 Option A: Option B: Option C: Option B: Option C: Option B: Option C: Option C: Option C:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous BET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution. pore diameter. porosity of the catalyst bed. For the solid-gas non-catalytic reaction (spherical shape solid particles), the linear relation between conversion of solid (XB) and time (t) signifies, Diffusion through ash layer is controlling mechanism Chemical reaction is controlling mechanism Diffusion through gas film is controlling mechanism
Option A: Option C: Option D: Q25. Option A: Option B: Option C: Option C: Option A: Option C: Option C: Option C: Option D: Q27 Option A: Option B: Option A: Option B: Option C: Option C: Option C: Option C: Option C: Option C:	at the inlet at the outlet in the reactor averaged over the inlet and outlet In chamber process of sulphuric acid manufacture in industry, the gas phase oxidation of SO2 to SO3 is accomplished by a reaction. non-catalytic homogeneous non-catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous catalytic heterogeneous bET apparatus is used to determine the specific surface of a porous catalyst. pore size distribution. pore diameter. porosity of the catalyst bed. For the solid-gas non-catalytic reaction (spherical shape solid particles), the linear relation between conversion of solid (XB) and time (t) signifies, Diffusion through ash layer is controlling mechanism Chemical reaction is controlling mechanism Diffusion through gas film is controlling mechanism Major resistance lies in bulk of gas phase Eluid flow in a real packed bed can be approximated as model

Option A:	plug flow
Option B:	dispersion
Option C:	mixed flow
Option D:	tank in series
Q29	For high conversion in a highly exothermic solid catalysed reaction, use a bed
	reactor.
Option A:	fixed
Option B:	fluidised bed reactor followed by a fixed
Option C:	fixed bed reactor followed by a fluidised
Option D:	fluidised
Q30	Rate determining step in a reaction consisting of a number of steps in series is the
	step.
Option A:	fastest
Option B:	slowest
Option C:	intermediate
Option D:	data insufficient; can't be predicted

Subjective Question Bank-CRE-II

1	Write short note on Tanks in Series Model.													
2	A tracer with number of dividing baffles is to be used to carry out the reaction $A \rightarrow R$ with $-r_A = k C_A$, $k=0.25 \text{ min}^{-1}$													
	t, min 0	1	2	3	4	5	6	7	8	9	10	12	14	
	Tracer output0Concentration(mg/l)	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0	
	 a) Plot C (t), E (t) and F (t) curves. b) Calculate mean residence time. c) Find the conversion expected in the tank-in-series model and how many tanks in series would you suggest to model this reactor. d) Calculate conversion assuming Mixed Flow reactor. 													
3	Develop conversion time relationship for Shrinking spherical particles when Chemical reaction control													
4	Calculate the time required to burn to completion spherical particles of graphite (<i>radius 12</i> mm, bulk density 2.4 g/cc) in a 12% oxygen stream at 900°C and 1 atm. Assume gas film resistance to be negligible. Surface reaction rate constant = $k'' = 25$ cm/s													
5	In a uniform gas environment, 4 mm solid particles are 87.5 % converted to product in 5 min according to shrinking core model with chemical reaction step as rate controlling. The solids remain unchanged in size during reaction. Find the mean residence time of solids needed to achieve same mean conversion of solids in a fluidized bed reactor operating with same gas environment using 1000 kg/hr of feed consisting of equal quantities of 2 mm and													

	1 mm particles. Also find solid hold-up (Weight of solids) in the bed.										
6	For the catalytic reaction $A \rightarrow 4$ R following rate –concentration data are available										
	C _A mol/lt	0.0	39	0.0	575	0	0.075			2	
	-r _A ' mol A/ kg cat.hr	3.4		5.4		7	.6		9.1		
	Determine the size o 117 deg C to 35% co	f pac nvers	ked b sion di	ed (f irectly	ind W from) to tr the da	eat 25 ata giv	00 mo en	ol/hr of	f pure A a	t 3.2 atm and
7	Estimate the surface	area	(m ² /g	m) of	8.01	gm of	glauc	osil sa tained	mple.	Nitrogen	at -195.8 deg
	Pressure (mm Hg)	6	25	140	230	285	320	430.	605		•
	Vol. adsorbed (cc) at STP	61	127	170	197	215	230	277	335		
	The vapour pressure 0.808 gm/cc	e of 1	nitroge	en at	-195.8	deg	C is 1	atm a	and the	e density o	of nitrogen is
8	Develop Langmuir-H	Iinsh	elwoo	d type	e of ra	te equ	ation f	for			
	$A + B \rightleftharpoons C + D$										
	 i) When Adsorption of A is reaction Controlling Step ii) When desorption of C is reaction Controlling Step 										
9	Sketch the concentration	tion j	profile	for in	nstanta	aneou	s react	ion w	ith res	pect to ma	ss transfer in
	case of following rea	ction	assun	ning 1) Hig	h C _B	2) Lov	v C _B			
	$A(g \rightarrow l) +bB(l) -$		>R(l)								
10	Gaseous A absorbs an	nd re	acts w	vith B	in liqu	uid ac	cordin	g to			
	$A(g \rightarrow l) + B(l) \rightarrow R(l)$	l), -	$-r_{Al} =$	kC _A (C_B						
	In a packed bed.										
	a) Calculate the	rate	of read	ction							
	b) Determine the liquid) and be and $C_B = 100 \text{ m}$ $k = 10^8 \text{m}^3$ lique $H_A = 1.0 \text{ Pa m}$	e loo ehavi mol/n iid/m ³ liqu	cation ior in m ³ liqu ol.h iid/mo	of th the lie uid 1	ne ma quid f	jor re ilm at	sistano a poi	ce (ga nt in t	s film he rea	, liquid fi ctor where	lm and bulk e p _A = 100 Pa

	$k_{Ag}a = 0.1 \text{ mol/}(h.m^3 \text{reactor.Pa})$
	$k_{Al}a = 100 \text{ m}^3 \text{liquid}/(\text{m}^3 \text{reactor.h})$
	$a=100 \text{ m}^2/\text{m}^3 \text{ reactor}$
	$f_l = 0.01 \text{ m}^3 \text{ liquid/m}^3 \text{ reactor}$
	$D_{Al} = D_{Bl} = 10^{-6} m^2/h$
	For Ei <m<sub>H/5, consider instantaneous reaction and E\approxEi</m<sub>
11	Explain pulse input experiment for RTD measurement.
12	The following results were obtained for a pulse tracer test carried on a piece of reaction
	requipment. The output concentration rise linearly from zero to $0.5 \ \mu mol/dm^3$ in 5 min, then fell linearly to zero in 10 min (after reaching a maximum value of $0.5 \ \mu mol/dm^3$).
	(i) Calculate the mean residence time
	(ii) Calculate the total reactor volume if the flow rate is 570 <i>l/min</i> .
13	Calculate the time required for complete burning of particles of graphite (size: Ro = 5 mm, density $a_{2} = 2.2$ g/am ³) in an 8% avagen stream at 000% and 1 atm
	For the high gas velocity used assume that film diffusion does not offer any resistance to
	transfer and reaction.
	Data: rate constant = $k'' = 20 \text{ cm/s}$
14	A solid catalysed first order reaction $A \rightarrow R$ takes place with 55% conversion in a basket type mixed reactor. Find the conversion if the reactor size is trebled- all else, i.e., temperature, composition etc remains unchanged.
15	How much catalyst is needed in a packed bed reactor (assume plug flow) for 35%
	conversion of A to R for a feed of 2000 mol/h of pure gaseous A at 3.2 atm and 117oC if
	the stoichiometry and rate are given by
	$A \rightarrow 4R$, $-r_A' = 96.55$ (lit/h.kg cat) C_A
16	Derive design equation for
	(i) Solid catalytic PFR
17	(ii) Solid catalytic CSTR
1/	Explain step input experiment for RID measurement.
18	The results of a pulse input to a vessel are shown in following fig.

			2	/	1	ale subscrip	A CONCORD		83						
	v = 50 cm ² /s														
	C, µmolcm ³		6 7	V=	10 111	12 13	14 15	•							
	Say, max	x conc	of tra	cer =	y mic	ro.mo	l/cm^3	3							
	(a) C	Check	the m	ateria	l bala	nce w	ith the	e expe	rimen	tal tra	cer cu	irve to	o see	wheth	er the
	results a	re con	sistent	t or no	ot.										
	(b) I	f the r	esults	are co	nsiste	ent, de	termin	e the	amour	t of tr	acer ii	ntrodu	iced,]	М	
19	Calculate the time required for complete burning of particles of graphite (size: Ro = 5 mm, density: $\rho_B = 2.2 \text{ g/cm}^3$) in an 8% oxygen stream at 900°C and 1 atm. For the high gas velocity used assume that film diffusion does not offer any resistance to transfer and reaction. Data: rate constant = k" = 20 cm/s														
20	Explain	Bruna	uer-Ei	nmett	-Telle	er metl	nod fo	r surfa	ice are	a dete	rmina	tion.			
21	The RTI) anal	ysis w	as car	ried o	ut in a	liquio	d phas	e reac	tor as t	follow	/s –			
	Time, min	0	2.	5 2	.9	3.3	3.75	4	4.6	4.3	3 4.	58	5	5.41	6.25
	Conc., (gm/cm	0 1 ³)	0	1		3	7.4	9.4	9.7	9.4	8.	2	5	2.5	0.5
	i) F	Plot E(t) and	F(t) c	urves										
	ii) F	ind m	ean re	siden	ce tim	e									
	iii) v	vhat fr	action	ofma	aterial	l spenc	ls betv	veen 4	and 5	i minu	tes in	the re	eactor	?	
	iv) v	what co	onvers	ion ca	an be	expect	ed for	the re	eaction	n carrie	ed out	in the	e reac	tor wi	th rate
	constant	of 0.7	min-	1											
22	A reacto	r has f	flow c	haract	eristic	cs give	en by t	he no	n-norr	nalised	l C- c	urve i	n the	table a	and by
	the shap	e of	this c	urve v	we fe	el that	t the	disper	sion c	or tank	s- in-	- serie	es mo	odels s	should
	satisfact	orily r	eprese	ent the	flow	in the	reacto	or.							
	Time, min	1	2	3	4	5	6	8	10	15	20	30	41	52	67
	Conc.,	9	57	81	90	90	86	77	67	47	32	15	7	3	1

	i) find the conversion expected in this reactor assuming that the dispersion model								
	holds good								
	i) find the number of tanks in series which will represent the reactor and conversion								
	therein.								
	iii) Find conversion by assuming segregation model holds good								
23	Calculate the time needed to burn to completion particles of graphite (R0= 5mm, ρ B= 2.2								
	g/cm3, Ks = 20 cm/s) in an 8% O2 stream. For the high gas velocity used assume that film								
	diffusion does not offer any resistance to transfer and reaction. Reaction temperature =								
	900C.								
24	The reduction of FeS2 particle according to reaction FeS2 (g) + H2 (g) \Box FeS (s) + H2S								
	(g) is studied in lab reactor in such a condition that concentration of Hydrogen in a bulk								
	phase was constant. H2 at 1 atm pressure was passed through the bed of FeS2 particle								
	(0.035 cm) diameter at 450C. the result of experiment is as follows –								
	Time, (min) 15.6 32.4 71 119.4								
	i) Find rate controlling step if density of FeS2 is 4 g/cc								
	i) Determine the rate constant (Ks) of reaction assuming it is first order reaction with								
	respect to hydrogen occurring at FeS2-FeS interface is the rate controlling step.								
	iii) If the diffusion through FeS produced layer is the rate controlling step with De=								
	3.6x10-6 cm2/s. Calculate								
	a) time required for complete conversion of FeS2								
	b) time required for 80% conversion of FeS2 particles.								
25	A hydrogenation catalyst is prepared by soaking alumina particles in aq NiNO3 solution.								
	After drying and reduction, the particles contain about 7 wt.% NiO. This catalyst is then								
	made into a large cylindrical pellet for rate studies. The gross measurements for one pellet								
	are _								
	Mass = 3.15 g, Diameter = 1.00 in, Thickness = $\frac{1}{4}$ in, Volume = 3.22 cc.								
	The Al2O3 particles contain micropores, and the pelleting process introduces macropores								
	surrounding the particles. The macropore volume of the pellet is 0.645 cc and the								

	micropore volume is 0.40 cc/g of particles. From this information calculate –				
	1) Density of pellet				
	2) Macropore volume in cc/g				
	3) Macropore void fraction in the pellet				
	4) Micropore void fraction in the pellet				
	5) Solid fraction				
	6) Density of particles				
	7) Density of solid phase				
26	Oxidation of Nitric acid is carried out in silica gel at 1 atm pressure by the reaction –				
	p_{NO}^2, p_{O2}^2 kmol NO				
	$-r_A = \frac{1}{a+b+p_{NO2}+C.p_{NO}^2}$, $kg \ cat.hr$				
	Where $a = 5.834 \times 10^{-3}$, $b = 23.63$, $C = 3.268 \times 10^{-2}$				
	Feed consists of 5% NO and 95% O2. 80% conversion of Nitric Oxide is obtained in PFR				
	at a feed rate of 1 kmol/ hr. calculate the weight of catalyst required.				
27	Determine the weight and volume of catalyst necessary to achieve 89% conversion of				
	Toluene in Packed Bed Reactor with a bulk density of 2.3 g/cc with an entering volumetric				
	flow rate of 400 litre/ min.				
	$C_6H_5CH_3 + H_2 \rightarrow C_6H_6 + CH_4$				
	Rate law is –				
	$1.4 \times 10^{-8} p_{H2}$. p_T mol Toluene				
	$-r_T = \frac{1}{1 + 1.26p_B + 1.01p_T}$, $\frac{1}{gm \ catalyst. \ sec}$				
	Pressure is in atm, T – toluene, B – Benzene. The feed consists of 20% Toluene, 40% H2				
	and 40% inert at 600C and 10 atm.				

28	Derive Langmuir-Hinshelwood type of rate equation for the reaction –
	A+B↔C+D
	Where desorption of C is rate controlling step.
29	Explain in detail the contacting patterns in fluid- fluid reactions.
30	Write short notes on - Packed Bed Reactor, Fluidized Bed, Trickle Bed and Slurry Reactor.

Subject: Pollution Control Technology

Course Code: CHC603

Q1.	is called the Secondary Air pollutant.
Option A:	PAN
Option B:	Ozone
Option C:	Carbon monoxide
Option D:	Nitrogen Dioxide
Q2.	What are the agents that bring about such an undesirable change (pollution) are called?
Option A:	Pollutants
Option B:	Haptens
Option C:	Adjuvants
Option D:	Vaccine
Q3.	The polluted water is one which
Option A:	contains pathogenic bacteria
Option B:	consists of undesirable substances rendering it unfit for drinking and domestic use
Option C:	is safe and suitable for drinking and domestic use is contaminated
Option D:	None of the above
Q4.	is used to prevent odours of effluent.
Option A:	Coagulation
Option B:	Filtration
Option C:	Prechlorination
Option D:	Microstraining
Q.5.	The minimum particle size removes by the gravitational chamber is
Option A:	>50µm
Option B:	>10µm
Option C:	>25µm
Option D:	>0.5µm
Q6.	How long does methane stay in a landfill?
Option A:	1 to 3 years or less
Option B:	4 to 10 years
Option C:	10 to 15 years

Option D:	20 to 50 years or longer
Q7	Which of the below is not an idea behind solid waste management?
Option A:	Stop waste generation
Option B:	Storage and collection
Option C:	Disposal
Option D:	Control of waste generation
Q8	Domestic water treatment is carried out under conditions.
Option A:	Aerobic
Option B:	Anaerobic
Option C:	Depends on the pollution level of water
Option D:	Depends on BOD value
<u>Q9.</u>	Aerobic process is also called as
Option A:	Activated sludge process
Option B:	Sludge thickening process
Option C:	Sedimentation
Option D:	Screening
Q10.	Activated Carbon is classified as which type of treatment?
Option A:	Preliminary treatment
Option B:	Primary treatment
Option C:	Secondary treatment
Option D:	I ertiary treatment
QII	In which unit sound is measured?
Option A:	
Option B:	Pascal Vilogram
Option C:	
O12	In anaerobic treatment the organic acid and alcohol is undergone into
Q12	
Ontion A:	Sedimentation
Option P:	Screening
Option B:	
Option C:	
Option D:	Fermentation
Q13	The upward vertical rise prevails in plume.
Option A:	Trapping
Option B:	Fanning
Option C:	Looping
Option D:	Neutral
014.	is not a water borne disease.
Option A	Dysentery
Ontion R.	malaria
Option C:	typhoid
Option D:	cyphola shalam
Option D:	
Q15.	is formed from the anaerobic oxidation of organic matter.

Option A:	NO ₃						
Option B:	SO ₄						
Option C:	H ₂ S						
Option D:	NH ₂						
Q16.	In filtration, the amount of dissolved solids passing through the filters is						
Option A:	Difference between total solids and suspended solids						
Option B:	Sum of total solids and suspended solids						
Option C:	Independent of suspended solids						
Option D:	None of the above						
Q17	Disinfection of water in our country is mainly done by .						
Option A:	Oxygenation						
Option B:	Hydration						
Option C:	Chlorination						
Option D:	Filtration						
Q18	Fishes can store more quantity of in their bodies.						
Option A:	Mercury						
Option B:	Bismuth						
Option C:	Palladium						
Option D:	Chlorine						
Q19.	The pyramid of energy is always upright" states that						
Option A:	The energy conversion efficiency of herbivores is better than carnivores						
Option B:	The energy conversion efficiency of carnivores is better than herbivores						
Option C:	Producers have the lowest energy conversion efficiency						
Option D:	Energy conversion efficiency is the same in all trophic levels						
Q20.	The process of nutrient enrichment is termed as						
Option A:	Eutrophication						
Option B:	Limiting nutrients						
Option C:	Enrichment						
Option D:	Schistosomiasis						
Q21.	The upper part of an aquatic ecosystem contains						
Option A:	Nekton						
Option B:	Plankton						
Option C:	Benthos						
Option D:	both (A) and B)						
Q22.	Select a non-denitrifying bacteria						

Option A:	Pseudomonas aeruginosa
Option B:	Thiobacillus
Option C:	Thiobacillus denitrificans
Option D:	Bacillus ramosus
Q23.	A technique used to determine the concentration of odour compounds in a sample is known as
Option A:	Stripping
Option B:	Settling
Option C:	Flushing
Option D:	Chlorination
Q24.	If BOD ₃ of a waste water is 75 mg/L and K' is 0.15 per day what is ultimate BOD?
Option A:	116.32
Option B:	120.12
Option C:	123.23
Option D:	119.32
Q25.	For Biological oxygen demand how much time and temperature required
Option A:	3 days and 27 °c
Option B:	4 days and 15 °c
Option C:	5 days and 29 °c
Option D:	2 hrs and 150 °c
Q26.	Identify the correct statement regarding the Electrostatic precipitator
Option A:	Minimum particle size removal is <0.5µm
Option B:	They can be operated at high temperature
Option C:	It has a low maintenance cost
Option D:	It does not cause any freezing problem
Q27	When Environmental Lapse Rate (ELR) is greater than Adiabatic Lapse Rate (ALR), then
	which of the following occurs?
Option A:	Sub adiabatic lapse rate

Option B:	Super adiabatic lapse rate
Option C:	Neutral lapse rate
Option D:	Adiabatic lapse rate
Q28	What is the ambient noise level in the residential one during night time?
Option A:	40 dB
Option B:	45 dB
Option C:	50 dB
Option D:	55 dB
Q29	Which of the following air pollution control device has maximum efficiency?
Option A:	Electrostatic precipitator
Option B:	Venturi Scrubber
Option C:	Spray tower
Option D:	Wet cyclonic scrubber
Q30	The biochemical oxygen demand is computed by
Option A:	Dissolved oxygen ^ Dilution factor
Option B:	Dissolved oxygen + Dilution factor
Option C:	Dissolved oxygen – Dilution factor
Option D:	Dissolved oxygen * Dilution factor

Subjective Question Bank-PCT

1	What are the various treatments for hazardous waste management? Describe any two in				
	detail				
2	Describe operational and constructional features of the flame photometer analyzer to				
	measure stack gases concentration release from industry				
3	Explain DO Sag curve and derive the formula for critical time and critical deficit				
4	Describe sampling and analysis of alkalinity, bacteriological measurements and				
	suspended solids in waste water				
5	Explain Activated Sludge process of secondary biological treatment with a neat diagram.				

6	Write & explain classification air pollution particulate matter in brief				
7	Explain the effects of the following: (i) Ozone layer depletion				
	(ii) Oxides of sulfur				
8	Discuss the classification of hazardous waste based on material properties.				
9	What is BOD? Deduce expression for BOD with time? What are the factors on which the deoxygenation constant (K) depends?				
10	Explain the solid waste transfer station in detail.				
11	Explain Air (prevention & control of pollution) Act & Water Act				
12	Explain Physical characteristics of water in detail.				
13	What do you understand by inversion? what are the various types of inversion. Explain in details along with diagram.				
14	Write short note on Oxygen Sag Curve.				
15	Compare trickling filters with activated sludge systems. (min.10 points)				
16	Explain Ion Exchange process with its reaction involved in it.				
17	Explain in detail "Air pollution effects on Vegetation" with a neat diagram.				
18	Discuss the design criteria for activated sludge process in details. Derive the necessary derivation for volume of aeration tank.				
19	Explain Plume behavior depending on atmospheric stability and wind turbulence.				
20	Write short note on:				
	i) Nitrification and Denitrification				
	ii) Ozone layer depletion				
21	Write note on Gaussian dispersion model				
22	Explain in detail noise pollution causes, consequences and abatement methods				
23	A complete mixed activated sludge process is to be treat wastewater flow of 500 m ³ /hr.				
	having a soluble BOD50f 250 mg/l. The concentration of soluble BOD5escaping				
	treatment is 10 mg/l. Design criteria are as follows: $Y=0.5$, $k = 5 \text{ day}^{-1}$, $K_d=0.06 \text{ day}^{-1}$,				
	$K_s = 100$ mg/l. and the concentration of MLVSS (X) = 2000 mg/l. Compute the				
	following				

	A. The treatment efficiency,
	B. Mean cell residence time θ_c ,
	C. hydraulic retention time θ ,
	D. Volume of aeration tank,
	E. F/M ratio
24	Carbon monoxide is present in standard atmospheric air at a concentration of 60 ppm.
	Compute y_p , ρ_p and w_p values for the CO concentration in the atmosphere. Air density at
	standard condition is 1.1885 Kg/m ³
25	A multi tray settling chamber having 7 trays, including the bottom surface, handles 5 m ³ /s air at 20 ^o C. The trays are spaced 0.25 m apart and the chamber is to be 1 m wide and 4 m long. What is the minimum particle size of density 2000 kg/m ³ that can collected with 100% efficiency? What will be the efficiency of the settling chamber if 45 micrometer particles are to be removed? Laminar flow conditions within the chamber and no dust initially on trays may be assumed. Viscosity of gas at $20^{\circ}C=1.81\times10^{-5}$ kg/m-s
26	A chimney with a design stack height of 250m is emitting SO2 at a rate of 500g/s on a sunny day in June with moderate wind speed at the stack altitude. The stack diameter is 5m, the sulphur dioxide exit velocity is13m/s and the gas temperature of exit is 1450C, what is the plume rise for an ambient room temperature of 300C?calculate the ground level concentration on the plume centerline at the downward distance of 1km U1 at reference height is 2.5m/s $A=0.295,B=0.119,P=0.986,\alpha=0.25$
27	What are the various methods employed for recovery of material from process effluent? What is its importance? Explain any three methods and its application
28	How are air pollutants classified? List the major types of Air pollutants. Briefly explain the dry deposition mechanism and wet precipitation mechanism of nature for removal of particulate matter.
29	Explain non dispersive infrared analyzer used for analysis of carbon monoxide in air pollution.
30	In a completely mixed activated sludge system determine I. The aeration basin volume. II. The Hydraulic retention time III. The Sludge volume wasted daily IV. The mass of sludge wasted daily V. The fraction of sludge recycled VI. The F/M ratio Given: Population equivalent 50,000 (11250 m3/day) Influent BOD = 200 mg/l; Effluent BOD5 = 10 mg/l; Y = 0.6 ; kd = 0.06 d-1 Assume: MLSS in aeration basin = 3.5 kg/m3; MLSS in clarifier sludge = 15 kg/m3 Mean residence time = 10 days

Course Code: CHC604

Course Name: Process Engineering and Economics

Q1.	Commodity or bulk chemicals					
Option A:	Are produced in large volumes and purchased on the basis of chemical					
	composition, purity and price.					
Option B:	Are produced in small volumes and purchased on the basis of chemical					
	composition, purity and price.					
Option C:	Are produced in small volumes and purchased on the basis of chemical					
	composition only					
Option D:	Are produced in large volumes and purchased on the basis of chemical					
	composition only					
Q2.	Which of the Following statement is NOT TRUE for Onion model of process					
Option A:	Alternative way to present the hierarchical approach to process design					
Option B:	Process Design begin a the centre of the onion and proceed outwards					
Option C:	It is impossible to fully evaluate the diagram unless a complete design is					
	furnished for the outer layers of the onion					
Option D:	Building a reducible structure					
Q3.	What is static discharge head of a pump if the pump is below the free surface of					
	the liquid? $P =$ Absolute pressure at free surface of liquid in receiver and $Z =$					
	vertical distance between free surface of liquid in receiver and centreline of					
	pump					
Option A:	P-Z					
Option B:	P+Z					
Option C:	Ζ					
Option D:	P+2Z					
Q4.	Estimate optimum pipe diameter for flow of chlorine gas of 10000 kg/h at 6					
_	atma and 20°C through a carbon steel pipe. Density of chlorine gas at given					
	conditions is 17.71 kg/m ³ .					
Option A:	150.5 mm					
Option B:	190.7 mm					
Option C:	173.8 mm					
Option D:	220 mm					
Q5.	In case of multi-component liquid mixture having N number of components with					
-	different boiling points, to separate each component in pure form, how many					

	distillation columns in series will be required?				
Option A:	N				
Option B:	N+1				
Option C:	N-1				
Option D:	N+2				
1					
Q6.	In distillation column operation, as reflux ratio approaches to minimum i.e. R _m , number of trays raquired approaches to				
Option A:	8				
Option B:	1				
Option C:	0				
Option D:	3				
Q7.	In distillation column, if number of theoretical trays required for desired separation is 10 and actual number of trays required is 14, then tray efficiency is equal to				
Option A:	1.41				
Option B:	0.91				
Option C:	1.21				
Option D:	0.71				
Q8.	In a gas-liquid absorption column, for obtaining the maximum absorption efficiency.				
Option A:	Liquid stream should be distributed uniformly				
Option B:	Gas stream should be distributed uniformly				
Option C:	Both gas as well as liquid streams should be distributed uniformly				
Option D:	By passing should be completely avoided				
Q9.	To determine the column diameter we design the column to run at percent of the flooding velocity.				
Option A:	80				
Option B:	50				
Option C:	20				
Option D:	95				
Q10.	A loan of Rs.5000is made for for period of 15 months at a simple interest rate of 15% what future amount is due at the end of loan period				
Option A:	5937.50				
Option B:	5873.20				
Option C:	5712.40				
Option D:	5690.12				
Q11.	Order of magnitude method for capital cost estimates has accuracy				
Option A:	less than 40 %				

Option B:	less than 5%			
Option C:	less than 15%			
Option D:	less than 3 %			
Q12	Present sum of Rs. 100 at the end of one year, with half yearly rate of interest at			
	10%, will be Rs.			
Option A:	121			
Option B:	110			
Option C:	97			
Option D:	91			
Q13	A series of equal payments made at equal interval of time is called			
Option A:	Perpetuity			
Option B:	Capital charge factor			
Option C:	Annuity			
Option D:	Future worth			
Q14.	Following method of cost estimation is most accurate			
Option A:	Study estimates			
Option B:	Preliminary estimate			
Option C:	Definitive estimate			
Option D:	Detailed estimate			
Q15.	Commodity chemicals have			
Option A:	Low added value and large sales volume			
Option B:	High added value and large sales volume			
Option C:	Low added value and low sales volume			
Option D:	High added value and low sales volume			
Q16.	What is NPSH?			
Option A:	(Total suction head) – (Vapor pressure of liquid)			
Option B:	(Total discharge head) – (Vapor pressure)			
Option C:	(Total discharge head) – (Suction head)			
Option D:	Total dynamic head			
Q17	Water is flowing through a pipe of diameter 30 mm at 35 m/s. What is the mass			
	flow rate of water?			
Option A:	2137.5 tons/day			
Option B:	1.15 kg/s			
Option C:	74.24 kg/s			
Option D:	1683.6 tons/day			
Q18	If liquid mixture contains components A, B, C, D, E and F. As per thumb rules,			
	one of these components is light key and pother is heavy key component. if			
	vapor pressures of A, B, C, D, E and F are 200, 80, 350, 700, 130 and 550			
	respectively, then List out the distributed components among these.			
Option A:	D, B, A, F			
Option B:	A, C, E, F			
Option C:	A, C, D, E			
Option D:	A, B, C, D			
Q19.	The absorber is being designed to recover component 'P' from inlet gas mixture			

	containing components 'P' and 'O': the absorption factor for 'P' is 1.4 and					
	vapour pressures of 'P' and 'Q' are 500 and 250 mm Hg respectively. Then what					
	will be the absorption factor for component, 'Q'?					
Option A:	1.4					
Option B:	0.7					
Option C:	0.36					
Option D:	2.8					
O20.	For a specific heat exchanger, the values of material factor, pressure factor and					
	design factor are 1.5, 0.25 and 1 respectively. Then what will be value of					
	material & pressure factor for this heat exchanger?					
Option A:	1.875					
Option B:	0.375					
Option C:	2.75					
Option D:	0.25					
Q21.	Most important factor to be considered in the selection of packings for absorbers					
	is the of packing.					
Option A:	Size					
Option B:	Durability					
Option C:	Porosity					
Option D:	Cost					
Q22.	Find the future amount of Rs. 18000 invested at the rate of 8% nominal interest					
	for 2 years, if interest is compounded monthly.					
Option A:	Rs. 21057.45					
Option B:	Rs. 21089.86					
Option C:	Rs. 21111.98					
Option D:	Rs. 20995.20					
Q23.	If we arrange the types of capital cost estimates in order of their accuracy from					
	highest accuracy to the least accuracy, then one which will come at 2 nd position					
	will be:					
Option A:	Study estimate					
Option B:	Order of magnitude estimate					
Option C:	Definitive estimate					
Option D:	Detailed estimate					
Q24.	The fixed and working capital investment for a company are Rs. 37500000 and					
	Rs. 10000000 respectively. The total annual income and the total annual					
	expenses are Rs. 42500000 and 29000000 respectively. Then approximate %					
	rate of return (before income taxes) for this company will be					
Option A:	89.47%					
Option B:	36.54%					
Option C:	61.05%					
Option D:	28.42%					
Q25.	includes the symbolic representation for process measurement, control					
	functions & instrumentation.					
Option A:	PBD					
Option B:	PFD					

Option C:	P & ID			
Option D:	All of the above			
Q26.	The total number of theoretical stages for absorption column is calculated			
	by			
Option A:	Edmister's equation			
Option B:	Kremser's equation			
Option C:	Guthrie's equation			
Option D:	Undrwood's equation			
Q27	A machine has an initial value of Rs. 5000, service life of 5 years and final			
	salvage value of Rs. 1000. The annual depreciation cost by straight line method			
	is Rs.			
Option A:	300			
Option B:	600			
Option C:	800			
Option D:	1000			
Q28	Effective and nominal interest rates are equal, when the interest is compounded			
Option A:	Annually			
Option B:	Monthly			
Option C:	Quarterly			
Option D:	Weekly			
Q29	FUG method is used for design of			
Option A:	Absorption column			
Option B:	Heat exchangers			
Option C:	Multiple effect evaporators			
Option D:	Multicomponent distillation			
Q30	Which of the following distillation unit is a compact purification method for			
	laboratory applications.			
Option A:	Flash distillation			
Option B:	Azeotropic distillation			
Option C:	Multicomponent distillation			
Option D:	Short path distillation			

Subjective questions:

1. What is onion diagram? Explain guidelines for selection of batch and continuous process. 2. Benzene at 37.80 C is pumped through the system at a rate of 10.09 m³/h with the help of a centrifugal pump. The reservoir is at atmospheric pressure. Pressure at the end of discharge line is 345 kPa g. The discharge head is 4.05 m and the pump suction head is 2.22 m above the level of liquid in reservoir. The friction loss in suction line is 3.45 kPa and that in the discharge line is 37.9 kPa. The mechanical efficiency of the pump (η) is 0.6. The density of benzene is 865 kg/m³ and its vapour pressure at 37.80 C is 26.2 kPa.Calculate (a) (NPSH)_A and (b) power required by centrifugal pump.

3. A distillation column is used to separate 5000 mol/h of feed containing 35% A, 30% B, 20% C and 15% D (molar basis). A & B are light and heavy key components respectively. 90% of original A is recovered in distillate while 95% of original B is recovered in residue. 98% of

original C appears in distillate and there is no D present in distillate. Assume constant volatility for all components throughout the column operation. Vapor pressures for components A, B, C & D are 4.5, 1.9, 1.4 and 0.5 atm respectively. The value of constant, v in Underwood's equation is 1.7.

- Then calculate—
- i. Rm by Underwood's method
- ii. 'q' by Underwood's method and conclude about feed condition
- iii. Nm by FUG method
- 4. Explain the role and responsibility of process engineer towards
 - i. safety concerns
 - ii. Environment
 - iii. Ethics
- 5. Explain the design and working of short path distillation unit along with its operation.
- 6. Given the stream at 10

Sucam	a
below:	

Component	Flow rate (Kmol/hr)	Vapor (mmHg)	Pressure
Methane	20	330918	
Methanol	70	1220	
Water	60	315	

following feed atm, 350 K is as

Design an absorber to recover 95% of methanol using water as the solvent. Specify all of the stream flow rates around the absorber. Find out theoretical no. of stage and flow rates of other components.

7. A bond has a maturity value of rs.50, 000 and is paying discrete compound interest at an effective annual rate of 5%. Determine the following at a time four years before the bond reaches maturity value i.) Present value ii) Discount iii) Present value if the nominal Bond interest is 5% compounded continuously.

8. A company is looking at 4 machings

	Type A	Type B	Type C	Type D
Initial cost	100000	160000	200000	260000
Operating cost/year	1000	1000	1000	1000
Fixed charge % of initial cost	20	20	20	20
/year				
Cash flow /year	41000	36000	73000	88500

Company wants at least 15% return, which design would you recommend?

9. Find out area of heat exchanger according to the following specifications and calculate the total installed cost (updated bare module cost) in year 2019.

Heat exchanger specifications:

Identification = condenser

Function - to condense overhead vapor from methanol fractionating column

Type – horizontal fixed tube sheet, expansion ring in shell.

Heat duty -930 kW, U (overall heat transfer coefficient = 915.7 w/m²K

Type of flow – counter current

Tube side specifications:

Fluid – cooling water , $T_{in} = 25^{\circ}C$, $T_{out} = 40^{\circ}C$. Tube material – Stainless steel Shell side specifications: FluidMethanol – $T = 65^{\circ}C$ (constant) Shell material – Carbon steel

Data:

Design type	Kettel reboiler	U tube	Fixed sheet	tube
Fd	1.35	0.85	0.80	

Surface area (m ²)	Shell and tube material (F _m)		
	CS/CS	SS/SS	
0-10	1.0	2.50	
10-50	1.0	3.10	

Equipment	Co (Rs.)	So (m ²)	Range(S) (m ²)	α	MF
type	25x10 ⁴	37.18	10-900	0.65	3.29
	1.5x10 ⁴	0.51	0.1 - 10	0.024	1.83

Cost Index (2019) = 511. Cost Index (base year) = 395, F_p = 0.2

10. What is depreciation? Explain different methods to calculate depreciation.

11. The annual direct production costs for a plant operating at 70% capacity are Rs. 14000000 while the sum of the annual fixed charges, overhead costs and general expenses is Rs. 10000000. What is the break even point in units of production per year if total annual sales are Rs. 28000000 and the product sells at Rs. 2000 per unit? What were the annual gross earnings and net profit for this plant at 100% capacity if corporate income taxes required 15% tax on the first Rs. 2500000 of annual gross earnings, 25% on annual gross earnings of Rs. 2500000 to Rs. 3750000, 34% on annual gross earnings above Rs. 3750000 and 5% on gross earnings from Rs. 5000000 to Rs. 16750000?

12. A person want to obtain home equity loan of Rs. 9,25,000 for renovation. The interest rate is 8.5% compounded monthly and it is agreed to settle down the loan in 5 years. How much will the monthly payments be?

13. An existing plant loose large amount of heat through waste gases. Aim is to save money through waste heat recovery. Four different designs of heat exchangers can be used for this purpose. Total initial installed cost for design 1, 2, 3 and 4 are Rs. 500000, Rs. 800000, Rs. 1000000 and Rs. 1300000 respectively. Operating cost for all the designs is same and it is Rs. 5000 per year. Fixed charges for all the designs are 20% of their initial installed costs. Value of heat saved from design 1, 2, 3 and 4 are Rs. 205000, Rs. 300000, Rs. 345000 and Rs. 442500 respectively. The company expects at least 10% annual return based on initial investment for any unnecessary investment. Only one of the four designs can be accepted. Neglecting effects due to income taxes and time value of money, which of the four designs should be recommended?

14. Benzene at 37.8 °C is pumped through the system at a rate of 10.09 m³/h with the help of a centrifugal pump. The reservoir is at atmospheric pressure. Pressure at the end of discharge line is 345 kPa g. The discharge head is 4.05 m and the pump suction head is 2.22 m above the level of liquid in reservoir. The friction loss in suction line is 3.45 kPa and that in the discharge line is 37.9 kPa. The mechanical efficiency of the pump (η) is 0.6. The density of benzene is 865 kg/m³ and its vapour pressure at 37.8 oC is 26.2 kPa. Calculate (a) (NPSH)A and (b) Power required by centrifugal pump.

15. Calculate bare module cost of the tray stack in distillation column using following data: Diameter of tray stack = 1.06 m; Number of trays in tray stack = 30; Tray spacing = 18 inch; L_o = 3.05 m; D_o = 0.61 m; C_o = Rs. 12600; α = 0.97; β = 1.45; F_t = 1.8; F_s = 1.4; F_m = 0; MF = 1; Cost index in year of cost estimation = 400; Cost index in base year = 120

16. Describe three broad categories of chemical products with suitable examples of each.

17. Discuss about the relation between, pipe size, pressure drop in pipe and cost of the pipe and Define Optimum pipe size.

18. Write design equations used for sizing of a) Reactor b) Compressor c) Pump d+) Heat Exchanger

19. Verify if the flow is turbulent and calculate total pressure drop in pipe line on the basis of following data:

Fluid flowing through pipe line: Carbon Monoxide; Length of pipe = 5 km; Flow rate of fluid = 2000 kg/h; No. of gate valves in pipeline: 2; No. of 45° elbows in pipeline: 3; Viscosity of fluid = 0.018 cP; Density of fluid = 1.056 kg/m^3 ; Equivalent number of velocity heads for gate valve and 45° elbows are 0.17 and 0.35 respectively. Inside diameter of the pipe = 305 mm.

20. Write a short note on "NPSH of pump"

21. The original value of a piece of equipment is Rs. 22,000, completely installed and ready for use. Its salvage value is estimated to be Rs. 2000 at the end of a service life estimated to be 10 years. Determine the asset (or book) value of the equipment at the end of 5 years using

(i) Straight-line method.

(ii) Textbook declining-balance method.

22. A proposed manufacturing plant requires an initial fixed-capital investment of Rs. 900,000 and Rs.100,000 of working capital. It is estimated that the annual income will be Rs. 800,000 and the annual expenses including depreciation will be Rs. 520,000 before income taxes. A minimum annual return of 15 percent before income taxes is required before the investment will be worthwhile. Income taxes amount to 34 percent of all pre-tax profits Determine the following:

(a) The annual percent return on the total initial investment before income taxes.

(b) The annual percent return on the total initial investment after income taxes.

(c) The annual percent return on the total initial investment before income taxes based on capital recovery with minimum profit.

(d) The annual percent return on the average investment before income taxes assuming straightline depreciation and zero salvage value.

23. Calculate the pipe size based on following data. Fluid flowing through pipe is carbon monoxide. Discharge pressure of carbon monoxide required from the pipe is atmospheric Available pressure at inlet of pipe = 50 kPa g

Length of pipe = 4 km Flow rate of CO = 1500 kg/h Temperature of gas = 50°C No. of gate valves in pipeline = 2 No. of 45° elbows = 3 No. of 90° elbows = 6 Viscosity of CO = 0.018 cP Equivalent Velocity Head (K) gate valve = 0.17 Equivalent Velocity Head (K) for 45 0 elbow = 0.35 Equivalent Velocity Head (K) for 90 0 elbow = 0.75

24. Explain in detail the five standard locations of pressure taps.

25. Calculate the number of theoretical stages for an absorption column with mixture of 9 gmol/sec of air & 1 gmol/sec of acetone using water as the solvent. Recovery of acetone is 95% at temperature of 300K & column pressure of 10 bar. The vapour pressure of acetone & water is 0.337& 0.032 bar respectively. Also determine the solvent flowrate & absorption factors for all components. State the 12 steps in the Process design of Distillation Column

26. State the short cut method for the design of absorption column.

27. A project expected to have cash flow for the five years as follows after all expenses & taxes. The initial fixed capital investment is Rs. 1000000 & the working capital investment is 20% of the fixed capital investment. Find the rate of return using SLM depreciation.Explain Tree diagram showing cash flow for industrial operations.

Time (years)	Cashflow (Rs.)
0-1	200000

1-2	240000
2-3	330000
3-4	400000
4-5	473000

28.

- Write a short note on following:i. Short Path Distillation Unit (SPDU)
- Packed tower distillation column ii.

29. A GLR of 150 gal capacity purchased in 2001 has cost of Rs. 50000. Cost index in 2001 is 429. Calculate the cost of the reactor of 400 gal capacity in 2008 if cost index in 2008 is 651.

What is Break Even analysis? Explain with graphical representation. 30.

University of Mumbai Program: Chemical Engineering Curriculum Scheme: Rev2019

riculum Scheme: Kev20

TE Semester: VI

Subject: Department Optional Course 2 (Piping Engineering) Course Code: CHDO6021

Q1.	is used in gas flow control
Option A:	Ball valve
Option B:	Gate valve
Option C:	Globe valve
Option D:	Needle valve
Q2.	Y type Strainer is used for
Option A:	Heating
Option B:	Cooling
Option C:	To remove dirt
Option D:	For a venting
Q3.	In globe valves, the flow rate control is determined by
Option A:	Size of the opening
Option B:	Lift of the valve plug
Option C:	Pressure difference
Option D:	Gravity
Q4.	Steam trap is used to remove from flowing fluid
Option A:	Dirt
Option B:	Condensate
Option C:	Solids
Option D:	Vapour
Q.5.	ASMEBis process piping code
Option A:	31.1
Option B:	31.2
Option C:	31.3
Option D:	31.4
Q6.	Which of the following valve is known as a safety valve
Option A:	Scour valve
Option B:	Pressure Relief valve
Option C:	Reflux valve
Option D:	Altitude valve
Q7	Which material is used for pipes which are in contact with milk or product?
Option A:	Stainless steel
Option B:	Copper
Option C:	Ceramic

Option D:	Plastic
Q8	What are the reasons causing pressure drop in Piping systems?
Option A:	Long length of pipe
Option B:	Friction
Option C:	Type of fluid
Option D:	Losses in valves and bends
Q9.	support allows directional movement
Option A:	Anchor
Option B:	Guide
Option C:	Hanger
Option D:	Saddle
Q10.	ASMEB is Power piping code
Option A:	31.1
Option B:	31.11
Option C:	31.8
Option D:	31.5
Q11	account expansion in pipe
Option A:	Socket joint
Option B:	Bellows
Option C:	Miter joint
Option D:	Union
Q12	A Gate valve
Option A:	has more restriction in a line than a globe valve
Option B:	should be operating either fully open or fully closed
Option C:	is used to throttle flow
Option D:	is used for different applications than a globe valve
Q13	What is roughly a gauge pressure of 195 psi when converted in absolute psi
Option A:	195
Option B:	210
Option C:	235
Option D:	178
Q14.	Which valve is used when a straight line of fluid and minimum restriction is required?
Option A:	Gate valve
Option B:	Lift check valve
Option C:	Butterfly valve
Option D:	Plug valve
Q15.	How much space is kept in between column of pipe rack?
Option A:	3-4 feet
Option B:	0.5-0.6 km
Option C:	5-6 feet
Option D:	50-60 m
Q16.	From which size onwards NB of pipe equal to OD of pipe?

Option A:	14inch
Option B:	6 Inch
Option C:	4 Inch
Option D:	8 Inch
Q17	Std length of C.I. Pipe in meters is
Option A:	5
Option B:	5.5
Option C:	4
Option D:	4.5
Q18	What is the function of valves?
Option A:	Isolation
Option B:	Regulation
Option C:	Non Return
Option D:	All of above
Q19.	Which among the following is not a permanent welding connection?
Option A:	Bends
Option B:	Reducers
Option C:	Sampling device
Option D:	Tees
Q20.	What are the reasons causing pressure drop in piping systems?
Option A:	Long length of pipe
Option B:	Type of fluid
Option C:	Friction
Option D:	All of the abive
Q21.	Which formula is used to calculate head loss in valves?
Option A:	$k^2(v/2g)$
Option B:	k(v/2g)
Option C:	$k(v^2/2g)$
Option D:	$k^{3}(v^{2}/2g)$
Q22.	Temporary closure of pipe line by
Option A:	Blind Flange
Option B:	Valve
Option C:	Block
Option D:	Welded Flange
Q23.	What is the ASME Code followed for design of Piping Systems in process
	piping (Refineries & Chemical Industries)?
Option A:	B 31.1
Option B:	B 31.3
Option C:	B 31.5
Option D:	B 31.9
Q24.	Types of piping engineering diagram
Option A:	Process flow diagram

Option B:	Process block diagram
Option C:	Piping and instrumentation diagram
Option D:	All above
Q25.	Pick out wrong statement pertaining to NDT test.
Option A:	Radioactive test
Option B:	Ultrasonic test
Option C:	Dye penetrant test
Option D:	Impact test
Q26.	Flexibility factor for straight pipe is
Option A:	zero
Option B:	one
Option C:	less than one
Option D:	greater than one
Q27	Minor energy losses in pipe take place when
Option A:	sudden expansion of pipe
Option B:	sudden contraction of pipe
Option C:	change in direction of fluid
Option D:	all above
Q28	Which of the following is used to block the pipe at the end
Option A:	Plug
Option B:	Reducer
Option C:	Union
Option D:	coupling
Q29	Calculate area of a pipe if, flow rate is 20 l/min and flow velocity is 5 cm/s.
Option A:	66.66 cm2
Option B:	60 cm2
Option C:	62 cm2
Option D:	64 cm2
Q30	To prevent the product flow in the wrong direction which of the following valve is used?
Option A:	Seat valve
Option B:	Butterfly valve
Option C:	Seat valve and butterfly valve
Option D:	Check valve

Subjective Question Bank-Piping Engineering

1	_	Discuss important factor in selection of material of construction of pipes. Explain With
		example?

2	Explain classification of piping material.
3	List the various non-ferrous materials of construction and their use in piping.
4	What are different methods of protecting above ground and underground Piping from
	corrosion?
5	What is cathodic protection of a pipe line?
6	Name at least five insulation materials. Describe with the help of neat sketch
7	Application of insulation to a pipe.
8	Explain role of insulation & painting in pipe Engineering.
9	Enlist different piping material and its application
10	Explain properties of insulation
11	Write short note on
	 Flame Arresters. Steam Trans
	 High –point vent and low point Drain
12	What are pipe fittings and its types?
13	Write short note on ASME 31.1 AND ASME 31.3
14	How to minimize Head Losses in pipe? Explain in detail
15	Name various types of valves with their application (explain any three types).Explain with neat diagram the construction, working and application of Globe Valve.
16	What is NDT? Explain any four methods .Write down its advantages and applications.
17	Explain in detail Iron – carbide diagram.
18	Discuss the important factors in the selection of material of construction of pipes. Explain with examples.
19	Explain water hammer in pipeline; also discuss its effects and prevention.
20	Explain the manufacturing process each of seamless and welded pipe.
21	What is the ASME Code followed for design of Piping Systems in process piping (
	Refineries & Chemical Industries)?
22	Which American Institute Standard does Piping Engineer refer ?
23	Where the ERW & Seamless pipes are used?
24	How can flanges be classified based on Pipe Attachment?

25	What are Weldlet and Sockolet ? And where they are used?
26	How the valves are classified based on their function?
27	What are the common welding defects?
28	How the intensification factor depends on thickness of foil?
29	What are the essential data / documents required for preparation of equipment layout ?
30	. How do you calculate the width of pipe rack?

Course Code: CHDO6022

Course Name: Polymer Technology

QUESTION BANK

Q1.	Molecular weight of a polymer is equal to the molecular weight of the repeat unit
	multiplied by the degree of polymerisation. What is the molecular weight of poly vinyl
	chloride (PVC), if its degree of polymerisation is 800?
Option A:	50000
Option B:	51600
Option C:	49200
Option D:	50800
Q2.	Polymerisation of poly functional monomers produces polymers having
Option A:	Good mechanical strength
Option B:	Low viscosity
Option C:	Low melting point
Option D:	None of these
Q3.	The inter particle forces between linear chains in nylon-66 are bonds.
Option A:	Hydrogen
Option B:	Covalent
Option C:	Ionic
Option D:	None of these
Q4.	Polymerisation process in which two or more monomers of chemically different nature
	take part is called
Option A:	Copolymerisation
Option B:	Addition polymerisation
Option C:	Chain polymerisation
Option D:	None of these
Q.5.	Condensation polymerisation is not involved in the manufacture of
Option A:	Teflon
Option B:	Polythene
Option C:	Terylene
Option D:	Nylon
Q6.	Linear polymers are normally
Option A:	Thermosetting
Option B:	Thermoplastic
Option C:	Elastometric
Option D:	Having extremely high softening point
Q7	Typical solvent polymerisation reaction conditions for the production of high density

	polythene by Zeigler process is
Option A:	7 kgf/cm2 and 70 °C
Option B:	1000 kgf/cm2 and 100°C
Option C:	7 kgf/cm2 and 700°C
Option D:	1 kgf/cm2 (gage) and 70°C
Q8	Consider a reaction of polymer formation by condensation polymerization, completed in
	n-steps, with the liberation of a certain byproduct. How many total molecules of
	byproduct are released as a result of complete reaction?
Option A:	n+1
Option B:	n
Option C:	n-1
Option D:	n/2
Q9.	A copolymer is formed by the combination of two or more monomer molecules
Option A:	In a chain without the elimination of water
Option B:	With the elimination of small amount of water
Option C:	Of the same monomer by elimination of small molecules of water
Option D:	None of these
Q10.	Condensation polymerisation of produces Bakelite.
Option A:	Propylene
Option B:	Phenol & formaldehyde
Option C:	Phenol & acetaldehyde
Option D:	Urea & formaldehyde

Subjective Question Bank-Polymer Technology

1	Explain linear, branch and cross linked polymers
2	Enlist different types of polymerization techniques
3	Explain Interfacial Polymerisation with Advantages and disadvantages.
4	Define Thermoforming polymer processing.
5	Explain in detail thermal polymer degradation with relevant examples
6	What are the requirement for Crystallinity in morphology
7	Compare Thermo plastic Vs Thermosetting polymers(properties, type of polymerisation n uses)
8	Draw and explain manufacturing of LDPE
9	Draw and explain manufacturing of HDPE
10	Draw and explain manufacturing Nylon 6.
11	Explain Solution Vs suspension polymerisation.
12	Describe kinetics of Co Polymerisation.

13	What is degradation of polymers. Elaborate the types.
14	What are the types of Avg.Mol.wts? Explain 2 methods to find Avg.Mol.wt.
15	Explain the importance of Rheology in Polymer Technology.

Question Bank TE Chemical/Semester: VI (R 2019)

Subject: Department Optional Course 2 (Industrial Organization and Management) Course Code: CHDE6023

Q1.	Identify the best definition of planning:
Option A:	An integrated process in which plans are formulated, carried out and controlled
Option B:	Devising ways of achieving the objectives of an organization.
Option C:	Setting an organization's objectives and the means of reaching them.
Option D:	The core activity of planners and planning departments.
02	Personnel management is also called as
Q2.	r er sonner management is also canca as
Option A:	Personnel Administration
Option B:	Manpower management
Option C:	Both (A) and (B)
Option D:	None of the above
Q3.	Share allotment account is a
Option A:	personal account
Option B:	Real account
Option C:	Nominal account
Option D:	Impersonal account
Q4.	In which of the following business organisations there is separation of ownership and
	management?
Option A:	Sole proprietorship
Option B:	Partnership
Option C:	Hindu undivided family
Option D:	Company
Q.5.	For a partnership firm comprising of professionals who are governed by a separate act, the
	maximum number of partners can be
Option A:	50
Option B:	20
Option C:	100
Option D:	10
Q6.	Planning lays down the overall objective, strategies and polices for the total enterprise is
Option A:	corporate planning
Option B:	divisions planning.
Option C:	unit planning
Option D:	department planning

Q7	The process of establishing a time sequence for the work is known as
Option A:	Objective
Option B:	schedules.
Option C:	Procedures
Option D:	budgets.
Q8	Which of the following processes is not a part of the Production Planning and Control system?
Option A:	Integration of processes
Option B:	Routing
Option C:	Expediting and follow up
Option D:	All of the above
Q9.	Rules, duties and responsibilities or workers are given in writing in
Option A:	formal organization
Option B:	informal organization
Option C:	business or organisation
Option D:	strategic organization
Q10.	Sale has function in an organization.
Option A:	Only loss generating
Option B:	only revenue generating
Option C:	both loss as well as revenue generating
Option D:	neither loss nor revenue generating
Q11	Which of the following Organization structure provides Unity of Command in its
	working process?
Option A:	Functional
Option B:	Line
Option C:	Line and Staff
Option D:	
Q12	which of the following Organization structure is formed by a group of individuals
Option A:	
Option R.	Eventional
Option B:	
Option C:	Matrix
Option D:	Line
Q13	Middle management in organization structure includes the following?
Option A:	Departmental manager
Option B:	Managing director
Option C:	Workers
Option D:	Other Staff
Q14.	Organization culture consists of the following?
Option A:	Rules

Option B:	Assumptions
Option C:	Both a & b
Option D:	Job moral
Q15.	Which of the following is not an objective of purchasing in material management?
Option A:	Right Quantity
Option B:	Right Quality
Option C:	Right place
Option D:	Right price
Q16.	What is a social enterprise concerned with?
Option A:	Profit maximization
Option B:	Maximizing market share
Option C:	Providing public service
Option D:	Running a business to create social benefits
Q17	A good planning system must consider:
Option A:	What are we going to make?
Option B:	What does it take to make it?
Option C:	What do we have and need?
Option D:	All of the above
Q18	is the first step in a manufacturing planning and control system.
Option A:	Maintaining the planned backlog
Option B:	Maintaining the required inventory levels
Option C:	Achieving the forecast
Option D:	Production planning
Q19.	All major inputs to the MRP system include:
Option A:	Master production schedule, inventory records, and bills of material
Option B:	Master production schedule and bill of material
Option C:	Bill of material and inventory records
Option D:	Inventory records and master production schedule
Q20.	What is a Gantt chart a type of?
Option A:	Work flow design
Option B:	Work schedule design
Option C:	Work rate design
Option D:	Work output design
Q21.	must satisfy the demands of the marketplace. It does so by using plants,
	machinery, equipment, labor, and materials as efficiently as possible.
Option A:	Production
Option B:	Marketing
Option C:	Finance
Option D:	Engineering
Q22.	is the first step in a manufacturing planning and control system.
Option A:	Maintaining the planned backlog
Option B:	Maintaining the required
Option C:	inventory levels Achieving the forecast
Option D:	Production planning

Q23.	All major inputs to the MRP system include:
Option A:	Master production schedule, inventory records, and bills of Material
Option B:	Master production schedule and bill of material
Option C:	Bill of material and inventory records
Option D:	Inventory records and master production schedule
Q24.	linked to production planning.
Option A:	MRP
Option B:	Capacity requirements planning
Option C:	Rough-cut capacity planning
Option D:	Resource planning
Q25.	If the workload in a manufacturing plan cannot be changed, an alternative is to:
Option A:	Schedule overtime
Option B:	Schedule undertime
Option C:	Adjust the workforce by hiring
Option D:	All of the above
Q26.	It is possible to increase the available capacity by:
Option A:	Limiting subcontracting
Option B:	Using fewer workers
Option C:	Rerouting away from other work centers
Option D:	Scheduling overtime
Q27	is concerned with the production of high-volume standard products.
Option A:	Intermittent manufacturing
Option B:	Product manufacturing
Option C:	Flow manufacturing
Option D:	All of the above
Q28	An example of project manufacturing is:
Option A:	Large shipbuilding
Option B:	Gasoline
Option C:	Automobiles
Option D:	Appliances
Q29	specifications and standard specifications are the two major sources of
	specifications or ways of describing a product.
Option A:	Buyer
Option B:	Marketing
Option C:	Production
Option D:	Functional
Q30	The correct sequence of operations in production planning and control is
Option A:	Routing-Scheduling-Dispatching-Follow up
Option B:	Scheduling-Routing- Dispatching-Follow up
Option C:	Dispatching-Routing-Scheduling- Follow up
Option D:	Routing-Scheduling-Follow up-Dispatching

Subjective Question Bank- Industrial Organization and Management

1	Define Business. Explain different forms of business ownerships.
_	

2	Define Organization.Explain the types of business Organizations	
3	What are the functions involved in HRM?	
4	Define Quality management. Write a note on total quality management.	
5	Define the term Sales Management. Explain functions of Sales Management in	
	detail, quoting suitable examples.	
6	Explain Organs of Company Management with their Functions as: Shareholders,	
_	Board of Directors, CEO, Managing Director and Manager.	
/	Define Finance and Account. Explain the Role and Scope of Financial Management	
	Management	
8	Write a short note on:	
	a. Assets	
	b. Liabilities	
	c. Book Keeping	
	d. Capital	
	e. Difference between Data and Information	
9	Explain Marketing with following terms:	
	a. Marketing Research.	
	b. Pricing Policies	
	c. Sales Forecasting	
	d. Advertising	
	e. Sales Promotion.	
10	What is Personnel Management? Explain the Role of a Personnel Manager and Functions	
	of Personnel Management.	
11	Advantages & disadvantages single ownership?	
12	Explain general partnership with advantages and disadvantages?	
13	Explain input –output model?	
14	Explain concept of the production?	
15	Explain production system?	
16	Explain factor affecting productivity?	
17	Explain Regulatory Measures as to Company Management?	
18	Explain Direct Restrictions on Company Management?	

19	Explain role of shareholder?
20	Write a short note : role of personnel management
21	Difference Between Personnel Management And Human Resources
22	Explain advantages of personnel policy
23	Explain managerial function and operative function in a personnel management
24	Definitions & concept of Personnel Management
25	What is the sales forcasting? Explain two types of forcasting in detail
26	Write an explanatory note on marketing mix.
27	What is 'Marketing Management'? Explain the various functions of marketing
28	Definitions of Assets, Liabilities, Book Keeping, Capital and Types of Capital, Discounts, Commission, Debtor, Creditor and Turnover
29	Difference between Guarantee and Warranty
30	Explain Role and Scope of Financial Management